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Abstract Cassini plasma wave and particle observations are combined with magnetometer
measurements to study Titan’s induced magnetic tail. In this study, we report and analyze the plasma
acceleration in Titan’s induced magnetotail observed in flybys T17, T19, and T40. Radio and Plasma Wave
Science observations show regions of cold plasma with electron densities between 0.1 and a few tens of
electrons per cubic centimeter. The Cassini Plasma Spectrometer (CAPS)-ion mass spectrometer (IMS)
measurements suggest that ionospheric plasma in this region is composed of ions with masses ranging
from 15 to 17 amu and from 28 to 31 amu. From these measurements, we determine the bulk velocity of
the plasma and the Alfvén velocity in Titan’s tail region. Finally, a Walén test of such measurements suggest
that the progressive acceleration of the ionospheric plasma shown by CAPS can be interpreted in terms of
magnetic tension forces.

1. Introduction

Several observations in Titan’s tail have shown that ionospheric plasma populations are being transported
downstream from the moon as a result of the interaction with the Kronian plasma. Gurnett et al. [1982] stud-
ied the structure of Titan’s wake from Voyager 1 measurements. Based on pressure balance considerations,
they suggested that the plasma observed in the neutral sheet was originated at the ionosphere of the moon.
Gurnett et al. [1982] also estimated that the total loss rate of ionospheric ions is about 1.2 × 1024 ions s−1.
More recently, Wahlund et al. [2005] analyzed the cold plasma environment around Titan and provided the
first ionospheric outflow determination derived from Cassini observations: this value was estimated to be
1025 ions s−1. Coates et al. [2007] and Szego et al. [2007] reported on the presence of ionospheric plasma at
several Titan radii in the tail region during Cassini flyby T9 and Modolo et al. [2007a, 2007b] estimated an
associated outflow ranging between 2 and 7 ×1025 ions s−1. Sittler et al. [2010] complemented these stud-
ies and estimated that the ionospheric flux flowing away from Titan (for the so-called Event 1) is ∼ 7 × 106

ion cm−2s−1. Edberg et al. [2011] analyzed Radio and Plasma Wave Science (RPWS)-Langmuir Probe observa-
tions during consecutive and similar Cassini Titan flybys T55-T59. They found a region with high (1–8 cm−3)
plasma densities in the tail/nightside of the moon at locations progressively farther downtail from pass to
pass. They described their results as a steady structure of ionospheric plasma escaping from Titan. Edberg
et al. [2011] suggested three possible acceleration mechanisms which could have contributed to this iono-
spheric outflow: the ambipolar electric field (similar to Earth’s polar wind), the magnetic moment pumping,
and dispersive Alfvén waves. However, they could not conclude which mechanism is responsible for the
observed acceleration. Analyses of Cassini Plasma Spectrometer (CAPS) electron and ion observations at
Titan’s distant tail have also been investigated by Coates et al. [2012]. They studied crossings of Titan’s tail
during flybys T9, T63, and T75 and identified the presence of ionospheric plasma in that region. Some of
the electron spectra indicate a direct magnetic connection to Titan’s dayside ionosphere, while ion obser-
vations reveal heavy (m/q ∼16 and 28) as well as light (m/q = 1–2) ion populations streaming down the tail.
They suggested that the ambipolar electric field may be the driver of the ion escape. They estimated a total
plasma loss rate from Titan of the order of ∼ 1024 ions s−1 for the three flybys. In addition to the previous
studies, Cui et al. [2010] derived a total ion loss rate from Titan of 1.7 × 1025 ions s−1 based on measure-
ments made during nine close encounters of Cassini with the moon. Also, an analysis of the ionospheric
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composition for T40 flyby close to Titan can be found in Westlake et al. [2012]. Based on Cassini Ion and
Neutral Mass Spectrometer (INMS) observations obtained at altitudes ranging between 2225 km and 3034
km, the authors found significant densities of CH+

5 , HCNH+, and C2H+
5 . Taking into account this composi-

tion as well as the ion velocities, they suggested that these ions must have been created below the exobase
and transported to the detection altitude by a combination of thermal pressure and magnetic forces. They
also pointed out that this outward flow might link the gravitationally bound ionosphere with the more
distant wake.

In the present study we investigate the role of the magnetic tension forces in the acceleration of ionospheric
plasma in the wake of Titan. We will do so by applying the formalism of magnetohydrodynamics (MHD) to
interpret Cassini’s data in Titan’s tail. These forces are expected to be important near Titan’s plasma sheet as
well as in regions where Alfvénic structures are present. In these structures, the components of the plasma
velocity tangential to those layers change in response to the J × Bn force (Bn = B ⋅ n̂, where n̂ is the normal
to the discontinuity plane). As is stated in Paschmann and Sonnerup [2008], a plasma flowing across such
structures satisfies the Walén relation:

Δv = ±ΔvA (1)

where Δv and ΔvA are the variations in the plasma and Alfvén velocities, respectively.

As is also shown in Appendix A, in the case of an incompressible fluid an exact solution to the ideal MHD
equations can be found where the changes in the bulk velocity of the plasma due to magnetic tension forces
satisfy the Walén relation. This relation has a much simpler formulation in the deHoffmann-Teller frame
(HT) [Khrabrov and Sonnerup, 1998], a reference frame where the electric field in the plasma is zero. In this
reference frame, the Walén relation can be written as (see Appendix A or Paschmann and Sonnerup [2008])

v′ = ±vA (2)

where v′ and vA are the plasma bulk velocity and the Alfvén velocity in the HT frame, respectively. Therefore,
according to the derivation of equation (2), the J × B force accelerates the plasma flow which, seen from the
HT reference frame, is characterized by an Alfvénic bulk velocity whose direction is parallel or antiparallel to
the local magnetic field.

The HT analysis/Walén test [Khrabrov and Sonnerup, 1998] is usually applied to study plasma acceleration
events in the presence of discontinuities or current layers in order to establish if the magnetic tension forces
arising in these layers can be accountable for the changes in the kinetic energy of the plasma. The Walén
test consists of finding an approximate HT reference frame and then plotting the estimated plasma bulk
velocity components, after transformation into the HT frame, against the corresponding components of
the calculated local Alfvén velocities. In the present study we analyze Cassini plasma observations obtained
during three flybys. We consider flybys T17, T19, and T40 since in these cases Cassini’s trajectory explored
Titan’s induced magnetotail and was allowed to characterize Titan’s plasma outflow. We also verify that the
MHD formalism can be applied for the considered data set before testing the Walén relation. Additionally,
we also perform a minimum variance analysis (MVA) of the magnetic field measurements to determine
if they display signatures of the existence of current layers compatible with tension forces [Sonnerup and
Scheible, 1998].

This study is structured as follows: A brief description of each used instrument is presented in section 2.
Analysis of ion fluxes, angular distribution, mass composition, and energy spectra are presented for the
T40 flyby in section 3. This information allows the estimation of the plasma velocity in Titan’s wake, which
combined with electron number density and magnetic field observations yields the local Alfvén speed and
the ionospheric fluxes flowing away from Titan. The deHoffmann-Teller analysis, the Walén test, and the
MVA results are also presented in section 3. In section 4 we summarize and discuss our results for the three
considered flybys.

2. Instrument Description

Magnetic field observations are derived from the Cassini Magnetic field experiment [Dougherty et al.,
2004], ion composition and plasma flow information are obtained from CAPS [Young et al., 2004], and elec-
tron number density and spacecraft potential are calculated from RPWS/LP [Gurnett et al., 2004]. In this
section we present a brief description of each of these instruments.
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2.1. Magnetometer (MAG)
The Cassini Magnetic field experiment consists of a Vector Helium Magnetometer (VHM) and a Fluxgate
Magnetometer (FGM) capable of measuring the ambient magnetic field over a wide range: ± 256 nT and
± 65655 nT, respectively. The vector measurements provided by the VHM and the FGM have a resolution of
2 Hz and 32 Hz, respectively [Dougherty et al., 2004]. In this study we use 1 s averaged FGM vector magnetic
field measurements.

2.2. CAPS-Electron Spectrometer Sensor
The Cassini Particle Spectrometer-Electron Spectrometer Sensor (CAPS-ELS) measures electrons in the
energy range of 0.6 eV–28 keV with an energy resolution ΔE∕E = 0.17 and an angular resolution of
20◦ [Young et al., 2004]. In this study we have used electron density estimates derived from the moment
calculations [Lewis et al., 2008].

2.3. CAPS-Ion Mass Spectrometer
CAPS-ion mass spectrometer (IMS) samples ions in eight angular sectors (anodes) with each sector having
an instantaneous field of view (FOV) of 8◦ × 20◦. This instrument takes singles data (SNG), start signals gen-
erated by the detection of electrons liberated from the carbon foil [Thomsen et al., 2010], corresponding to
energy-per-charge spectra ranging from 1 eV to 50 keV with a spectral resolution of 17%. The 63 step energy
sweeps, and the 64th step (the fly-back bin) take 4.0 s to acquire the data and are formatted into eight
energy sweeps per instrument’s internal data acquisition cycle. This cycle, referred to as the A cycle, lasts
32.0 s. The CAPS-IMS sensors are mounted on a rotating platform capable of actuating the CAPS instrument
by ∼180◦ around an axis parallel to the spacecraft Z axis in about 3 min. The time-of-flight (TOF) analyzer is
used to infer detailed compositional analysis in a so-called B cycle. The B cycle lasts eight A cycle, i.e., 256 s.
During the B cycle, the eight angular sectors are summed together and the 64 steps are collapsed to 32
energy steps. More detailed information of CAPS-IMS are presented in Young et al. [2004], Hartle et al. [2006],
Sittler et al. [2010], and Wilson et al. [2012]. These observations are used to characterize the ion population
and provide key information about the plasma flow direction, its composition, and the relative abundance
of its constitutive ion species.

2.4. RPWS
The Radio and Plasma Wave Science (RPWS) investigation consists of three orthogonal electric field anten-
nas, three orthogonal search coil magnetic antennas, and a Langmuir probe (LP) [Gurnett et al., 2004].
In the present study, we use the LP and the High- and Medium-Frequency Receiver observations since
they provide two independent estimates for the electron number density [e.g., Edberg et al., 2010]. RPWS
observations, in conjunction with the CAPS-ELS measurements, provide estimates for the electron number
density at different regions around Titan. Even though the CAPS-ELS moment calculation may underesti-
mate the electron number density at regions where Cassini is negatively charged (since it cannot observe
a fraction of low-energy electrons), it is a well-designed instrument for regions of hot plasmas such as that
of Titan’s surrounding environment [Lewis et al., 2008]. In contrast, the electrostatic wave emissions are
observed only at locations where the electron density is ≳ 0.1 cm−3. Therefore, the RPWS instrument pro-
vides reliable measurements in regions very close to Titan, which mainly contain cold plasma. The two data
sets are complementary and provide a complete characterization of the electron density in Titan’s vicinity.

The next section presents Cassini observations followed by a step by step description of the analysis under-
taken for this investigation. The detailed analyses are presented for the T40 flyby, but a similar study has
been performed for T17 and T19 flybys.

3. CAPS/RPWS/MAG Analysis: The T40 Case
3.1. Observations
Cassini’s Titan flyby T40 took place on 5 January 2008 with the closest approach at an altitude of 949 km
(at 21:26:24 UTC). Saturn local time was 11.3 h, as a result the angle between Titan’s nightside and Titan’s
nominal corotation wake is close to 90◦. Figure 1 shows CAPS-IMS, CAPS-ELS, RPWS, and MAG observa-
tions for this flyby in the time interval 20:30–22:30 UTC. Figure 1 (top) shows the eight-anode average of the
CAPS-IMS singles observations. Figure 1 (middle) displays the electron number density derived by CAPS-ELS
moment calculation (blue marks), LP analysis (red marks), and deduced from the upper hybrid frequency
(green marks). Electron number density deduced from ELS in the time interval 21:08 to 21:45 are not shown.
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Figure 1. CAPS, RPWS, and MAG observations for T40 flyby (2008, day of year 5). (top) The eight anodes average of the
CAPS-IMS observations. (middle) The electron number density derived by CAPS-ELS moment calculation (blue marks),
LP analysis (red marks), and deduced from wave observations (green marks). (bottom) The magnetic field components
measured by MAG: BxTIIS (blue curve), ByTIIS (green curve), BzTIIS (red curve), and the magnetic field intensity BTIIS
(black curve).

Figure 1 (bottom) presents the magnetic field components measured by MAG in Titan Ionospheric Interac-
tion coordinates (TIIS). In this Titan-centered coordinate system the XTIIS axis points in the direction of ideal
corotation, the YTIIS axis points toward Saturn, and the ZTIIS axis completes the right-handed system. The
blue, green, and red curves show the BxTIIS, ByTIIS, and BzTIIS magnetic field components, respectively, while
the black curve displays the magnetic field intensity BTIIS.

From all data sets shown in Figure 1 it can be noted that Cassini is located in Saturn’s magnetosphere
between 20:30 and 20:50 UTC. This plasma region is characterized by an electron number density ranging
between 0.01 and 0.1 cm−3. At about 20:50 UTC, Cassini enters Titan’s induced magnetosphere and the elec-
tron density increases, while the spacecraft approaches Titan’s ionosphere. Density estimates derived from
LP analysis, plasma wave, or moment calculation from particle analyzer show similar values. Between 20:53
and 21:15 UTC, the observed energy of the ion plasma smoothly decreases from ∼ 50 eV to ∼5 eV. At the
same time, MAG measurements show that Cassini is in the away (BxTIIS > 0) lobe of Titan’s magnetotail.
The entry into the induced magnetosphere can be noticed from the increment in BxTIIS, while the other two
components decrease. Note that in the case of ideal magnetospheric plasma corotation, the direction of
the XTIIS magnetic field component is the same as the direction of the ideal external plasma flow. As can be
seen, Cassini remains in the away lobe of Titan’s magnetotail until the reversal of the BxTIIS magnetic field
component at about 21:21 UTC. Finally, Cassini leaves Titan’s induced magnetosphere in the time frame
21:47–21:50 UTC. In this study we test if the observed changes in the kinetic energy of the plasma (Figure 1,
top) can be associated with magnetic tension forces present during the same time intervals.

Sections 3.2, 3.3, and 3.4 describe the analyses performed on CAPS/RPWS/MAG measurements in order to
estimate the bulk velocity of the plasma and the local Alfvén velocity in Titan’s induced tail. The analyses are
carried out in the Kronocentric Solar Orbital (KSO) coordinate system. This coordinate system is centered at
Saturn with the XKSO axis pointing toward the Sun, the ZKSO being perpendicular to the plane of Saturn’s
orbital motion and pointing north of the ecliptic and YKSO completing the right-handed system.

ROMANELLI ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9995
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Figure 2. (a) Normalized single ion fluxes (color coded) measured by CAPS from 21:09 to 21:12 hs as a function of 𝛿 and 𝜃. The mark also indicates the position
associated with the flow direction: 𝛿 = 35◦ and 𝜃=−130◦ . (b) Energy spectra of the single ion fluxes observed by each of the eight anodes of CAPS at
21:10:30 hs. The red curve identifies the anode number 5 where the ion flux takes its highest value.

3.2. Plasma Flow Direction
The determination of the flow direction is computed from the CAPS singles (SNG) data and makes use of the
instantaneous FOV of CAPS-IMS, the actuator position, and the spacecraft orientation. There is no mass dis-
crimination in the SNG data, but elevation and azimuthal information allows us to reconstruct the angular
distribution. During one actuator scan the instrument is able to cover a wider region which, due to its geo-
metrical capabilities, is limited to about 2𝜋 steradian (for a fixed spacecraft orientation). The sky map seen
by the instrument is a sphere where a given point can be defined with two spherical coordinates, 𝛿 and 𝜃.
The angle between the ZKSO = 0 plane and the position r is 𝛿; 𝛿 can be seen as a latitude which ranges from
−90◦ to +90◦. The longitudinal angle 𝜃 is contained in the XKSO − YKSO plane and takes values between
−180◦ and +180◦, where 𝜃 = 0◦ corresponds to the direction of the XKSO axis. Taking into account the
intrinsic angular acceptance of the analyzer, the actuator motion and the spacecraft orientation, we derive
the spatial coverage of each anode at each acquisition time by means of SNG data. By integrating over all
energy bins we can estimate the total number of counts received for each anode at each accumulation time.
Plotting this information in a 𝛿-𝜃 map for a short time interval (basically one actuator scan) allows the recon-
struction of the angular distribution of the plasma in the spacecraft frame, in the KSO coordinate system.
The flow direction is determined when the core of the distribution function is observed and identified with
specific values of 𝛿 and 𝜃. The uncertainties in the spherical coordinates are Δ𝛿 = 20◦ and Δ𝜃 = 20◦.

Figure 2a displays the single ion fluxes measured by CAPS from 21:09 to 21:12 UTC (during flyby T40) as
a function of 𝛿 and 𝜃 and also points out the position associated with the flow direction. In this case, the
angles are 𝛿 = 35◦ and 𝜃 = −130◦. The plasma flow direction has been determined for different time inter-
vals when the incoming plasma was in the FOV of the instrument. These results are summarized in Table 1,
columns 3 and 4.

3.3. Plasma Flow Speed
Determining the plasma speed requires information such as the plasma composition, the observed energy,
and the spacecraft potential. Unfortunately, TOF measurements do not always allow a mass determination
since the ion flux might not be intense enough. The knowledge of the ion composition is then limited to
only a few time intervals. However, assuming that the different ion species are traveling at the same velocity
v, it is possible to use SNG data in a complementary way. In this case, different energy spectra peaks reflect
the different ion composition of the plasma under study. Most of the time, two energy peaks are observed
and correspond to two ion mass groups. TOF data analyses, when sufficient counts allow a good mass deter-
mination, are used to identify more accurately the ion masses. In these cases, ratios of the main ion mass
groups deduced from the TOF analysis are consistent with the energy ratio of the SNG spectra. This result
suggests that the different ion populations are traveling with the same speed. As a consequence, the MHD
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Figure 3. (left) Number of counts on the ST detector, color coded with a logarithmic scale, plotted as a function of the energy per charge (E/q (eV)) and the TOF
channels. (top right) Simulated signatures as a function of the TOF channel for the following species: CH+

3 , CH+
4 , CH+

5 , HCNH+, and C2H+
5 . (bottom right) Number

of counts as a function of the TOF channel derived from TOF data (red curve) and the TOF simulated result (black curve).

formalism can be applied in this environment. The plasma speed is v =
√

2 Es∕ms, where Es is the energy of
the peak corresponding to the population of mass ms (after corrections involving the spacecraft potential
USC). As a result, the ratio between the energy of these two peaks is equal to the ratio between the masses
of the corresponding populations (E1,2 = 1∕2 m1,2 v2, E1∕E2 = m1∕m2). This ratio remains relatively constant
for the different ion spectral signatures of the flyby, suggesting that the plasma composition does not vary
significantly during the studied time intervals.

The velocity vector VKSO is determined as

VKSO = −v (cos(𝜃) cos(𝛿)X̂KSO + sin(𝜃) cos(𝛿)ŶKSO + sin(𝛿)ẐKSO) (3)

In this study we consider an uncertainty in the energy values of ΔE = 0.2 E. The minus sign in equation (3)
reflects that the plasma flow direction is antiparallel to the normal of the spherical map seen by CAPS.

The speed of the plasma flow has been calculated for the same time intervals where the plasma flow
direction has been derived (previous subsection). Information on the derived energy and mass of each
population is summarized in Table 1.

Next, we show an example based on TOF and SNG data for one event during flyby T40. Figure 3 (left) dis-
plays the best TOF measurements, in terms of counts, in the considered tail region. The plot shows the
number of counts measured by the Straight Through (ST) detector at about 21:16 UTC in the function of
energy per charge (E/q (eV)) and time-of-flight channels. The ion energy ranges from 1 to approximately
10 eV, and several TOF channels exhibit significant counts. The determination of the corresponding mass has
been examined with a simulation model developed by Nelson and Berthelier (internal report). This simula-
tion model mimics the instrumental response to various ion (molecular and atomic) mass, and energy and
has been validated by comparing simulation results with CAPS spare model calibration tests. The expected
signature on the ST for a 10–50 eV CH+

5 ion beam is presented in green in Figure 3 (top right). The largest
peak at TOF bin 150 corresponds to a start time generated by an electron impact on the ST microchannel
plate (MCP) and a stop time due to a neutral carbon impact on the ST MCP. Additionally, for CH+

5 , the peak at
TOF bin 100 corresponds to a start and stop time induced by an electron and a negatively charged carbon,
while the broader contribution of the signature, from TOF bin 30 to 60, is due to a start time of an elec-
tron impact and a stop time of a secondary electron created after a neutral hydrogen or carbon impact on
the high voltage rings. Each ion species has its own TOF signature, and by testing possible combinations
of species one can construct an ion-summed ST signature, which can be compared to the ST observations.
The simulation analysis suggests that these peaks are due to the existence of CH+

3 , CH+
4 , CH+

5 , HCNH+, and
C2H+

5 . Water group ions show O− signature on TOF ST at TOF bins 115–125 (for an incident ion energy below
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100 eV). The absence of significant counts at these TOF bins allows excluding water group ions from the
plasma composition. Figure 3 (bottom right) shows the number of counts derived from TOF data (red curve)
and the TOF simulated result (black curve) when these ion species are considered. We find a good agree-
ment between these two curves: the peak marked as (1) is mainly related to the presence of C2H+

5 , while the
peak marked as (3) is associated with the existence of CH+

5 , HCNH+, and C2H+
5 . The peaks corresponding to

the heavier ions, marked as (2) and (4) are related to the CH+
3 , CH+

4 , CH+
5 (electron for the start signal and neu-

tral carbon for the stop signal), and the HCNH+ and C2H+
5 species, respectively. Therefore, the TOF analysis of

this event indicates the presence of particles that can be classified in two groups: a first group with masses
ranging between 15 and 17 amu and a second with masses between 28 and 31 amu. As is shown next, these
two mass groups are fully consistent with the energy spectra observed at 21:10 UTC and also further in the
tail region (m1∕m2 determined from TOF is close to E1∕E2 determined from SNG for different time intervals).
Figure 2b shows the energy spectra of the single ion fluxes observed by each of the eight anodes of CAPS
at 21:10:30 UTC. This time corresponds to the time when the core of the distribution was identified (see the
example given in the end of section 3.2). The energy values E′ (associated with the ion fluxes) derived from
CAPS-IMS have been corrected by the spacecraft potential USC measured by the LP (shown in Table 1, col-
umn 11). The energies of the ion fluxes seen from Cassini’s reference frame E are related to E′ and USC by the
following equation:

E = E
′ + q USC (4)

The red curve identifies the anode where the ion flux takes its highest value (number 5 in this case). Two
peaks in the ion fluxes can be seen in this curve: the first one with energy E1 = 15.6 eV has an associ-
ated flux F1 = 2.1 × 107 cm−2sr−1s−1 and the second one with energy E2 = 9.1 eV has an associated
flux F2 = 7.6 × 106 cm−2sr−1s−1. If both peaks are related to two different particle species traveling at
the same plasma flow speed v, then the ratio between the energy of the peaks E1∕E2 is equal to the ratio
between the masses of the particles of each species m1∕m2, and therefore, the speed of the flow is given
by v =

√
2 E1∕m1 =

√
2 E2∕m2. In this case, E1∕E2 = 1.7, and therefore, m1∕m2 = 1.7. As a consequence

of this, and making use of the TOF results, we estimate that m1 = 28 amu and m2 = 17 amu. Thus, in this
case m1∕m2 ∼1.65, a value consistent with the proportion derived from the energy ratio E1∕E2. This compo-
sition indicates that the plasma has an ionospheric origin, even at few Titan radii away in the wake. The ion
composition deduced from the TOF is fully compliant with the INMS ion composition in Titan’s topside iono-
sphere [Westlake et al., 2012]. This result is also consistent with the higher electron densities found in the
wake (Figure 1, middle) with respect to that of Saturn’s background plasma [Wahlund et al., 2005].

Finally, combining the ion mass, the peak energy on the individual spectra and the flow directional infor-
mation, the bulk velocity of the plasma in this event observed by Cassini (in KSO coordinates) is V =
(5.56, 6.63,−6.06) km/s. Taking into account the spacecraft velocity VSC, we derive the bulk velocity of the
plasma in Saturn’s reference frame from the expression: VKSO = V − VSC. The spacecraft velocity for this
interval is VSC = (4.7, 2.8, 1.9) km/s, so VKSO = (0.8, 3.9,−8.0) km/s.

3.4. Local Alfvén Velocity Determination
In this subsection we point out the different steps carried out to calculate the local Alfvén velocities asso-
ciated with the previously selected time intervals (where the bulk velocity of the plasma was determined).
The Alfvén velocity is vA = B∕

√
𝜇0 𝜌 , where B is the magnetic field, 𝜇0 is the permeability of the vacuum

and 𝜌 =
∑

s ns ms is the total mass density of the charged plasma particles, where s goes over all plasma
species of mass ms and number density ns. Considering that the electron mass me is much smaller than the
mass of any other plasma particle, we approximate 𝜌 ∼

∑
s≠e ns ms = ne

∑
s≠e

ns

ne
ms. The electron number

density ne and the magnetic field B are derived from RPWS wave measurements and MAG data. We approx-
imate the ratio between the numerical density of the plasma species s and the electron numerical density,
ns∕ne, by the ratio between the flux of this species Fs (associated with its corresponding energy peak) and
the total flux Ftotal =

∑
s≠e Fs (the Fs are determined from energy spectra of CAPS-IMS measurements in addi-

tion to data provided by TOF analysis). Hereafter, we denote this ratio by Cs = Fs∕Ftotal ∝ ns∕ne. This allows
us to determine the relative contribution of each species to the total density. Therefore, we approximate the
Alfvén velocity for each selected time interval by vA ∼ B∕

√
𝜇0 ne < m >, where the average mass of the

flow is < m >=
∑

s≠e Cs ms.

ROMANELLI ET AL. ©2014. American Geophysical Union. All Rights Reserved. 9999



Journal of Geophysical Research: Space Physics 10.1002/2014JA020391

In the example shown in section 3.3, the ratios between the flux for each species and the total flux are C1 =
F1∕(F1 + F2) = 0.73 and C2 = F2∕(F1 + F2) = 0.27. Therefore, the contributions of these populations lead to
an average mass of the plasma < m >= 25.1 amu. Additionally, B =(1.04, 2.98, −2.44) nT and ne = 3.8 cm−3,
which leads to an Alfvén velocity that, expressed in KSO coordinates, is vA = (2.4, 6.8, −5.6) km/s.

The same procedure is applied for other time intervals in this flyby as well as in flybys T17 and T19. The
obtained results are presented in Table 1.

3.5. Overall Wake Properties
All previous studies based on Cassini plasma measurements obtained during flyby T40 show that the plasma
under study is mainly composed of two ion species traveling at approximately the same speed: one with
masses ranging from 15 to 17 amu and another one with masses ranging from 28 to 31 amu. Their relative
contribution to the total mass density is shown in Table 1, columns 13 and 14. The proportion of the more
massive population in the plasma varies between 0.48 (at 21:00:30 UTC) and 0.77 (at 21:07:30 UTC), while
the complementary contribution is mainly of lighter (15–17 amu) ions. The average mass of the flow < m >

varies between 22.2 and 25.5 amu. Additionally, the plasma speed in Titan’s wake increases from (8.9 ± 0.9)
km/s at about 3 RT to (17.7 ± 1.8) km/s at about 5.5 RT . Moreover, in this region the electron number density
is found to vary from 0.1 to a few tens of electrons per cubic centimeter.

Based on the electron number density measurements and the plasma speed determinations, we also derive
two average values for the ionospheric flux flowing away from Titan. For a plasma speed of 8.9 km/s the flux
is 2.49 × 106 ions cm−2s−1, while for a plasma speed of 17.7 km/s the flux is 4.96 ×106 ions cm−2s−1. These
results are close to the ones reported on Sittler et al. [2010].

3.6. The DeHoffmann-Teller Analysis and the Walén Test
In order to determine if the observed changes in the kinetic energy of the plasma can be associated with the
existence of an Alfvénic structure, we perform a Walén test of the results obtained in the previous subsec-
tions. We consider CAPS/RPWS/MAG measurements obtained in regions where Cassini observed variations
in the energy of the plasma (in Titan’s wake) and focus our study on locations where these changes seem to
be correlated with changes in the Alfvén velocities.

Equation (2) is valid in the HT frame (the reference frame in which the electric field is zero). An approximate
HT frame can be identified by determining the value of the frame velocity VHT that minimizes the mean
square of the electric field D(V) given by

D(V) = 1
M

M∑
m=1

|E′(m)|2 = 1
M

M∑
m=1

|(V(m)
KSO − V) × B(m)|2 (5)

where V(m)
KSO and B(m) are the plasma bulk velocities and magnetic fields determined in the previous section

and m goes from 1 to M, being M the number of selected time intervals corresponding to each flyby. This
critical frame velocity VHT is known as the deHoffmann-Teller velocity. As shown in Khrabrov and Sonnerup
[1998] the minimization condition for D(V) leads to the following equation which we use to derive VHT:

VHT = K−1
0 < K(m)V(m)

KSO > (6)

where

K (m)
𝜇𝜈

= B(m)2
(
𝛿(m)
𝜇𝜈

−
B(m)
𝜇

B(m)
𝜈

B(m)2

)
(7)

K(m) is a matrix associated with the (m) time interval and its elements K (m)
𝜇𝜈

are related to the 𝜇, 𝜈 mag-
netic field components (B(m)

𝜇
, B(m)

𝜈
) and to the magnetic field intensity B(m) by the expression shown in

equation (7). The Kronecker delta matrix is 𝛿(m)
𝜇𝜈

. The angle brackets < … > denote the average of the
enclosed quantity over the set of M measurements and K0 ≡< K(m) >.

We characterize the quality of a determined approximate HT frame from the value of the ratio D(VHT)∕D(0)
and the correlation coefficient RHT between the following two electric fields: E(m)

c = −V(m)
KSO × B(m) and E(m)

HT =
−VHT × B(m) [Khrabrov and Sonnerup, 1998].

In the case of T40, we study the region between 20:59 and 21:12 UTC where the FOV coincides with the
plasma flow in four different time intervals. Making use of the equation (6), we find that the associated HT
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Figure 4. The deHoffmann-Teller fit for T40: DHT∕D0 = 0.2, correla-
tion coefficient RHT = 0.83, deHoffmann-Teller slope SHT = 1.06, and
deHoffmann-Teller y intercept OHT = 0.46.

velocity in this case is VHT = (0.28,
−1.49,−2.05) km/s. Figure 4 shows
a plot of the corresponding electric
field E(m)

c as a function of E(m)
HT (com-

ponent by component) and gives an
estimate of the quality of the HT frame.
This figure also shows the best lin-
ear fit for these measurements: the
slope is SHT = 1.06 and the y inter-
cept results OHT = 0.46. The correlation
coefficient is RHT = 0.83 and the ratio
D(VHT)∕D(0) = 0.20, which indicate
that the obtained VHT provides a rea-
sonable approximation of the ideal
HT frame.

Figure 5 shows the Walén plot corre-
sponding to the analyzed observations
during flyby T40. We perform a
weighted linear fit (applying the linear
least squares method) that takes into

account only the uncertainties in the bulk velocity determination (y axis in the Walén plot) since the uncer-
tainties in the determination of the Alfvén velocities are much smaller. The Walén slope is SW = (0.87±0.22),
the y intercept is OW = (−0.20 ± 1.49) km/s, the correlation coefficient is SW = 0.96, and R2 = 0.91.
These results indicate that there is a linear relationship between the bulk velocity of the plasma and the
local Alfvén velocity (seen from the HT frame). The relative error in the slope (0.25) is such that a Walén slope
value +1 is possible. Moreover, the value of OW indicates that the linear fit is consistent with a straight line
crossing the origin of coordinates. Thus, the performed Walén test suggests that the changes in the kinetic
energy of the plasma might be understood in terms of J × B forces.

The same analyses detailed for flyby T40 are performed for flybys T17 and T19. A summary of the Walén
analysis for the three flybys is presented in Table 2.

Figure 5. Walén plot corresponding to flyby T40: Walén slope
SW = (0.87 ± 0.22), y intercept OW = (−0.20 ± 1.49) km/s, and
R2 = 0.91.

3.7. MVA
In this section we describe the results
of a MVA [Sonnerup and Scheible,
1998] of the magnetic field data dur-
ing the time intervals where Cassini
observed changes in the kinetic energy
of the plasma. This method provides
an estimate of the normal direction
(n̂) associated with the presence of a
current layer by calculating the eigen-
values of the covariance matrix of the
magnetic field within each interval
(the maximum, intermediate, and min-
imum eigenvalues are 𝜆1, 𝜆2, and 𝜆3,
respectively). Then, the normal vec-
tor n̂ is associated with the minimum
variance eigenvector.

For the analyzed interval in T40 the
mean magnetic field vector is < B >=
(0.19, 2.07,−1.91) nT. In this case MVA
yields a high 𝜆2∕𝜆3 ratio (11.45). Then,
this interval shows a well-defined plane
of intermediate/maximum variance
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Table 2. Summary of the Walén Analysis for T17, T19, and T40a

Flyby Interval Points V⃗HT (km/s) DHT∕D0 RHT SHT OHT RW SW OW

T17 19:56–20:08 5 (−9.39, −5.11, 2.38 ) 0.01 0.99 1.00 −0.03 −0.96 −0.71 −0.10
T19 17:07–17:20 6 (−12.00, −1.44, −7.12) 0.03 0.98 1.00 −0.01 −0.92 −0.91 1.38
T40 20:58–21:15 4 (0.28, −1.49, −2.05) 0.20 0.83 1.06 0.46 0.96 0.87 −0.20

aThe columns show the flyby number, the time interval selected, the number of data points, the deHoffmann-Teller
velocity, the ratio DHT∕D0, the correlation coefficient RHT, the deHoffmann-Teller slope SHT, the deHoffmann-Teller y
intercept OHT, the correlation coefficient RW , the Walén slope SW , and the Walén y intercept OW .

and a well-defined minimum variance direction. As a consequence, MVA provides a good estimate for the
normal vector to this plane which, in KSO coordinates, results n̂ = (−0.12, 0.40, 0.91). These results show
that the variation in the magnetic field direction (in the same time interval where CAPS observations show
an acceleration of the plasma flow) is mainly restricted to a plane and can be related to the existence of a
one-dimensional current layer. MVAs of MAG data are also performed for flybys T17 and T19. The results are
shown and discussed in the next section.

4. Summary and Discussion

In the present study we identify and characterize the progressive plasma acceleration observed at Titan’s
induced magnetotail region. These analyses have been based on CAPS, RPWS, and MAG measurements
obtained during flybys T17, T19, and T40. Studies of the ion fluxes as well as their angular distribution,
mass composition, and energy spectra show consistently that this plasma is mainly composed of two ion
populations traveling at approximately the same speed: one with masses ranging from 15 to 17 amu and
another one with masses ranging from 28 to 31 amu. During all three flybys the plasma speed in Titan’s wake
takes values from about 9 km/s to about 20 km/s. These results are in agreement with the INMS ion com-
position observed at Titan’s topside ionosphere [Westlake et al., 2012] and suggest that this plasma has an
ionospheric origin. Additionally, RPWS observations show that in these regions of cold plasma the electron
density ranges between 0.1 and a few tens of electrons per cubic centimeter. A relative abundance of the
two main mass group of ions (mass 15–18 and mass 28–31) has been computed and shows that the con-
tribution of these two ion populations varies between 1/3 and 1/2 to the escape with a spatial/temporal
variations. Based on the electron number density measurements and plasma speed results, we derive aver-
age values for the ionospheric flux flowing away from Titan. In the case of flyby T17, this flux varies between
8.72 × 106 ions cm−2 s−1 and 9.94 × 106 ions cm−2 s−1. For T19, it varies between 5.05 × 106 ions cm−2 s−1

and 9.05 × 106 ions cm−2 s−1; while for T40 it ranges between 2.49 × 106 ions cm−2 s−1 and 4.96 × 106 ions
cm−2 s−1. The resulting fluxes are close to the ones derived by Sittler et al. [2010]. Assuming a simplified
cylindrical wake with radius ∼ 2.5 RT [Modolo et al., 2007b], the ion escape ranges between 1.1 × 1025 ions
s−1 and 1.3 × 1025 ions s−1 for T17, it ranges between 6.6 × 1024 ions s−1 and 1.2 × 1025 ions s−1 for T19 and it
ranges between 3.2 × 1024 ions s−1 and 6.5 × 1024 ions s−1 for T40. We note that these estimations are larger
than the total plasma outflow deduced from the Voyager 1 observations [Gurnett et al., 1982] but are close
to other Cassini estimates: 1025 ions s−1 [Wahlund et al., 2005], (2–7) ×1025 ions s−1 [Modolo et al., 2007b],
1.7 × 1025 ions s−1 [Cui et al., 2010], and (2.3, 4.2) × 1024 ions s−1 [Coates et al., 2012].

Several acceleration mechanisms have been proposed to explain the presence of ionospheric populations
in the downstream region of Titan [Edberg et al., 2011]. Among them, magnetic tension forces are expected
to be significant at Alfvénic structures. In order to see if the changes in the energy of the plasma might be
explained in terms of these forces, we perform tests of the Walén relation. To do this, we first derive the
plasma bulk velocity and the local Alfvén speed in Titan’s downstream region taking into account the nec-
essary corrections related to the spacecraft potential and velocity. The low values of the ratios DHT∕D0 and
the proximity of the correlation coefficients RHT to unity (see Table 2) allow us to identify an approximate HT
frame associated for each of the three flybys studied. Figures 5–7 display their associated Walén plots. As a
result, a quasi-stationary pattern of magnetic field and plasma velocity is likely to be present in the down-
stream region of Titan. Therefore, the observed time variation in these events is due to the steady motion of
the pattern relative to the instrument frame.

In agreement with the Walén relation, we find a linear dependence between the plasma bulk velocity (trans-
formed into the HT frame) and the local Alfvén velocity. We determine that the Walén slopes associated
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Figure 6. Walén plot corresponding to flyby T17: Walén slope SW =
(−0.71 ± 0.57), y intercept OW = (−0.10 ± 0.91) km/s, and R2 = 0.92.

with flybys T17, T19, and T40 are
(−0.71 ± 0.57), (−0.91 ± 0.17), and
(0.87 ± 0.22), respectively. The cor-
responding y intercept values are
(−0.10 ± 0.91) km/s, (1.38 ± 1.41) km/s,
and (−0.20 ± 1.49) km/s. The difference
in the sign of the slopes is in agreement
with the location of Cassini in Titan’s
away or toward magnetic lobes. Dur-
ing flybys T17 and T19 the spacecraft
is located in the toward lobe where
the component of the magnetic field
parallel to the flow points in the oppo-
site direction to the XTIIS, while in the
case of T40 both vectors (magnetic
field and velocity) are pointing in the
same direction. The uncertainty in the
derived slopes and y intercepts are due
to experimental uncertainties in the
determination of the direction of the
flow as well as its energy. The results
from flybys T19 and T40, which show

relative errors in the slopes of 0.19 and 0.25 are such that both slopes values −1 and +1 are possible. Flyby
T17 has a relative error of 0.8 due to the fact that the plasma velocity in the HT reference frame is consid-
erably lower than in the previous two cases. As a result, the relative error increases significantly. In spite of
this, the results associated with T17 are in agreement with the ones from T19 and T40. When it comes to
the y intercept values, the experimental uncertainties allow the possibility that each straight line crosses the
origin of coordinates.

We also study the fraction of the total variance present in the y measurements (of each Walén plot) that can
be explained in terms of the linear fit model taking as a proxy the value of R2 since

R2 = 1 −
∑M

i=1( yi − fi)2∑M
i=1( yi− < y >)2

= 1 −
∑M

i=1( yi − fi)2

M (std( y))2
(8)

Figure 7. Walén plot corresponding to flyby T19: Walén slope SW =
(−0.91 ± 0.17), y intercept OW = (1.38 ± 1.41) km/s, and R2 = 0.81.

where < y >= 1
M

∑M
i=1 yi, fi = a xi + b

and the values of a and b are the ones
obtained through the linear fits. The R2

coefficients for flybys T17, T19, and T40
are 0.92, 0.81, and 0.91, respectively.
Noticeably, flybys T17 and T40, charac-
terized by R2 values higher than T19,
show a closer agreement between their
y intercept and the behavior predicted
by the Walén relation.

Moreover, we calculate the correlation
coefficients between the slope and the
y intercept derived from the linear fits.
The corresponding values for flybys
T17, T19, and T40 are −0.35, 0.39, and
0.35, respectively. Even though there
is no reason to expect a linear depen-
dence between both parameters (as, in
fact, it can be seen from these values),
the sign of the correlation coefficient
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allows us to determine if a and b tend to lie simultaneously on the same or on opposite sides of their respec-
tive means. Since flybys T17 and T19 are negatively/positively correlated, decrements in a are correlated to
increments/decrements in b. In the case of flyby T40 (positively correlated), increments in a are correlated to
increments in b. These results support the closeness between the observations and the theoretical model.

Another important aspect to take into account is that several factors could lead to a deviation of the con-
stant of proportionality between v′ and vA and the expected ±1 value: effects of pressure anisotropy,
inclusion of data in which the plasma has not yet interacted with the current layer, or unknown contribu-
tions to the tangential stress balance not accounted for. Because of these reasons, a proportionality in the
range ± (0.8–1.0) is interpreted as a reliable indicator of the presence of an Alfvénic structure [Khrabrov and
Sonnerup, 1998]. In agreement with the existence of such structure, we find that the perturbations of the
magnetic field (ΔB = B−Bo) are close to be perpendicular to the background magnetic field (Bo) during the
analyzed time intervals.

Additionally, we perform a MVA of the magnetic field measurements associated to each of the three
analyzed flybys to determine if they show signatures which can be associated with the existence of
one-dimensional current layers. The ratio 𝜆2∕𝜆3 results 4.5, 7.26, and 11.45 for the case of flyby T17, T19,
and T40, respectively. Therefore, MVA shows a well-defined minimum variance direction and a well-defined
intermediate/maximum variance plane for each of the three studied flybys. As a result, MVA provides a good
estimate for the normal vector to this plane in the three cases: for the flyby T17, the mean magnetic field
vector is < B >= (1.68, 2.22,−1.18) nT (in KSO coordinates) and n̂ = (0.61, 0.67, 0.43). In the T19 case, the
mean magnetic field vector is < B >= (−1.06, 3.12,−5.79) nT and n̂ = (0.14, 0.19,−0.97). Finally, in the T40
case, the mean magnetic field vector is < B >= (0.19, 2.07,−1.91) nT and n̂ = (−0.12, 0.40, 0.91). These
results show that the variation in the magnetic field direction (for MAG data corresponding to the same time
interval where CAPS observations show an acceleration of the plasma flow) is mainly restricted to a plane
(intermediate/maximum variance plane), and therefore, they might be associated with the existence of a
one-dimensional current layer supporting the proposed acceleration mechanism.

In summary, these results show that the plasma under study is mainly composed of ions also found in Titan’s
gravitationally bound ionosphere. According to the performed Walén tests, slope and y intercept values are
not so far from what is predicted by theory. Moreover, MVA of the MAG data corresponding to the three fly-
bys also show signatures that can be associated with the existence of current layers. Therefore, the observed
changes in the kinetic energy might be associated with magnetic tension forces.

Appendix A: Walén Relation

The consistency of the Walén relation and the MHD equations are shown here. For a similar approach, see
Alfvén [1963]. Consider the Navier-Stokes and the magnetic induction equation:

𝜕v
𝜕t

+ (v ⋅ ∇)v = (∇ × B) × B
4𝜋𝜌

−
∇p
𝜌

(A1)

∇ × (v × B) − 𝜕B
𝜕t

= 0 (A2)

where the displacement current has been neglected and the plasma conductivity is infinite.

The magnetic field consists of a magnetic field B0 generated by currents outside the fluid under study
(∇ × B0 = 0) and an induced field b produced by currents observed in the system under study. The total
magnetic field is B = B0 + b. In the case of an incompressible fluid (∇ ⋅ v = 0) with constant density 𝜌

∇ × (v × B) = (B ⋅ ∇)v − (v ⋅ ∇)B (A3)

Equation (A1) can be rewritten as

(
B0

4𝜋𝜌
⋅ ∇)b − 𝜕v

𝜕t
= −(∇ × b) × b

4𝜋𝜌
+ (∇ × v) × v + 1

𝜌
∇
[

p + 𝜌
v2

2
+

(B ⋅ B0)
4𝜋

]
(A4)

while equation (A2) can be rewritten as

(B0 ⋅ ∇)v − 𝜕b
𝜕t

= (v ⋅ ∇)b − (b ⋅ ∇)v (A5)
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In the case where the sum of the thermal pressure and the magnetic pressure is constant, an exact solution
can be found where the fluid velocity and the magnetic field generated by currents inside it are related by
the following equation:

v = ± b√
4𝜋𝜌

(A6)

In this case, equations (A4) and (A5) are reduced to

(
∓B0√

4𝜋𝜌
⋅ ∇)b − 𝜕b

𝜕t
= 0 (A7)

Therefore, in the reference frame where

𝜕b
𝜕t

= 0 (A8)

the plasma velocity is v′ = v − Vss′ , where Vss′ = ∓ B0√
4𝜋𝜌

. Thus,

v′ = ± b√
4𝜋𝜌

±
B0√
4𝜋𝜌

= ± B√
4𝜋𝜌

= ±vA (A9)

Note that in this reference frame the convective electric field is zero. This equality, known as the Walén rela-
tion, states that the bulk velocity of the plasma (seen from a reference frame where the convective electric
field is zero) is equal to minus or plus the local Alfvén velocity.
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