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Toulouse, France, (e-mail: Georges.Hardier@onera.fr) 

Abstract: The objective of this paper is to stress that the size of a Linear Fractional Representation (LFR) 
significantly depends on the way tabulated or irrational data are approximated during the modeling 
process. It is notably shown that rational approximants can result in much smaller LFR than polynomial 
ones. In this context, a new method is introduced to generate sparse rational models, which avoid data 
overfitting and lead to simple yet accurate LFR. This method builds a parsimonious model based on 
neural networks, and then translates the result into a fractional form. A stepwise selection algorithm is 
used, combining the benefits of forward orthogonal least squares to estimate the regression parameters 
with a new powerful global optimization to determine the best location of the regressors. The proposed 
method is evaluated on an aeronautical example and successfully compared to more classical approaches. 

Keywords: rational approximation, surrogate modeling, Linear Fractional Representation, stepwise 
regression, Radial Basis Function networks, Particle Swarm Optimization. 


1. INTRODUCTION 

A Linear Fractional Representation (LFR) is a model where 
all known and fixed dynamics of a given system are put 
together in a linear time-invariant plant M, while the 
uncertain and varying parameters are stored in a perturbation 
matrix   (Fig. 1). LFR modeling is a widely spread and a 
very efficient tool in the fields of system analysis and control 
design. It notably allows to evaluate the robustness properties 
of uncertain closed-loop plants (e.g. using -analysis or 
Lyapunov-based methods), and to design robust control laws 
(especially using H approaches) or gain-scheduled 
controllers (Zhou). But the efficiency of the aforementioned 
analysis and synthesis techniques strongly depends on the 
complexity of the considered LFR, which is measured in 
terms of both the size of the matrix   and the order of the 
plant M. An increase in complexity is usually source of 
conservatism, and can even lead to numerical intractability. 
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
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

 
Fig. 1. Linear Fractional Representation 

In most industrial applications, physical systems are 
described using a mix of nonlinear analytical expressions and 
tabulated data. Therefore, a two-step procedure has to be 
implemented to obtain a suitable LFR: a linear model with a 
rational dependence on the system parameters is first 
generated, and then converted into a linear fractional form. 
Several techniques such as object-oriented realization exist to 
perform the latter transformation. Although the minimality of 
the resulting LFR cannot be guaranteed, symbolic 
preprocessing techniques, as well as numerical reduction, 
usually permit to overcome complexity. Efficient software 

such as the LFR Toolbox for Matlab© is also available (see 
Magni and references therein for a comprehensive overview 
of LFR modeling). On the other hand, the preliminary issue 
of converting the tabulated or irrational data into simple yet 
accurate rational expressions has been paid much less 
attention, although it is of significant practical importance. In 
the aeronautic field for example, most aircraft models include 
tabulated aerodynamic coefficients determined by CFD 
(Computational Fluid Dynamics), wind tunnel experiments or 
flight tests, and several controller gains depend on the flight 
parameters in a tabulated fashion. 

The motivations for addressing the issue of tabulated data 
approximation in this paper are twofold. The first one is of 
physical nature. Computing rational expressions with sparse 
structure, for which the number of terms in the numerator and 
denominator is as low as possible, is a natural way to prevent 
data overfitting and to ensure a smooth behavior of the model 
between the points used for approximation. On the other hand, 
building a LFR from a polynomial or a rational expression  

),,( 1 nxxf   results in a block diagonal matrix 
],,[diag

1
1

np
n

p IxIx  . The number jp  of  repetitions 
of  each  parameter jx  in   is strongly linked to the number 
of occurrences of jx  in f. Indeed, although this is not an 
exact rule, the trend is as follows: the fewer the occurrences 
of jx  in ),,( 1 nxxf  , the smaller the size of  . In other 
words, no matter how efficient the LFR generation tools can 
be, they are of little help if the rational expressions to be 
converted are unnecessarily complex. Hence, the need to get 
tractable LFR for analysis and design purposes is another 
strong motivation for generating sparse rational expressions. 

For a given accuracy, an intuitive idea is to determine a 
rational function for which the numerator P and denominator 
Q are two polynomials of the lowest possible degrees. This 
fairly simple strategy is followed by most existing methods. 
A classical linear least-squares (LS) technique is notably 
implemented in the LFR Toolbox (Magni) in case the rational 
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function is restricted to be polynomial. In the general case, a 
nonlinear LS technique, implemented for example in the 
Curve Fitting Toolbox of Matlab©, tries to minimize the 
approximation error, whereas a Quadratic Programming 
problem solution (Celis) ensures that the resulting rational 
function intersects a set of intervals containing the data. But 
all these techniques suffer from the same drawback: all 
admissible monomials of P and Q are usually nonzero, 
regardless of their real ability to model the data. More 
generally, the question of which terms should be included in 
the model is often addressed by trial-and-error, or even 
ignored in practice. A way to deal with this question is to use 
orthogonal LS (OLS), which allows to evaluate the ability of 
each monomial to efficiently model the data and therefore to 
select only the most relevant ones, leading to sparse 
expressions. This approach was applied by Morelli to model 
aeronautical data with polynomials, but practical methods 
leading to rational expressions are still missing. Yet, the 
additional degrees of freedom offered by such expressions 
could lead to simpler expressions and thus to smaller LFR. 

In this context, the main contribution of this paper is to 
propose a new method to compute rational expressions with 
sparse structure, i.e. as few monomials in P and Q as possible. 
This indirect approach first builds a sparse model based on 
neural networks, before translating the result into a fractional 
form. A stepwise selection algorithm is used, combining the 
benefits of forward OLS to estimate the regression 
parameters with a new powerful global optimization 
algorithm to determine the best location of the regressors. 
Note that a direct approach computing a rational approximant 
in a single step thanks to a symbolic regression technique is 
proposed in Hardier 2013, which uses another recent 
evolutionary algorithm (Genetic Programming) to select 
sparse monomials. 

The paper is organized as follows. The rational approxi-
mation problem is first stated in §2, and the main existing 
solutions are briefly recalled. The new method is then 
described in §3, and a real aeronautical example is finally 
presented in §4, where this method is compared to the 
existing ones in terms of both accuracy and LFR complexity. 

2. PROBLEM STATEMENT & BASELINE SOLUTIONS 

Let }{ ],1[, Nkyk   be a set of samples (measurements, 
tabulated data...) corresponding to different parametric confi-
gurations }{ ],1[, Nkkx   of a given system. More precisely, 
each nR ],,[ 1 n

kkk xxx   contains the values of the n 
explanatory variables for which the sample Rky  is 
obtained. The objective of this paper is to compute a rational 
function RR n :f   of  reasonable  complexity  which 
approximates these data, i.e. such that )( kxf  is close to ky  
for all ],1[ Nk   in the sense of a certain criterion (see §4). 
The main existing approaches are briefly recalled below and 
will be referred to as the baseline solutions (BS) in the sequel. 

Remarks: The case where an analytical expression 
RR n :Af  is available instead of N samples of )( 1n -

tuples }{ ),,...,,( 21
k

n
kkk yxxx  is not considered here (see e.g. 

Petrushev). Moreover, this paper only deals with 
approximation (or regression) and not with interpolation, 
which would aim at finding a rational function f such that the 
equalities kk yxf )(  are strictly satisfied for a large 
number N of samples (see Floater and references therein). 

The most common approach consists in restricting the 
function  f  to be a polynomial one, that is: 





Pn

i
ii xraxPxf

0
)()()(  (1) 

where }{ ],0[, Pi nir   is a set of polynomial regressors and 
}{ ],0[, Pi nia   are coefficients to be determined. The issue 

is then to solve a linear LS problem with respect to these 
coefficients (Magni), i.e. to minimize the following criterion: 





N

k
kk xPyC

1

2)]([  (2) 

A well-known improvement to this approach relies on a 
preliminary orthogonalization process to decouple the 
regressors. As a result, the ability of each new regressor to 
reduce the criterion C can be evaluated regardless of those 
already selected. Hence, only the most relevant ones can be 
considered, which amounts to a certain extent to minimize 
the complexity of the approximation (1) while still 
guaranteeing a low approximation error. This method was 
successfully applied by Morelli. It was later improved, 
allowing to compute a sparse polynomial approximant 
satisfying the following global and local constraints: 
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where 1  and 2  are some user-defined integers (Roos,Döll). 
The standard LS approach and its OLS-based variant will be 
denoted by BP1 and BP2 in the sequel. 

The more general case where f is extended to become a 
rational function is now considered: 
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A first method consists in solving a nonlinear LS problem 
with respect to the coefficients }{ ],0[, Pniai   and 

}{ ],0[, Qnibi  , that is to minimize the following criterion: 
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 (5) 

It is notably implemented in the Curve Fitting Toolbox of 
Matlab©, where several optimization tools can be used to 
compute a solution (Levenberg-Marquardt algorithms, trust-
region methods...). It will be denoted by BR1 in the sequel. 
One of its major drawbacks is that several local minima may 
exist due to the non-convexity. Hence, the results strongly 
depend on the initialization, which is not a trivial issue. 

A second method was introduced by Markov in the context of 
polynomial approximation and then generalized by Celis to 
the rational case. Firstly, an uncertainty interval ][ , kk

yy  is 
defined around each ky . A rational function is then determi-
ned which intersects all these intervals, i.e. ],1[ Nk  

kkkk
yxQxPy  )()( . This can be achieved by solving a 

     Quadratic Programming problem in the coefficients 
}{ ],0[, Pniai   and }{ ],0[, Qnibi   with a strictly convex 

objective function. It will be denoted by BR2 in the sequel. 

Remark: It is usually desirable that the denominator of  f  has 
no roots in the considered parametric domain, so as to ensure 
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that f has a smooth behaviour and that well-posed LFR are 
obtained (Zhou). Unfortunately, none of the aforementioned 
techniques allow to guarantee this. 

3. INDIRECT APPROACH FOR RATIONAL MODELING 

Beyond the polynomial/rational expressions, the use of 
surrogate modeling becomes widespread among many 
scientific domains to replace the system or the reference 
model when this one is too restrictive for achieving some 
tasks like optimization, modeling, parameter identification 
(Bucharles, Seren)... Hence, a wide range of methods has 
been developed for building surrogate models efficiently, i.e. 
with both accuracy and parsimony. For example, Neural 
Networks (NN) are recognized nowadays as an efficient 
alternative for representing complex nonlinear systems, and 
tools are available to model static nonlinearities such as the 
ones encountered when formulating a problem in LFR form. 
The underlying idea for solving the considered 
approximation problem via an indirect approach consists in 
using such methods to derive a rational model. The tool used 
in the sequel was developed by ONERA for A/C modeling 
and identification purposes and is named KOALA (Kernel 
Optimization Algorithm for Local Approximation). Due to 
space constraints, only its main features will be outlined in 
this paper (see Bucharles and Seren for more details). 

At first, it is noteworthy that a nonlinear model can be either 
linear, nonlinear, or both in regard to its internal parameters. 
For NN, the latter case corresponds to multilayer perceptrons 
(Haykin), but also to Radial Basis Function Networks (RBFN) 
when the centers and the radii of the radial units are 
optimized (Hardier 2013). However, the joint optimization of 
the whole set of model parameters (linear and nonlinear) 
practically results in ill-posed problems, and consequently in 
convergence and regularization issues. That is why Linear-in-
their-Parameters models (LP) are often adopted, allowing 
more simple and robust algorithms. By taking advantage of 
their features, structural identification, i.e. determining the 
best set of regressors from the available data only, becomes 
possible in addition to parametric estimation. 

To choose the unknown regressors, KOALA is based on 
forward selection, starting with an empty subset and adding 
them one at a time in order to gradually improve the 
approximation. To speed up that constructive process, a 
preliminary orthogonalization technique is used, permitting 
to evaluate the individual regressors regardless of those 
previously recruited for the modeling (Chen 2004). In the 
case of local models like RBFN, choosing each regressor 
amounts to optimizing the kernel functions in the input space. 
To implement this optimization step, a global method is the 
best suited, and KOALA uses a new evolutionary 
metaheuristic known as Particle Swarm Optimization (PSO) 
(Clerc 2006). The performance of this approach is strongly 
dependent on the algorithms added to the basic version of 
PSO (e.g., Chen 2009 uses a standard and very simple 
version of PSO). After a thorough literature analysis, the 
most promising techniques have been selected and 
implemented in the part of the KOALA code used to 
optimize the regressors' positioning. 

A detailed description of the software is out of the scope of 
the paper, but a brief survey of the main functionalities is 
given below: fixed and adaptive topologies → from static 

(star, ring, Von Neumann) to dynamic ones (e.g. Delaunay 
neighboring) (Lane); particle's displacement → standard, 
with constriction factor, FIPS and weighted FIPS versions of 
the velocity update laws (Mendes); hybrid local/global 
method → to speed up the convergence with direct search 
(improved Nelder-Mead, Delaunay tessellation for the initial 
simplex); multiswarm strategies → for competing swarms or 
for partitioning the search domain into several subregions 
(Trojanowski); diversity analysis → to provide information 
about the swarm dispersion and to refine the convergence 
tests (Olorunda); swarm initialization → from random to 
low-discrepancy sequences (Hammersley, centroidal Voronoï 
diagram) (Clerc 2008); competitive multirun → to benefit 
from several topologies, algorithm variants and tuning; 
charged vs neutral particles → cooperation of particles with 
different physical properties (Blackwell).  

The coupling of that PSO algorithm with the constructive 
technique detailed in Seren allows to proceed to structural 
and parametric optimizations jointly for different types of 
regressors with local basis. In the case of KOALA, it is 
applied to RBFN but also to Local Linear Models (LLM) 
after some adjustments of the OLS method. LLM networks 
generalize RBFN (Nelles), but are also related to other local 
models like Fuzzy Inference Systems. They are derived by 
replacing the RBF linear weightings (denoted by w  in the 
sequel) by an affine expression depending on the model 
inputs. It is thus expected that fewer kernels will be required 
to achieve the same accuracy in most applications. For LLM, 
the generic formulation used to represent LP models is: 

)()()(ˆ #
)1(

11 0
)( kl

nm

l
lkj

m

j

i
k

n

i
jikk xrwxrxwxfy  



 

  (6) 

where )( kj xr  represents the kernel value of the jth regressor 
function, and with 10 kx  to include the constant terms of 
the affine modeling into the second sum. This relationship 
permits to recover a standard LP formulation with an 
extended set of regressors #

lr . To adapt the constructive 
algorithms to the kernel functions #

lr , the group of regressors 
sharing the same kernel jr  needs to be considered as a whole 
when adding or substracting terms, and no more separately as 
it was the case for RBFN or polynomials (Morelli, Chen 2004). 

KOALA aims at gradually selecting a series of regressors by 
optimizing their kernel parameters, i.e. the ellipsoid centers c 
and radii   related to the radial unit (see (7) hereafter). At 
each step of the process, the PSO particles are associated with 
vectors of 2nR  gathering these parameters for the n explana-
tory variables. To sum up, the global performance of the 
KOALA algorithm results from two complementary aspects: 
applying efficient OLS-based forward selection and 
Separable Nonlinear Least Squares optimization to powerful 
modeling (LLM) and, on the other hand, implementing a new 
PSO algorithm which outperforms the standard ones (Seren). 
To give a rough idea, the use of KOALA results in a model 
comprising only 5 radial units in the benchmark case of §4 
(for a global quadratic error 3105.2 C ), whereas a more 
standard algorithm, e.g. the one of Chen 2009, requires not 
less than 15 RBF units to achieve the same level of 
approximation. According to what is explained below, the 
(maximum) degree of the rational approximant can be 
reduced from 30 to 10 and the LFR size from 60 to 20. 

Back to rational modeling, a first idea for an indirect 
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approach capitalizing on KOALA results is to convert 
equation (6) a posteriori into a rational form. By choosing 
Gaussian radial functions, this regression expresses as the 
sum of m terms, the jth one being for any x: 


 






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n

i

cx

i
n

i
jij
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exwxrxwxf 1
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00

2

2

)()( )()(
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 (7) 

Therefore, it is possible to use Pade approximants of the 
exponential function, so as to replace it by a rational function 
in reduced form ],[exp qp . The latter expresses as the quotient 
of two polynomials of the thp  and thq  degrees, and the 
corresponding approximant to )(xf j  becomes a rational 
function of the th)( 12 p  and th2q  degrees for every 
explanatory variable ix . However,  getting high quality 
approximants (e.g. decreasing rapidly to 0 as ix  increases) 
requires large values for q (with 2 pq  or 3). Hence, the 
degree of the resulting rational function is penalized, with no 
guarantee about the accuracy of the global regression )(xf .  

On the other hand, a more relevant approach consists in 
replacing the exponential function straight away by such an 
approximant, and then to proceed to the optimization of the 
regression with this new kernel function. The simplest 
transform corresponds to the reduced form ]1,0[exp , i.e. to the 
sum of m components like: 

)()(
1

22
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/)(1)( 



n

i
jiji

ii
n

i
jij cxxwxf   (8) 

This solution is preferred here and is used for the compa-
risons shown in §4. Hence, another class of models is added 
to the RBF/LLM kernels proposed by KOALA, based on the 
Pade approximant ]1,0[exp . It must also be mentioned to 
conclude that the post-processing of the resulting regression, 
prior to the derivation of the LFR, makes use of the Matlab© 
Symbolic Toolbox. Again, several options can be considered 
for gathering the m components )(xf j  into a single rational 
function: global expansions of numerator and denominator, 
factorization of the denominator, sum of elementary rational 
terms. The latter appears to be the most relevant since it 
favors some simplifications when building the final LFR. A 
factor of two can usually be gained in the final LFR size. 

4. COMPARISON OF THE METHODS AND RESULTS 

Equations (9) describe the longitudinal motion of a rigid A/C 
(Boiffier), in body axis (x forwards and z downwards): 
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The flight parameters are the Angle of Attack   (AoA), the 
pitch rate q, the airspeed V, and the flight path angle . The 
constants are denoted by g (gravity),  (air density), m (A/C 
mass), S (reference surface), yyI  (lateral y-axis inertia), and 
L (mean aerodynamic chord). engF  is the thrust, whereas 

cgref xxx   and refeng zzz   represent the distances 
between the aerodynamic reference point and the centre of 
gravity x-location or the engine z-location.  

MDL CCC ,,  represent the aerodynamic coefficients relative 
to the lift, drag and pitching moments. They are usually 

obtained as nonlinear look-up tables during wind tunnel tests. 
In order to translate equations (9) in fractional form, these 
tabulated data have to be replaced by polynomial or rational 
expressions, which can theoretically be achieved using any of 
the previous approximation methods. This is illustrated in the 
next subsections for the drag coefficient DC  of a generic 
fighter aircraft model (Döll). The reference data depend on 
both Mach number Ma  and AoA  (in radians). They are 
given on a fine 50x90 grid and are represented in Fig. 2. 

 
Fig. 2. Drag coefficient represented on a fine 50x90 grid 

4.1  Comparison of the baseline solutions (BS) 

At first, the 4 BS described in §2 are compared. The goal is 
to achieve the simplest possible approximation, while 
ensuring that the Root Mean Square Error (RMSE) between 
appro-ximant and reference data remains close  to a given 
value   on the grid. All results are gathered in Tables 1 and 
2, which correspond to 310.2   and 410.9   
respectively. The second and third columns specify the degree 
of the polynomial or rational function, as well as the total 
number of monomials when both numerator and denominator 
are expanded in the form of equation (4). The RMSE and the 
maximum local error 

]),1[()(maxmax Nkxfy kk   are then given in 
the fourth and fifth columns. The complexity of the resulting 
LFR obtained using the LFR Toolbox (Magni) is finally 
measured via the size of its   matrix. 

Table 1. Comparison of the BS for 32.10ε   

Method Degree Monomials RMSE Max error LFR size 

BP1 6 28 1.94 10-3 8.94 10-3 12 

BP2 6 21 2.17 10-3 1.01 10-2 9 

BR1 3 20 1.90 10-3 5.71 10-3 8 

BR2 3 20 1.90 10-3 5.48 10-3 8 

Table 2. Comparison of the BS for 49.10ε   

Method Degree Monomials RMSE Max error LFR size 

BP1 12 91 9.20 10-4 4.84 10-3 24 

BP2 12 44 9.95 10-4 5.68 10-3 20 

BR1 6 56 9.15 10-4 3.51 10-3 17 

BR2 6 56 9.28 10-4 3.81 10-3 17 

As expected, rational approximation is more efficient than 
polynomial approximation, since both the number of 
monomials and the size of the resulting LFR are lower. 
Moreover, numerical problems are often encountered with 
BP2, and no solution can usually be found for polynomials of 
the 15th degree or higher. BR1 and BR2 thus appear to be the 
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most efficient BS and provide very similar results. 

4.2  Evaluation of the new algorithm (IS) 

The objective is now to compare BR1 with the indirect 
solution IS proposed in §3. All results are summarized in 
Table 3, and some are also displayed in Fig. 3-4. For a given 
degree, IS and BR1 give quite similar results regarding the 
number of monomials and the approximation accuracy. 
Indeed, both methods generate rational functions for which 
the numerator and the denominator are composed of almost 
all admissible monomials when written in expanded form. 
But IS offers three major pros. First, the size of the resulting 
LFR is significantly smaller, since the symbolic expression 
does not appear as a single expanded rational function, but is 
already factorized as a sum of elementary components 
described by (8). Besides, IS is numerically much more 
efficient and allows to compute higher degree 
approximations very quickly and easily. This is not possible 
with BR1, since numerical troubles appear for degrees larger 
than 8, thus leading to poor results. Finally, it is worth 
emphasizing that the non singularity of the rational function 
is guaranteed with IS since the obtained solutions are always 
strictly positive. 

For a given degree, the direct solution (DS) described in 
Hardier 2013 and BR1 give quite similar results in terms of 
accuracy. However, DS has a great advantage, since it creates 
rational approximants with sparse structures. Only a few 
monomials are actually nonzero, which results in low-order 
LFR. Moreover, good numerical properties are observed, and 
significantly higher degrees can be considered too. 

IS and DS thus appear to be much more efficient than the BS. 
Besides, these two methods prove quite complementary. IS 
provides very accurate approximations which do not have a 
sparse structure, but can be directly factorized in a compact 
form resulting in low order LFR. On the other hand, DS 
directly selects the most relevant monomials to generate very 
sparse symbolic expressions. It also appears that DS is more 
accurate for low degree approximations, while IS gives better 
results for degrees larger than 8. Indeed, at lowest degrees, 
the number of radial units used by IS (half the required 
degree) is not sufficient to represent accurately enough the 
shape of the reference data. Hence, a minimum number of 
RBF is required to get the most out of this method. Finally, it 
is worth noting that the computational cost is strongly in 
favor of the IS algorithm. As the degree of the rational 
function increases, the Darwinian mechanisms of evolution 
involved by the DS require more generations to produce very 
accurate solutions, and the CPU time is seriously impaired. 

Table 3. Comparison of the different algorithms 

Method Degree Monomials RMSE Max error LFR size 

Baseline 
solution 
(BR1) 

4 30 1.65 10-3 4.76 10-3 11 

6 56 9.15 10-4 3.51 10-3 17 

8 90 8.10 10-4 4.67 10-3 23 

Indirect 
approach 

(IS) 

6 46 1.28 10-3 6.23 10-3 12 

8 77 7.92 10-4 5.12 10-3 16 

14 218 3.55 10-4 1.96 10-3 28 

26 716 1.58 10-4 1.03 10-3 52 

Direct 6 30 9.74 10-4 4.60 10-3 14 

approach 
(DS) 

8 25 8.73 10-4 4.71 10-3 15 

14 43 6.53 10-4 3.05 10-3 28 

5. CONCLUSIONS 

This paper considers the sparse rational approximation of 
tabulated or irrational data, in order to compute accurate and 
yet simple LFR, convenient for system analysis and control 
design. A novel method based on evolutionary techniques is 
proposed to solve the underlying optimization problem. It 
constructs ad hoc modeling by using RBF-type NN, and then 
converts the result into a sum of elementary rational 
functions. Together with a constructive OLS procedure, the 
resulting KOALA tool relies on PSO to select the best local 
kernels, hence contributing to the parsimony of the result. 

The proposed method compares very favorably to classical 
ones when applied to a realistic aeronautical example. For a 
given precision, the symbolic expressions are more compact, 
and hence the size of the resulting LFR is significantly 
smaller. Good numerical properties are also observed and as 
accurate as desired results can be quickly obtained provided 
the degree used for approximation is high enough. 

Regarding prospects, the method could be improved by using 
an adaptive Design of Experiments. Instead of optimizing on 
a fine fixed-size grid, a coarse sampling could be computed 
initially and then refined by adding new samples in 
subdomains whenever the generalization errors prove 
unsatisfactory. This strategy would result in a reduction of 
the computational load, but could also be beneficial to the 
modeling process within strongly nonlinear regions. 
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Fig. 3. Approximants of the 8th degree and local approximation errors (top = BS, bottom = IS) 

 
Fig. 4. Approximant of the 26th degree and local approximation error (IS) 
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