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Abstract. How to include censored data in a statistical analysis is a recur-
rent issue in statistics. In multivariate extremes, the dependence structure of
large observations can be characterized in terms of a non parametric angular
measure, while marginal excesses above asymptotically large thresholds have a
parametric distribution. In this work, a flexible semi-parametric Dirichlet mix-
ture model for angular measures is adapted to the context of censored data and
missing components. One major issue is to take into account censoring intervals
overlapping the extremal threshold, without knowing whether the correspond-
ing hidden data is actually extreme. Further, the censored likelihood needed for
Bayesian inference has no analytic expression. The first issue is tackled using
a Poisson process model for extremes, whereas a data augmentation scheme
avoids multivariate integration of the Poisson process intensity over both the
censored intervals and the failure region above threshold. The implemented
MCMC algorithm allows simultaneous estimation of marginal and dependence
parameters, so that all sources of uncertainty other than model bias are cap-
tured by posterior credible intervals. The method is illustrated on simulated
and real data.

Multivariate extremes; censored data; data augmentation; semi-parametric Bayesian
inference; MCMC algorithms.

1. Introduction

Data censoring is a commonly encountered problem in multivariate statistical
analysis of extreme values. A ‘censored likelihood’ approach makes it possible
to take into account partially extreme data (non concomitant extremes): coor-
dinates that do not exceed some large fixed threshold are simply considered as5

left-censored. Thus, the possibly misleading information carried by non-extreme
coordinates is ignored, only the fact that they are not extreme is considered (Smith
(1994); Ledford and Tawn (1996); Smith et al. (1997), see also Thibaud and Opitz
(2013) or Huser et al. (2014)). However, there are other situations where the origi-
nal data is incomplete. For example, one popular way to obtain large sample sizes10

in environmental sciences in general and in hydrology in particular, is to take into
account data reconstructed from archives, which results in a certain amount of
left- and right-censored data, and missing data. As an example, what originally
motivated this work is a hydrological data set consisting of daily water discharge
recorded at four neighboring stations in the region of the Gardons, in the south15

of France. The extent of systematic recent records is short (a few decades) and
varies from one station to another, so that standard inference using only ‘clean’
data is unfeasible (only 3 uncensored multivariate excesses of ‘large’ thresholds -
fixed after preliminary uni-variate analysis- are recorded). Historical information
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is available, starting from the 17th century, a large part of it being censored: only
major floods are recorded, sometimes as an interval data (e.g. ‘the water level
exceeded the parapet but the Mr. X’s house was spared’). These events are fol-
lowed by long ‘blank’ periods during which the previous record was not exceeded.
Uni-variate analysis for this data set has been carried on by Neppel et al. (2010)5

but a multivariate analysis of extremes has never been accomplished, largely due
to the complexity of the data set, with multiple censoring.

While modeling multivariate extremes is a relatively well marked out path when
‘exact’ (non censored) data are at stake, many fewer options are currently available
for the statistician working with censored data. The aim of the present paper is10

to provide a flexible framework allowing multivariate inference in this context.
Here, the focus is on the methodology and the inferential framework is mainly
tested on simulated data with a censoring pattern that resembles that of the real
data. A detailed analysis of the hydrological data raises other issues, such as,
among others, temporal dependence and added value of the most ancient data.15

These questions are addressed in a separate paper, intended for the hydrological
community (Sabourin and Renard, 2014)1.

Under a standard assumption of multivariate regular variation (see Section 2),
the distribution of excesses above large thresholds is characterized by parametric
marginal distributions and a non-parametric dependence structure that is indepen-20

dent from threshold. Since the family of admissible dependence structures is, by
nature, too large to be fully described by any parametric model, non-parametric
estimation has received a great deal of attention in the past few years (Einmahl
et al., 2001; Einmahl and Segers, 2009; Guillotte et al., 2011). To the best of
my knowledge, the non parametric estimators of the so-called angular measure25

(which characterizes the dependence structure among extremes) are only defined
with exact data and their adaptation to censored data is far from straightforward.

For applied purposes, it is common practice to use a parametric dependence
model. A widely used one is the Logistic model and its asymmetric and nested ex-
tensions (Gumbel, 1960; Coles and Tawn, 1991; Stephenson, 2009, 2003; Fougères30

et al., 2009). In the logistic family, censored versions of the likelihood are read-
ily available, but parameters are subject to non linear constraints and structural
modeling choices have to be made a priori, e.g., by allowing only bi-variate or
tri-variate dependence between closest neighbors.

One semi-parametric compromise consists in using mixture models, built from35

a potentially infinite number of parametric components, such as the Dirichlet mix-
ture model (DM), first introduced by Boldi and Davison (2007). They have shown
that it can approach arbitrarily well any valid angular measure for extremes. A
re-parametrized version of the DM model (Sabourin and Naveau, 2014), allows
for consistent Bayesian inference - thus, a straightforward uncertainty assessment40

using posterior credible sets - with a varying number of mixture components via a
reversible-jumps algorithm. The approach is appropriate for data sets of moderate
dimension (typically, d ≈ 5).

The purpose of the present work is to adapt the DM model to the case of cen-
sored data. The difficulties are two-fold: First, from a modeling perspective, when45

the censoring intervals overlap the extremal thresholds (determined by prelimi-
nary analysis), one cannot tell whether the event must be treated as extreme. The
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proposed approach here consists in reformulating the Peaks-over-threshold (POT)
model originally proposed by Boldi and Davison (2007) and Sabourin and Naveau
(2014), in terms of a Poisson model, in which the censored regions overlapping the
threshold have a well-defined likelihood. The second challenge is numerical and
algorithmic: for right-censored data above the extremal threshold (not overlap-5

ping it), the likelihood expression involves integrals of a density over rectangular
regions, which have no analytic expression. The latter issue is tackled within a
data augmentation framework, which is implemented as an extension of Sabourin
and Naveau (2014)’s algorithm for Dirichlet mixtures.

An additional issue addressed in this paper concerns the separation between10

marginal parameters estimation and estimation of the dependence structure. Per-
forming the two steps separately is a widely used approach, but it boils down to
neglecting marginal uncertainty, which confuses uncertainty assessment about joint
events such as probabilities of failure regions. It also goes against the principle of
using regional information together with the dependence structure to improve mar-15

ginal estimation, which is the main idea of the popular regional frequency analysis
in hydrology. In this paper, simultaneous inference of marginal and dependence
parameters in the DM model is performed, which amounts in practice to specifying
additional steps for the marginal parameters in the MCMC sampler.

The rest of this paper is organized as follows: Section 2 recalls the necessary20

background for extreme values modeling. The main features of the Dirichlet mix-
ture model are sketched. This POT model is then reformulated as a Poisson
model, which addresses the issue of variable threshold induced by the fluctuating
marginal parameters. Censoring is introduced in Section 3. In this context, the
Poisson model has the additional advantage that censored data overlapping thresh-25

old have a well defined likelihood.The lack of analytic expression for the latter is
addressed by a data augmentation scheme described in Section 4. The method is
illustrated by a simulation study in Section 5: marginal performance in the DM
model and in an independent one (without dependence structure) are compared,
and the predictive performance of the joint model in terms of conditional probabil-30

ities of joint excesses is investigated. The model is also fitted to the hydrological
data. Section 6 concludes. Most of the technicalities needed for practical imple-
mentation, such as computation of conditional distributions, or details concerning
the data augmentation scheme and its consistency are relegated to the appendix.

2. Model for threshold excesses35

2.1. Dependence structure model: angular measures. In this paper, the
sample space is the d-dimensional Euclidean space Rd, endowed with the Borel
σ-field. In what follows, bold symbols denote vectors and, unless otherwise men-
tioned, binary operators applied to vectors are defined component-wise. Let (Yt)t∈N
be independent, identically distributed (i.i.d.) random vectors in Rd, with joint40

distribution F and margins Fj , 1 ≤ j ≤ d. The joint behavior of large observations
is best expressed in terms of standardized data. Namely, define

Xt = (−1/ log(F1(Y1,t)), . . . ,−1/ log(Fd(Yd,t))) .

Then the Xj,t’s have unit-Fréchet distribution, P(Xj,t ≤ x) = e−1/x, x > 0. It is
mathematically convenient to switch to pseudo-polar coordinates,



R =

d∑
j=1

Xj (radial component), W =
1

R
X ∈ Sd (angular component) ,

where Sd = {x : xj ≥ 0,
∑d

j=1 xj = 1} is the unit simplex. The radial variable
R corresponds to the ‘amplitude’ of the data whereas the angular component W
characterizes their ‘direction’. Asymptotic theory (Resnick, 1987; Beirlant et al.,
2004; Coles, 2001) tells us that, under mild assumptions on F (namely, belonging to
a multivariate maximum domain of attraction), an appropriate model, commonly5

referred to as a multivariate Peaks-over-threshold (POT) model, for (R,W) over
high radial thresholds r0, is

P(R > r,W ∈ A | R > r0) =
r

r0
H(A) , r0 > r,A ⊂ Sd , (2.1)

where H is the so-called ‘angular probability measure’ (called the ‘angular mea-
sure’ in the remainder of this paper). The angular measure is thus the limiting
distribution of the angle, given that the radius is large. Concentration of H’s10

mass in the middle of the simplex indicates strong dependence at extreme levels,
whereas Dirac masses only on the vertices characterizes asymptotic independence.
This paper focuses on the case where H is concentrated on the interior of the
simplex, so that all the variables are asymptotically dependent.

Because of the standardization to unit Fréchet, a probability measure H on Sd15

is a valid angular measure if and only if
∫
Sd
wj dH(w) = 1

d (1 ≤ j ≤ d) . This
moments constraint is the only condition on H, so that the angular measure has
no reason to be part of any particular parametric family.

2.2. Dirichlet mixture angular measures. In this paper, the angular mea-
sure H is modeled by a Dirichlet mixture distribution (Boldi and Davison, 2007;20

Sabourin and Naveau, 2014). A Dirichlet distribution can be characterized by a
shape ν ∈ R+ and a center of mass µ ∈ Sd, so that its density with respect to the
d− 1 dimensional Lebesgue measure dw = dw1 · · · dwd−1, is

diriν,µ(w) =
Γ(ν)∏d

j=1 Γ(νµj)

d∏
j=1

w
νµj−1
j (w ∈ Sd). (2.2)

A parameter for a k-mixture is of the form25

ψ = ((p1, . . . , pk), (µ1, . . . ,µk), (ν1, . . . , νk)) ,

with weights pm > 0, such that
∑k

m=1 pm = 1. This is summarized by writing
ψ = (p1:k,µ1:k, ν1:k). The corresponding mixture density is

hψ(w) =
k∑

m=1

pm diriν,µm(w) . (2.3)

the moments constraint is satisfied if and only if
k∑

m=1

pmµm = (1/d, . . . , 1/d) ,

which, in geometric terms, means that the center of mass of the µ1:k’s, with weights30

p1:k, must lie at the center of the simplex. As established by Boldi and Davison
(2007) and mentioned in the introduction, the family of Dirichlet mixture densities
satisfying the moments constraint is weakly dense in the space of admissible angular
measure. In addition, in a Bayesian framework, Sabourin and Naveau (2014) have



shown that the posterior is weakly consistent under mild conditions. These two
features put together make the Dirichlet mixture model an adequate candidate for
modeling the angular components of extremes.

2.3. Model for margins. The above model for excesses concerns standardized
versions Xt of the data Yt involving marginal cumulative distribution function5

Fj (1 ≤ j ≤ d), which have to be estimated. As a consequence of uni-variate
extreme value theory (Pickands, 1975), uni-variate excesses above large thresholds
vj (1 ≤ j ≤ d) are approximately distributed according to a Generalized Pareto
distribution with parameters ξj (shape) and σj (scale parameter),

P (Yj > y | Yj > vj) ≈vj→∞ (1 + ξj
y − vj
σj

)−1/ξj .

A widely used method to model the largest excesses is a follows: Define a high10

multivariate threshold v = (v1, . . . , vd) and call ‘marginal excess’ any Yj,t > vj .
Then, marginal excesses above vj are modeled as generalized Pareto random vari-
ables with parameters ξj and σj . The marginal parameters are gathered into a
(2d)-dimensional vector

χ = (log(σ1), . . . , log(σd), ξ1, . . . , ξd) ∈ R2d.

Let Fv
j denote the jth marginal distribution conditionally on Yj not exceeding vj ,15

and let ζj = P(Yj > vj) denote the probability of excursion above vj . The jth
marginal model (1 ≤ j ≤ d) is thus

F
(χ)
j (y) = P(Yj,t ≤ y | ξj , σj)

=

1− ζj
(

1 + ξj
y−vj
σj

)−1/ξj
(y ≥ vj),

(1− ζj)Fv
j (y) (y < vj).

(2.4)

It is common practice (Coles and Tawn, 1991; Davison and Smith, 1990) to use
an empirical estimate ζ̂ = (ζ̂1, . . . , ζ̂d) for the vector of probabilities of marginal
excursion, and to ignore any estimation error, so that ζ̂ is identified to ζ is the20

sequel.

2.4. Joint inference in a Poisson model. When it comes to simultaneous es-
timation of the margins and of the angular measure, the angular model (2.1) for
radial excesses is difficult to handle, because a radial failure region r > r0 on the
Fréchet scale (i.e. , in terms of X’s) corresponds to a complicated shaped failure25

region on the original scale, which depends on the marginal parameters and, ac-
cordingly, potentially contains a varying number of data points. It seems more
reasonable to use a failure region which is fixed on the original scale (in terms
of Y’s). Further, a common criticism towards radial failure regions (Ledford and
Tawn, 1996) is that the marginal Pareto model is not valid near the axes of the30

positive orthant. Last but not least, censoring occurs along the directions of the
Cartesian coordinate system, which prevents using the polar model (2.1) as it is.
To address these issues, the statistical model for threshold excesses developed in
this paper uses a ‘rectangular’ threshold. Also, it will be very convenient (see Sec-
tion 3.3) to adopt a Poisson process representation of extremes (see e.g. Coles and35

Tawn, 1991) as an alternative to the POT model (2.1), with a ‘censored likelihood’
near the axes.



Poisson model. Under the same condition of domain of attraction as above, the
point process formed by time-marked, standardized and suitable re-scaled data
converges in distribution to a Poisson process (see e.g. Resnick, 1987, 2007; Coles
and Tawn, 1991),5

n∑
t=1

1
( t
n
,
Xt
n

)

w−→ PP(`⊗ λ) , (2.5)

in the space of point measures on ([0, 1]×E), where E = [0,∞]d\{0}. The temporal
component ` of the limiting intensity measure denotes the Lebesgue measure on R
and λ, the so-called exponent measure, is homogeneous of order −1, and is related
to the angular measure H via10

dλ(r,w) =
d

r2
dr dH(w) . (2.6)

From a statistical perspective, consider a failure region Av = E \ [0,v], where
v is the high multivariate threshold introduced in section 2.3 and [0,v] = [0, v1]×
· · ·× [0, vd]\{0}. Call ‘excess above v’ any point Yt in Av, as opposed to marginal
excesses Yj,t > vj . The Fréchet re-scaled multivariate threshold is

u = T(v) = −1/ log(1− ζ)

and does not depend on χ. Consider the re-scaled region on the Fréchet scale

Au,n =
1

n
T(Av) = [0,∞]d \ [0,

u1

n
]× · · · × [0,

ud
n

] ,

and denote Au = Au,1. Applying the marginal transformations15

T χj (y) = −1/ log
(
F

(χ)
j (y)

)
,

the marginal variables Xj,t = T χj (Yj,t) have unit Fréchet distribution, as required
in (2.5). The point process N =

∑n
t=1 1( t

n
,
Xt
n

)
composed of the excesses Xt ∈ Au

(i.e. Yt ∈ Au) is modeled according to the limit in (2.5),
n∑
t=1

1
( t
n
,
Xt
n

)
∼ PP(`⊗ λ) on [0, 1]×Au,n ,

where λ is of the form (2.6), with angular component H written as a Dirichlet
mixture of the form (2.3).20

Joint likelihood of uncensored data. Let θ = (χ, ψ) be the parameter for the
joint model. As explained at the beginning of this section, the model likelihood
needs to be expressed in Cartesian coordinates. The density of an exponent mea-
sure λ with respect to the d- dimensional Lebesgue measure dx = dx1 · · · dxd, is
(Coles and Tawn, 1991, Theorem 1)25

dλ
dx

(x) = d . r−(d+1)h(w) . (2.7)

Denote by λψ the exponent measure corresponding to the Dirichlet mixture hψ.
Then, in the simplified case where the Yj,t’s are exactly observed and where the
marginals Fj ’s below threshold are known, the likelihood in the Poisson model over
Av is30

Lv ({yt}1≤t≤n, θ) ∝ e−nλψ(Au)
nv∏
i=1

{ dλψ
dx

(xti)
∏

j:yj,ti>vj

Jχj (yj,ti)
}
, (2.8)



where t1, . . . , tnv are the occurrence times of excesses yti ∈ Av, xj,ti = Tχj (yj,ti),
and the Jχj are Jacobian terms resulting from marginal transformations Tχj (see
Appendix A for details).

3. Censored model

3.1. Causes of censoring. The presence of censored observations is the result of5

two distinct causes: first, data are partially observed, which results in interval- or
right-censoring, which we call natural censoring. In addition, observed data points
that exceed at least one threshold in one direction do not necessarily exceed all
thresholds, so that the marginal extreme value model does not apply. Following
Ledford and Tawn (1996), those components are also considered as left-censored.10

This second censoring process is thus a consequence of an inferential framework
which is designed for analyzing extreme values only, and we call it inferential
censoring.

The total censoring process C , which results from the juxtaposition of natural
and inferential censoring, is assumed to be non informative. This means that (see15

also Gómez et al., 2004), if F is the marginal c.d.f. for Yj and f is the marginal
density, then Yj ’s distribution conditional upon having observed only the left and
right censoring bounds (L,R) is f( · )/[F (R) − F (L)]. This definition is easily
extended to the multivariate case by replacing F (R) − F (L) by the integral of
the density over the censored directions (see e.g. Schnedler, 2005, for a proof of20

consistency of maximum censored likelihood estimators).

3.2. Natural censoring. Call ‘Natural censoring’ the one which occurs indepen-
dently from the choice of an extreme threshold v by the statistician. The observed
process is denoted O = (Ot)t, with Ot = (O1,t, . . . , Od,t). One marginal observa-
tion Oj,t consists in a label κj,t indicating presence or absence of censoring, together25

with the exact data Yj,t (if observed) or the censoring bounds (Lj,t, Rj,t) (where
Lj,t may be set to 0 in the case of left-censoring or missing data and Lj,t = +∞
in the case of right-censored or missing data). In the sequel, κj,t = 0 (resp. 1, 2, 3)
refer respectively to missing, exact, right- and left- censored data.

In this context, the ‘position’ of a marginal data Oj,t with respect to the thresh-30

old is not necessarily well defined for censored data. Recall that we consider a case
where the process of interest (Yt)t≥0 is stationary, whereas the censoring bounds
vary with time, as a result of external factors on the observation process. When
the censoring interval overlaps the threshold, i.e. , vj ∈ (Lj,t, Rj,t), κj ∈ {2, 3}),
the statistician does not know if an excess occurred or not. This situation is de-35

scribed here as Oj,t marginally overlapping the threshold. The different positions
of Oj,t with respect to vj encountered in the data set of interest in this paper are
summarized in Figure 1.

For a multivariate observation Ot, if at least one coordinate marginally overlaps
the threshold or is missing, and if the others are below the threshold, then the posi-40

tion of Ot with respect to the multivariate threshold v is undetermined. Indeed, Ot

is below threshold if all its marginals are below the corresponding marginal thresh-
old, and above threshold (in the failure region) otherwise. In the undetermined
case, Ot is qualified as globally overlapping the threshold.

3.3. Inferential censoring below threshold. Since the marginal distributions45

Fv
j ’s, conditional upon not exceeding vj , are unknown, theXj,t’s such that Yj,t < vj



Above Below Undetermined

(1)    (3)    (2)Type

Position

(1)   (3) (3)   (2)

v

Discharge

Figure 1. Position of marginal data points with respect to a mar-
ginal threshold v (horizontal line). Black dots: marginal data points
of type κ = 1; vertical arrows: data of type κ ∈ {2, 3}.

are not available. Instead of attempting to estimate the Fv
j ’s, one option is to cen-

sor the Fréchet-transformed components below threshold. More precisely, for a raw
observation Oj,t = (κj,t, Yj,t, Lj,t, Rj,t), let us denote by Cχj,t = (κ̃j,t, Xj,t, L̃j,t, R̃j,t)

the corresponding ‘Fréchet transformed’ and censored one, and Cχ
t the multivari-

ate observation (Cχ1,t, . . . , C
χ
d,t). The transformation Ot 7→ Cχ

t is illustrated in5

Figure 2 in the bi-variate case.
In a nutshell, inferential censoring occurs when the censoring intervals are below

threshold or marginally overlapping it, or when an exact data component Yj,t < vj
is recorded. A formal definition of Cχj is as follows:

• (κ̃j,t, Xj,t) =


(3, NA) if κj,t = 1 and Yj,t < vj ,

(0, NA) if κj,t = 2 and Lj,t < vj ,(
κj,t, T χj (Yj,t)

)
otherwise.

10

• L̃j,t =

{
0 if Lj,t < vj ,

T χj (Lj,t) otherwise.

• R̃j,t =

{
uj if Rj,t < vj ,

T χj (Rj,t) otherwise.

In the above definition, NA stands for a missing value and it is understood that
T χj (NA) = NA.

In the end, observations globally overlapping threshold have their marginal lower15

bounds L̃j,t set to zero if Lj,t < vj . The interest of using a Poisson model becomes
clear at this point. Indeed, censored observations Cχ

t obtained from observations
Ot globally overlapping threshold correspond to events of the kind ‘The observation
at time t belongs to [0, R̃t]’, which, by contrapositive, means ‘No point is observed
outside of [0, R̃t] between t and t + 1’. This is written in terms of the Poisson20

process N as



v
2

v
1

υ
2

υ
1

Tχ

Naturally censored 
observations 

Fréchet - transformed, 
censored at threshold

Partially below v

Partially below v

Overlapping v

Figure 2. Example in the two-dimensional case of marginal
transformation and censoring below threshold, for data of marginal
types (1, 1), (upper panel) (3, 1) (middle panel) and (3, 3) (lower
panel). In these three cases, observations are represented in black,
respectively by a dot, an horizontal arrow and a rectangle. The
Grey areas represent respectively the multivariate threshold v (left
side) and the Fréchet transformed one u (right side). The two up-
per panels correspond to observations above threshold, while the
lower panel shows an undetermined observation.

N

([
t

n
,
t+ 1

n

)
×

[
0,

R̃t

n

]c)
= 0 , (3.1)

which is a measurable event with respect to N. The overlapping observations thus
have a well defined likelihood in a Poisson model, as detailed in the next section,
whereas they could not be taken into account in Sabourin and Naveau (2014)’s
POT model.

3.4. Poisson likelihood with censored and missing data. Due to the com-5

bination of natural and inferential censoring, the data set (from which missing
days are excluded) is decomposed into data in the failure region, data overlapping
threshold and data below threshold. Let nv, n′v and n′′v be the respective number
of observations in each category. The number of non missing days is thus

nobs = nv + n′v + n′′v ,

and the number of ‘determined’ data (i.e. not overlapping v) is10

ndet = nv + n′′v .

The nv Fréchet-transformed observations {Cχ
ti
}(i ∈ {1, . . . , nv}) correspond to

events of the kind



Xti ∈ [L̃ti, R̃ti ] (rectangular region)

where R̃j,ti = L̃j,ti = Xj,ti in the case of exact data.
Observations overlapping threshold correspond to events of the kind (3.1) in-

troduced in the previous section. When a limited number I ′ of right censoring
bounds Rt = (R1,t, . . . , Rd,t) are present, it is convenient to classify these overlap-
ping events accordingly, writing n′v =

∑I′
i=1 n

′
i where n

′
i is the number of obser-5

vations with right censoring bound Rti . Since the Poisson process is temporally
exchangeable, there is no loss of generality in assuming that the latter observations
occur at consecutive dates (t′i, . . . , t

′
i + n′i − 1). The region E \ [0, R̃t′i

] is ‘missed’
by the Fréchet re-scaled process Xt during this time period.
With theses notations, the censored likelihood in the Poisson model may be written10

Lv(O, θ) = exp
[
− ndet λψ(Au)−

I′∑
i=1

n′iλψ(A′i)
]
× · · ·

· · ·
nv∏
i=1

{∫
[L̃ti ,R̃ti ]

dλψ
dx

d`i(x)
∏

j:yj,ti>vj

Jχj (yj,ti)
}
,

(3.2)

where notation ‘ d`i(x)’ in the integral terms is a shorthand for ‘the Lebesgue
measure of dimension equal to that of [L̃ti , R̃ti ]’ when the latter is greater than
one, or ‘the Dirac mass at xti = L̃ti = R̃ti ’ for exact data. Compared with the
uncensored likelihood (2.8), n has been replaced with nobs, the exponential term15

for the non overlapping data follows from
exp

(
− ndet
nobs

λψ
(
Au,nobs

))
= exp

(
− ndet λψ

(
Au
))
,

and a similar argument yields the additional terms exp(−n′iλψ(A′i)) for overlapping
data.

At this stage, the model has been entirely specified. The remaining issue con-
cerns the treatment of the integral terms20 ∫

[L̃ti ,R̃ti
]

dλψ
dx

d`i(x) (3.3)

and the exponential terms
exp

[
− ndet λψ(Au)

]
and exp

[
− n′iλψ(A′i)

]
, (3.4)

which have no analytic expression, as they require integrating λψ over rectangular
regions. First, the dimension of numerical integration can be reduced as far as25

‘missing coordinates’ are involved, because partial integration of λψ over [0,∞] in
one direction has an exact expression. The model is stable under marginalization,
in the sense that the obtained marginal exponent measures correspond again to
Dirichlet mixtures on a lower dimensional simplex (see Appendix B for details).
However, no closed form is available for the integral in the remaining censored30

directions, nor for the exponent measures of Au or the A′i’s. This problem is
tackled in the next section via a data augmentation method.

4. Data augmentation

4.1. Background. In a Bayesian context, one major objective is to generate pa-
rameter samples approximately distributed according to the posterior. In classical35

MCMC algorithms, the value of the likelihood is needed to define the transition



kernel. Evaluating the integrated likelihood Lv(O, θ) at each iteration of the al-
gorithm seems unmanageable: The dimension of integration can grow up to d,
for each observation, and the shape of the integrand varies from one iteration to
another, which is not favorable to standard quadrature methods. In particular,
large or low values of the shape parameters νm in ψ induce concentration of the5

integrand around the centers µm or unboundedness at the simplex boundaries.
Instead, data augmentation methods (see e.g. Tanner and Wong, 1987; Van Dyk
and Meng, 2001) treat missing or partially observed data as additional parameters,
so that the numerical integration step is traded against an increased dimension of
the parameter space. In this section, [ · ] denotes the distribution of a random10

quantity as well as its density with respect to some appropriate reference measure.
Proportionality between σ-finite measures is denoted by ∝. Thus, [θ] is the prior
density and [θ |O] ∝ [θ]Lv(O, θ) is the posterior.

The main idea is to define an augmentation space Z, and a probability measure
[ · |O]+, on the augmented space Θ × Z, conditional on the observations, which15

may be sampled using classical MCMC methods, and which is consistent with the
‘objective distribution’ on Θ. That is, the posterior on Θ must be obtained by
marginalization of [ · |O]+,

[θ|O] =

∫
Z

[z, θ |O]+ dz . (4.1)

In the sequel, the invariant measure (or its density) [z, θ |O ]+ is referred to as
the augmented posterior.20

4.2. Data augmentation in the Poisson model. In our context, finding an
augmentation random variable Z+ with easily manageable conditional distribu-
tions, such that the augmented posterior [z, θ|O]+ satisfy (4.1), is far from straight-
forward, mainly due to the exponential terms (3.4) in the likelihood.

Instead, an intermediate variable Z is introduced, which plays the role of a25

proposal distribution in the MCMC algorithm. Z is defined conditionally to θ,
through the augmented likelihood [ z,O | θ ], so that the full conditionals [Z | θ,O]
can be directly simulated as block proposals in aMetropolis-within-Gibbs algorithm
(Tierney, 1994). To ensure the marginalization condition (4.1), the augmented
posterior [Z, θ|O]+ is not the same as [Z, θ|O]. Instead it has a density of the30

form

[z, θ | O]+ ∝ [z,O | θ ] [ θ ] ϕ(z) , (4.2)
where ϕ(z) is any weight function allowing to enforce the consistency condition (4.1).
The [θ] terms cancel out and the latter condition is equivalent to

Lv(O, θ) ∝
∫

[z,O | θ] ϕ(z) dz . (4.3)

In the end, a posterior sample from [θ|O] is simply obtained by ignoring the Z-
components from the one produced with the ‘augmented’ Markov chain.35

In our case, the augmented data Z consist of two parts, Z = (Zabove,Z
′). The

first one, Zabove = {Zti}i≤nv , accounts for integral terms (3.3), while the second
one, Z′ = (Z′u, {Z′i}i≤I′), accounts for the exponential terms (3.4). The Zti ’s
have an intuitive interpretation, which is standard in data augmenting methods:
they replace the censored Xj,ti ’s. On the contrary, the Z′i’s and the Z′u are just a40



computational trick accounting for the exponential terms: they are the points of
independent Poisson processes defined on ‘nice’ radial sets containing the failure
regions of interest A′i’s and Au, and ϕ is a smoothed version of an indicator function
of the failure regions.

The augmented likelihood factorizes as5

[ z,O | θ ] =

nv∏
i=1

{
[ zti ,Oti | θ ]

}
[ z′u | ψ]

I′∏
i=1

[z′i |ψ] , (4.4)

and the weight function ϕ is of the form

ϕ(z) = ϕu(z′u)

I′∏
i=1

ϕ′i(z
′
i) .

A precise definition of Zabove is given in Appendix C.1, together with the expres-
sion of the corresponding contributions to the augmented likelihood, [ zti Oti |θ ] .
The full conditionals [Zabove |O , θ ] are derived in C.2. The augmentation Poisson
processes Z′, together with the weight ϕ are defined in Appendix C.3, and the10

compatibility condition (4.3) is proved to hold in Appendix C.4.

4.3. Implementation of a MCMC algorithm on the augmented space.
This section describes only the main features of the algorithm, more details are
provided in Appendix D. The present algorithm is an extension of Sabourin and
Naveau (2014)’s one, who proposed a Metropolis-within-Gibbs algorithm to sample15

the posterior distribution of the angular measure in a POT framework (2.1), within
the Dirichlet mixture model (2.3). The number of components in the Dirichlet
mixture is not fixed in their model, and the MCMC allows reversible-jumps between
parameters sub-spaces of fixed dimension, each corresponding to a fixed number of
components in the Dirichlet mixture. Their algorithm approximates the posterior20

distribution [ψ|W], where ψ is the DM parameter and W is an angular data set
consisting of the angular components Wt of data Xt that have been normalized to
Fréchet margins in a preliminary step.

In contrast, the present algorithm handles ‘raw’ data (not standardized to
Fréchet margins), with censoring of various types as described in Section 3, so25

as to approach the full posterior distribution (marginal and dependence parame-
ters) [ θ | O ] . In practice, this amounts to allowing two additional move types in
the Metropolis-within-Gibbs sampler: marginal moves (updating the marginal pa-
rameters) and augmentation moves updating the augmentation data Z described
above. The reversible jumps and the moves updating the DM parameters keeping30

the dimension constant are unchanged.

5. Simulations and real case example

Keeping in mind the application, the aim of this section is to verify that the al-
gorithm provides reasonable estimates with data sets that ‘resemble’ the particular
one motivating this work.35

After a description of the experimental setting, an example of results obtained
with a single random data set is given, then a more systematic study is conducted
over 50 independent data sets. Finally, a brief description of the results obtained
with the original hydrological data is provided. The latter part is kept short



because, as mentioned in introduction, from a hydrological point of view, a full
discussion of the benefits brought by historical information, as well as treatment
of temporal dependence in the case of heavily censored data is needed and will be
the subject of a separate paper.

5.1. Experimental setting. For this simulation study, the marginal shape pa-5

rameters are constrained to be equal to each other, ξ1 = · · · = ξd := ξ, in accor-
dance with the regional frequency analysis hydrological framework (Hosking and
Wallis, 2005), where the different gauging stations under study are relatively close
to each other (in the same watershed). Also, the dimension is set to d = 4, as it is
for the hydrological data set of interest.10

Preliminary likelihood maximization (with respect to the marginal parameters)
is performed on the hydrological data, again assuming independence between lo-
cations for the sake of simplicity and imposing a common shape parameter (this
latter hypothesis not being rejected by a likelihood ratio test). Then, data sets are
simulated according to the model for excesses (2.1), with marginal parameters and15

threshold excess probabilities (for daily data) approximately equal to the inferred
ones, i.e.

ζ ≈ (0.021, . . . , 0.021) , ξ = 0.4 , log(σ) = (4.8, 4.6, 5.9, 5.1) ,

for a total number of days n = 148 401, which is the total number of days in
the original data. The four-variate dependence structure is chosen as a Dirichlet
mixture distribution hψ, where20

ψ : p = (0.25, 0.25, 0.5) , µ =


0.1 0.7 0.1
0.1 0.1 0.4
0.1 0.1 0.4
0.7 0.1 0.1

 , ν = (70, 50, 80) .

A radial threshold for simulation on the Fréchet scale and the number of points
simulated above the latter are respectively set to rs = −1/ log(1 − max(ζ)),
nrad.exc = n ∗ 4/rs. The remaining n − nrad.exc points are arbitrarily scattered
below the radial threshold, so that the proportion of radial excesses is 4/rs, the
exponent measure of the region {x ∈ R4 : ‖x‖1 > rs}.25

Afterwards, the data set is censored following the real data’s censoring pat-
tern, i.e. censoring occurs on the same days and on the same locations (here,
a location is a coordinate j ∈ {1, . . . , 4}) as for the real data, with same cen-
soring bounds (on the Fréchet scale), so that the data are observed only if the
censoring threshold is exceeded. Finally, in order to account for the loss of infor-30

mation resulting from time dependence within the real data (whereas the simulated
data are time independent), only neff data out of n are kept for inference, where
neff = bn/mean cluster sizec = 118 911 (see Section 6 for an explanation about
clusters). The vast majority of data points (real as well as simulated) are either
censored or below the multivariate threshold: in the real data set, only 125 multi-35

variate excesses above threshold are recorded, among which only 3 have all their
coordinates of type 1 (exact data). In such a context, a simplified inferential frame-
work in which censored data would be discarded is not an option: only 3 points
would be available for inference. For simulated data, the threshold is arbitrarily
set to the same value as the one defined for real data, i.e. v = (300, 320, 520, 380).40



The MCMC sampler described in Section 4.3 and Appendix D is run for each
simulated data set, yielding a parameter sample, which approaches the posterior
distribution given the censored data. To allow comparison with the default space-
independent framework in terms of marginal estimates, such as probabilities of a
marginal excess, Bayesian inference is also performed in the independent model5

defined as follows: the marginal models are the same as in (2.4), the Yj,t, 1 ≤ j ≤ 4
are assumed to be independent while the shape parameters ξj , 1 ≤ j ≤ 4 are, again,
equal to each other. A MCMC sampler is straightforwardly implemented for this
independent model, following the same pattern as defined in the marginal moves
for the full model (see Appendix D). In the sequel, the full Poisson model with10

Dirichlet mixture dependence structure is referred to as the DM Poisson model, or
the dependent model, as opposed to the independent model.

5.2. Illustration of the method with one simulated data set. The censoring
pattern described above yields a censored data set which resembles the real data set
is term of average number of exact (uncensored) coordinates in each observation,15

as shown in Figure 3: most of the extracted data have only one exact coordinate.

number of uncensored directions per multivariate observation 
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Figure 3. Average number of exactly observed coordinates above
threshold in each recorded multivariate excess in the real data set
(hatched bars) and in a simulated data set (Gray bars).

In addition to data above threshold, the number of threshold-overlapping blocks
(made of data which position with respect to the threshold is undetermined, see
Section 3) is I ′ = 39 in this simulated data set, with block sizes varying between
1 and 39 845, and a total number of ‘undetermined’ days n′v = 112 676. To fix20

ideas, the bi-variate projections onto the six pairs (i < j) of a simulated data set
are displayed in Figure 4.

Let us turn to results obtained with this particular data set. A ‘flat’ prior was
specified for the DM Poisson model parameters and MCMC proposals for the DM
parameter were set in a similar way as in Sabourin and Naveau (2014), which re-25

sulted in satisfactory convergence diagnostics after 106 iterations, see Appendix D.6
for details. Figure 5 displays the posterior predictive for bi-variate marginaliza-
tion’s of the angular density, obtained via equation (B.2), together with the true
density and posterior credible sets around the estimates. The estimated density
captures reasonably well the features of the true one and the posterior quantiles30

are rather concentrated around the true density. This is all the more satisfying
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Figure 4. Bi-variate projection of the simulated data set after
censoring. White points correspond to pairs for which both coordi-
nates are observed. Superimposed Gray rectangles (resp. segments)
represent pairs for which both coordinates (resp. one coordinate)
are (is) censored. The white striped rectangle is the region below
the multivariate threshold v.

that, at first view (Figure 4), the censored data used for inference seem to convey
little information about the distribution of the angular components.
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Figure 5. Bi-variate angular predictive densities (thick black
line) with posterior credible sets (Gray regions) corresponding to
the posterior 0.05 − 0.95 quantiles, together with the true angular
density (dashed line).



In risk analysis, especially in hydrology, return level plots (i.e. quantile plots)
are used to summarize the marginal behavior of extremes. The return level Q for
a return period T at location j, when marginal data are distributed according to
Fχj and where there is no temporal dependence, is usually defined as the 1− 1/T -
quantile of Fχj . Figure 6 compares the return levels obtained both in the dependent5

and the independent models, together with the true return levels. The posterior
estimates in the dependent model are very close to the truth, relatively to to the
size of the credible intervals. In contrast, estimation in the independent model
under-estimates the return levels, and the true curve lies outside the posterior
quantiles at two locations out of four. This single example is however not enough to10

conclude that the dependence structure improves significantly marginal estimation.
The absence of significant improvement (or deterioration) of marginal estimates is
indeed one of the conclusions of the next subsection.
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Figure 6. Return level plots: Quantile versus logarithm (base 10)
of the return period at the four locations. Grey points: empirical
return level of observed threshold excesses (simulated data); Black
line: true curves; Gray dashed line and shaded area: posterior mean
and 0.05 − 0.95-quantiles in the dependent model with Dirichlet
mixture angular structure; Black dash-dotted line and area: idem
in the independent model.

5.3. Simulation study with 50 data sets. The aim of this section is to verify
that the posterior distribution of the DM Poisson model parameters is reasonably15

informative, even with censored data. The procedure described above is applied
to generate independently 50 data sets.
Marginal predictive performance. The model’s ability to estimate of the prob-
ability of a marginal excess is first investigated. Large thresholds (V1, . . . , V4) are



specified so that their true marginal probability of exceedance is P0 = 1/(10∗365),
an approximate ten years return level. The quantities of interest are the posterior
distributions of ∆j(θ) = Pθ(Yj > Vj), which we hope to be concentrated around
P0. Each posterior samples (θι)ι∈1..N issued by a MCMC algorithm is transformed
into a series of exceedance probabilities, (δj(θι))ι∈1..N which empirical distribution5

F̂j = 1
N

∑N
ι=1 1δj(θι)( · ) approximates the posterior distribution of ∆j . The per-

formance of the posterior may then be investigated in terms of posterior quadratic
loss,

QL(F̂j) =
(
EF̂j (∆j)− P0

)2
+ VarF̂j (∆j) .

This loss corresponds to the the predictive model choice criterion (PMCC) (Laud
and Ibrahim, 1995). In the framework of scoring rules (Gneiting and Raftery, 2007)10

the PMCC is not a ‘proper score’ in general, but it is so when the true probability
distribution of the quantity of interest ∆j is a Dirac mass, which is the case here
(Dirac mass at P0).

After 1.106 MCMC iterations, at least one chain (out of six chains run in parallel
for each simulated data set) passed the Heidelberger and Welch’s stationarity tests15

(Heidelberger and Welch, 1983) at level 10−4, for each data set. Table 1 gathers,
for the margins j ∈ {1, . . . , 4}, the mean and standard deviation of the QL scores,
normalized by the (squared) true probability P 2

0 for readability,

QLj =
QL(F̂j)

P 2
0

.

QLj 1 2 3 4
mean 0.55 0.17 0.22 0.32

standard error 0.64 0.14 0.18 0.30
first quartile 0.14 0.08 0.08 0.10
third quartile 0.77 0.20 0.32 0.45

Table 1. Normalized scores QLj for the marginal probability of an
excess: mean and standard deviation, first and third quartiles over
the 50 data sets. Column j corresponds to an excess at location j
(1 ≤ j ≤ 4).

Although the variability of the scores (standard deviations) is relatively high, nor-
malized third quartile less than one indicate that the posterior distribution con-20

centrates in regions where the probability of a marginal excess is of the same order
of magnitude as the true probability.

In order to verify that introducing a rather complex dependence structure model
does not deteriorate the marginal estimates, the same quadratic loss score is com-
puted with samples issued from the independent model. In view of Figure 7,25

displaying box-plots of the scores computed in both models (dependent versus in-
dependent), there is no significant difference between the two models in terms of
marginal estimation.
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Figure 7. Normalized QR scores in the dependent Dirichlet-
Poisson model versus the independent model, at the four different
locations, for 50 simulated datasets

Estimation of the angular measure. To assess the performance of the DM
Poisson model in terms of estimation of the dependence structure of extremes,
a similar scoring procedure as above is followed, with quantities of interest ∆j

defined as the probability of a joint excess of the Vi’s, given a marginal excess of
Vj ,5

∆̃j = P(Y1 ≥ V1, . . . Y4 ≥ V4 |Yj ≥ Vj) .
These quantities do not have an explicit expression in the DM model, but are easily
approached by standard Monte-Carlo sampling. Lacking a reference model in this
context (the independent one is obviously unable to predict these quantities), only
the scores in the dependent model are available. Table 2 summarizes the results
in terms of normalized scores

Q̃Lj =
QL(∆̃j)

P 2
j

,

where Pj is the true conditional probability of a joint excess.
A comforting fact is that the dependence structure seems to be even better

estimated than the marginal distributions of extremes, in view of Tables 1 and 2.

5.4. Real data. Analyzing the hydrological data set presented in the introduction
requires an additional declustering step: a multivariate run-declustering scheme10

was implemented. A cluster starts when one component exeeds the threshold.
It and ends when, during τ consecutive days, all components are below there
respective threshold, or (when censoring is present) with undertermined position,
so that the observer can not ascertain that an excess occurred. The lag parameter
τ = 3 was set by considering stability regions of the estimates, and additional15

physical characteristics of the hydrological catchment, see Sabourin and Renard
(2014) for details. After-wise the model is fitted to the extracted four-variate



Q̃Lj 1 2 3 4
mean 0.06 0.18 0.25 0.05

standard error 0.05 0.11 0.13 0.05
first quartile 0.02 0.11 0.17 0.01
third quartile 0.10 0.23 0.33 0.06

Table 2. Normalized QL scores Q̃Lj for conditional probabilities
of a joint excess: mean, standard deviation, first and third quartiles
over the 50 simulated datasets. Column j corresponds to condition-
ing upon an excess at location j.

cluster maxima. Again, 6 parallel MCMC’s of length 106 are run, with satisfactory
convergence diagnostic after a 2 105 burn-in period. The posterior mean estimates
of marginal parameters are close to the maximum likelihood estimates mentioned
in subsection 5.1. Figure 8 displays bi-variate versions of the four-variate posterior
predictive angular measure, together with point-wise 90% posterior credibility sets.5
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Figure 8. Bi-variate angular measure for the hydrological data
set: posterior predictive density (black line) and posterior 0.05 and
0.95 quantiles.

The inferred dependence structure is rather complex, which fosters the use of
such a flexible semi-parametric model. The posterior credible bounds of the an-
gular density are relatively narrow around the posterior predictive in the central
regions of the simplex (which is the segment [0, 1] for bi-variate data) and indi-
cate that asymptotic dependence is present. On the other hand, high levels (even10

unboundedness) of the predictive density near certain edges indicates a ‘weakly
asymptotically dependent regime’, for the considered pair, i.e. a regime where
one component may be large while the other one is not. Possibly, some ‘true’
asymptotic angular mass is concentrated on these edges, which translates in the
Dirichlet mixture model (which only allows mass on the topological interior of the15

simplex) into high densities near the edges. The observed widening of posterior
credible regions near the edges where the density is unbounded is not surprising : an
unbounded density corresponds to Dirichlet parameters with components νµi < 1,



for which a small variation of the parameter value induces a large variation of the
density near the edges.

6. Conclusion

In this work, a flexible semi-parametric Bayesian inferential scheme is imple-
mented to estimate the joint distribution of excesses above multivariate high thresh-5

olds, when the data are censored. A simulation example is designed on the same
pattern as a real case borrowed from hydrology. Although the tuning of the MCMC
algorithm requires some care, taking into account all kinds of observations for var-
ious censoring bounds allows to obtain satisfactory estimates, despite the loss of
information relative to the angular structure induced by the censoring process. In10

particular, accurate enough estimations of quantities of interest such as marginal
or conditional probabilities of an excess of a large threshold can be obtained.
The main methodological novelty consists in taking advantage of the condition-
ing and marginalizing properties of the Dirichlet distributions, in order to simulate
augmentation data which ‘replace’ the missing ones. Also, exponential terms in the15

likelihood with no explicit expressions are handled by sampling well chosen func-
tionals of augmentation Poisson processes. This new inferential framework opens
the road to statistical analysis of the extremes of data sets that would otherwise
have been deemed unworkable.
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Appendix A. Poisson likelihood of uncensored data

Consider a Dirichlet mixture density h = hψ as in (2.3). The density of the
exponent measure in Cartesian coordinates is, using (2.7) and the expression of30

the Dirichlet density (2.2),

dλψ
dx

(x) = d

k∑
m=1

 pmΓ(νm)∏d
j=1 Γ(νm µj,m)

d∏
j=1

x
νmµj,m−1
j

 d∑
j=1

xj

−(νm+1)
 . (A.1)

The likelihood expression (2.8) is simply that of a Poisson process on the re-
gion [0, 1] × Au,n. Recall that, for a Poisson process with intensity µ on a re-
gion A, the likelihood of n points (Z1, . . . , Zn) observed in A is proportional to35

e−µ(A)
∏n
i=1

dµ
dz (Zi).

The exponential term e−nλψ(Au) in (2.8) follows from the homogeneity property
of λψ,

e−`([0,1]) . λψ(Au,n) = e−nλψ(Au) .

The terms Jχj are the inverse Jacobians of the marginal transformations Tχj :
Yj 7→ Xj , i.e.



Jχj (yj) = σ−1
j (ζj)

−ξjx2
je

1
xj

[
1− e

−1
xj

]1+ξj

,

where xj = T χj (yj),

Appendix B. Integration of the exponent measure along directions
of missing components

The exact expression for the integral of the exponent measure’s density in (3.2)
along the axes [0,∞] corresponding to missing coordinates is given below. Let5

D = {j1, . . . , jr} be the non missing coordinates (r < d). Integrating dλψ
dx over

(0,∞) in the missing directions D0 = i1, . . . , id−r yields the marginal density of
λ with respect to the Lebesgue measure on the vector space spanned by D , i.e.
∂λψ(x)

∂xj1 ··· ∂xjr
. With a DM angular measure, the integral has an analytic expression,

which is, using (2.2) and (2.3),10

∂λψ(x)

∂xj1 · · · ∂xjr
=

∫
{z:zj=xj(j∈D),zi∈R+(i∈D0)}

dλψ
dx

(z) dzi1 , . . . , dzid−r

= r

k∑
m=1

 p0
mΓ(ν0

m)∏
j∈D Γ(ν0

mµ
0
j,m)

∏
j∈D

x
ν0mµ

0
j,m−1

j

∑
j∈D

xj

−(ν0m+1)
 ,

(B.1)
with

ν0
m = νm(1−

∑
i∈D0

µi,m) , µ0
m = (1−

∑
i∈D0

µi,m)−1µm ,

p0
m =

d

r
(1−

∑
i∈D0

µi,m)pm .
(B.2)

This is the spectral measure associated with another angular DM distribution on
Sr with parameter ψ0 = (ν0

1:k,µ
0
1:k, p

0
1:k). The censored likelihood (3.2) can thus

be re-written as15

Lv(O, θ) = exp
[
− ndet λψ(Au)−

I′∑
i=1

n′iλψ(A′i)
]
× · · ·

· · ·
nv∏
i=1

{∫
[L̃0
ti
,R̃

0
ti

]

∂r(i)λψ
∂xj1(ti) · · · ∂xjr(i)(ti)

(x) d`0i
∏

j:Yj,ti>vj

Jχj (yj,ti)
}
,

(B.3)

where integration is performed in the censored, non-missing directions, and where
`0i is the Lebesgue measure on the corresponding subspace of Rd and [L̃0

ti , R̃
0
ti ] are

the original bounds [L̃ti , R̃ti ], modulo the subspace of missing components.

Appendix C. Data augmentation details

Here is detailed the construction of augmentation data Z = (Zabove,Z
′), first20

introduced in Section 4.2.



C.1. Definition of augmentation the variable Zabove = {Zti}i≤nv . Consider
a Fréchet-transformed, censored observation Cχ

ti
= (Cχ1 , . . . , C

χ
d ), with

Cχj = (κ̃j,ti , Xj,ti , L̃j,ti , R̃j,ti),

as in Section 3.3. Let Dc(i) = (j′1(i), . . . , j′c(i)) be the censored coordinates in
observation Cχ

ti
. The latent variables Zti = (Zj′1,ti , . . . , Zj′c,ti) are defined so as to

‘replace’ those coordinates: More formally, let5

X̄ti |ψ ∼
1

λψ(Au)
1Au( · )λψ( · ) , (C.1)

be an uncensored d-dimensional variable with Fréchet margins and dependence
structure given by λψ on Au. Then, Zti is defined through its joint distribution
with the {Xj,ti : j /∈ Dc(i)}, conditionally on θ,(

Zti , {Xj,ti : j /∈ Dc(i)}
) ∣∣ θ distribution

= X̄ti |ψ.

Then, conditionally on the observation Oti ,10 [
Zti |Oti , θ

]
= [(X̄j′1,ti

, . . . , X̄j′c,ti) | Oti , θ]

=
[
(X̄j′1,ti

, . . . , X̄j′c,ti)
∣∣∣ X̄ti ∈ [L̃ti , R̃ti ], ψ

]
.

(C.2)

The contribution of the ‘augmented’ data point (Zti ,Oti) to the augmented
likelihood (4.4) is

[zti ,Oti |θ] =
dλψ
dx

(x̄ti)
∏

j:κj,ti=1

Jχj (yj,ti) , (C.3)

where

x̄j,ti =

{
T χj (yj,ti) if κ̃j,ti = 1 ,

zj,ti otherwise .

Remark. With missing components D0(i) = {j : κj,ti = 0} 6= ∅, integration in the15

direction D0(i) can be performed analytically (see Appendix B), which reduces the
dimension of the augmented data. Indeed, in such a case, the corresponding Zj,ti ’s
need not be included in Zti , the uncensored variable X̄ti is defined on the quo-
tient spaces E/D0(i) and its distribution is proportional to the exponent measure
λψ0 defined by equations (B.1) and (B.2), with density ∂r(i)λψ

∂xj1(ti)··· ∂xjr(i)(ti)
( · ) . as in20

equation (B.3), so that

[zti ,Oti |θ] =
∂r(i)λψ

∂xj1(ti) · · · ∂xjr(i)(ti)
(x̄ti)

∏
j:κj,ti=1

Jχj (yj,ti) , (C.4)

C.2. Full conditional distribution of augmented data [ Zabove |O, θ ]. The
full conditionals [Zj,ti |{Zs,ti}s 6=j ,Oti , θ] are functions of truncated Beta distribu-
tions that can easily be sampled in a Gibbs step of the algorithm, as shown below.25

In the remaining of this subsection, we omit the temporal index ti. If ψ is a
mixture of k Dirichlet distributions, as in (2.3), then, for any bounded, continuous
function g defined on [L̃j , R̃j ], the conditional expectation of g(Zj) is, up to a
multiplicative constant,



E [g(Zj) |O, {Zr}r 6=j , θ ] = E
[
g(X̄j)

∣∣∣X̄j ∈ [L̃j , R̃j ], X̄r = xr (r 6= j), ψ
]

=

∫ R̃j

L̃j

g(xj)hψ

( x∑
r xr

)(∑
r

xr

)−(d+1)
dxj

=

k∑
m=1

pm

∫ R̃j

L̃j

g(xj)hψ,m

( x∑
r xr

)(∑
r

xr

)−(d+1)
dxj︸ ︷︷ ︸

Im

,

(C.5)
(see equation (C.1) for the definition of X̄j).

Each term Im (m ≤ k for a mixture of k components) is

Im = γm

∫ R̃j

L̃j

g(xj)
∏
r≤d

x
νm µr,m−1
r

∑
r≤d

xr

−(d+1)−(
∑
r≤d(νm µr,m−1))

dxj

= γm

∫ R̃j

L̃j

g(xj)
∏
r≤d

x
νm µr,m−1
r

∑
r≤d

xr

−(νm+1)

dxj

= γm ρj

∫ R̃j

L̃j

g(xj)x
νmµj,m−1
j (sj + xj)

−νm−1 dxj ,

where γm = Γ(νm)∏d
r=1 Γ(νmµr,m)

, sj =
∑

r 6=j xr and ρj =
∏
r 6=j x

νmµr,m−1
r . Changing

variable with u = xj/(xj + sj), the integration bounds are

R′j =
R̃j

sj + R̃j
, L′j =

L̃j

sj + L̃j
,

and we have5

Im = γm ρj

∫ R′j

L′j

g

(
sju

1− u

) (
sju

1− u

)νmµj,m−1

(sj +
sju

1− u
)−νm−1 sj

(1− u)2
du

= γm ρj s
−νm(1−µj,m)−1
j

∫ R′j

L′j

g

(
sju

1− u

)
uνmµj,m−1(1− u)νm(1−µj,m) du

One recognizes in the integrand the unnormalized density of a Beta random vari-
able Um ∼ beta(am, bm), with

am = νmµj,m , bm = νm(1− µj,m) + 1 ;

Let IBa,b(x, y) denote the incomplete Beta function (i.e. the integral of the Beta
density) between truncation bounds x and y. The missing normalizing constant in
the integrand is10

Dm =
Γ(am + bm)

Γ(am)Γ(bm)IBam,bm(L′j , R
′
j)

=
Γ(νm)

Γ(νmµj,m)Γ(νm(1− µj,m))

1

IBam,bm(L′j , R
′
j)(1− µj,m)



Finally, we have

Im = Cm.Dm

∫ R′j

L′j

g(
sju

1− u
)uνmµj,m−1(1− u)νm(1−µj,m) du

with

Cm = (1− µj,m)
Γ(νm(1− µj,m))∏
s 6=j Γ(νmµs,m)

IBam,bm(L′j , R
′
j) ρj s

−νm(1−µj,m)−1
j , (C.6)

so that that the conditional expectation (C.5) is that of a mixture distribution,

E [g(Zj)|O, {Zr,r 6=j}] =

j∑
m=1

p′m E
[
g(

sjUm
1− Um

)

]
with weights (p′m)m≤k,

p′m = pmCm , (C.7)

where Cm is given by equation (C.6).
As a conclusion, the conditional variable [Zj |O, Zs 6=j , θ] is a mixture distribution5

of k components (
p′m, Vj,m =

sjUm
1− Um

)
1≤m≤k

. (C.8)

In presence of missing coordinates, (C.8) still holds, up to replacing the mixture
parameters (p,µ,ν) with (p0,µ0,ν0) as in equation (B.2).

C.3. Augmentation Poisson process Z′ = {{Z′i}i≤I′ ,Z′u} and weight func-
tion ϕ. Let us define a region Eu,ndet = {x ∈ (R+)d : ‖x‖1 > minj(

uj
ndet

)}, so that10

Au,ndet ⊂ Eu,ndet . Choose a multiplicative constant τ > 0 and define a Poisson
intensity measure λ′( · ) = τ λψ( · ). The augmentation process Z′u is a Poisson
processes which is defined together with ϕu by{

Z′u ∼ PP(λ′) on Eu,ndet ,

ϕu(Z′u) = (1− 1/τ)Z
′
u(Au,ndet ) ,

(C.9)

where Z′u(Au,ndet) is the number of points forming Z′u which hit Au,ndet . Full15

justification and simulation details are given in the next subsection (Appendix C.4).
Let {x′u,s = (r′u,s,w

′
u,s)}s≤N ′u be the points of Z′u in Eu,ndet , the density of Z′u

over Eu,ndet , which contributes to the augmented likelihood (4.4), is

[z′u | ψ] =
1

N ′u!
e
−ndet τ d
minj≤d uj

N ′u∏
s=1

τ d

(r′u,s)
2
hψ(w′u,s) . (C.10)

The processes Z′i’s and the weights ϕ′i’s are defined similarly, replacing ndet with
n′i and uj with R̃j,t′i (1 ≤ i ≤ I

′).20

C.4. Consistency of the augmentation model . The augmentation process
Z′ and the weight function ϕ have been constructed with a hint towards using
the general expression of the Laplace transform of a Poisson process to prove
consistency of the augmented posterior.



Proposition 1. Define the factors
[ zti ,Oti | θ ] (i ≤ nv) and [ z′u | ψ], [z′i |ψ] (1 ≤ i ≤ I ′)

composing the augmented likelihood (4.4), according to equations (C.3) and (C.10),
and let the factors ϕu, ϕi, i ≤ I ′ of the weight function ϕ in (4.2) be defined by
equation (C.9).

Then, the augmented posterior [ z, θ |O ]+ ∝ [ θ ][z,O | θ ]ϕ(z) is consistent, in5

the sense that condition (4.3), whence (4.1), is satisfied.

Proof .
It is enough to show that, on the one hand,

∫
[zabove,O | θ ] dzabove =

nv∏
i=1

{∫
[L̃ti

,R̃ti ]

dλψ
dx

d`i(x)
∏

j:yj,ti>vj

Jχj (yj,ti) ,

}
(C.11)

and, on the other hand,10 {
E [ϕu(Z′u)] = exp (−ndet λψ (Au)) ,

E [ϕi(Z
′
i)] = exp (−n′i λψ(A′i)) (i ≤ I ′) .

(C.12)

where the above expectations are taken with respect to [Z′u |ψ ] and [Z′i |ψ ].
Establishing (C.11) is immediate: from definition (C.3) of the [zti ,O|θ]’s com-

posing [zabove,O|θ],∫
[L̃ti

,R̃ti ]
[zti ,Oti |θ] dzti =

∫
[L̃ti

,R̃ti ]

dλψ
dx

d`i(x)
∏

j:yj,ti>vj

Jχj (yj,ti) ,

which yields (C.11) by taking the product over indices 1 ≤ i ≤ nv.
It remains to show (C.12). To wit, ϕu is a smoothed version of the indicator15

function 1{N′u(Au,ndet )=0}, which expectancy is P(N′u(Au,ndet) = 0) = e−ndetλψ(Au),
as soon as N′u is a Poisson process with intensity measure λψ. For f a bounded,
continuous function defined on a nice space E and N a point process on E, denote

N(f) =

∫
E
f dN =

N(E)∑
i=1

f(si).

Then, ifN is a Poisson process PP(λ) onE, the Laplace transform LapN (f)=̂E(e−N(f))
is (Resnick, 1987, Chap. 3)20

LapN (f) = exp

(
−
∫
E

(1− e−f(s)) dλ(s)

)
.

Consider the region E = Eu,ndet as in (C.9) and take

fu(x) = − log(1− 1/τ)1Au,ndet
(x) , so that 1− e−fu =

1

τ
1Au,ndet

.

With these notations,

ϕu(Z′u) =̂

(
1− 1

τ

)Z′u(Au,ndet )

= exp
(
−Z′u(fu)

)
,

whence



E
(
ϕu(Z′u)

)
= LapZ′u(fu)

= exp

(
−
∫
Eu,ndet

(1− e−fu) dλ′
)

= exp

(
−
∫
Eu,ndet

1

τ
1Au,ndet

d(τλψ)

)
= exp (−λψ(Au,ndet)) .

This shows the first equality in (C.12). The second one is derived with a similar
argument.

�
The points of Z′u can easily be simulated (see Resnick, 1987, Chap.3): the

number of points N ′u in Eu,ndet is a Poisson random variable with mean equal to5

λ′(Eu,ndet) =
τ d

minj(uj /ndet)
,

and each point has density in polar coordinates equal to 1
λ′(Eu,ndet )

τd
r2
hψ(w).

Remark. One may be tempted to define Z′u as a Poisson process with intensity
λψ on some E ⊃ Au,ndet , and ϕ(Zu) as the indicator 1z′u(Au,ndet )=0, with a similar
definition for the ϕ′i’s and the Z′i’s. As pointed out in the proof of Proposition 1,
one would have E

[
1Z′u(Au,ndet )=0

]
= exp (−ndet λψ (Au)), as required. However,10

even if this construction is valid in theory, it leads to a very large rate of rejection
in the Metropolis algorithm: ϕ(Z′u) has too much variability around its mean value
and the proposal is systematically rejected each time a point in the augmentation
process hits the failure region.

C.5. Expression of the augmented posterior. Recall from Section 4.2, equa-15

tion (4.2), that the augmented posterior density to be sampled by the MCMC
algorithm is

[ z, θ |O ]+ ∝ [ θ ][ z,O | θ ]ϕ(z) .

Combining equations (C.3) and (C.9), and integrating out missing components as
in Appendix B, the developed expression is

[ z, θ |O ]+ ∝ [ θ ]

(
[z′u|ψ]

I′∏
i=1

[z′i|ψ]

)
· (1− 1/τ)

z′u(Au,ndet )+
∑I′
i=1 z

′
i(A
′
i,n′
i
)
· · ·

· · ·
nv∏
i=1

{ ∂r(i)λψ
∂xj1(i) · · ·xjr(i)(i)

(x̄ti)
∏

j:Yj,t>vj

Jχj (yj,t)
}
, (C.13)

where [z′u|ψ] and the [z′i|ψ]’s are given by equation (C.10).

Appendix D. MCMC algorithm

The MCMC algorithm generates a sample (θι,Zι)ι=1,...,N which distribution con-20

verges to the invariant distribution of the chain, which is the augmented posterior
distribution [Z, θ|O]+, as defined in Section 4 and Appendix C.5. The quantity of
interest here is the joint parameter θ, which is the concatenation of the marginal
parameters and the dependence parameter: θ = (χ, ψ). We recall that MCMC



algorithms aiming at sampling a quantity ∆ ∈ E according to a density π( · )
proceed typically as follows

• Start with any value δ(0) ∈ E
• for ι ∈ {1, . . . , N}

(1) Generate δ∗ according to a proposal distribution with density q(δ(ι), · )5

(2) Compute the acceptance ratio

α =
π(δ∗) q(δ∗, δ(ι))

π(δ(ι)) q(δ(ι), δ∗)
,

and generate U , a uniform random variable on [0, 1].
(3) If U > α, ‘reject’ the proposal and set

δ(ι+ 1) = δ(ι) .

Otherwise (i.e. with probability α), set
δ(ι+ 1) = δ∗

(4) Set ι = ι+ 1, go to (1).10

• Return
(
δ(ιmin), . . . , δ(N)

)
,

where ιmin is the length of the burn-in period, after which the chain is deemed
to have reached a stationary behavior. In our case, the unnormalized posterior
measure [Z, θ|O]+ (see equation (C.13)) on the augmented parameter space plays
the role of the objective density π above.15

In a Metropolis-within-Gibbs MCMC, several proposal kernels q1, . . . , qT are de-
fined, each of them corresponding to a type of move, which is randomly chosen
among {1, . . . , T} at each iteration ι and allows to modify some subset of com-
ponents in δ alone. The algorithm developed in this paper builds on the MCMC
algorithm proposed by Sabourin and Naveau (2014), in which several types of20

move modifying the dependence structure (Dirichlet mixture parameter ψ) have
been defined. Those are kept as they are in the present work, the novel part of
which concerns the definition of marginal moves (modifying the marginal parame-
ter χ) and augmentation moves (modifying the augmentation data Z). Additional
notations distinguishing between the quantities appearing in the general MCMC25

algorithm above, according to the type of move, are omitted in the remainder of
this section.

D.1. Starting values. In a preliminary step, likelihood optimization is performed
in the independent model (the likelihood for one multivariate observation is the
product of d Pareto densities). This provides starting values for the marginal30

parameters as well as a Hessian matrix H, that may be used as the inverse of a
reference covariance matrix when updating the marginal parameters.

D.2. Marginal moves. The marginal parameter χ is updated as a block: The
proposal is normal, with mean at χ(ι) and co-variance matrix Σ = δH−1, where δ
is a scaling factor fixed by the user, that may typically be set around 0.5 and H is35

the Hessian matrix computed in the preliminary step. Since the proposal density is
symmetric, and since this move does not modify the dependence structure, neither
the terms involving the proposal density, nor the point processes Z′, appear in
acceptance ratio. The augmented variables Zabove are left unchanged. If any aug-
mented component Zj,ti is outside of the candidate censoring interval [L̃∗ti , R̃

∗
ti ] (on40

the new Fréchet scale) resulting from the modification of the marginal parameters,



the move is rejected, since in such a case, the candidate has augmented likelihood
[z,O | θ∗ ] = 0, i.e. α = 0.

Otherwise, the uncensored Fréchet-transformed variables (such that κ̃j,ti = 1)
are updated to X∗ti = T χ

∗

j,ti
(Yj,ti). The acceptance ratio is

α =
[χ∗]

[χ(ι)]

nv∏
i=1

{
∂r(i)λψ

∂xj1(i) · · · ∂xjr(i)(i)
(X̄∗ti)

[
∂r(i)λψ

∂xj1(i) · · · ∂xjr(i)(i)
(X̄ti(ι))

]−1

∏
j:Yj,ti>vj

Jχ
∗

j (Yj,ti)

J
χ(ι)
j (Yj,ti)

}
,

where j1, . . . , jr(i) are the non-missing components in the censored observation Cχ
ti

5

and X̄j = Xj for uncensored components, X̄j,ti = Zj,ti otherwise (see Appendix B).

D.3. Augmentation moves for Zabove. The augmented components {Zj,ti} =
{X̄j,ti : κ̃j ∈ {2, 3}} (c.f. Section 4.2) are re-sampled, one coordinate at a time,
from their exact conditional distribution given the other coordinates, as derived
in Appendix C.1. Since no other component of (Z, θ) is modified, the proposal10

density equals the objective density, and the acceptance ratio is thus set to α = 1.

D.4. Augmentation moves for Z′. During this move, proposals
Z′∗ =

{
Z′∗u ,Z

′∗
i , i ≤ I ′

}
,

for the augmentation Poisson processes introduced in the end of Section 3.4, are
sampled under their exact distribution,

q
(
Z′(ι),Z′∗

)
= [Z′∗|ψ(ι)] .

The latter is determined by their intensity measure λ′ = τλψ: the multiplicative15

constant τ and the sampling procedure have been described in Appendix C.3. The
acceptance ratio is thus

α =
[ Z′∗, θ(ι) |O ]+ [ Z′(ι) |ψ(ι) ]

[ Z′∗, θ(ι) |O ]+ [ Z′∗ |ψ(ι) ]

all the terms cancel out except the ratio ϕ(Z′∗)/ϕ(Z′(ι)), so that

α = (1− 1/τ)
[(Z′u)∗(Au,ndet )−Z′u(ι)(Au,ndet )]+

∑
i≤I′

[
(Z′i)

∗(A′
i,n′
i
)−Z′i(ι)(A′i,n′

i
)

]
.

D.5. Dependence moves. These types of moves allow to update ψ(ι).The only
difference between the present algorithm and what is described is Sabourin and20

Naveau (2014) is that not enough exact angular data are available to construct
proposals for moving or splitting a Dirichlet mixture components µm . Indeed,
most of the observations have at least one coordinate missing or censored, so that
no ‘angle’ is available. Consequently, the latter proposal is a simple Dirichlet
distribution with mode at µm(ι), with re-centering parameter 0 < ε < 0.5,25

q(µm(ι), · ) = diri d
ε
,γ∗( · ) ,

with γ∗ = (1− ε)µm + ε (1
d , . . . ,

1
d).

Each dependence move (except for a shuffling move which only affects the rep-
resentation of the angular distribution, see Sabourin and Naveau (2014)) is sys-
tematically followed by an augmentation move updating the Poisson processes Z′,



which improves the chain’s mixing properties. This also avoids the computation
of the ‘costly’ term involving the density [z′|ψ] (see equation (C.10)). Indeed, the
acceptance ratio for the two consecutive moves (dependence move followed by a
augmentation move) is

α =
[ψ∗]

[ψ(ι)]

q(ψ∗, ψ(ι))

q(ψ(ι), ψ∗)
× · · ·

· · · (1− 1/τ)

{
[Z′∗u (Au,ndet )−Z′u(ι)(Au,ndet )]+

∑
i≤I′

[
Z′∗i (A′

i,n′
i
)−Z′i(ι)(A′i,n′

i
)

]}
× · · ·

· · ·
nv∏
i=1

{
∂r(i)λψ∗

∂xj1(i) · · · ∂xjr(i)(i)
(X̄ti(ι))

[
∂r(i)λψ(ι)

∂xj1(i) · · · ∂xjr(i)(i)
(X̄ti(ι))

]−1}
.

D.6. MCMC settings and convergence diagnostics in the simulation study.5

For the simulation study, the prior on the Dirichlet mixture distributions is speci-
fied in a similar way as in Sabourin and Naveau (2014). The number k of mixture
components has truncated geometric distribution, [k] ∝

(
1− 1

λ

)k−1 1
λ1[1,kmax](k)

with upper bound kmax = 10 and mean parameter λ = 4. Also, for the sake of
simplicity, all the marginal parameters are assumed to be a priori independent,10

with normal distributions (after log-transformation of the scales). The shape pa-
rameter has standard normal distribution and the logarithms of the scales have
mean and standard deviation both equal to 5.

As for the augmentation Poisson process data, the multiplicative constant τ
involved in the Poisson intensity is set to 50. It appeared that smaller values of τ15

(close to 1) considerably affected the mixing properties of the chains.
Convergence of the dependence parameters ψ(ι) can be monitored using func-

tionals based on integration of the simulated densities against Dirichlet test func-
tions (see Sabourin and Naveau, 2014, for details). To detect possible mixing
defects, six chains of 106 iterations each are run in parallel. Standard convergence20

diagnostic tests are implemented in R (Heidelberger and Welch, 1983; Gelman and
Rubin, 1992), respectively testing for non-stationarity and poor mixing. For ex-
ample, the stationarity test detects three non-stationary chains out of six for the
simulated data set exemplified in Section 5.2. The mixing properties of the three
retained ones, as measured by a variance ratio inter/intra chains, are satisfactory25

enough: all the potential scale reduction factors (Gelman and Rubin, 1992) are
below 1.1. The same is true of the marginal parameter component of the chains,
(χ(ι))ι.

References

Beirlant, J., Goegebeur, Y., Segers, J., and Teugels, J. (2004). Statistics of ex-30

tremes: Theory and applications. John Wiley & Sons: New York.
Boldi, M.-O. and Davison, A. C. (2007). A mixture model for multivariate ex-
tremes. Journal of the Royal Statistical Society: Series B (Statistical Methodol-
ogy), 69(2):217–229.

Coles, S. (2001). An introduction to statistical modeling of extreme values. Springer35

Verlag.
Coles, S. and Tawn, J. (1991). Modeling extreme multivariate events. JR Statist.
Soc. B, 53:377–392.



Davison, A. and Smith, R. (1990). Models for exceedances over high thresholds.
Journal of the Royal Statistical Society. Series B (Methodological), pages 393–
442.

Einmahl, J., de Haan, L., and Piterbarg, V. (2001). Nonparametric estimation of
the spectral measure of an extreme value distribution. The Annals of Statistics,5

29(5):1401–1423.
Einmahl, J. and Segers, J. (2009). Maximum empirical likelihood estimation of
the spectral measure of an extreme-value distribution. The Annals of Statistics,
37(5B):2953–2989.

Fougères, A.-L., Nolan, J. P., and Rootzén, H. (2009). Models for dependent10

extremes using stable mixtures. Scandinavian Journal of Statistics, 36(1):42–59.
Gelman, A. and Rubin, D. (1992). Inference from iterative simulation using mul-
tiple sequences. Statistical science, pages 457–472.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction,
and estimation. Journal of the American Statistical Association, 102(477):359–15

378.
Gómez, G., Calle, M. L., and Oller, R. (2004). Frequentist and bayesian approaches
for interval-censored data. Statistical Papers, 45(2):139–173.

Guillotte, S., Perron, F., and Segers, J. (2011). Non-parametric bayesian infer-
ence on bivariate extremes. Journal of the Royal Statistical Society: Series B20

(Statistical Methodology).
Gumbel, E. (1960). Distributions des valeurs extrêmes en plusieurs dimensions.
Publ. Inst. Statist. Univ. Paris, 9:171–173.

Heidelberger, P. and Welch, P. (1983). Simulation run length control in the pres-
ence of an initial transient. Operations Research, pages 1109–1144.25

Hosking, J. R. M. and Wallis, J. R. (2005). Regional frequency analysis: an ap-
proach based on L-moments. Cambridge University Press.

Huser, R., Davison, A. C., and Genton, M. G. (2014). A comparative study of
likelihood estimators for multivariate extremes. arXiv preprint arXiv:1411.3448.

Laud, P. W. and Ibrahim, J. G. (1995). Predictive model selection. Journal of the30

Royal Statistical Society. Series B (Methodological), pages 247–262.
Ledford, A. and Tawn, J. (1996). Statistics for near independence in multivariate
extreme values. Biometrika, 83(1):169–187.

Neppel, L., Renard, B., Lang, M., Ayral, P., Coeur, D., Gaume, E., Jacob, N.,
Payrastre, O., Pobanz, K., and Vinet, F. (2010). Flood frequency analysis35

using historical data: accounting for random and systematic errors. Hydrological
Sciences Journal–Journal des Sciences Hydrologiques, 55(2):192–208.

Pickands, J. I. (1975). Statistical inference using extreme order statistics. the
Annals of Statistics, pages 119–131.

Resnick, S. (1987). Extreme values, regular variation, and point processes, volume40

4 of Applied Probability. A Series of the Applied Probability Trust. Springer-
Verlag, New York.

Resnick, S. (2007). Heavy-Tail Phenomena: Probabilistic and Statistical Modeling.
Springer Series in Operations Research and Financial Engineering.

Sabourin, A. and Naveau, P. (2014). Bayesian dirichlet mixture model for multi-45

variate extremes: A re-parametrization. Computational Statistics & Data Anal-
ysis, 71(0):542 – 567.



Sabourin, A. and Renard, B. (2014). Combining regional estimation and historical
floods: a multivariate semi-parametric peaks-over-threshold model with censored
data.

Schnedler, W. (2005). Likelihood estimation for censored random vectors. Econo-
metric Reviews, 24(2):195–217.5

Smith, R. (1994). Multivariate threshold methods. Extreme Value Theory and
Applications, 1:225–248.

Smith, R., Tawn, J., and Coles, S. (1997). Markov chain models for threshold
exceedances. Biometrika, 84(2):249–268.

Stephenson, A. (2003). Simulating multivariate extreme value distributions of10

logistic type. Extremes, 6(1):49–59.
Stephenson, A. (2009). High-dimensional parametric modelling of multivariate
extreme events. Australian & New Zealand Journal of Statistics, 51(1):77–88.

Tanner, M. and Wong, W. (1987). The calculation of posterior distribu-
tions by data augmentation. Journal of the American Statistical Association,15

82(398):528–540.
Thibaud, E. and Opitz, T. (2013). Efficient inference and simulation for elliptical
pareto processes. arXiv preprint arXiv:1401.0168.

Tierney, L. (1994). Markov chains for exploring posterior distributions. the Annals
of Statistics, pages 1701–1728.20

Van Dyk, D. and Meng, X. (2001). The art of data augmentation. Journal of
Computational and Graphical Statistics, 10(1):1–50.

E-mail address: anne.sabourin@telecom-paristech.fr


