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COVERING TECHNIQUES IN AUSLANDER-REITEN THEORY

CLAUDIA CHAIO, PATRICK LE MEUR, AND SONIA TREPODE

Abstract. Given a finite dimensional algebra over a perfect field the text in-
troduces covering functors over the mesh category of any modulated Auslander-
Reiten component of the algebra. This is applied to study the composition of
irreducible morphisms between indecomposable modules in relation with the
powers of the radical of the module category.

Introduction

Let A be a finite-dimensional algebra over a field k. The representation theory
of A deals with the category modA of finitely generated (right) A-modules. In
particular it aims at describing the indecomposable modules up to isomorphism and
the morphisms between them. In this purpose the Auslander-Reiten theory gives
useful tools such as irreducible morphisms and almost split sequences. These two
particular concepts have been applied to study singularities of algebraic varieties
and Cohen-Macaulay modules over commutative rings.

Let indA be the full subcategory of modA containing one representative of each
isomorphism class of indecomposable A-modules. Given X,Y ∈ indA, a morphism
f : X → Y is called irreducible if it lies in rad\rad2. Here rad denotes the radical of
the module category, that is, the ideal in modA generated by the non-isomorphisms
between indecomposable modules. The powers radℓ of the radical are recursively
defined by radℓ+1 = radℓ · rad = rad · radℓ. The Auslander-Reiten theory encodes
part of the information of modA in the Auslander-Reiten quiver Γ(modA). This
concentrates much of the combinatorial information on the irreducible morphisms
and almost split sequences. However it does not give a complete information on the
composition of two (or more) irreducible morphisms. For example the composition
of n irreducible morphisms obviously lies in radn but it may lie in radn+1. It is
proved in [IT84b, Thm. 13.3] that if these irreducible morphisms form a sectional
path then their composition lies in radn\radn+1. This result was made more precise
for finite-dimensional algebras over algebraically closed fields in a study [CLMT11]
of the degrees of irreducible morphisms (in the sense of [Liu92]) and their rela-
tionship to the representation type of the algebra. The results in [CLMT11] are
based on well-behaved functors introduced first in [Rie80, BG82] for (self-injective)
algebras of finite representation type. This text presents general constructions of
well-behaved functors with application to composition of irreducible morphisms.
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Let Γ be a connected component of the Auslander-Reiten quiver of A (or, an
Auslander-Reiten component, for short). Let ind Γ be the full subcategory of indA
with set of objects the modules X ∈ indA lying in Γ. Beyond the combinato-
rial structure on Γ, the mesh-category k(Γ) is a first approximation of ind Γ tak-
ing into account the composition of irreducible morphisms. Actually Igusa and
Todorov have shown that Γ comes equipped with a k-modulation ([IT84a]) which
includes the division algebra κX = EndA(X)/rad(X,X) and the κX−κY -bimodule

irr(X,Y ) = rad(X,Y )/rad2(X,Y ) for every X,Y ∈ Γ. The category k(Γ) may be
defined by generators and relations (see Section 1 for details). Its objects are the
modules X ∈ Γ, the generators are the classes of morphisms u ∈ κX (as mor-
phisms in k(Γ)(X,X)) and u ∈ irr(X,Y ) (as morphisms in k(Γ)(X,Y )), for every
X,Y ∈ Γ, and the ideal of relations is the mesh ideal.

When k is a perfect field this text introduces a covering functor of ind Γ in order
to get information about the composition of irreducible morphisms in Γ.

The Auslander-Reiten component is called standard if there exists an isomor-
phism of categories k(Γ) ≃ ind Γ. Not all Auslander-Reiten components are stan-
dard and in many cases there even exist no functor k(Γ) → ind Γ. For instance if Γ
has oriented cycles then such a functor is likely not to exist. This may be bypassed

replacing the mesh category k(Γ) by that of a suitable translation quiver Γ̃ with ak-modulation such that there exists a covering π : Γ̃ → Γ. It appears that the com-

position of irreducible morphisms in ind Γ may be studied using k(Γ̃) provided that

there exists a so-called well-behaved functor k(Γ̃) → ind Γ. Let (κx,M(x, y))x,y
be the k-modulation of Γ̃. By definition κx = κπx and M(x, y) = irr(πx, πy) for

every x, y ∈ Γ̃. Then a functor F : k(Γ̃) → ind Γ is well-behaved if it induces
isomorphisms κx ≃ κπx and M(x, y) ≃ irr(πx, πy), for every x, y ∈ Γ. The con-
struction of F relies on three fundamental facts. Firstly, if one tries to construct
such an F then it is quite natural to proceed by induction. The translation quiver

Γ̃ is called with length if any two paths in Γ having the same source and the same
target have the same length. As mentionned above an inductive construction is

likely not to work if Γ̃ has oriented cycles and actually simple examples show that

this construction fails if Γ̃ is not with length. Note that Γ̃ is with length when

Γ̃ is the universal cover of [BG82]. Secondly, if x ∈ Γ̃ then the ring homomor-

phism κx →֒ k(Γ̃)(x, x) F
−→ EndA(πx) is a section of the quotient homomorphism

EndA(X) ։ κx. In view of the Wedderburn-Malcev theorem this section is most
likely to exist in the framework of algebras over perfect fields. Finally, given an

irreducible morphism f : X → Y with X,Y ∈ Γ then there exist x, y ∈ Γ̃ and

u ∈ k(Γ̃)(x, y) such that f − Fu ∈ rad2. In view of studying the composition of
irreducible morphisms in ind Γ one may wish to have an equality f = Fu. This

would permit to lift the study into k(Γ̃) where the composition of morphisms is
better understood because of the mesh ideal. Keeping in mind these comments the
main result of this text is the following.

Theorem A. Let A be a finite-dimensional algebra over a perfect field k. Let Γ

be an Auslander-Reiten component of A. Let π : Γ̃ → Γ be a covering of translation

quivers where Γ̃ is with length. There exists a well-behaved functor F : k(Γ̃) → ind Γ.
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The study of the composition of irreducible mophisms in ind Γ using such a
covering functor F is made possible by the following lifting (or, covering) property
of F which is the second main result of the text. No assumption is made on length.

Theorem B. Let A be a finite-dimensional algebra over a perfect field k. Let Γ be

an Auslander-Reiten component of A. Let π : Γ̃ → Γ be a covering of translation

quivers. Let F : k(Γ̃) → ind Γ be a well-behaved functor, x, y ∈ Γ̃ and let n > 0.

(a) The two following maps induced by F are bijective
⊕

Fz=Fy

R
nk(Γ̃)(x, z)/Rn+1k(Γ̃)(x, z) → radn(Fx, Fy)/radn+1(Fx, Fy)

⊕
Fz=Fy

R
nk(Γ̃)(z, x)/Rn+1k(Γ̃)(z, x) → radn(Fy, Fx)/radn+1(Fy, Fx) .

(b) The two following maps induced by F are injective
⊕

Fz=Fy

k(Γ̃)(x, z) → HomA(Fx, Fy) and
⊕

Fz=Fy

k(Γ̃)(z, x) → HomA(Fy, Fx).

(c) Γ is generalized standard if and only if F is a covering functor, that is, the two
maps of (b) are bijective (see [BG82, 3.1]).

Here Rk(Γ̃) is the ideal in k(Γ̃) generated by the morphisms in M(x, y), for

x, y ∈ Γ̃. Call it the radical of k(Γ̃) by abuse of terminology. Define its powers

R
nk(Γ̃) like for the radical of modA. Here is an interpretation of Theorem B. Bothk(Γ̃) and ind Γ are filtered by the powers of their respective radicals. The above

theorem asserts that F induces a covering functor gr k(Γ̃) → gr ind Γ (in the sense
of [BG82]) between the associated graded categories.

This text is therefore organised as follows. Section 1 is a reminder on basic results
on irreducible morphisms, modulated translation quivers and their mesh-categories,
and coverings of translation quivers. Section 2 proves the above theorems. Section 3
gives an application to the composition of irreducible morphisms.

In the sequel k denotes a perfect field. Hence the tensor product over k of two
finite-dimensional division algebras is semi-simple. Also if R is a finite-dimensionalk-algebra and J ⊆ R is a two-sided ideal such that R/J is a division k-algebra,
then the natural surjection R ։ R/J admits a section R/J →֒ R as a k-algebra.

1. Preliminaries

1.1. Notation on modules. Let A be a finite dimensional k-algebra. Given mod-
ules X,Y ∈ indA, the quotient vector space rad(X,Y )/rad2(X,Y ) is denoted by
irr(X,Y ) and called the space of irreducible morphisms from X to Y . It is nat-
urally an EndA(X)/rad(X,X) − EndA(Y )/rad(Y, Y )-bimodule. The division k-
algebra EndA(X)/rad(X,X) is denoted by κX . Let X,Y ∈ indA be distinct. If
u ∈ EndA(X) (or v ∈ rad(X,Y )) then u ∈ κX (or v ∈ irr(X,Y )) denotes the
residue class of u modulo rad (or of v modulo rad2, respectively). Recall that the
Auslander-Reiten quiver of A is the quiver Γ(modA) with vertices the modules
in indA, such that there is an arrow (and exactly one) X → Y if and only if
irr(X,Y ) 6= 0 for every pair of vertices X,Y ∈ Γ. Let f : X → ⊕ri=1X

ni

i be an ir-
reducible morphism where X,X1, . . . , Xr ∈ indA are pairwise non isomorphic and
n1, . . . , nr > 1. Then f is called strongly irreducible if, for every i ∈ {1, . . . , r}, the
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ni-tuple (fi,1, . . . , fi,ni
) of irr(X,Xi) is free over κX⊗k κopXi

. This tuple is always free

over κopXi
. Also, f is strongly irreducible under any of the following conditions: if

n1 = · · · = nr = 1 (then fi,1 ∈ irr(X,Xi) is non zero, and hence free over κX⊗k κXi
);

if κX ≃ k; or if k is algebraically closed (then κX ≃ k). Finally, if f has finite left
degree (in the sense of [Liu92]) then dl(X → Xi) < ∞ and the arrow X → Xi in
Γ has valuation (1, α′) or (α, 1) ([Liu92, 1.7]). In this case irr(X,Xi) has rank 1
as a κX − κXi

-bimodule. Thus, in such a case, being strongly irreducible for f is
equivalent to satisfying n1 = · · · = nr = 1.

1.2. Factorisation through minimal almost split morphisms. The reader
is refereed to [ARO97] for basics on Auslander-Reiten theory. In the sequel the
factorisation property of minimal almost split morphisms is used as follows.

Lemma. Let u : X → Y be a left minimal almost split morphism. Let Z ∈ modA.
Let v ∈ radn+1(X,Z) for some n > 0. There exists w ∈ radn(Y, Z) such that
v = uw.

Proof. By definition there is a decomposition v =
∑

i v
′
iv

′′
i where the v′i lie in rad,

the v′′i lie in radn and i runs through some index set. Then the conclusion follows
from the fact that each v′i factors through u. �

1.3. Modulated translation quivers and their mesh-categories. Let Γ be
a translation quiver, that is, Γ is a quiver with no loops and no multiple arrows
endowed with two distinguished set of vertices the elements of which are called pro-
jectives and injectives, respectively, and endowed with a bijection x 7→ τ x (called
the translation) from the set of non-projective vertices to the set of non-injective
vertices, such that for every vectices x, y with x non-projective, there is an ar-
row y → x if and only if there is an arrow τx → y. All translation quivers are
assumed to be locally finite: Every vertex is connected to at most finitely many
arrows. Auslander-Reiten quivers and Auslander-Reiten components are transla-
tion quivers (with translation equal to the Auslander-Reiten translation). Given
a non-projective vertex x, the subquiver of Γ formed by the arrows starting in τx
and the arrows arriving in x is called the mesh starting in τx.

A (k)-modulation on Γ is the following data

(i) a division k-algebra κx for every vertex x ∈ Γ,
(ii) a non-zero κx − κy bimodule M(x, y) for every arrow x→ y in Γ,

(iii) a k-algebra isomorphism τ∗ : κx
∼
−→ κτx for every vertex x ∈ Γ,

(iv) a non-degenerate κy − κy-linear map σ∗ : M(y, x) ⊗
κx

M(τx, y) → κy (the left

κx-module structure on M(τx, y) is defined using its structure of left κτx-
module and τ∗ : κx → κτx).

With such a structure, Γ is called a modulated translation quiver. If A is a finite-
dimensional algebra over a field k then the Auslander-Reiten quiver Γ(modA) has
a k-modulation as follows ([IT84a, 2.4, 2.5]). For every non-projective X ∈ indA
fix an almost split sequence 0 → τAX → E → X → 0 in modA. Then

• κX = EndA(X)/rad(X,X) for every X ∈ indA,
• M(X,Y ) = irr(X,Y ) for every arrow X → Y in Γ(modA),
• for every X ∈ indA and every morphism u : X → X defining the residue

class u ∈ κX , let τ∗u : τAX → τAX be the residue class v where v : τAX →
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τAX is a morphism fitting into a commutative diagram

0 // τAX //

v
��

E //

��

X //

u
��

0

0 // τAX // E // X // 0 ,

• let X,Y ∈ indA with X non-projective and assume that there is an arrow
Y → X in Γ(modA). Let u ∈ M(τAX,Y ) and v ∈ M(Y,X) be residue
classes of morphisms u : τAX → Y and v : Y → X , respectively. Then
define σ∗(v ⊗ u) as the composition v′u′ where u′, v′ are morphisms fitting
into a commutative diagram

Y
v′

{{ww
ww
ww
w

v
��

0 // τAX

u
��

// E //

u′

yytt
tt
tt
tt

X // 0

Y .

This construction does not depend on the initial choice of the almost split sequences
up to an isomorphism of modulated translation quivers ([IT84a, 2.5]). In the sequel
Γ(modA) is considered as a modulated translation quiver as above.

If Γ is a modulated translation quiver, its mesh-category k(Γ) is defined as follows
([IT84a, 1.7]). Let S be the semi-simple category whose object set is the set of
vertices in Γ and such that S(x, y) = κx if x = y and S(x, y) = 0 otherwise. The
collection {M(x, y)}x → y in Γ naturally defines an S − S-bimodule denoted by M .
The path-category is the tensor category TS(M) also denoted by kΓ. The mesh-ideal
is the ideal in kΓ generated by a collection of morphisms γx : τx → x indexed by
the non-projective vertices x ∈ Γ. Given a non-projective vertex x ∈ Γ, a morphism
γx : τx → x in kΓ is defined as follows. For every arrow y → x ending in x, fix a basis
(u1, . . . , ud) of the κy-vector space M(y, x). Let (u∗1, . . . , u

∗
d) be the associated dual

basis of the κy-vector space M(τx, y) under the pairing σ∗ (that is, σ∗(ui⊗u∗j) is 1
if i = j and 0 otherwise). Then γx =

∑
y → x in Γ

∑
i

u∗i ui ∈ kΓ(τx, x). This morphism

does not depend on the choice of the basis (u1, . . . , ud). The mesh-category is then
defined as the quotient category of kΓ by the mesh-ideal.

Let Γ be a component of Γ(modA) endowed with a modulation as above. As
proved in [IT84a, Sect. 2], the mesh-category k(Γ) does not depend on the choice
of the almost split sequences used to define the modulation up to an isomorphism ofk-linear categories. The following lemma explains how to recover the mesh-relations
γX and the pairing σ∗ starting from a different choice of almost split sequences.

Lemma. In the previous setting, let X ∈ Γ be non-projective and let

0 → τAX
α
−→

r⊕

i=1

Xni

i

β
−→ X → 0

be the almost split sequence ending in X that is used in the definition of the modu-
lation on Γ, where X1, . . . , Xr ∈ Γ are pairwise distinct. Let

0 → τAX
f=

[

fi,j ;
16i6r
16j6ni

]t

−−−−−−−−−−−−−→
⊕

i

Xni

i

g=
[

gi,j ;
16i6r
16j6ni

]

−−−−−−−−−−−−→ X → 0



6 C. CHAIO, P. LE MEUR, AND S. TREPODE

be another almost split sequence where the fi,j : τAX → Xi and the gi,j : Xi → X
are the components of f and g, respectively. Then there is a commutative diagram

0 // τAX
α

//

u
��

⊕
iX

ni

i

β
//

v
��

X // 0

0 // τAX
f

//
⊕

iX
ni

i

g
// X // 0

where u, v are isomorphisms. With this data:

(a) (gi,1, . . . , gi,ni
) is a basis of the left κXi

-module irr(Xi, X) and the correspond-
ing dual basis of the right κXi

-module irr(τAX,Xi) under the pairing σ∗ is
(ufi,1, . . . , ufi,ni

), for every i ∈ {1, . . . , r},

(b) γX =
∑
i,j

ufi,j ⊗ gi,j.

Proof. (b) follows directly from (a) and from the definition of γX . It therefore
suffices to prove (a). The existence of f and g are direct consequences of the basic
properties of almost split sequences. Also, for every i, the given ni-tuples are indeed
bases because they arise from a left (or right) minimal almost split morphism. Let
w : ⊕i X

ni

i → ⊕iX
ni

i be v−1. For every i, i′ ∈ {1, . . . , r}, and every 1 6 j 6 ni,
and every 1 6 j′ 6 ni′ , let v(i,j),(i′,j′) : Xi → Xi′ and w(i,j),(i′,j′) : Xi → Xi′ be the
respective components of v and w, from the j-th component Xi of Xni

i to the j′-th
component Xi′ of X

ni′

i′ . Then, the equality wv = Id reads

(1) ∀(i, j), (i′′, j′′)
∑

(i′,j′)

w(i,j),(i′,j′)v(i′,j′),(i′′,j′′) =

{
IdXi

if (i, j) = (i′′, j′′)
0 otherwise.

The morphisms u, v, w therefore yield commutative diagrams for every i ∈ {1, . . . , r}
and j ∈ {1, . . . , ni}:

τAX
α

//

ufi,j
��

⊕
i′
X
ni′

i′

[v(i′ ,j′),(i,j) ; (i′,j′)]
t

uulll
ll
ll
ll
ll
ll

Xi

and Xi

[w(i,j),(i′ ,j′) ; (i
′,j′)]

wwpp
pp
pp
pp
pp
pp
p

gi,j

��⊕
i′
X
ni′

i′ β
// X .

Thus σ∗
(
gi,j ⊗ ufi′′,j′′

)
=

∑
i′,j′

w(i,j),(i′,j′)v(i′,j′),(i′′,j′′) for every (i, j) and (i′′, j′′).

This and (1) show (a). �

1.4. Radical in mesh-categories. Let Γ̃ be a modulated translation quiver. Re-

call that the radical Rk(Γ̃) of k(Γ̃) was defined in the introduction. For every arrow

x→ y in Γ̃ the natural map M(x, y) → k(Γ̃)(x, y) is one-to-one. And the κx − κy-

bimodule Rk(Γ̃)(x, y) decomposes as M(x, y) ⊕ R
2k(Γ̃)(x, y). The description of

the ideal Rℓk(Γ̃) is easier when Γ̃ is with length as shows the following proposition.
It is central in this text and used without further reference. The proof is a small
variation of [Cha10, 2.1] where the description was first proved in the case κx = k
for every vertex x ∈ Γ̃.

Proposition. Let Γ̃ be a translation quiver with length and x, y ∈ Γ̃. If there is a

path of length ℓ from x to y in Γ̃, then:

(a) k(Γ̃)(x, y) = Rk(Γ̃)(x, y) = R
2k(Γ̃)(x, y) = · · · = R

ℓk(Γ̃)(x, y).
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(b) R
ik(Γ̃)(x, y) = 0 if i > ℓ.

1.5. Coverings of translation quivers ([BG82, 1.3]). A covering of translation

quivers is a quiver morphism p : Γ̃ → Γ such that

(a) Γ, Γ̃ are translation quivers, Γ is connected,

(b) a vertex x ∈ Γ̃ is projective (or injective, respectively) if and only if so is px,

(c) p commutes with the translations in Γ and Γ̃ (where these are defined),

(d) for every vertex x ∈ Γ̃ the map α 7→ p(α) induces a bijection from the set of

arrows in Γ̃ starting in x (or ending in x) to the set of arrows in Γ starting in
px (or ending in px, respectively).

Let π : Γ̃ → Γ be a covering of translation quivers. If Γ is modulated by divisionk-algebras κx and bimodules M(x, y) for every vertex x and every arrow x → y,

then Γ̃ is modulated by the division k-algebra κx := κπx at the vertex x ∈ Γ̃ and by

the bimodule M(πx, πy) for every arrow x→ y in Γ̃. When Γ̃ is with length, it has
length function, that is, a map x 7→ ℓ(x) defined on vertices such that ℓ(y) = ℓ(x)+1
for every arrow x → y. See [BG82, 1.6] for the construction of such a function in

the particular case where Γ̃ is the universal cover of Γ ([BG82, 1.2,1.3]). Note that
quivers have no parallel arrows here hence the notion of universal cover coincides
with that of generic cover used in [CLMT11]).

From now on, A is a finite-dimensional k-algebra. Its Auslander-Reiten compo-
nents and their coverings are modulated as in 1.3 and above, respectively. To avoid
possible confusions, upper-case letters (X,Y, . . .) stand for vertices in Auslander-
Reiten components and lower-case letters (x, y, . . .) stand for vertices in other trans-
lation quivers. But the same notation (κ,M) is used for all k-modulations.

2. Well-behaved functors

Let Γ be an Auslander-Reiten component of A and π : Γ̃ → Γ be a covering of
translation quivers. This section introduces the notion of well-behaved functors

F : k(Γ̃) → ind Γ and proves their existence when Γ̃ is with length. Such objects
were first introduced over algebraically closed fields for Auslander-Reiten quivers of
algebras of finite representation type ([Rie80, Sect. 1] and [BG82, Sect. 2]) . The
section also proves the lifting properties of well-behaved functors (see [CLMT11,
Sect. 2] when k is algebraically closed).

Until the end of 2.5 the following convention is implicitely used. If f : X →
⊕ri=1X

ni

i is an irreducible morphism it is assumed that X ∈ Γ, that X1, . . . , Xr ∈ Γ
are pairwise distinct, and n1, . . . , nr > 1. Then f is written f = [fi,j ; i, j].

2.1. Sections of residue fields and of spaces of irreducible morphisms. Let
X ∈ Γ be a vertex. For a given section κX = EndA(X)/rad(X,X) → EndA(X) of
the k-algebra surjection EndA(X) → EndA(X)/rad(X,X), the image is denoted bykX . Then kX ⊆ EndA(X) is a subalgebra such that EndA(X) = kX ⊕ rad(X,X)
as a k-vector space and the surjection EndA(X) ։ κX restricts to a k-algebra

isomorphism kX ∼
−→ κX . For short, kX is called a section of κX . There always

exists such a (non unique) kX by the Wedderburn-Malcev Theorem.
Let X → Y be an arrow in Γ. Then X 6≃ Y and HomA(X,Y ) = rad(X,Y ).

Suppose given sections kX ⊆ EndA(X) and kY ⊆ EndA(Y ) of κX and κY , respec-

tively. Then irr(X,Y ) is a kX − kY -bimodule using the isomorphisms kX ∼
−→ κX
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and kY ∼
−→ κY . By a kX − kY -linear section (of irr(X,Y )) is meant a section

irr(X,Y ) → rad(X,Y ) of the canonical surjection rad(X,Y ) ։ irr(X,Y ) in the
category of kX−kY -bimodules. Such a section always exists because the k-algebrakX ⊗k kopY is semisimple. Note that the datum of a linear section depends on the

choice of the algebra sections kX and kY .

2.2. Well-behaved functors. The following definition extends to the case of per-
fect fields the already known definition of well-behaved functors when the base
field is algebraically closed ([BG82, 3.1] and [Rie80, 2.2]). A k-linear functor

F : k(Γ̃) → ind Γ is called well-behaved if

(a) Fx = πx for every vertex x ∈ Γ̃,

(b) for every vertex x ∈ Γ̃, the k-algebra map from κπx = κx to EndA(πx) defined
by u 7→ F (u) is a section of the natural surjection EndA(πx) ։ κπx. Its image
is denoted by kx,

(c) for every arrow x→ y in Γ̃, the following k-linear composite map is a kx− ky-
linear section in the obvious way

irr(πx, πy) =M(x, y) →֒ k(Γ̃)(x, y) F
−→ HomA(πx, πy) .

Note that if F is as in the definition then distinct vertices x, x′ ∈ Γ̃ such that
πx = πx′ may give rise to different sections kx and kx′ in EndA(πx). The data of a

section kx ⊆ EndA(πx) of κπx, for every vertex x ∈ Γ̃, and that of a kx− ky-linear

section M(x, y) → HomA(πx, πy), for every arrow x → y in Γ̃ determine a uniquek-linear functor kΓ̃ → ind Γ. It induces a k-linear functor F : k(Γ̃) → ind Γ if and

only if it vanishes on γx = γπx for every non-projective vertex x ∈ Γ̃. In such a
case, F is well-behaved. Moreover, any well-behaved functor arises in this way.

2.3. Local sections on almost split sequences. The existence of well-behaved
functors is based on the following technical lemma. It aims at constructing sections
that are compatible with the modulation on Γ, in some sense.

Lemma. Let X ∈ Γ be a non-injective vertex and let

0 → X
f
−→

r⊕

i=1

Xni

i

g
−→ τ−1

A X → 0

be an almost split sequence. Let kX ⊆ EndA(X) and kXi
⊆ EndA(Xi) (for every i ∈

{1, . . . , r}) be sections of κX and κXi
respectively, and let irr(X,Xi) →֒ rad(X,Xi)

be a kX − kXi
-linear section which maps fi,1, . . . , fi,ni

to fi,1, . . . , fi,ni
respectively,

for every i ∈ {1, . . . , r}. There exists a section kτ−1
A
X →֒ EndA(τ

−1
A X) of κτ−1

A
X

and a kXi
− kτ−1

A X-linear section irr(Xi, τ
−1
A X) → rad(Xi, τ

−1
A X) (for every i ∈

{1, . . . , r}) such that

(a) it maps gi,1, . . . , gi,ni
to gi,1, . . . , gi,ni

respectively, for every i ∈ {1, . . . , r},

(b) the induced map ⊕ri=1irr(X,Xi) ⊗
κXi

irr(Xi, τ
−1
A X) → HomA(X, τ

−1
A X) vanishes

on γτ−1
A
X .

Proof. Note that if such sections do exist then (gi,1, . . . , gi,ni
) must be a basis overkXi

of the image of irr(Xi, τ
−1
A X) → rad(Xi, τ

−1
A X) because g is a right minimal

almost split morphism. In particular, the section kτ−1
A
X ⊆ EndA(τ

−1
A X) must be
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such that the left kXi
-submodule of rad(Xi, τ

−1
A X) generated by gi,1, . . . , gi,ni

is

a kXi
− kτ−1

A X -submodule of rad(Xi, τ
−1
A X), for every i ∈ {1, . . . , r}. The proof

therefore proceeds as follows: 1) define a section kτ−1
A X ⊆ EndA(τ

−1
A X) satisfying

this last condition, 2) define sections irr(Xi, τ
−1
A X) → rad(Xi, τ

−1
A X) so that (a) is

satisfied, and 3) prove (b).
1) Let ϕ ∈ EndA(τ

−1
A X) and define a new representative ϕ1 ∈ EndA(τ

−1
A X)

of ϕ ∈ κτ−1
A X as follows. Let 0 → X

α
−→ ⊕iX

ni

i

β
−→ τ−1

A X → 0 be the almost

split sequence used in the definition of the modulation on Γ. So there exists an
isomorphism of exact sequences

(2) 0 // X
α
//

u
��

⊕
iX

ni

i

β
//

v
��

τ−1
A X // 0

0 // X
f
//
⊕

iX
ni

i g
// τ−1
A X // 0 .

There also exists a commutative diagram

(3) 0 // X
f
//

ψ
��

⊕
iX

ni

i

g
//

θ
��

τ−1
A X //

ϕ
��

0

0 // X
f
//
⊕

iX
ni

i g
// τ−1
A X // 0

for some morphisms θ and ψ. This yields the following commutative diagram

0 // X
α
//

uψu−1

��

⊕
iX

ni

i

β
//

vθv−1

��

τ−1
A X //

ϕ
��

0

0 // X
α
//
⊕

iX
ni

i β
// τ−1
A X // 0 .

Therefore, τ∗(ϕ) = uψu−1 ∈ κX . Now let ψ1 ∈ kX be the representative of ψ, that
is, ψ1 = ψ. Since the section irr(X,Xi) → rad(X,Xi) is kX − kXi

-linear and maps
fi,1, . . . , fi,ni

to fi,1, . . . , fi,ni
, respectively, and since (fi,1, . . . , fi,ni

) is a basis of the
right kXi

-module irr(X,Xi), there is a unique matrix ηi ∈Mni
(kXi

), considered as
an endomorphism of Xni

i , making the following square commute for i ∈ {1, . . . , r}

X
[fi,1,...,fi,ni

]
//

ψ1
��

Xni

i

ηi
��

X
[fi,1,...,fi,ni

]
// Xni

i .

Therefore there exists a unique ϕ1 ∈ EndA(τ
−1
A X) making the following diagram

commute where η : ⊕iX
ni

i → ⊕iX
ni

i is the morphism defined by {ηi : X
ni

i → Xni

i }i.

(4) 0 // X
f
//

ψ1

��

⊕
iX

ni

i

g
//

η
��

τ−1
A X //

ϕ1
��

0

0 // X
f
//
⊕

iX
ni

i g
// τ−1
A X // 0 .
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Hence the following diagram commutes

0 // X
α
//

uψ1u
−1

��

⊕
iX

ni

i

β
//

vηv−1

��

τ−1
A X //

ϕ1
��

0

0 // X
α
//
⊕

iX
ni

i β
// τ−1
A X // 0 .

This entails ϕ1 = τ−1
∗ (uψ1u−1). But ψ1 = ψ so that uψ1u−1 = uψu−1. Thus

ϕ1 = τ−1
∗ (uψu−1) = ϕ. This construction therefore yields a well-defined map

s : EndA(τ
−1
A X) → EndA(τ

−1
A X)

ϕ 7→ ϕ1 (such that ϕ1 = ϕ).

Since τ∗ : κτ−1
A X → κX is a k-algebra isomorphism and η1, . . . , ηr are determined

by ψ1 (and the fixed k-algebra sections), the map s is a k-algebra homomorphism.
Moreover if ϕ ∈ rad(τ−1

A X, τ−1
A X) then ϕ = 0 and the representative ψ1 in kX of

τ∗(ϕ) = 0 is 0; therefore, η1, . . . , ηr = 0 and ϕ1 = 0; in other words s vanishes
on rad(τ−1

A X, τ−1
A X). Finally if ϕ′ ∈ EndA(τ

−1
A X) lies in the image of s then

ϕ′ = s(ϕ) = ϕ1 for some ϕ ∈ EndA(τ
−1
A X); then, keeping the same notation for the

morphisms (θ, ψ, η1, . . . , ηr, η) used to define s(ϕ) and using dashed notation for
the corresponding morphisms used to define s(ϕ′), it follows that θ′ = η and ψ′ =
ψ1 ∈ kX ; hence the representative ψ′

1 ∈ kX of ψ′ is ψ1 itself so that (η′1, . . . , η
′
r) =

(η1, . . . , ηr); and thus ϕ′
1 = ϕ1 = ϕ′, that is s(ϕ′) = ϕ. Therefore, kτ−1

A X ⊆

EndA(τ
−1
A X) is a k-algebra section of κτ−1

A
X where kτ−1

A
X denotes the image of s.

In view of proving (a), it is useful to check that, for every i ∈ {1, . . . , r}, the
left kXi

-submodule of rad(Xi, τ
−1
A X) generated by gi,1, . . . , gi,ni

is a kXi
− kτ−1

A X -

submodule of rad(Xi, τ
−1
A X). Let ϕ ∈ kτ−1

A X . The matter is therefore to prove that

gi,1ϕ, . . . , gi,ni
ϕ ∈ ⊕ni

j=1kXi
· gi,j . Using the above notations in the construction ofkτ−1

A
X , one has ϕ = ϕ1. It follows from (4) that

(∀i ∈ {1, . . . , r}) [gi,1, . . . , gi,ni
]t · ϕ = ηi · [gi,1, . . . , gi,ni1]

t .

Since ηi ∈Mni
(kXi

), this proves the claim. The above construction therefore yields
a section kτ−1

A
X ⊆ EndA(τ

−1
A X) of κτ−1

A
X such that ⊕ni

j=1kXi
·gi,j is a kXi

−kτ−1
A
X -

submodule of rad(Xi, τ
−1
A X), for every i ∈ {1, . . . , r}.

2) In order to prove (a) there only remains to define a kXi
−kτ−1

A X -linear section

irr(Xi, τ
−1
A X) → rad(Xi, τ

−1
A X) which maps gi,1, . . . , gi,ni

to gi,1, . . . , gi,ni
, respec-

tively, for every i ∈ {1, . . . , r}. Let i ∈ {1, . . . , r}. First, (gi,1, . . . , gi,ni
) is a basis

of the left kXi
-module irr(Xi, τ

−1
A X). Next, ⊕ni

j=1kXi
· gi,j is a kXi

− kτ−1
A
X -

submodule of rad(Xi, τ
−1
A X). Finally, rad2(Xi, τ

−1
A X) is also a kXi

− kτ−1
A X -

submodule of rad(Xi, τ
−1
A X). Thus the kXi

− kτ−1
A X -bimodule rad(Xi, τ

−1
A X) is

the direct sum of
(
⊕ni

j=1kXi
· gi,j

)
and rad2(Xi, τ

−1
A X). Whence the desired section

irr(Xi, τ
−1
A X) → rad(Xi, τ

−1
A X). This proves (a).

3) There only remains to prove (b). According to the lemma in 1.3, the commu-

tative diagram (2) entails that γτ−1
A X =

r∑
i=1

ni∑
j=1

ufi,j ⊗ gi,j . Let u′ ∈ kτ−1
A X be the

representative of u ∈ κτ−1
A
X . The image of γτ−1

A
X under the map ⊕ri=1irr(X,Xi) ⊗

κXi
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irr(Xi, τ
−1
A X) → HomA(X, τ

−1
A X) induced by all the considered sections is there-

fore
∑
i,j

u′ fi,j gi,j = u′
∑
i,j

fi,j gi,j = u′fg = 0. �

2.4. Inductive construction of well-behaved functors. In view of proving

the existence of well-behaved functors k(Γ̃) → ind Γ it is necessary to consider k-
linear functors F : kχ → ind Γ where χ is a full and convex subquiver of Γ̃. Here

the notation kχ stands for the full subcategory of kΓ̃ with object set the set of
vertices in χ. Following 2.2, such a functor F : kχ → ind Γ is called well-behaved
if: (a) Fx = πx for every vertex x ∈ χ; (b) the k-algebra homomorphism κx →֒kχ(x, x) → EndA(πx) is a section of the natural surjection EndA(πx) ։ κπx = κx,
for every vertex x ∈ χ (as above, the image of the section is denoted by kx); (c) thek-linear composite map irr(πx, πy) = M(x, y) →֒ kχ(x, y) → HomA(πx, πy) is akx− ky-linear section, for every arrow x→ y in χ; and (d) it vanishes on γx = γπx
for every non-projective vertex x ∈ χ such that τx ∈ χ.

Lemma. Assume that Γ̃ is with length. Let ℓ be a length function on the vertices

in Γ̃. Let F : kχ→ ind Γ be a well-behaved functor where χ ⊆ Γ̃ is a full and convex

subquiver distinct from Γ̃ and satisfying the following two conditions

(a) either there is no arrow x→ x1 in Γ̃ such that x1 ∈ χ and x 6∈ χ, or else there

is an upper bound on the integers ℓ(x) where x runs through the vertices in Γ̃\χ

such that there exists an arrow x→ x1 in Γ̃ satisfying x1 ∈ χ,

(b) either there is no arrow x1 → x in Γ̃ such that x1 ∈ χ and x 6∈ χ, or else there

is a lower bound on the integers ℓ(x) where x runs through the vertices in Γ̃\χ

such that there exists an arrow x1 → x in Γ̃ satisfying x1 ∈ χ.

Then there exist a full and convex subquiver χ′ ⊆ Γ̃ which contains χ strictly and
satisfies (a) and (b), and a well-behaved functor F ′ : kχ′ → ind Γ which extends F .

Proof. There exists an arrow x → x1 or x1 → x in Γ̃ such that x 6∈ χ and x1 ∈ χ

because χ ( Γ̃. Assume the former (the latter is dealt with similarly) and choose x

so that ℓ(x) is maximal ((a)). Let χ′ be the full subquiver of Γ̃ with vertices x and

those of χ. Then χ′ is convex in Γ̃ because ℓ(x) is maximal. Let x→ x1, . . . , x→ xr
be the arrows in Γ̃ starting in x and ending in some vertex in χ. Note that if x is

non-injective and τ−1x ∈ χ then these are all the arrows in Γ̃ starting in x because
ℓ(x) is maximal. In order to extend F : kχ → ind Γ to a functor F ′ : kχ′ → ind Γ
distinguish two cases according to whether x is non-injective and τ−1x ∈ χ, or not.
For every i ∈ {1, . . . , r} let ki ⊆ EndA(πxi) be the section F (κxi

) of κπxi
.

Assume first that either x is injective, or else x is non-injective and τ−1x 6∈ χ.

In particular, if a non-projective vertex y ∈ Γ̃ is such that both y and τy lie in
χ′ then they both lie in χ. Fix any k-algebra section kx ⊆ EndA(πx) of κπx.
Let i ∈ {1, . . . , r}. The k-algebra isomorphisms κxi

→ ki (induced by F ) and
κx → kx allow one to consider M(x, xi) as a kx − ki-bimodule. For this structure,

the quotient map HomA(πx, πxi) = rad(πx, πxi)
pi
։ irr(πx, πxi) is kx − ki-linear.

On the other hand the k-algebra kx ⊗
k
kopi is semi-simple. Hence there exists

a kx − ki-linear section M(x, xi) = irr(πx, πxi)
si−→ HomA(πx, πxi) of pi. The

sections kx ⊆ EndA(πx) and si (i ∈ {1, . . . , r}) extend F : kχ→ ind Γ to a k-linear
functor F ′ : kχ′ → ind Γ satisfying the conditions (a), (b) and (c) in the definition
of well-behaved functors. Moreover, condition (d) is satisfied for F ′ because it is so



12 C. CHAIO, P. LE MEUR, AND S. TREPODE

for F and because, if y ∈ Γ̃ is non-projective and y, τy ∈ χ′ then y, τy ∈ χ. This
proves the lemma when either x is injective or else x is non-injective and τ−1x 6∈ χ.

Assume now that x is non-injective and τ−1x ∈ χ. The mesh in Γ̃ starting in x
has the form

x1
**UUU

UUU

x

55llllll

))RR
RR

RR τ−1x .

xr

44iiiiii

For simplicity let X = πx and Xi = πxi for every i ∈ {1, . . . , r} so that πτ−1x =
τ−1
A X . Let n1, . . . , nr > 1 be the integers such that there is an almost split sequence

0 → X → ⊕ri=1X
ni

i → τ−1
A X → 0. Since F : kχ→ ind Γ is well-behaved, it induces

a k-algebra section kx ⊆ EndA(X) of κx = κX . It also induces a kx − ki-linear
section M(x, xi) = irr(X,Xi) → rad(X,Xi), for every i ∈ {1, . . . , r}. Let i ∈
{1, . . . , r}, let {fi,j : X → Xi}16j6ni

be the image under this kX−kXi
-linear section

of a basis of the kXi
-vector space M(x, xi). Thus, the morphism X

f :=[fi,j ; i,j]
−−−−−−−−→

r⊕
i=1

Xni

i is left minimal almost split. Let g = [gi,j ; i, j]
t : ⊕ri=1 X

ni

i → τ−1
A X

be its cokernel. Then 2.3 yields a k-algebra section kτ−1x ⊆ EndA(τ
−1
A X) of

κτ−1x together with ki − kτ−1x-linear sections M(xi, τ
−1x) = irr(Xi, τ

−1
A X) →

rad(Xi, τ
−1
A X), for every i ∈ {1, . . . , r}, such that the induced map

r⊕

i=1

M(x, xi) ⊗
κxi

M(xi, τ
−1x) −→ HomA(X, τ

−1
A X)

vanishes on γτ−1
A
X . These new sections clearly extend F : kχ → ind Γ to a well-

behaved functor F ′ : kχ′ → ind Γ. Like in the previous case F ′ : kχ′ → ind Γ is
well-behaved. Finally χ′ satisfies both conditions (a) and (b) in the statement of
the lemma for χ′\χ consists of one vertex. �

2.5. Existence of well-behaved functors. The following implies Theorem A.

Proposition. Let A be a finite-dimensional algebra over a perfect field k. Let Γ

be an Auslander-Reiten component of A. Let π : Γ̃ → Γ be a covering of translation

quivers where Γ̃ is with length. Endow Γ and Γ̃ with k-modulations as in 1.3 and
1.5, respectively.

(1) There exists a well-behaved functor F : k(Γ̃) → ind Γ.
(2) Let X ∈ Γ and let f : X → ⊕ri=1X

ni

i be a strongly irreducible morphism.
Let x ∈ π−1(X) and let

x1
x

55jjjjjj

**TTT
TT

T

xr

be the full subquiver of Γ̃ such that πxi = Xi. Then there exists a well-

behaved functor F : k(Γ̃) → ind Γ such that F maps fi,j ∈ k(Γ̃)(x, xi) to
fi,j for every i ∈ {1, . . . , r} and j ∈ {1, . . . , ni}.

Proof. There always exists an irreducible morphism between indecomposable mod-
ules lying in Γ and it is strongly irreducible. Thus only (2) needs a proof. Let

Σ be the set of pairs (χ, F : kχ → ind Γ) where χ ⊆ Γ̃ is a full and convex sub-
quiver containing x1, . . . , xr , x which satisfies conditions (a) and (b) in 2.4, and
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F : kχ → ind Γ is a well-behaved functor mapping fi,j ∈ k(Γ̃)(x, xi) to fi,j for all
i, j. Then Σ is ordered: (χ, F ) 6 (χ′, F ′) if and only if χ ⊆ χ′ and F ′ restricts to F .

Also, Σ is not empty: Let χ ⊆ Γ̃ be the full subquiver drawn in the statement of the
lemma. Fix k-algebra sections kX ⊆ EndA(X), and kXi

⊆ EndA(Xi) of κX and
κXi

, respectively, for every i ∈ {1, . . . , ni}. For every i the family {fi,j}j∈{1,...,ni}

in irr(X,Xi) is free over kX ⊗k kopXi
. Hence there exists a kX − kXi

-linear section

irr(X,Xi) → rad(X,Xi) which maps fi,j to fi,j for every j ∈ {1, . . . , ni} becausekX⊗kkopXi
is a semi-simple k-algebra. All these sections define a well-behaved functor

F : kχ → ind Γ. Then (χ, F ) ∈ Σ. Note that the conditions (a) and (b) in 2.4 are
satisfied because χ has only finitely many vertices. Let (χ, F ) be a maximal element

of Σ. Then χ = Γ̃ (2.4). The functor F : kΓ̃ → ind Γ then induces a well-behaved

functor F : k(Γ̃) → ind Γ which fits the conclusion of the proposition. �

2.6. Covering property of well-behaved functors. Theorem B is an adapta-
tion of [CLMT11, Thm. B] to perfect fields.

Proof of Theorem B. The proof uses a specific left minimal almost split morphism
and a specific almost split sequence that arise from F and which are now introduced.

Let X = πx. For every arrow in Γ̃ with source x (say, with target x′), fix one basis

over κπx′ of irr(πx, πx′). Putting these bases together (for all the arrows in Γ̃ with

source x) yields a sequence of morphisms in k(Γ̃) with domain x. Say, the sequence
is (αi)i=1,...,r where the codomain of αi is denoted by xi (there may be repetitions
in the sequence of codomains). Set Xi = πxi and ai = F (αi) for every i. In
particular ai : X → Xi is an irreducible morphism and ai = αi if ai is considered as

lying in k(Γ̃)(x, xi). By construction, [a1, . . . , ar] : X → ⊕ri=1Xi is a left minimal
almost split morphism. If x is non-injective then a completes into an almost split

sequence 0 → X
a
−→ ⊕ri=1Xi

b
−→ τ−1

A X → 0 as follows. For every X ′ ∈ {X1, . . . , Xr}
the family {ai}i s.t.X′=Xi

is a basis of irr(X,X ′) over κX′ ; let {βi}i s.t.X′=Xi
be the

corresponding dual basis of irr(X ′, τ−1
A X) over κX′ (for the k-modulation on Γ);

For every i ∈ {1, . . . , r} such that X ′ = Xi set bi : Xi → τ−1
A X to be the image of

βi ∈ k(Γ̃)(xi, τ−1x) under F (hence, if one considers bi as lying in k(Γ̃)(xi, τ−1x)
then bi = βi). By construction γτ−1x =

∑r
i=1 ai ⊗ bi. Therefore

∑r
i=1 aibi = 0

because F is well-behaved and maps each ai and bi to ai and bi, respectively. Since
moreover a is left minimal almost split, the morphism b = [b1, . . . , br]

t is right
minimal almost split. Thus (a, b) forms the announced almost split sequence.

(a) The two maps are dual to each other so only the first one is taken care of.
The surjectivity for every x is proved by induction on n > 0. If n = 0 it follows

from: rad0(Fx, Fy)/rad(Fx, Fy) is κFx or 0 according to whether Fx = Fy or

Fx 6= Fy, and R0k(Γ̃)(x, z)/Rk(Γ̃)(x, z) is κx or 0 according to whether x = z or
x 6= z. If n > 1, if the surjectivity is already proved for indices smaller that n, and if
f ∈ radn(Fx, Fy) is given, then there exists (ui)i ∈ ⊕ri=1rad

n−1(Fxi, Fy) such that

f =
∑
i aiui (1.2); for every i, there exists (βi,z)z ∈ ⊕Fz=FyR

n−1k(Γ̃)(xi, z) such
that ui =

∑
z F (βi,z)mod radn (induction hypothesis); thus f−

∑
z F (

∑
i αiβi,z) ∈

radn+1. This proves the surjectivity at index n.
The injectivity for every x is also proved by induction on n > 0. If n = 0 it follows

from: k(Γ̃)(x, z) = Rk(Γ̃)(x, z) if x 6= z, and k(Γ̃)(x, x) = κx = κFx, and F induces
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a section κx → EndA(Fx) of the canonical surjection EndA(Fx) → κFx. Let n > 1.

Assume the injectivity for indices smaller that n. Let (φz) ∈ ⊕Fz=FyR
nk(Γ̃)(x, z)

be such that
∑

z F (φz) ∈ radn+1(Fx, Fy). Using the surjectivity and 1.2 yields

(ψz)z ∈ ⊕Fz=FyR
n+1k(Γ̃)(x, z) together with (ui)i ∈ ⊕ri=1rad

n+1(Fxi, Fy) such
that

∑
z F (φz − ψz) =

∑
i aiui. On the other hand, n > 1 and {αj}j∈{1,...,r}

contains a basis of M(x, xi) over κxi
for every i ∈ {1, . . . , r}. The construction

of k(Γ̃) therefore yields (θi,z)i ∈ ⊕ri=1k(Γ̃)(xi, z) such that φz − θz =
∑

i αiθi,z,
for every z. Putting these morphisms together and using that ai = F (αi) for
every i yields

∑
i ai (

∑
z F (θz,i)− ui) = 0. Now distinguish two cases according

to whether x is injective or not. If x is injective then
∑

z F (θi,z) = ui which,

following the induction hypothesis, implies that θi,z ∈ R
nk(Γ̃) for every i and

every z. Thus φz = ψz +
∑

i αiθi,z ∈ R
n+1k(Γ̃) for every z. If x is not injective

there exists v ∈ HomA(τ
−1
A Fx, Fy) such that

∑
z F (θi,z) − ui = biv for every

i. Using again the surjectivity yields (χz)z ∈ ⊕Fz=Fyk(Γ̃)(τ−1x, z) such that v =∑
z F (χz)mod radn−1. In particular biv =

∑
z F (βiχz)mod radn for every i. Hence∑

z F (θi,z − βiχz) = uimod radn. Therefore θi,z − βiχz ∈ R
nk(Γ̃) for every i and

every z (by induction and because ui ∈ radn+1). Since moreover
∑

i αiβi = 0,

ψz ∈ R
n+1k(Γ̃) and φz = ψz+

∑
i αiθi,z for every z, it follows that φz ∈ R

n+1k(Γ̃).
(b) follows from (a) and from 1.4 (part (b)).

(c) follows from (a), (b) and the fact that Γ is generalised standard, that is,⋂
n>0 rad

n(X,Y ) = 0 for every X,Y ∈ Γ. �

3. Application to compositions of irreducible morphisms

The following equivalence was proved in [CLMT11, Prop. 5.1] when k is al-
gebraically closed and under the additional assumption that the valuation of the
involved arrows are trivial. This last assumption is dropped here.

Proposition. Let X1, . . . , Xn+1 ∈ indA. The following conditions are equivalent

(a) there exist irreducible morphisms X1
h1−→ · · ·

hn−−→ Xn such that h1 · · ·hn ∈

radn+1\{0},
(b) there exist irreducible morphisms fi : Xi → Xi+1 and morphisms εi : Xi →

Xi+1, for every i, such that f1 · · · fn = 0, such that ε1 · · · εn 6= 0 and such that,
for every i, either εi ∈ rad2 or else εi = fi.

Proof. The implication (b) ⇒ (a) was proved in [CT10, Thm. 2.7] (the proof
there works for artin algebras and the standard hypothesis made there plays no
role for this implication). Assume (a). Let Γ be the component of Γ(modA)

containing X1, . . . , Xn+1, let π : Γ̃ → Γ be the universal covering and F : k(Γ̃) →
ind Γ be a well-behaved functor (2.5). Let x1 ∈ π−1(X1). There is a unique

path γ : x1 → x2 → · · · → xn+1 in Γ̃ which image under π is X1 → X2 →
· · · → Xn+1. Let hi : Xi → Xi+1 (1 6 i 6 n) be irreducible morphisms such that

h1 · · ·hn ∈ radn+1\{0} and consider hi ∈ irr(Xi, Xi+1) as lying in k(Γ̃)(xi, xi+1).
Let h′i = hi − F (hi) for 1 6 i 6 n. Then h′i ∈ rad2 because F is well-behaved.

Therefore F (h1 · · ·hn) ∈ radn+1. Since R
n+1k(Γ̃)(x1, xn+1) = 0 (the path γ has

length n, 1.4), it follows that h1 · · ·hn = 0 (2.6). This and h1 · · ·hn 6= 0 imply that
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F (h1 · · ·hn)− h1 · · ·hn 6= 0 that is, the sum of the morphisms

F (h1) · · ·F (hi1−1)h
′
i1
F (hi1+1) · · ·F (hit−1)h

′
it
F (hit+1) · · ·F (hn) ,

for t ∈ {1, . . . , n} and 1 6 i1 < · · · < it 6 n, is non-zero. Hence there exists
t ∈ {1, . . . , n} and 1 6 i1 < · · · < it 6 n such that the corresponding term in the

above sum is non-zero. Define fj := F (hj), and εj := F (hj) if j 6∈ {i1, . . . , it} or
εj := h′j if j ∈ {i1, . . . , it}. Then {fi, εi}i=1,...,n fits the requirements of (b). �
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