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1. Introduction

The water wave theory has always been developed through the derivation and analysis
of various approximate models [13]. Nowadays the researchers, motivated by practical or
theoretical needs, continue actively the quest for more accurate simplified models. In the
present study our starting point is a celebrated set of equations which was derived for the
first time by F. Serre [42] in 1953, even if a deeper literature search shows that a steady
version of Serre’s equations were already present in works of Lord Rayleigh (1876) [28].
Then, this system was rediscovered independently by Su & Gardner (1969) [43], and
again by Green, Laws & Naghdi (1974) [19]. In the Soviet literature this model was
known as the Zheleznyak–Pelinovsky model [45]. The derivation of these equations from
variational principles was given in [34, 23, 11]. This list of references is far from being
exhaustive. In the rest of the manuscript we will refer to this set of equations as the
Serre–Green–Naghdi (SGN) system.

The SGN equations are fully nonlinear but only weakly dispersive [24]. Consequently,
one could think how to improve the dispersive characteristics of the model [14]. Fortunately,
some technology has already been developed for the Boussinesq-type equations. The tech-
nique of introducing the free parameters into long wave models was pioneered by Bona &
Smith (1976) [4] and later independently by Nwogu (1993) [38]. The idea mainly consists
in using the horizontal velocity variable defined at the arbitrary depth along with lower
order asymptotic relations to alter higher order terms. This technique was synthesized by
Bona et al. (2002) [3]. There is also another approach based on Padé-type approximations
due to Madsen and his collaborators [30, 31]. All these methods have been succesfully
employed to derive various extended Boussinesq-type equations [1, 27, 22].

Once the model equations have been proposed, one has to propose also efficient way
to solve them numerically. Currently, there is an important research activity towards
the numerical solution of various Boussinesq-type dispersive wave models. Only recently
various finite volume [8, 21, 17], finite element (FEM/continuous Galerkin) [15, 35], pseudo-
spectral [17], discontinuous Galerkin [18] and residual distribution [40] schemes have been
proposed.

However, for practical simulations the free parameters have to be assigned with some
values. It is obvious also that different choices may lead to models with completely different
properties. Consequently, the question of the optimal choice of parameters can be posed.
Various researchers approach this problem in different ways. In most cases, various linear
considerations are employed. For instance, one can try to optimize the linear dispersion
relation of the model in regards of the full Euler equations [30, 31, 7]. If the available
parameters are several to be optimized, one can employ also the considerations of the
linear wave shoaling. In any case, it is the linear part of the model which gets improved.
However, later on this optimized model will be used to simulate nonlinear waves. So, it
is reasonable to ask whether the nonlinear properties of the model at hands benefited by
this improvement? In the present study we will try to shed some light on this question
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by considering a very important class of nonlinear solutions — the solitary waves [41, 32],
which span completely the dynamics in the integrable case [36].

The extended versions of the SGN equations with a free parameter have already been
proposed on flat [14] and uneven bottoms [6]. However, the authors of previous investi-
gations on this topic did not focus on the solitary wave solutions and their confrontation
with the full Euler equations. Moreover, in the present study we propose a simple adaptive
strategy to find an optimal value of the free parameter at every instance of time. Namely,
using a simple spectral analysis we determine the dominant wavenumber in the current
state of the system. Then, the optimal value is given by satisfying the condition that
our approximate model propagates this wavelength with the exact linear celerity (given
by the full Euler). This process is repeated at every time step and it costs roughly the

computation of one additional FFT1 and of two integrals.
The present manuscript is organized as follows. In the following Section 2 we formulate

the extended extended Serre–Green–Naghdi (eSGN) system. Numerical results on the
solitary waves of the eSGN equations are presented in Section 3.1. A novel adaptive strategy
for the optimal choice of the free parameter is described and validated in Section 3.2.
Finally, the main conclusions and perspectives of this study are outlined in Section 4.

2. Mathematical model

For two-dimensional surface water waves propagating in shallow water of constant depth,
one can approximate the velocity field by

u(x, y, t) ≈ ū(x, t), v(x, y, t) ≈ −(y + d) ūx

where d is the mean water depth and ū is the horizontal velocity averaged over the water
column — i.e. ū ≡ h−1 ∫ η

−d
udy — y = η and y = 0 being the equations of the free surface

and of the still water level, respectively. The horizontal velocity u is thus uniform along
the water column and the vertical velocity v is chosen so that the fluid incompressibility
if fulfilled. Serre (1953) [42] derived the following approximate system of equations

ht + ∂x[h ū ] = 0, (2.1)

∂t[h ū ] + ∂x[h ū2 + 1
2
g h2 + 1

3
h2

γ ] = 0, (2.2)

where

γ = h (ū2
x − ūxt − ūūxx) = 2h ū2

x − h∂x[ ūt + ū ūx ] , (2.3)

is the vertical acceleration of the fluid at the free surface [11]. Physically, equations (2.1)
and (2.2) describe, respectively, the mass and momentum flux conservations. From these

1The Fast Fourier Transform (FFT).



Adaptive shallow water modeling 5 / 19

two conservative equations, secondary ones can be easily derived using some formal alge-
braic manipulations:

∂t[ ū − 1
3
h−1(h3ūx)x ] + ∂x[ 12 ū2 + g h − 1

2
h2 ū2

x − 1
3
ū h−1(h3ūx)x ] = 0,

∂t[h ū − 1
3
(h3ūx)x ] + ∂x[h ū2 + 1

2
g h2 − 2

3
h3 ū2

x − 1
3
h3 ūūxx − h2hxūūx ] = 0,

∂t[ 12 h ū2 + 1
6
h3ū2

x + 1
2
g h2 ] + ∂x[ (12 ū2 + 1

6
h2 ū2

x + g h + 1
3
hγ )h ū ] = 0,

We can also rewrite these equations in equivalent non-conservative forms, for instance we
have

ūt + ū ūx + g hx + 1
3
h−1 ∂x[h2

γ ] = 0,

These approximations are valid in shallow water without assuming small amplitude waves,
they are therefore sometimes called weakly-dispersive fully-nonlinear approximation [44]
and are a generalisation of the Saint–Venant and of the Boussinesq equations.

2.1. Extended Serre–Green–Naghdi’s equation

Since the SGN equations represent long waves in shallow water, this means that the hor-
izontal and temporal derivatives are small quantities, i.e. ∂x ∝ O(ε) and ∂t ∝ O(ε), where
ε is of the order of the water depth divided by the characteristic wavelength. Introducing
explicitly this small parameter, i.e. using the scaled variables

x⋆ = εx, t⋆ = ε t, γ
⋆ = ε−2γ

since the vertical acceleration is of order 2 — i.e. , γ ∝ O(ε2) — as it is obvious from the
definition (2.3), the SGN equations can be written as

ǫht⋆ + ǫ ∂x⋆[h ū ] = 0,

ǫ ∂t⋆[h ū ] + ǫ ∂x⋆[h ū2 + 1
2
g h2 + ǫ2 1

3
h2

γ
⋆ ] = 0,

where all the variables in these equations are of order O(1). Note that SGN equations
neglect all terms involving powers of ǫ higher than three.

Substituting the relation

ūt⋆ + ū ūx⋆ = −g hx⋆ − ε2 1
3
h−1 ∂x⋆[h2

γ
⋆ ] ,

into the definition of the vertical acceleration γ, we have

γ = ε2 2h ū2
x⋆ + ε2 g hhx⋆x⋆ + O(ε4) , (2.4)

which is a new expression for the vertical acceleration consistent with the order of approx-
imation.

It is however possible to obtain a more general system averaging the two expressions
(2.3) and (2.4), we have

γ = ε2 2h ū2
x⋆ + (1 −α)ε2 g hhx⋆x⋆ − α ε2 h∂x⋆[ ūt⋆ + ū ūx⋆ ] + O(ε4) ,
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where α is a constant at our disposal. Thence, returning to the original variables, the
modified SGN’s equations are

ht + ∂x[h ū ] = 0, (2.5)

∂t[h ū ] + ∂x[h ū2 + 1
2
g h2 + 1

3
h2

γ ] = 0, (2.6)

2h ū2
x + (1 −α)g hhxx − α h∂x[ ūt + ū ūx ] = γ. (2.7)

From these modified SGN’s equations, we can derive a secondary relation, which can be
interpreted physically as the horizontal momentum conservation law:

∂t[h ū − 1
3
α(h3ūx)x ] + ∂x[h ū2 + 1

2
g h2 + 1

3
(1 −α)g h3 hxx

+ 2
3
(1 − 2α)h3 ū2

x − 1
3
αh3 ū ūxx − αh2 hx ū ūx ] = 0.

It can be recast equivalently as a system of two equations, which are more convenient for
numerical computations:

qt + ∂x[ ū q + 1
2
g h2 + 1

3
(1 −α)g h3 hxx + 2

3
(1 − 2α)h3 ū2

x ] = 0,

h ū − 1
3
α∂x[h3 ūx ] = q.

Remark 1. We were not able to find a variational (Lagrangian or Hamiltonian) structure
of governing equations (2.5), (2.7). The derivation of extended SGN equations possessing
such a structure will be one of the challenges we will address in upcoming studies.

2.2. Linear approximation

For infinitesimal waves, η and ū being both small, it is reasonable to linearise the equa-
tions around η = 0 and ū = 0. We obtain thus the linear system of equations

ηt + d ūx = 0, (2.8)

ūt + g ηx + 1
3
dγx = 0, (2.9)

(1 −α)g dηxx − α d ūxt = γ. (2.10)

Seeking for traveling waves of the form η = a cos(k(x−ct)), we obtain the (linear) dispersion
relation

c2

gd
= 3 + (α − 1)(kd)2

3 + α(kd)2 = 1 − 1
3
(kd)2 + 1

9
α(kd)4 − 1

27
α
2(kd)6 + ⋯. (2.11)

We note that this relation is well-posed (i.e. c2 > 0 for all k) only if α ⩾ 1. In order to find
a suitable choice for α, the relation (2.11) can be compared with the dispersion relation of
linear waves on finite depth

c2 / g d = thc(kd) = 1 − 1
3
(kd)2 + 2

15
(kd)4 − 17

315
(kd)6 + 62

2835
(kd)8 + ⋯, (2.12)

where thc(x) ≡ tanh(x)/x if x ≠ 0 and thc(0) ≡ 1. Comparing the Taylor expansions, it
is clear that (2.11) matches the exact one only up to the second-order in general, except
when α = 6/5 in which case it matches up to the fourth-order. Therefore, αopt = 6/5 is
a suitable choice having the advantage of being independent of the wave characteristics.
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This method of choosing the optimal α has been used by many authors starting from the
pioneering works [4, 38, 1].

Let us discuss some other possible choices of the free parameter α. We may choose α

such that the dispersion relations (2.11) and (2.12) are equal, i.e. , such that

3 + (α − 1)(kd)2
3 + α(kd)2 = tanh(kd)

kd
, (⋆)

thence

α = (kd)2 − 3 (1 − thc(kd))
(kd)2 (1 − thc(kd)) = 6

5
− (kd)2

175
+ 2 (kd)4

7875
− ⋯. (2.13)

This choice of α is suitable for periodic waves when the wavelength kd is given. When the
celerity is given, it is more suitable to proceed as follows. Solving (2.11) for k, one gets

(kd)2 = 3 (c2 − gd)
(α − 1)g d − α c2

,

and reporting into (2.12), one obtains a transcendent equation for α which has to be solved
numerically using some fixed point or Newton-type iterations [20]:

c2

gd
= thc

⎛⎜⎝

¿ÁÁÀ 3 (c2 − gd)
(α − 1)g d − α c2

⎞⎟⎠ .

Remark 2. Consider now a steady wave motion, i.e. , solution independent of time. We
can easily derive the formulation for steady waves as well from the governing equations.
The mass conservation (2.5) yields

ū = − c d /h ,

and substituting into (2.6) and (2.7)

c2

g h
+ h2

2d2
+ γh2

3 g d2
= c2

g d
+ 1

2
+ K (2.14)

where K is a (dimensionless) integration constant (K = 0 for solitary waves).

Remark 3. Solitary waves for the classical SGN equations are known analytically:

η = a sech
2 1
2
κ(x − ct), ū = c η

d + η , c2 = g(d + a), (κd)2 = 3a

d + a. (2.15)

Unfortunately, for a generic value of α there are no exact solutions known for the eSGN
equations. Consequently, we will employ numerical methods in Section 3.1 to find the
travelling waves to high accuracy.

3. Numerical methods and results

In order to study some properties and the performance of the proposed eSGN equations
we employ numerical methods. We do not enter into the details of the numerical methods
here, since they can be found in the literature. For the computation of travelling waves
we employ the Levenberg-Marquardt algorithm [37]. The main ideas of this method are
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summarized briefly below. For the transient simulations of the classical SGN and new eSGN
equations we use a pseudo-spectral scheme described in [17]. For the validations of eSGN
model predictions, we perform the comparisons with the full Euler equations which are
solved using the dynamic conformal mapping technique proposed by L.V. Ovsyannikov

[39] and developed later by several authors [9, 26].

3.1. Solitary waves

In this Section we will investigate the influence of the parameter α on solitary waves, as
the most important class of nonlinear solutions. We recall that the optimal choice of α is
directed by some linear considerations and its impact on the nonlinear properties of the
eSGN system is not obvious.

We will compare the solitary wave solutions to the three following models:

● SGN equations
● eSGN equations (with optimal α)
● the full Euler equations (the reference solution)

The solitary waves to the classical SGN equations are known analytically (see Remark 3).
The solitary wave solutions for the full Euler equations are computed using the method of
conformal variables [12, 16]. The Matlab script used to generate the solitary waves can
be downloaded at [10]. Unfortunately, we did not succeed in finding analytical solutions
to the eSGN equations for a general α. Consequently, we had to employ the numerical
methods.

Equation (2.14) is discretized in space using the classical Fourier-type pseudo-spectral
method [5]. For steady computations we did not even find the necessity to employ any
anti-aliasing rule. The discrete system was solved using the so-called Levenberg–Marquardt
algorithm proposed independently by Levenberg (1944) [25] and Marquardt (1963)
[33] who gave the name to this method successfully applied nowadays to various problems
[29]. The main idea behind this method is, first, to reformulate the system of equations
as a nonlinear least-squares problem. Then, the nonlinear least-squares problem is solved
iteratively with the steepest descent method far from the solution and, with the Newton’s
method in the vicinity of the root, where the convergence will be quadratic. The Jacobian
matrix is computed using central finite differences. The initial guess was given by the
analytical solution (2.15). Only a relatively small number of iterations needed to achieve
the convergence (typically less then 20). The computational domain consists of the periodic
interval [−ℓ, ℓ] = [−30,30] which was discretized using N = 2048 equally spaced collocation
points.

We will consider three amplitudes of solitary waves a/d = 0.1 (small), 0.45 (medium) and
0.7 (high amplitude). The propagation speeds predicted by various models are reported in
Table 1. One can already see that the eSGN predictions are always closer to the full Euler
equations. We computed the speed–amplitude relation for the whole range of amplitudes
(see Figure 1). The numerical results confirm our preliminary conclusions. The shapes of
three solitary waves under consideration are presented on Figures 2 – 4 respectively. On
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Model/Amplitude a/d = 0.1 a/d = 0.45 a/d = 0.70
SGN speed, cs/√gd 1.04880 1.2041 1.3038

eSGN speed, cs/√gd 1.04856 1.1999 1.2946

Full Euler speed, cs/√gd 1.048548 1.1973 1.2788

Table 1. Comparison of the solitary wave speeds for several fixed values of the
wave amplitude. The parameter α = 6/5.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

a/d

c s
/
√
g
d

 

 

SGN
eSGN
Euler

Figure 1. Speed–amplitude relations for solitary waves in SGN, eSGN and the
full Euler equations (α = 6/5).

the left panels (a) the whole computational domain is shown and the waves are undistin-
guishable to the graphical resolution. Consequently, on the right pictures (b) we show a
magnification of the subdomain [2,3]. At this stage one can see that the eSGN model
approximates better the reference solution again. For the small amplitude solitary wave
(a/d = 0.1) the eSGN solution is undistinguishable from the Euler solitary wave even on
the magnified Figure 2(b).

We note that similar comparisons between the full Euler and the classical SGN equations
have been performed also in [26]. However, we focus here on the performance of the
extended SGN model with respect to its classical counterpart.
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Figure 2. Small amplitude solitary wave solutions to the SGN, eSGN and the
full Euler equations of amplitude a/d = 0.1. The right panel shows a zoom on

2 ≤ ξ ≤ 3 (α = 6/5).
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2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

ξ = x − c · t
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SGN
eSGN
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(b)

Figure 3. Moderate amplitude solitary wave solutions to the SGN, eSGN and
the full Euler equations of amplitude a/d = 0.45. The right panel shows a zoom on

2 ≤ ξ ≤ 3 (α = 6/5).

3.2. Adaptive strategy

Now we discuss the choice of the optimal value of the free parameter α for transient
wave computations. Assume that at time t we know the free surface elevation η(x, t)
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Figure 4. Highly nonlinear solitary wave solutions to the SGN, eSGN and the
full Euler equations of amplitude a/d = 0.7. The right panel shows a zoom on

2 ≤ ξ ≤ 3 (α = 6/5).

profile. Then, we compute its Fourier transform in space

η̂(k, t) ∶= F{η(x, t)} = ∫
R

η(x, t) eikx dx.
Then, we can easily compute the power spectrum as well:

Ŝ(k, t) ∶= ∣η̂(k, t)∣2.
Now we have all the ingredients to estimate the dominant wavenumber k0 [2]:

k0(t) = ∫ kŜ(k, t)dk
∫ Ŝ(k, t)dk

.

The optimal value of α can be obtained by requiring that the eSGN system propagates
exactly the main wavelength corresponding to k0(t). Mathematically this step is done by
solving equation2 (⋆) with respect to α:

3 + (α − 1) ⋅ (k0(t)d)2

3 + α ⋅ (k0(t)d)
2

= tanh(k0(t)d)
k0(t)d

.

Since k0(t) depends on time, so does the optimal value of the free parameter α(t). Then,
the eSGN model is solved for one time step with the local (in time) estimated optimal
value of α.

Remark 4. We have to mention that when the system contains longer and longer waves,
the adaptive strategy will provide us the optimal values of α which will be close to αopt = 6/5
given by the Taylor expansion (2.11).

2Alternatively, the expansion (2.13) can be used to find an approximation to the optimal α.
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Parameter Value

Undisturbed water depth, d m 1.0

Gravity acceleration, g m/s2 1.0

Mean wavelength, λ0 m 4.0

Initial dominant wavenumber, k0 = 2π
λ0

m
−1 1.57

Variance of the wave spectrum, σ0 0.1

Nonlinearity parameter, ε = a0
d

0.1

Shallowness parameter, µ2 = ( d
λ0

)
2

0.0625

Computational domain half-length, ℓ m 50.0

Number of Fourier modes, N 2048

Final simulation time, T s 60.0

Table 2. Physical and numerical parameters used for random wave evolution
simulations.

In order to test the proposed methodology, we perform the comparisons among the three
models already studied in Section 3.1 in the steady case. However, this time we consider
dynamic (transient) solutions. For this purpose we generate a random Gaussian sea state
with the mean wavelength λ0 and variance σ0. The phases are uniformly distributed
random numbers in [0,2π). The values of all physical and numerical parameters are given
in Table 2. The initial random condition used in our simulations is shown on Figure 5. The

initial nonlinearity parameter is ε = a0/d = 0.1 and the shallowness is µ2 = ( d
λ0

)2 = 0.0625.
The evolution of this initial condition on time horizon [0, T f] is shown on Figure 6. We
can see that both SGN and eSGN models do not represent correctly the wave amplitudes
and the asymmetry of waves. However, directly from the beginning (t = 10.0) the SGN
solution starts lagging behind the Euler’s solution. When the time evolves, this difference
accumulates and becomes clearly visible (e.g. see Figure 6(e)). The eSGN solution follows
the full Euler much closer. In order to appreciate better the model performance of the
proposed adaptive strategy we show also a magnification of the free surface elevation at
the final time t = T on Figure 7. This success is explained by the appropriate and judicious
choice of the free parameter α(t). The evolution of α(t) in course of the simulation is
shown in Figure 8. The mean value of the parameter is ⟨α(t)⟩ ≈ 1.1857 on this trajectory.
The difference with αopt = 6/5 = 1.2 is not enormous, however it is crucial to represent
correctly the wave front positon. A similar animation for a different initial condition can
be watched at the following URL address:

http://youtu.be/NfgLs7c1keU/

http://youtu.be/NfgLs7c1keU/
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Figure 5. Gaussian random initial condition used in comparisons. The bottom

panel shows the power spectrum Ŝ(k, t = 0) of the initial condition. The maximal
wave amplitude is a0/d = 0.1.

4. Discussion

Below we will briefly outline the main conlcusions and perspectives which are opened
after the present study.

4.1. Conclusions

In this paper we discussed a particular extension of the Serre–Green–Naghdi (SGN)
system which is based on the Bona–Smith–Nwogu trick [4, 38]. This idea is not new and
the main contribution of this study is not there. Once the free parameter was introduced
into the model, we have to provide some recommendations for the practitioners on the
choice of this parameter. Most of works available in the literture involve some linear
considerations, such as the widely used Taylor expansion or some other optimisation-based
procedures of the linear dispersion relation [30, 31, 7]. It is reasonable to question the
influence of this optimal choice on the nonlinear properties of the model, since it is used
to simulate nonlinear waves. In this manuscript we showed that the optimal value of
α obtained by the Taylor expansion method leads also to a serious improvement in the
solitary wave solutions as well. They approximate much better the corresponding solutions
to the full Euler equations comparing to the original SGN equations. Namely, the shape
as well as the speed–amplitude relation are greatly improved, especially for high amplitude
waves. The price to pay for this improvement is that the order of spatial derivatives in the
model is increased by one. So, it is up to every user to decide whether this price is worth
paying it for the extra accuracy.
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Figure 6. Evolution of the initial condition shown on Figure 5 under the SGN
(black dashed line), eSGN (blue solid line) and the full Euler (red solid line).
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Figure 7. A zoom on the free surface elevation at the final simulation time
t = T . Comparison among three models: SGN (black dashed line), eSGN (blue
solid line) and the full Euler (red solid line).
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The Taylor expansion (2.11) is valid strictly speaking only in the vicinity of kd = 0,
i.e. infinitely long waves. Unfortunately, such waves cannot be encountered in practice,
since every wave has its well-defined wavelength. Consequently, for practical simulations
the scheme described above had to be modified to integrate the knowledge of the finite
wavelength. In this way we introduced an adaptive strategy which estimates on every
time step the dominant wavenumber (i.e. the wavelength) and adapts the system to be as
accurate as possible for the main spectral component (which carries most of the energy).
Our comparisons with the full Euler equations show that this strategy leads to a significant
improvement of the eSGN model accuracy compared to the classical SGN equations. To our
knowledge, it is the first study where such an adaptive strategy is proposed and validated.

4.2. Perspectives

The present article is only the first step towards the development of the physically
adaptive water wave modeling. Further validations are needed, even if the preliminary
results are very promising. As the next step, the eSGN model has to be generalized to
uneven bottoms. However, there are more serious issues with the proposed strategy. The
dynamic adaptation introduces time-dependent coefficient α(t) into the PDEs. It implies
that we break the invariance of the governing equations with respect to time translations.
By Noether theorem3, we cannot expect the eSGN system to conserve exactly the energy.
This issue is to be addressed in future investigations.

We could see that in our conservative simulations the dominant wave number did not
vary too much on the time horizon considered in the present study. Consequently, we
could replace α(t) ≈ α(0) determined from the initial condition. However, in the presence
of (wind) forcing and/or viscous dissipation, reflective boundary conditions could lead to
more drastic modifications of the wave spectrum on longer time scales. Consequently,
“freezing” of the free parameter α(t) cannot be seen as a universal solution.

Another possible drawback comes from the fact that the eSGN system (2.5), (2.6) was
derived under an implicit assumption that the parameter α is constant. Then we allow this
parameter to vary with in time. Perhaps, our system discards some terms proportional
to α̇(t). However, our numerical results show (see Figure 8) that α(t) does not vary
significantly in time. Hence, the discarded terms can be effectively neglected α̇(t) ≈ 0.
However, we would like to clarify completely this situation in future studies.

Nevertheless, the gain in accuracy we witnessed in the eSGN system when it is sup-
plemented with the adaptive strategy, certainly overbalance the shortcomings mentioned
hereinabove.

3Rigorously speaking, in order to be able to apply the Noether theorem, the governing equations need

to have the Lagrangian structure. However, the absence of the invariance with respect to translations in

time allows to conclude.
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