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Abstract. The Fourier-transform spectrometer on board the
Japanese GOSAT (Greenhouse gases Observing SATellite)
satellite offers an excellent opportunity to study the impact
of instrument resolution on retrieval accuracy of CO2 and
CH4. This is relevant to further improve retrieval accuracy
and to optimize the cost–benefit ratio of future satellite mis-
sions for the remote sensing of greenhouse gases. To ad-
dress this question, we degrade GOSAT measurements with
a spectral resolution of≈ 0.24 cm−1 step by step to a resolu-
tion of 1.5 cm−1. We examine the results by comparing rela-
tive differences at various resolutions, by referring the results
to reference values from the Total Carbon Column Observ-
ing Network (TCCON), and by calculating and inverting syn-
thetic spectra for which the true CO2 and CH4 columns are
known. The main impacts of degrading the spectral resolu-
tion are reproduced for all approaches based on GOSAT mea-
surements; pure forward model errors identified with simu-
lated measurements are much smaller.

For GOSAT spectra, the most notable effect on CO2 re-
trieval accuracy is the increase of the standard deviation of
retrieval errors from 0.7 to 1.0 % when the spectral resolu-
tion is reduced by a factor of six. The retrieval biases against
atmospheric water abundance and air mass become stronger
with decreasing resolution. The error scatter increase for
CH4 columns is less pronounced. The selective degradation

of single spectral windows demonstrates that the retrieval ac-
curacy of CO2 and CH4 is dominated by the spectral range
where the absorption lines of the target molecule are located.
For both GOSAT and synthetic measurements, retrieval ac-
curacy decreases with lower spectral resolution for a given
signal-to-noise ratio, suggesting increasing interference er-
rors.

1 Introduction

Carbon dioxide (CO2) and methane (CH4) are the two most
important anthropogenic greenhouse gases. Remote sensing
of these gases with satellites allows us to globally monitor
their atmospheric abundance. Both trace gases have to be re-
trieved with high accuracy to provide a significant contribu-
tion to our current knowledge of the Earth’s climate system.
Measurements of high spectral resolution are beneficial to
reduce errors due to inaccurate spectroscopy and errors due
to interfering retrieval species. However, good spatial cover-
age, high spatial resolution, and high signal-to-noise perfor-
mance are competing requirements for satellite observations,
which results in very expensive and complex instrument con-
cepts. A careful trade-off between spectral resolution, spatial
coverage, and cost has to be made. This study quantifies the
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1106 A. Galli et al.: Impact of spectroscopic resolution on retrieval accuracy

retrieval performance for reduced spectral resolution using
the Greenhouse Gases Observing Satellite (GOSAT) obser-
vations in the 0.76 (O2 A band), 1.6 (SWIR1a and SWIR1b),
and 2.0 µm (SWIR2) spectral regions.

After the loss of the Envisat satellite in 2012 with the
SCIAMACHY (SCanning Imaging Absorption spectroMeter
for Atmospheric CHartographY) instrument (Bovensmann et
al., 1999), the Japanese GOSAT satellite (Kuze et al., 2009)
is currently the only satellite measuring total columns of
greenhouse gases. In the next 2 years, NASA’s OCO (Or-
biting Carbon Observatory)-2 (Boesch et al., 2011) and the
Chinese TanSat satellite (Liu et al., 2013) will join GOSAT
to provide better coverage of satellite-based CO2 measure-
ments relevant to the climate research community. Mean-
while, the European Space Agency (ESA) is evaluating plans
for the Carbon Monitoring Satellite (CarbonSat,Buchwitz et
al., 2013) as one of two candidate Earth Explorer opportunity
missions, scheduled for launch in 2018. Its goal is to moni-
tor tropospheric CO2 and CH4 and to separate natural from
anthropogenic greenhouse gas emissions by measuring re-
flected sunlight in the infrared. The next assured European
space mission to observe both of these greenhouse gases,
Sentinel-5, will follow after 2020 (Ingmann et al., 2012). It
will not be optimized for CO2 observations, though. Earth
Explorer 8 will very likely be launched a few years after
2018. The intended spectral windows of OCO-2, TanSat, and
CarbonSat are very similar to those of GOSAT: three sep-
arate spectral windows cover the O2 A band at 0.765 µm,
the weak CO2 and CH4 absorption lines at 1.6 µm, and the
strong CO2 absorption lines at 2.0 µm (see Table1). The
Fourier transform spectrometer on GOSAT has a full-width
half-maximum (FWHM) resolution of 0.24 cm−1, which is
similar to OCO-2 (Boesch et al., 2011). The foreseen spectral
resolution of TanSat lies between 0.25 and 0.5 cm−1 (Y. Liu,
personal communication, 2013). CarbonSat is planned to op-
erate at a resolution of 1.1–1.7 cm−1 in the near and short-
wave infrared (Buchwitz et al., 2013). For Sentinel-5, a reso-
lution of around 1.0 cm−1 is foreseen (Ingmann et al., 2012).

To cover the entire range of resolutions of the future satel-
lite spectrometers, we considered in this study three spec-
tral resolutions in addition to the GOSAT resolution: 0.5, 1.0,
and 1.5 cm−1. Because of the differing spectral windows, the
study can only be indicative for some of the future missions.
We prepared three data sets: GOSAT spectra collocated with
TCCON observations, GOSAT spectra of 2 entire years over
Europe, and a global ensemble of synthetic spectra. To de-
grade the spectral resolution of GOSAT measurements we
convolved the spectra with a broad Gaussian or sinc func-
tion – equivalent to assuming a shorter optical path length
for the GOSAT interferometer. No noise was added to the
GOSAT spectra, i.e. we concentrate on the effect of the re-
duced spectral resolution and stick to the GOSAT signal-to-
noise ratio (SNR). The question of whether a reduced re-
trieval performance at lower resolution can be compensated
by a higher SNR can only be answered with synthetic data.

We will briefly address this issue when we discuss the data
set of simulated spectra.

The differences between retrieved greenhouse gas
columns from GOSAT spectra and collocated TCCON ob-
servations served as our estimate for the absolute accuracy
of GOSAT retrievals. The Total Carbon Column Observ-
ing Network (TCCON) is a global network of ground-based
Fourier transform spectrometers, established in 2004 (Wunch
et al., 2011a). Its goal is to remotely measure column abun-
dances of CO2, CO, CH4, N2O and other gases that ab-
sorb in the near-infrared (SWIR). Currently, there are 18
operational observation sites affiliated with TCCON. TC-
CON measurements are used to validate column abundances
of greenhouse gases retrieved from satellite measurements
(Butz et al., 2011; Morino et al., 2011; Parker et al., 2011;
Wunch et al., 2011b; Reuter et al., 2011; Schepers et al.,
2012; Oshchepkov et al., 2013; Guerlet et al., 2013).

The paper is structured as follows: in Sect.2, we will
describe the retrieval method, the GOSAT measurements,
and the data selection. The results will be presented in
Sect.3. Section3.1 covers the collocated GOSAT and TC-
CON data. In Sect.3.2 we discuss the results for an ap-
proach where single spectral windows were spectrally de-
graded. Section3.3summarizes the results for the European
data set, and Sect.3.4summarizes the results from synthetic
retrievals. Section4 will conclude the paper with recommen-
dations for future satellite missions.

2 Data selection and retrieval method

2.1 Retrieval algorithm

To retrieve CO2 and CH4 from the GOSAT spectra, we used
version 1.9 of the RemoTeC algorithm. The first version of
the algorithm was described byButz et al.(2011) in the con-
text of GOSAT measurements and byButz et al.(2010) in
the context of synthetic spectra. The algorithm is based on
the efficient radiative transfer model developed byHasekamp
and Butz(2008). From the measured radiances in one or
several spectral windows, the algorithm simultaneously re-
trieves 12-layer profiles of CO2 and CH4 column densities
along with other absorber species (water), surface albedo,
spectral shifts, intensity offsets, and three effective aerosol
parameters to describe the scattering properties of the atmo-
sphere. The latter are the mean height of the scattering layer
haer, the size parameter of the power-law distributionαaer,
and the total column number density of aerosols. Scatter-
ing particles are parametrized as spherical particles with a
fixed refractive index (1.400i × 0.003), and their size distri-
bution follows a power law,n(r) ∼ r−αaer, with r the particle
radius. In the forward model, the aerosols exist in a single
scattering layer with a Gaussian height distribution around
the central heighthaer. Molecular absorption lines of O2 and
CO2 are modelled by a spectroscopic model that includes
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line mixing as well as collision-induced-absorption by O2
(Tran and Hartmann, 2008; Lamouroux et al., 2010). Ab-
sorption by CH4 and the interfering absorber H2O is mod-
elled by Voigt line-shape models based on HITRAN (high-
resolution transmission) 2008 (Rothman et al., 2009). Since
2010, the RemoTeC algorithm has been improved in several
ways. The version used for this study is described byGuerlet
et al.(2013).

Total columns of CO2 and CH4 in units of molecules per
square centimetre were the prime targets of the retrieval. Af-
ter the retrieval converged, they were calculated as the sum
of the retrieved absorber profile. When volume mixing ratios
XCO2 and XCH4 were required (for comparison to TCCON
values), the total columns were divided by the total dry air
mass. The latter was not retrieved from the measurements; it
was taken from values provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF). In this paper,
we will always use volume mixing ratios to quantify retrieval
accuracy.

GOSAT measurements with a cloud coverage larger than
5 % in the outer field of view were a priori rejected. This in-
formation is provided by the separate cloud and aerosol im-
ager on board the GOSAT satellite. Apart from clouds, also
low albedo or high scattering optical thickness can introduce
systematic retrieval errors. To achieve a better retrieval accu-
racy, it is therefore necessary to filter the converged retrievals
as well. Most inversions of GOSAT spectra converge to yield
a result (80 % in the case of Europe from 2009 to 2011) but
roughly half of these results should be excluded from fur-
ther analysis because they are likely to exhibit large errors.
Guerlet et al.(2013) experimented with different filters to se-
lectively reject retrievals based on the retrieved parameters.
In the present study, we adopted their most stringent a pos-
teriori filter to quantify retrieval accuracy. The information
required for this filter is supplied by the retrieval algorithm.
No further model input or observations with different instru-
ments (that may or may not be available for other satellite
missions) is required. The filter operates independently for
each spectral resolution. It reads

a. χ2 / DFS< 2× median(χ2 / DFS)

b. DFS of target species> 1.0

c. number of iterations< 11

d. σCO2 < 0.3 %,σCH4 < 0.5 %

e. τaer< 0.25

f. 3.0 < αaer< 4.7

g. τaerhaer/ αaer< 300 m

h. −1×10−9 < intensity offset at O2 A band< 7×10−9

The filter makes use of fit residuals (χ2 normalized by
degrees of freedom), degrees of freedom for signal (DFS),

Table 1.Overview of spectral ranges used for inversion.

Description Wavenumber range (cm−1) Absorbing species

O2 A band 12 920–13 195 O2

SWIR1a 6170–6277.5 CO2, H2O, CH4

SWIR1b 6045–6138 CH4, H2O, CO2

SWIR2 4806–4896 CO2, H2O

number of iterations, relative precision of retrieved absorbers
(σCO2 andσCH4) derived from covariance matrix, retrieved
aerosol optical thickness, retrieved aerosol load (τaer is the
retrieved optical density at the O2 A band,αaer is the aerosol
size parameter), and retrieved intensity offset. In case of a
lowered resolution, the cut-off values for the precision (crite-
rion d) are scaled by the worse average precision. The draw-
back of filtering the data in this manner is that the number of
data points varies for runs at different spectral resolution. We
therefore added a filter method for which the same retrievals
were selected for every resolution at a given TCCON station
(see Sect.3.1).

GOSAT spectra affected by cirrus optical thickness (COT)
larger than about 0.02 can be rejected a priori with the ap-
proach presented byGuerlet et al.(2013). For synthetic sce-
narios, the input COT was therefore reduced accordingly (see
Sect.3.4).

2.2 GOSAT spectra and spectral degradation
approaches

Table 1 summarizes the four spectral windows covered by
GOSAT observations that are used by our retrieval algorithm.
The spectral ranges will be kept fixed throughout the study.

The instrument line shapes (ILS) of the GOSAT spectra
and of the two different degradation approaches are illus-
trated in Fig.1. An example of a GOSAT spectrum (SWIR1a
window from 6170 to 6277.5 cm−1) at original (black line)
and at 1.5 cm−1 resolution (red line) is shown in Fig.2. The
first approach consisted of convolving the GOSAT spectra
with a Gaussian instrumental line shape of a FWHM broader
than the original FWHM. The effective FWHM of the result-
ing ILS was then considered the spectral resolution of the
degraded spectrum. The broader the FWHM of the convo-
lution compared to the GOSAT ILS, the closer the new line
shape resembles a Gaussian shape (see red line in Fig.1).
The retrieval is not limited to any specific line shape, since
the forward model spectrum is subjected to the same con-
volution before it is compared to the degraded input spec-
trum. As an independent degradation approach, we truncated
the original interferograms with a five-times smaller opti-
cal path distance than the default. This is mathematically
equivalent to convolving the spectrogram with a sinc ILS
(see dashed blue line in Fig.1). The effective FWHM of the
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Fig. 1. Instrument line shapes for three different resolutions. Black
line: GOSAT resolution, blue dashed line: truncated interferogram
(effective FWHM = 1.2 cm−1), and red line: GOSAT ILS convolved
with a Gaussian distribution (effective FWHM = 1.5 cm−1).

truncation approach amounts to 1.2 cm−1. For the convolu-
tion approach, the oversampling ratio was 2.5 for all win-
dows, for the original GOSAT spectra and the truncation ap-
proach it was 1.0. Varying the oversampling ratio between
1.0 and 3.0 for the convolution approach did not notably af-
fect the retrieval accuracy beside shifting the global bias (by
0.2 % at most).

The two approaches reflect different instrument concepts.
Convolution with a Gaussian distribution emulates the instru-
ment properties of a grating spectrometer as employed for
OCO, Sentinel-5, and CarbonSat, whereas the truncated in-
terferogram provides the spectral reflectance from a Fourier
transform spectrometer. The second approach also allowed
us to verify that the decrease in retrieval accuracy is driven
by the spectral resolution and does not depend on the degra-
dation method. After this verification, the first approach was
chosen as default method for the rest of the study.

The measurement noise of the degraded spectra were de-
duced from the measurement noise of the original GOSAT
measurement. No extra noise was added to the degraded
spectra. The measurement uncertainty of each spectral point
is needed at all resolutions to invert the spectra. For GOSAT
spectra, the SNR is 300, defined under conditions of a dif-
fusive reflectivity of 30 % at a solar zenith angle (SZA) of
30◦ (Kuze et al., 2009). The measurement uncertainty of the
spectrum is derived from this SNR assuming a shot-noise-
limited instrument model. The SNR of the degraded spectra
is scaled from the original spectra by interpreting the convo-
lution as a running average over the spectrum. This implies
the same optical throughput of the instrument per pixel in-
dependent of the sampling. Since the absolute uncertainty of
the original spectrum is almost constant against wavenumber,
quadratic error propagation leads to
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Fig. 2. Spectral intensity in the SWIR1a window, for GOSAT reso-
lution (black) and for a spectrum convolved to FWHM = 1.5 cm−1

resolution (red).

σdeg= σ

√
FWHM

FWHMdeg
(1)

for the measurement uncertainty of the degraded spectrum.
This ensures that the square sum of fit residuals as well as
the precision of the retrieved CO2 and CH4 columns do not
vary by more than a factor of two for all spectral resolu-
tions. For the spectra generated from the truncated interfer-
ogram, the measurement error was estimated from GOSAT
level-1 processing. From the measurement uncertainties, the
typical relative precision of retrieved columns calculated to
σCO2 = 0.2 % andσCH4 = 0.4 % for GOSAT resolution. For
the lowest spectral resolution of 1.5 cm−1, the precision de-
creased toσCO2 = 0.3 % andσCH4 = 0.6 %. These values were
only relevant for the a posteriori filter criteria. The system-
atic errors, assessed with TCCON measurements and simu-
lations, usually exceeded the precision. In this manuscript we
focus on systematic errors as this error source is the most rel-
evant for the targeted application areas (e.g.Basu et al., 2013,
and references therein). Systematic errors can be divided into
smoothing errors, model parameter errors (e.g. spectroscopy
errors), forward model errors due to the imperfect treatment
of scatterers, and interference errors. This distinction follows
Sussmann and Borsdorff(2007). They define interference as
an error introduced by additional physical quantities that are
retrieved together with the target species. The most promi-
nent examples are other molecules, i.e. H2O and CH4 for a
CO2 retrieval. In measurements, interference errors of course
coexist with other error sources but synthetic measurements
allow disentangling some of them (see Sect.3.4).

2.3 Selection of data sets

We prepared and evaluated three data sets for this study.

Atmos. Meas. Tech., 7, 1105–1119, 2014 www.atmos-meas-tech.net/7/1105/2014/
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1. All GOSAT observations between April 2009 and
May 2011 that are collocated in space and time (within
5◦

× 5◦ and 2 hours) with ground-based observations
of the TCCON network.

2. The same 25 months, but for all of Europe and north-
ern Africa without TCCON reference values. This
comprises roughly 12 000 GOSAT observations. We
chose these regions for their high variability in so-
lar zenith angle and albedo (including partly snow-
covered scenes and desert).

3. An ensemble of 11 036 simulated GOSAT observa-
tions for all four seasons and for the entire land sur-
face, set up byButz et al.(2012).

In all three cases, we retrieved the column densities of CO2
and CH4 with our full-physics retrieval from the GOSAT
spectra at the original resolution. Then, we degraded the
spectra to lower resolutions of 0.5, 1.0, and 1.5 cm−1 and
repeated the retrieval.

Elaborating on the first publication byButz et al.(2011) on
GOSAT retrievals with the RemoTeC algorithm,Guerlet et
al. (2013) prepared sets of GOSAT data for 12 TCCON sites,
spanning 2 years. The GOSAT data are collocated to TCCON
measurements, i.e. they coincide with each other in space
and time. The authors tested two different collocation crite-
ria: the straight-forward spatio-temporal collocation required
that a GOSAT measurement be sampled at a time within 2
hours of a TCCON measurement and at a geolocation less
than 5◦ from the TCCON station. A more refined collocation
criterion was based on a larger geolocation (±7.5◦ in lati-
tude and±22.5◦ in longitude) box and model fields (Basu
et al., 2013) of CO2. Only those GOSAT data were kept for
which the modelled XCO2 is close to the modelled value at
the TCCON station (less than 0.5 ppm difference). For the
present study, we decided to apply the first collocation cri-
terion as the second criterion depends critically on the CO2
model fields and cannot be directly translated to a CH4 col-
location criterion. Furthermore, we concentrated on the six
TCCON stations where we had more than 100 collocated
measurements. These are the stations at Park Falls (USA),
Lamont (USA), Orléans (France), Białystok (Poland), Dar-
win (Australia), and Wollongong (Australia). Our results can
thus be compared to the previous publications byGuerlet et
al. (2013) on CO2 retrievals and bySchepers et al.(2012) on
CH4 retrievals.

The CO2 and CH4 columns observed with TCCON have
been calibrated with other data sets (Wunch et al., 2010).
We therefore considered them as the best available refer-
ence values. Nevertheless, relying only on comparisons at
TCCON stations to check retrieval accuracy has a few draw-
backs. First, TCCON stations are concentrated in the North-
ern Hemisphere and do not cover the entire range of rele-
vant parameters, e.g. the ground albedo (Guerlet et al., 2013).
Second, the statistics necessary for correlation studies and to

assess inter-station biases are limited because only six TC-
CON stations offer a reasonably large amount of collocated
TCCON and GOSAT observations since the start of GOSAT
in 2009. Third, any definition of collocation is somewhat ar-
bitrary (as discussed byGuerlet et al., 2013). Therefore, we
also introduced data sets 2 and 3 and studied the relative
changes of retrieved CO2 and CH4 for the whole European
continent (offering many more data points) and the retrieval
accuracy without spectroscopic errors for the case of syn-
thetic data.

3 Results

This section provides the results for the different data sets de-
fined in Sect.2.3. We first present the comparison of GOSAT
retrieval results and TCCON reference values for different
spectral resolution (Sect.3.1). This step also serves to ver-
ify that our results agree with previous work on GOSAT re-
trievals. We then proceed with two further approaches, de-
grading only single spectral windows (Sect.3.2) and using
a wider observation range without TCCON reference values
(Sect.3.3). Section3.4 on synthetic spectra completes the
results section.

3.1 Retrievals at TCCON stations

Following previous studies on GOSAT retrieval performance
(Butz et al., 2011; Morino et al., 2011; Parker et al., 2011;
Wunch et al., 2011b; Reuter et al., 2011; Schepers et al.,
2012; Oshchepkov et al., 2013; Guerlet et al., 2013) we rely
on results obtained at TCCON stations to assess retrieval ac-
curacy in absolute terms. The main drawback for this ap-
proach is that only a small fraction of all GOSAT measure-
ments can be used for such an assessment. We therefore
check if the results observed at the six TCCON stations (Park
Falls, Lamont, Orléans, Białystok, Darwin, and Wollongong)
in this section can be reproduced when we extend the obser-
vations beyond TCCON locations (Sect.3.3).

Tables2 and3 summarize the results for our nominal fil-
ter method (Guerlet et al., 2013) for CO2 and CH4, respec-
tively. We used the same filter method asGuerlet et al.(2013)
to compare our results to previous work. Because the filter
criteria were identical at all spectral resolutions, the number
of included retrievals varied with resolution. The number of
converged retrievals (in total and also the fraction inside the
filter) dropped by up to 25 % when the spectra were degraded
from GOSAT resolution down to 1.5 cm−1. This decrease
is not a necessary consequence of lower spectral resolution
since convergence rates depend on the assumed measure-
ment uncertainty. The truncation approach with a FWHM
of 1.2 cm−1 implies slightly larger measurement uncertain-
ties. As a result, it yielded convergence rates similar to the
original GOSAT retrievals. The varying number of retrievals
may pose a problem for interpretation: any filter that reduces

www.atmos-meas-tech.net/7/1105/2014/ Atmos. Meas. Tech., 7, 1105–1119, 2014
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Table 2. Retrieval performance for XCO2 with respect to TCCON results, PF: Park Falls, LA: Lamont, OR: Orléans, BI: Białystok, DA:
Darwin, WO: Wollongong. For each spectral resolution, the three rows denote from top to bottom: number of filtered retrievals, scatter, and
bias. The bias and scatter are given as relative deviation from TCCON results in percentages %.

Station PF LA OR BI DA WO Total

GOSAT 307 654 201 155 125 192 1634
(0.24 cm−1) 0.58 0.49 0.53 0.62 0.75 0.94 〈σ 〉 = 0.65

−0.64 −0.66 −0.76 −0.64 −0.41 −0.07 〈b〉 = −0.53,σb = 0.22

FWHM = 0.5 cm−1, 272 545 182 127 209 163 1498
convolution 0.62 0.55 0.65 0.75 0.69 0.99 〈σ 〉 = 0.71

−0.87 −0.88 −1.01 −0.87 −0.71 −0.33 〈b〉 = −0.78,σb = 0.20

FWHM = 1.0 cm−1, 258 521 166 115 124 156 1340
convolution 0.80 0.65 0.83 0.99 0.89 1.13 〈σ 〉 = 0.88

−0.59 −0.49 −0.75 −0.68 −0.3 +0.10 〈b〉 = −0.46,σb = 0.27

FWHM = 1.2 cm−1, 187 660 N/A N/A N/A N/A
truncation 0.88 0.76

−0.94 −0.67

FWHM = 1.5 cm−1, 239 460 127 95 127 146 1194
convolution 0.94 0.69 0.91 1.05 1.01 1.23 〈σ 〉 = 0.97

−0.51 −0.21 −0.63 −0.55 −0.03 +0.26 〈b〉 = −0.28,σb = 0.32

Table 3.Retrieval performance for XCH4 with respect to TCCON results. Same format as Table2.

Station PF LA OR BI DA WO Total

GOSAT 265 642 179 144 125 186 1541
(0.24 cm−1) 0.76 0.76 0.77 0.78 0.84 1.21 〈σ 〉 = 0.85

−0.33 −0.20 −0.43 −0.40 −0.43 −0.17 〈b〉 = −0.33,σb = 0.11

FWHM = 0.5 cm−1, 252 540 167 115 109 162 1345
convolution 0.80 0.80 0.92 0.80 0.77 1.25 〈σ 〉 = 0.89

−0.71 −0.55 −0.91 −0.98 −0.72 −0.67 〈b〉 = −0.76,σb = 0.17

FWHM = 1.0 cm−1, 267 520 152 106 124 159 1328
convolution 0.93 0.84 1.01 0.90 0.85 1.30 〈σ 〉 = 0.97

−0.69 −0.61 −1.09 −1.17 −0.60 −0.70 〈b〉 = −0.81,σb = 0.27

FWHM = 1.2 cm−1, 190 664 N/A N/A N/A N/A
truncation 0.90 0.80

−0.28 −0.44

FWHM = 1.5 cm−1, 250 466 121 88 127 149 1201
convolution 1.00 0.94 1.21 0.92 0.89 1.23 〈σ 〉 = 1.03

−0.59 −0.44 −1.16 −1.19 −0.55 −0.60 〈b〉 = −0.76,σb = 0.34

the number of considered retrievals based on fit quality (e.g.
residuals, precision, or amount of scatterers) excludes pre-
dominantly difficult retrievals with a larger error. By using
tighter filter criteria, the error scatter of the remaining re-
trievals can thus be improved at the expense of number of
retrievals. To compare the retrieval accuracy derived with
two different algorithms or at different spectral resolutions,
the number of included retrievals should always be the same.
We therefore added Tables4 and5 for a more stringent fil-
ter. Here, we culled the filtered data sets to those retrievals

that pass the criteria for all resolutions. This gives an un-
biased impression on the relative performance degradation
with spectral resolution.

Tables2–5 list the retrieval performance for XCO2 or
XCH4 for all six TCCON stations (columns) and for all spec-
tral resolutions (rows). The three numbers in a cell indicate,
from top to bottom, the number of converged retrievals in-
side the filter, the standard deviation of relative retrieval er-
rors compared to TCCON reference values in percentage,
and the median of the relative retrieval error in percentage.
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The second number will be referred to as scatterσ , the last
number will be referred to as biasb. The last column summa-
rizes the performance for all six TCCON stations, indicating
total number of retrievals, average scatter〈σ 〉, average bias
〈b〉, and the inter-station biasσb. The latter is the standard
deviation of the six biases, weighted by the inverse of the
scatter at each station.

The main effect of the lower resolution on XCO2 accuracy
is the increase in error scatter. It increases continuously with
decreasing spectral resolution by a factor of 1.5 from GOSAT
resolution to the 1.5 cm−1 resolution. This holds true for both
data selection methods (last columns in Tables2 and4). The
increase of the XCH4 error scatter is more modest. For the
filter method used byGuerlet et al.(2013), 〈σ 〉 increased
from 0.85 to 1.03 % (last column in Table3), and for the
reduced number of retrievals (Table5), 〈σ 〉 increased from
0.81 to 0.97 %. The average retrieval bias of XCO2 changed
in a seemingly random pattern by a few 0.1 %s for each step
to lower resolution, whereas the inter-station biasσb hardly
increased from typically 0.2 to 0.3 %. For XCH4, the change
in mean bias by−0.4 % appeared at all lower resolutions ex-
cept for the truncation approach (but even here, a negative
shift was observed).

The bias shift of CH4 is reminiscent of the study byGalli
et al. (2012) done for the 4190–4340 cm−1 spectral range.
They showed that degrading TCCON spectra from a resolu-
tion of 0.02 to 0.45 cm−1 introduces a CH4 retrieval bias of
0.5 %. The results in Tables2 and3 are also consistent with
Petri et al.(2012), who compared the measurement accuracy
of the TCCON interferometer to a lower resolution interfer-
ometer with a FWHM of 0.11 cm−1. They found that reduc-
ing the resolution of TCCON spectra introduced an XCH4
offset of 0.26 %, whereas it was negligible for XCO2. The
authors speculated that this dependence on spectral resolu-
tion is caused by inaccurate prior profiles and/or inaccurate
spectroscopy of CH4 or interfering gases. Moreover,Petri et
al. (2012) estimated the error scatter of retrieved CO2 and
CH4 columns from the daily standard deviation of individual
measurements. It was larger for the lower-resolution spec-
trometer than for the TCCON-type of instrument. The rel-
ative increase amounted to a factor of 1.4 for XCO2 and a
factor of 1.9 for XCH4. This increase is not identical to our
results, since the spectral resolution, the retrieval ranges and
the observation geometry (backscattered sunlight in contrast
to the direct, ground-based solar observations considered by
Petri et al., 2012, andGalli et al., 2012) differ. Nonetheless,
substantially degrading the resolution of a spectrum seems to
have the general effect of increasing the standard deviation of
retrieval errors and of introducing bias shifts on the order of
several 0.1 %s. Contrary to XCH4, no general trend of XCO2
biases with lower spectral resolution can be established.

For the collocation criterion used in our study,Guerlet
et al. (2013) found (their Table 2, right column)〈b〉 =

−0.36 % and〈σ 〉 = 0.65 % (2.5 ppm) for 12 TCCON stations
between April 2009 and December 2010 for XCO2. This

agrees well with the values in Table2 of 〈b〉 = −0.53 % and
〈σ 〉 = 0.65 %. The small change in bias is due to the TCCON
reference values. In October 2012, an improved TCCON
data release became available onhttp://tccon.ipac.caltech.
edu/ (software version GGG2012 instead of GGG2009). In
this paper we used these more recent values, whereas the
values presented byGuerlet et al.(2013) refer to the older
version GGG2009. The only notable difference between old
and new TCCON results is a constant shift of XCO2 by
−0.125 %.Guerlet et al.(2013) derived an inter-station bias
of 0.24 %, defined as standard deviation of the 12 biases
weighted by the scatter at each station. In our study, the inter-
station bias shows little sensitivity, increasing only from 0.22
to 0.32 % as spectral resolution decreases.

In contrast toGuerlet et al.(2013), Butz et al. (2011)
also compared XCH4 results of GOSAT retrievals to TC-
CON values. They used the same six TCCON stations as
in this study but their database only extended to summer
2010, and their results were obtained with an older version
of the RemoTeC software. Nevertheless, their mean scatter of
0.015 ppm (parts per million; 0.85 % relative error) and mean
bias of−0.34 % agree well with our study (〈σ 〉 = 0.85 % and
〈b〉 = −0.33 % according to Table3). The increase of inter-
station bias with lower resolution is statistically significant
at a 99.5 % confidence level for both data filtering methods
(Tables3 and 5). For a larger set of 12 TCCON stations,
Schepers et al.(2012) found a larger (at GOSAT resolu-
tion) inter-station XCH4 bias ofσb = 0.24 %, whereas their
〈σ 〉 = 0.95 % and〈b〉 = −0.37 % are similar to this study.

The method of spectral degradation (i.e. convolution ver-
sus truncation) did not affect the retrieval performance: the
error scatter of CO2 and CH4 columns for the truncation
method (fourth row in Tables4 and5) fits well to the results
for similar resolutions (third and fifth rows of same tables).
The only change is seen in the global bias. We also exam-
ined if the correlation of retrieval errors with light path and
atmospheric parameters are comparable if identical retrievals
from Park Falls and Lamont are selected. For both CO2 and
CH4, the dependency of retrievals on water, SZA, and albedo
for the truncated interferograms followed exactly the trend
set by the convolution retrievals at similar resolutions. This
is demonstrated by Fig.3 for the water dependency: over the
range from 0 to 2× 1023 H2O molecules cm−2, the XCO2
retrieval error increases by 1.18 % for 1.0 cm−1, 1.10 % for
1.2 cm−1, and by 1.54 % for 1.5 cm−1 (the results for the con-
volution approach correspond to the blue curve in Fig.4).
For the rest of this work, we will therefore concentrate on
the convolution approach.

To study the dependence of CO2 and CH4 retrieval er-
rors on physical parameters, we calculated linear regressions
of the retrieval differences (with respect to TCCON refer-
ence values) as a function of atmospheric water abundance,
air mass, surface albedo at the SWIR1b window, retrieved
aerosol optical thickness at the O2 A band, and aerosol
size parameter (1/αaer). The air mass of an observation is
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Table 4.Retrieval performance for XCO2 with respect to TCCON results, same format as Table2, but the data were reduced to the identical
retrievals for all resolutions.

Station PF LA OR BI DA WO Total

GOSAT 117 364 108 80 92 105 866
(0.24 cm−1) 0.53 0.44 0.46 0.59 0.60 0.82 〈σ 〉 = 0.57

−0.70 −0.63 −0.82 −0.74 −0.43 −0.07 〈b〉 = −0.57,σb = 0.24

FWHM = 0.5 cm−1, 117 364 108 80 92 105 866
convolution 0.62 0.49 0.55 0.61 0.65 0.89 〈σ 〉 = 0.64

−0.97 −0.81 −1.12 −1.04 −0.72 −0.32 〈b〉 = −0.83,σb = 0.25

FWHM = 1.0 cm−1, 117 364 108 80 92 105 866
convolution 0.76 0.56 0.74 0.82 0.78 1.06 〈σ 〉 = 0.79

−0.67 −0.44 −0.75 −0.82 −0.21 +0.08 〈b〉 = −0.47,σb = 0.31

FWHM = 1.2 cm−1, 117 364 N/A N/A N/A N/A
truncation 0.79 0.60

−0.84 −0.62

FWHM = 1.5 cm−1, 117 364 108 80 92 105 866
convolution 0.84 0.62 0.86 0.93 0.85 1.15 〈σ 〉 = 0.88

−0.55 −0.20 −0.55 −0.59 +0.08 +0.37 〈b〉 = −0.24,σb = 0.36

Table 5.Retrieval performance for XCH4 with respect to TCCON results. Same format as Table4.

Station PF LA OR BI DA WO Total

GOSAT 102 363 98 72 92 106 833
(0.24 cm−1) 0.74 0.76 0.81 0.71 0.70 1.12 〈σ 〉 = 0.81

−0.14 −0.16 −0.46 −0.53 −0.46 −0.20 〈b〉 = −0.33,σb = 0.19

FWHM = 0.5 cm−1, 102 363 98 72 92 106 833
convolution 0.74 0.81 0.98 0.72 0.74 1.14 〈σ 〉 = 0.86

−0.64 −0.51 −1.03 −1.14 −0.75 −0.68 〈b〉 = −0.79,σb = 0.26

FWHM = 1.0 cm−1, 102 363 98 72 92 106 833
convolution 0.78 0.84 1.09 0.75 0.79 1.20 〈σ 〉 = 0.91

−0.57 −0.53 −1.15 −1.19 −0.60 −0.65 〈b〉 = −0.78,σb = 0.32

FWHM = 1.2 cm−1, 102 363 N/A N/A N/A N/A
truncation 0.79 0.80

−0.28 −0.45

FWHM = 1.5 cm−1, 102 363 98 72 92 106 833
convolution 0.80 0.94 1.19 0.82 0.84 1.24 〈σ 〉 = 0.97

−0.53 −0.42 −1.20 −1.18 −0.53 −0.65 〈b〉 = −0.75,σb = 0.36

related to the SZA and the VZA (viewing zenith angle) via
1/cos(SZA) + 1/cos(VZA). The retrieved aerosol size pa-
rameter strongly correlates with water and air mass of a re-
trieval scenario at any resolution. A dependency on those
parameters will also lead to a dependency onαaer. This is
the reason why aerosol size is being used to a posteriori fil-
ter the data (Guerlet et al., 2013). This effect may be re-
stricted to algorithms that retrieve scatterers with a few ef-
fective parameters and thus should not be interpreted as gen-
eral consequence of a lowered spectral resolution. Figures4
and 5 present the results as slope of the linear regressions

(±1σ -uncertainty) for the four different resolutions available
at all six TCCON stations. If the slope is zero within its un-
certainty, the retrieval error does not significantly depend on
the corresponding parameter. An increase in the slope with
decreasing resolution means that accuracy becomes worse
as the retrieval errors correlate more strongly with physi-
cal parameters. All slopes were evaluated to span the max-
imum parameter range that can be encountered for GOSAT
retrievals passing the a posteriori filter. These ranges are
as follows: water – from 0 to 2× 1023 molecules cm−2, air
mass – from 2.0 to 4.0, albedo – from 0.1 to 0.4, retrieved
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Fig. 3. Retrieval errors of XCO2 as a function of water content of
the atmosphere, identical filtered retrievals at Park Falls and Lam-
ont for all three resolutions. The linear regressions of XCO2 versus
water are shown as straight lines: green (1.0 cm−1 convolution ap-
proach), blue (1.2 cm−1 truncation approach), and red (1.5 cm−1

convolution).
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Fig. 4. Linear dependence of XCO2 retrieval errors on physical pa-
rameters as a function of spectral resolution. Shown are the slopes of
the linear regression of retrieval errors versus air mass (light blue),
water abundance (dark blue), surface albedo at 1.6 µm (green), re-
trieved optical thickness at the O2 A band (red), and the inverse of
the aerosol size parameter (orange).

optical thickness – from 0 to 0.25, and inverse of the aerosol
size parameter – from 1/4.7 to 1/3.0 (by definition of the
a posteriori filter). In this way, slopes for different physi-
cal parameters can be directly compared to each other. Fig-
ures4 and5 demonstrate that CO2 dependencies are gener-
ally more sensitive to spectral degradation than CH4 depen-
dencies. The only exception is the water dependency, which
becomes more pronounced for both absorbers.
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Fig. 5. Linear dependence of XCH4 retrieval errors on physical pa-
rameters as a function of spectral resolution. Same format as Fig.4.

3.2 Single-window degradation

To determine the spectral windows that are more severely
affected by spectroscopic or interference errors, we also de-
graded single windows. We repeated the retrievals at the six
TCCON stations degrading only one of the four retrieval
windows to 1.5 cm−1 resolution. The results of this selec-
tive degradation are shown in Fig.6. The upper panel shows
the change of error scatter〈σ 〉 relative to the retrieval results
at GOSAT resolution in all windows. The lower panel shows
the absolute change in bias〈b〉. The only retrievals used were
those that passed the a posteriori filters for every spectral res-
olution scenario. The total number of filtered retrievals var-
ied by up to 20 % for different scenarios and absorbers but
no clear correlation with retrieval accuracy was visible.

For XCH4, the picture is simple. Only when the SWIR1b
window (6045–6138 cm−1) was degraded, did the negative
shift in bias and the increase in scatter occur. In that case
also the dependency of retrieval error on water abundance be-
came stronger whereas the dependency remained at the level
found for original GOSAT resolution for the three other sce-
narios. This indicates that the CH4 and H2O spectroscopy in
the 1.6 µm range might still benefit from improvements. For
XCO2, the bias most markedly increased when the SWIR1a
window (6170–6277.5 cm−1) was degraded, whereas the
scatter increased to a similar extent when the SWIR1a or the
SWIR2 window was degraded.

This reflects the position of CO2 absorption lines in
SWIR1a and SWIR2 and strong CH4 absorption lines in
SWIR1b (Rothman et al., 2009). In contrast, degrading the
O2 A window had a rather small effect on the retrieved
columns. Our results imply that a degradation of the SWIR2
window does not affect XCH4 retrieval accuracy because no
CH4 absorption lines are present. Aerosol parameters were
apparently retrieved at a similar accuracy for the SWIR2
degradation scenario as for the non-degraded case, otherwise
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Fig. 6. Results for spectral degradation of single windows from
GOSAT to 1.5 cm−1 resolution, averaged over all six TCCON sta-
tions. Upper panel: change of error scatter〈σ 〉 relative to results at
GOSAT resolution, lower panel: absolute change of bias〈b〉 relative
to GOSAT resolution. Blue columns denote XCO2, orange columns
denote XCH4.

they would have affected the CH4 columns. The different
effects of SWIR1a and SWIR2 on retrieved XCO2 may be
explained by the fact that only the latter contains informa-
tion used to constrain scattering properties (strong absorption
bands sensitive to the presence of cirrus).

3.3 Europe and northern Africa – case study for
retrieval biases

In Sect.3.1, we estimated retrieval biases with respect to
water, air mass, and other parameters based on roughly
900 retrieval results, distributed over six TCCON stations.
To keep the number of tables and figures reasonable, we
limit ourselves in this section to the two extreme cases:
GOSAT resolution and 1.5 cm−1 resolution. Retrieving all
available GOSAT data across Europe and northern Africa
from May 2009 to May 2011 increases the number of re-
trievals by a factor of four and it enlarges the parameter space
(e.g. SZA and albedo). The improvement in geographic cov-
erage is illustrated in Fig.7: the dashed-dotted squares illus-
trate the±5◦ collocation boxes around the TCCON stations
Orléans and Białystok, the coloured pixels show the rela-
tive differences in percentage between GOSAT and 1.5 cm−1

Fig. 7. Maps showing the relative differences in retrieved XCO2 (top) and XCH4 (bottom) between 1.5 cm−1

and GOSAT resolution in Europe and Northern Africa from May 2009 to May 2011. Dash-dotted squares:
collocation boxes around the TCCON stations Orléans and Białystok.
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Fig. 7. Maps showing the relative differences in retrieved XCO2
(top) and XCH4 (bottom) between 1.5 cm−1 and GOSAT resolu-
tions in Europe and northern Africa from May 2009 to May 2011.
Dash-dotted squares: collocation boxes around the TCCON stations
Orléans and Białystok.

resolutions for all filtered retrievals (top panel: XCO2, bot-
tom panel: XCH4).

Table6 gives a quantitative summary of the Europe data
set with respect to scatter, global bias, and dependence on re-
trieval parameters. The negative shift for XCH4 in the lower
panel of Fig.7 evaluates to−0.4 %. This confirms our find-
ings at the six TCCON stations (cf. Tables3 and5). For both
greenhouse gases, the standard deviation of the relative dif-
ferences between the two resolutions calculates toσ ≈ 0.6%.
The root of the square sum of this standard deviation and
the one obtained for differences between GOSAT and TC-
CON results agrees with the scatter of the low-resolution
retrievals around TCCON results (roughly 1% for both ab-
sorbers according to Tables2 to 5). The most obvious ge-
ographic pattern in Fig.7 is the positive bias of both ab-
sorbers above the Sahara:〈b〉 = (0.7±0.1) % for XCO2 and
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〈b〉 = (0.5±0.1) % for XCH4. This bias is caused by the very
high albedo of these scenes (typically 0.8 at the O2 A band).
For GOSAT resolution, this bias was already demonstrated
by Schepers et al.(2012) andGuerlet et al.(2013). Our study
shows that this bias becomes stronger at lower resolution.

The relative change in XCO2 and XCH4 dependencies on
physical parameters between GOSAT and 1.5 cm−1 resolu-
tions follows the results obtained at the six TCCON stations
(see Figs.4, 5). Degrading the spectral resolution introduced
a positive XCO2 dependency on water and a negative XCO2
dependency on air mass. Table6 lists the complete results of
XCO2 and XCH4 dependencies. XCO2 results at lower reso-
lution depend on water, air mass, and aerosol size parameter.
XCH4 retrieval differences correlate with water abundance.

The combination of water and air-mass dependency results
in a seasonal bias of XCO2 differences. This is demonstrated
in Fig. 8. During summer, the water content of the atmo-
sphere is high and the air mass of the observations is lower
than in winter. The absence of a strong XCH4 dependency
on air mass probably explains why the seasonal XCH4 bias
is weaker. We fit a harmonic bias with a constant frequency
of ω = 2π/(365 days). The amplitude of this bias calculates
to 0.29 % for XCO2. The 1σ probability interval of the am-
plitude calculates from F statistics to 0.18 %. For XCH4, the
amplitude of the seasonal bias only reaches 0.11 % and is not
significant with respect to a 1σ confidence level.

3.4 Synthetic spectra

To complete the examination of spectral degradation, we
calculated synthetic spectra at GOSAT resolution and de-
graded them again to 1.5 cm−1 resolution. We did this for
the 11 036 scenarios of the global ensemble defined by
Butz et al.(2012). They cover the entire land surface at an
SZA ≤ 70◦ for four days in January, April, July, and Oc-
tober. The synthetic scenarios include a realistic range of
aerosol and cirrus optical properties. Since cirrus prefilter-
ing (see Sect.2.1) allows us to exclude GOSAT observations
with a COT larger than 0.02, we reduced the COT of all sce-
narios by a factor of 10, such that 97 % have COT< 0.02. A
second reason for this reduction was statistics: for nominal
synthetic COT, the number of retrievals passing all filters at
all resolutions and at all noise levels was not sufficient for a
statistically sound statement. Reducing the COT introduced
a small bias of +0.1 % for XCO2 and +0.2 % for XCH4.

In this section, retrieval errors represent the relative devia-
tion of the retrieved column density of CO2 and CH4 from the
true input column density. Contrary to real measurements,
synthetic retrievals are not affected by spectroscopic errors or
calibration errors. The errors that occur in synthetic retrievals
originate from interference errors or from forward model er-
rors: the treatment of scattering effects for radiative transfer
in the retrieval algorithm is much simpler than the one used
to simulate the measurement. The third source of errors is
the noise. By default, we add Gaussian distributed noise to
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Fig. 8. Seasonal biases introduced by lowering the spectral resolution. Shown are the relative differences in
retrieved XCO2 (top) and XCH4 (bottom) between 1.5 cm−1 and GOSAT resolution for all filtered GOSAT
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Fig. 8. Seasonal biases introduced by lowering the spectral reso-
lution. Shown are the relative differences in retrieved XCO2 (top)
and XCH4 (bottom) between 1.5 cm−1 and GOSAT resolutions for
all filtered GOSAT retrievals in Europe. Amplitude of harmonic fit
(black dashed lines) equals 0.0029 for CO2 and 0.0011 for CH4.

the calculated input spectrum; the noise amplitude is deter-
mined by the noise model. We reproduced GOSAT instru-
ment performance assuming a SNR of 300 at the continuum
and holding the absolute measurement uncertainty constant
at each spectral entry. In addition, we retrieved the same syn-
thetic spectra with reduced noise (SNR = 600) and without
any noise to isolate the pure forward model and interference
error in the absence of statistical errors.

The first approach with added noise is the one chosen by
Butz et al.(2012) for determining the XCH4 retrieval accu-
racy of a GOSAT-like instrument for a similar global en-
semble. They used an earlier version of the RemoTeC al-
gorithm with a different regularization scheme and found
〈σ 〉 ≈ 0.6 % for CH4 errors. The synthetic error scatter of
CH4 reaches only≈ 0.4 % in the present study because of
the lowered COT.

Figure 9 summarizes the retrieval accuracy of XCO2
(cross and plus symbols) and XCH4 (squares and circles)
for synthetic scenarios. Black symbols denote GOSAT res-
olution, red symbols denote 1.5 cm−1 resolutions. In the left
column,〈σ 〉 is shown for noiseless synthetic spectra. All four
standard deviations fall between 0.2 and 0.3 %. The XCO2
scatter increases to some extent when the spectral resolution
is lowered (from 0.20 to 0.28 %); the XCH4 scatter remains

www.atmos-meas-tech.net/7/1105/2014/ Atmos. Meas. Tech., 7, 1105–1119, 2014



1116 A. Galli et al.: Impact of spectroscopic resolution on retrieval accuracy

Table 6. Impact of lowering the GOSAT spectral resolution to 1.5 cm−1 for the European data set. “Dependency” denotes the slope of a
linear regression of retrieval errors against physical parameters over the entire parameter range (listed in the right column).

XCO2 XCH4 Parameter range

Number of filtered retrievals 3532 3340
Scatterσ (%) 0.64 0.62
Biasb (%) +0.23 −0.42

H2O dependency (%) +1.62± 0.09 +1.20± 0.09 (0. . .2)×1023 mol. cm−2

Air-mass dependency (%) −1.14± 0.06 −0.54± 0.07 2.0. . .4.0

Albedo dependency (%) +0.21± 0.07 +0.35± 0.06 0.1. . .0.4

Optical thickness dependency (%) −0.03± 0.05 −0.25± 0.05 0.0. . .0.25

Aerosol size parameter dependency (%)−1.85± 0.07 −0.45± 0.07 0.21. . .0.33

constant at 0.23 %. These small errors can be interpreted as
the limit of accuracy with the present algorithm and forward
model. This limit is of the same order of magnitude as the
retrieval precision for GOSAT spectra. The second column
shows the retrieval performance if noise is added but a very
high SNR of 600 is assumed. The third column shows the
synthetic retrieval results with a noise model representative
to GOSAT data (SNR = 300). For this nominal synthetic sce-
nario, we observe an increase of the error scatter when the
spectral resolution is lowered:〈σ 〉 of XCO2 increases from
0.40 to 0.69 %,〈σ 〉 of XCH4 almost doubles from 0.42 to
0.81 %. The errors are the combination of forward model er-
rors and statistical errors. The right column shows the re-
trieval accuracy found for GOSAT spectra at original and at
lowered resolutions.

Contrary to the scatter, the bias of synthetic retrievals also
depends on the details of the noise model, i.e. on the func-
tional dependence of SNR with albedo, SZA, and other phys-
ical parameters. Under the assumption of a constant SNR
for all synthetic observations, a negative XCH4 bias at lower
spectral resolution occurs only if noise is added to the spec-
tra. At 1.5 cm−1, the bias reaches−0.3 % for SNR = 600
and−0.5 % for SNR = 300, whereas it remains at+0.1 % at
0.25 cm−1 resolution. This behaviour resembles real GOSAT
data (see for instance Table6). The absolute XCO2 bias is
smaller than 0.2 % for any noise level and spectral resolu-
tion.

All 12 〈σ 〉 values for synthetic spectra can be directly com-
pared with each other, since we culled the results to the same
total amount of 1000 filtered retrievals. The filter method was
identical to the one employed for GOSAT measurements (cf.
Sect.2.1) with the following exceptions: The offset criterion
was dropped because we did not introduce spectral shifts or
offsets or any calibration errors when calculating input spec-
tra. The thresholds forχ2/DFS andσCO2,σCH4 were adapted
to have the same number of filtered retrievals for all synthetic
results. For a realistic noise model,χ2/DFS typically reached
0.9 (at GOSAT resolution) instead of the 2.0 encountered for
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Fig. 9. Standard deviations of relative XCO2 and XCH4 retrieval
errors for synthetic noiseless spectra (first column), for synthetic
spectra with a very high SNR of 600 (second column), for synthetic
spectra with nominal noise (third column), and for GOSAT spectra
collocated at TCCON stations (fourth column).

GOSAT spectra. This increase of the fit residuals by a factor
of two is likely caused by spectroscopic errors.

We interpret the results shown in Fig.9 as follows: if
spectroscopic errors are absent, and a perfect instrument
were available, retrieval accuracy does not notably depend
on spectral resolution. If spectroscopic errors are still absent
but a realistic noise level is introduced, lowering spectral res-
olution leads to a notable increase of scatter for both XCO2
and XCH4. With less spectral entries, the inversion problem
becomes more under-determined than at GOSAT resolution,
which increases retrieval errors. The magnitude of this ef-
fect depends on spectral resolution but also on the SNR. The
smaller the noise amplitude added to the spectra, the lower
the retrieval errors. The relative increase of error scatter with
spectral resolution also depended on the filtering criteria,
but we found a relative increase of at least 30 % for both
absorbers. However, we observed no significant increase of
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error dependency on physical parameters when we compared
synthetic retrievals of the same resolution with and without
noise.

A subset of synthetic spectra with very few scatterers (op-
tical thickness below 0.05) shows a similar relative decrease
of retrieval accuracy for lower spectral resolution. For XCH4
and SNR = 300, the scatter increases from 0.26 to 0.47 % (in-
stead of 0.42–0.81 %) and the bias shifts by−0.5 %. For
XCO2 and SNR = 300, the scatter increases from 0.23 to
0.44 %. This loss of retrieval accuracy must be attributed to
interference errors because forward model errors related to
scattering are of minor importance for this subset.

Comparing synthetic retrieval results to GOSAT spectra
(right column in Fig.9) reveals a further increase of error
scatter for all four cases. The strongest effect is seen for
XCH4 at high resolution: its retrieval accuracy is two times
better in the synthetic case, i.e. 0.42 versus 0.83 %. It is in-
triguing to interpret this increase as the effect of spectro-
scopic and calibration errors. We caution the reader, however,
that comparison of simulated and real measurements might
be misleading, because the synthetic ensemble represents the
entire land surface at all seasons, whereas GOSAT measure-
ments collocated at TCCON stations represent only a small
fraction of the world (Guerlet et al., 2013). If, for instance,
the synthetic retrievals are reduced to scenes with albedo val-
ues between 0.1 and 0.35 – representing the span of albedo
values encountered at TCCON stations – then〈σ 〉 = 0.34 and
0.58 % instead of 0.42 and 0.81 % for XCH4 with default
SNR = 300. This would imply a larger contribution of spec-
troscopic and calibration errors to the total error of GOSAT
retrievals than suggested by Fig.9.

4 Conclusions

We have studied how a lower spectral resolution of satel-
lite observations affects retrieval accuracy of CO2 and CH4.
Since high spectral resolution is a cost driver for a satel-
lite mission, we also wanted to check if a resulting loss
in retrieval accuracy could be mitigated by a higher SNR.
To address these goals, we relied on GOSAT measurements
and simulated spectra at various spectral resolutions between
0.24 and 1.5 cm−1 to cover the range envisaged for future
satellite missions.

For a given resolution of the degraded spectrum, the con-
volution approach with an oversampling ratio of 2.5 and the
truncation approach with an oversampling ratio of 1.0 yield
a similar increase in scatter and decrease of correlation. The
particular shape of the ILS and the oversampling ratio are
thus of minor relevance compared to the retrieval errors in-
troduced by a reduced spectral resolution.

For CO2 retrieval performance, the continuous increase of
error scatter from〈σ 〉 = 0.65 to 0.97 % is the most notable
effect of lowering the spectral resolution step by step from
0.24 to 1.5 cm−1. This increase is the net result of several

dependencies on physical parameters (water, air mass, and
albedo). The inter-station bias between six TCCON sites in-
creases from 0.2 to 0.3 %. The convergence rate decreases by
up to 25 %, but this figure depends on the assumed measure-
ment uncertainty. The standard deviation of CH4 retrieval er-
rors increases from 0.85 to 1.03 % and the average bias drops
by 0.4 % as the resolution is lowered from 0.24 to 1.5 cm−1.
The increase of error scatter, the bias shift and the depen-
dency on physical parameters are also reproduced for 2 con-
secutive years of GOSAT measurements across Europe and
northern Africa.

Degrading single windows has shown that an increase of
error scatter and bias occurs only if those windows are de-
graded where absorption lines of the target molecules are
located. Lowering the spectral resolution in regions that are
only used to provide information on scatterers has little im-
pact on retrieval accuracy. The instrument effects in the O2
A window of GOSAT spectra (e.g. the intensity offset) do
not become obviously more detrimental to accuracy at lower
resolution.

The inversion of synthetic spectra demonstrates that for-
ward model errors (introduced by the simplified aerosol
model for retrieval) are much smaller than the error scat-
ter of retrieved XCO2 and XCH4 established from GOSAT
spectra. Moreover, lower resolution does not amplify for-
ward model errors per se. If noise is added to the spectrum,
however, the resulting interference errors become more pro-
nounced at lower spectral resolution. Part of this increase can
be considered a statistical and not a systematic error contri-
bution. Comparison of synthetic measurements and GOSAT
measurements suggests that the retrieval accuracy of CH4 at
any resolution would benefit more from a further improve-
ment of the spectroscopy than CO2.

Our study confirms that lowering the spectral resolution of
satellite observations decreases retrieval accuracy to a certain
extent for a given signal-to-noise ratio. For observations at
lower spectral resolution, accurate spectroscopy of the target
absorbers becomes of particular importance lest interference
errors dominate the retrieval performance. A countermeasure
for instruments with a lower spectral resolution than GOSAT
is to aim at a higher SNR. The impact of random detector
noise on retrievals with lower spectral resolution will also
be smaller than presented in this paper if the loss in spectral
resolution can be traded against additional measurements of
the same area over a given time period.
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