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ABSTRACT
Medical Telesurveillance needs human operator to be as-
sisted by smart information systems. Therefore automatic
determination of sound type emitted in patient’s habita-
tion may greatly increase the versatility of such a system.
Sounds are acquired through microphones set out in each
room. Detection is the first step of our sound analysis sys-
tem and is necessary to extract the significant sounds before
initiating the classification step. This paper proposes a de-
tection method using transient models, based upon dyadic
trees of wavelet coefficients to insure short detection delay.
This method is used to detect at once the beginning and
the end of the audio signal allowing signal extraction in
noisy environment. The precision of this step is important
to avoid a decrease of performances during the second step
which is the classification step. This step uses a Gaussian
Mixture Model classifier with classical acoustical param-
eters like MFCC. Detection and classification stages are
evaluated in experimental recorded noise condition which
is non-stationary and more realistic than simulated white
noise. Wavelet filtering methods are proposed to enhance
classification performances in low signal to noise ratios.
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1 Introduction

In this paper a sound detection/classification method is pre-
sented. This method has been developed as part of a med-
ical telesurvey system intended for home hospitalization.
The aim of this system is to detect a distress situation of the
patient using sound analysis. In distress case a medical cen-
ter is automatically called with the aim to give assistance
to the patient. The decision of calling is taken by a data
fusion system from smart sensors and particularly a sound
system as explained in [1]. Others sensors give information
about patient position (infrared and door contacts) and state
of health (oxymeter, tensiometer, thermometer and actime-
ter).

Each sound produced in the apartment is characteris-
tic of:

• a patient’s activity: the patient is locking the door, or
he is walking in the bedroom,

• the patient’s physiology: he his having a cough,

• a possible distress situation for the patient: a scream
or a glass breaking are suddenly appearing.

If the system has a good ability of classification for
such sounds, it will be feasible to know if the patient
is needing help. Several usual sound classes needed for
this application have been defined and a corpus has been
recorded in our laboratory.

Before sound classification, it is necessary in a first
step to establish the start and the stop time of the sound to
be classified in the environmental noise. The precision of
these two times must be sufficient to allow the classifica-
tion step good performances. In the context of audio signal
encoding, the input signal can be decomposed into “tonal”,
“transient” and “stochastic” components as described by
Daudet in [2][5]; our problem is restricted to transient de-
tection for which large wavelet coefficients are more easily
interpreted as transients.

The proposed method is based on trees of wavelet co-
efficient analysis. In case of ”transient”, a significant co-
efficient is likely coming with additional significant coeffi-
cients at the same time location and lower scale level [3].
We also present in this paper the results of sound classifi-
cation method in noisy conditions.

2 Sound extraction in noisy environment

2.1 Noise and sounds

As no everyday life sound database was available in the
scientific area, we have recorded a sound corpus. This
corpus contains recordings made in the CLIPS laboratory,
files of ”Sound Scene Database in Real Acoustical Envi-
ronment” (RCWP Japan) and files from a commercial CD:
door slap, chair, step, electric shaver, hairdryer, door lock,



dishes, glass breaking, object fall, screams, water, ringing,
etc. The corpus contains 20 types of sounds with 10 to 300
repetitions each. The test signal database has a duration of
3 hours and consists of 2376 files.

The sound classes of our corpus are described in the
following table; the number of frames for each class is
given too. Each frame has a duration of 16ms (256 samples
at 16 kHz). Signal duration varies in a 500:1 ratio. Fast
variations of the signal are related to short duration parts of
the signal (some milliseconds).

Sound Class No of Duration of
Frames Each Sound

Door Slap 47 398 140 ms-7.4 s
Breaking Glasses 9 338 330 ms-1.1 s
Ringing Phone 59 188 35 ms-10 s
Step Sound 3 648 1.4-5 s
Scream 17 509 370 ms-5.8 s
Dishes Sounds 7943 125 ms-1.35 s
Door Lock 605 24 ms-117 ms

Table 1. Sound classes

Two types of noise have been considered, the noise
registered inside an experimental apartment1, which is
named HIS noise, and stationary white noise. HIS noise is
a result of all noises in the building, he is a transient noise
similar to usual sounds to detect, but transients are partially
reduced by propagation inside the structure of the building.
This kind of noise is not a stationary noise. First investiga-
tions showed that white noise performances are not suffi-
cient to insure satisfactory performances in our actual case.

For this reason white noise study will only be used
for literature result comparison, like in Dufaux studies [4].
Evaluation of the algorithms has been made at 4 signal to
noise ratios: 0, +10, +20 and +40dB.

2.2 Transients modeling

Methods based on wavelet transforms are often used for
singularity characterization and transient detection, be-
cause of the compact support of wavelets in conjunction
of the dyadic properties of these transforms. These two
properties are allowing the analysis of reduced parts of the
processing window. The figure 1 shows a wavelet tree with
3 level depth beginning at the highest hierarchical level.
Each node is corresponding to a wavelet whose support is
drawn in frequency and time domain. For wavelets of high-
est level the support in time is twice the sampling period.

For our purpose it is not necessary to determine the
full tree corresponding to the transient, we limit our study
to these 3 levels and we characterize each tree by his en-
ergy e, the sum of the energy of all nodes. We have cho-

1The HIS apartment is located in the TIMC laboratory building
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Figure 1. Tree of wavelet coefficients for N=2048 sample
window (tree depth of 3 levels)
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Figure 2. Sound signal and Tree Energy (SNR=0dB)

sen Daubechies wavelets ψ with 6 vanishing moments to
compute DWT on 2048 sample windows (128 ms), the
wavelet basis is generated by translation and dilatation of
the mother wavelet ψ [8]:

{
ψj,n(t) =

1√
2j
ψ

(
t− 2jn

2j

)}

(j,n)∈
�

(1)

As we consider the energy e of the tree, the non significant
nodes are implicitly not taken into account because they are
negligible in the summation. With this approach the tree is
not pruned and we don’t eliminate nodes at scale 210 if their
mother node at scale 29 is not significant, but this might not
be very harmful because of the low depth of the tree.

A signal of a falling chair with HIS noise is drawn
on the bottom sub-figure of figure 2. The sound appears
at time t = 10s. The top sub-figure displays tree energy
evolution across the time. Energy corresponding to use-



ful signal is surrounded by isolated noise pulses which are
sometimes greater but useful signal is associated with nu-
merous adjacent trees and in this way could be detected.

2.3 Proposed detection algorithms

2.3.1 Detection of the beginning of the sound

This algorithm is based on several wavelet tree means.
DWT is calculated onN = 2048 sample windows (128ms)
as shown in figure 3. From this DWT the energy e of
each tree is obtained by time translation (500µs) across the
transform. The means emeans of the 64 last values is cal-
culated at each translation step in order to suppress noise
influence. Since at 16 kHz sampling rate, corresponding
width for these 64 values is 32 ms. A transient is character-
ized by a large increase of emeans.

The detection threshold th is adaptive: th = κ+ 1.2 ·
µemeans

, with µemeans
referring to the mean of the last val-

ues of emeans and κ to an adjusting parameter. The coeffi-
cient 1.2 was introduced because of remaining oscillations
on emeans.

DWT

Energy and Statistical Analysis

determination
Threshold "False" or

"True"

Detection: 

Figure 3. Detection algorithm using energy tree evaluation

2.3.2 Detection of the end of the sound

As soon as the beginning of a sound is detected in previous
step, incoming signal is recorded during a fixed duration
δ = 4 to 10 seconds. After this, recorded signal is time
inverted and previous algorithm is applied to inverted sig-
nal; due to time inversion, the detection is occurring at the
end of initial signal. The value of δ must be greater than
the maximal duration of sounds to be detected: 4 seconds
allows detection of signals shorter than 3.5 seconds, longer
signals will be cut in smaller parts.

An example of glass breaking is displayed in figure 4.
Signal can be decomposed into 3 parts: a transient part at
the beginning is followed by a stationary part before a slow
decreasing part. Signal to noise ratio is estimated from ra-
tio of energy mean during whole signal duration, therefore
SNR of this last part of signal is lower than SNR of the
whole signal. As SNR progresses last part of signal will
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Figure 4. Example of glass breaking at +40dB SNR

be truncated for this reason. Classification system is less
affected by truncated signals than by incorporated parts of
signal with only noise (see section 3.2).

2.4 Detection results

2.4.1 Beginning of sounds

Evaluation of each algorithm was done from ROC curves
giving missed detection rate (MDR) as function of false
detection rate (FDR), the Equal Error Rate (EER) being
achieved when MDR=FDR. Results for the proposed algo-
rithm and for the conditioning median filtered energy de-
scribed in [4] are given in table 2. Best results are obtained
for ”Several tree mean” for all SNR: when SNR >+10dB
EER is 0% and at 0dB SNR EER is 6.7% in the case of HIS
noise and 5.9% in the case of white noise.

Detection Method SNR HIS White
noise noise

Several tree mean 0dB 6.7% 5.9%
>+10dB 0% 0%
>+10dB 0% 0%

Filtered energy 0dB 71.3% 19.2%
-conditioning +10dB 45.2% 6.1%
median filter- +20dB 7.5% 6.1%

+40dB 6.1% 6.1%

Table 2. Detection EER, 198 tests at each SNR level (99
noised sounds, 99 pure noise)



0dB +10dB +20dB +40dB

23.6ms 13.9ms 9ms 5.5ms

Table 3. Mean of detection delay for sound duration shorter
than 2s for HIS noise (all sound classes)

In order to insure best classification results, a short
detection delay is very important. Delay means of the pro-
posed method are given in table 3 for each SNR in the pre-
vious conditions (threshold choice in order to obtain Equal
Error conditions). Only sounds of short duration (little or
equal than 2s) are considered because a same time error
will have a greater influence than for long duration sig-
nals. Highest values are obtained at 0dB SNR: 23.6ms; if
SNR>+10dB they are below 14ms. An additional part of
signal may be added without critical incidence by deciding
that signal is beginning 20 ms before detection time: it is
needed neither to cut signal nor to transmit additional noise
frames to the classification stage.

2.4.2 End of sounds

As for signal beginning determination, detection intro-
duces a delay, therefore extracted signal duration is always
shorter than initial sound duration. But as shown in ta-
ble 4 this error increases quickly with SNR decay and its
mean becomes larger than 400ms below 10dB. Classifica-
tion may not be affected because the cut part is located at
the end of the signal and its amplitude is low, moreover no
part of signal with only noise is introduced.

An example of extracted signal at +40dB SNR is dis-
played in figure 5, last part of signal with low amplitude
is detected. Cough duration is 1.094s. As SNR decreases
the end of signal will be truncated, therefore extracted sig-
nal duration will be 0.615s at +20dB, 0.586s at +10dB
and 0.442 at 0dB. The corresponding extracted signals are
shown in figure 6. In case of signal of figure 4, original
length is 752 ms, and corresponding values will become
604ms, 340ms and 211ms for same SNR.

0dB +10dB +20dB +40dB

560ms 433ms 335ms 10ms

Table 4. Duration of extracted signals in HIS noise: mean
of the spread with real value in case of signals with sound
duration shorter than 2s (all sound classes)

3 Sound Classification

We have used a Gaussian Mixture Model (GMM) method
in order to classify the sounds [9]. There are other possi-
bility for the classification: HMM, Bayesian method, etc.
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Figure 5. Extracted cough noise at +40dB SNR, detected
end value is displayed

GMM has been chosen because it procures comparable per-
formances and require low processing time.

3.1 Acoustical parameters

The first step of sound classification is acoustical parame-
ters extraction. Acoustical parameters are a synthetic repre-
sentation of time signal. Acoustical parameters classically
used in speech/speaker recognition are: MFCC(Mel Fre-
quencies Cepstral Coefficients), LFCC (Linear Frequen-
cies Cepstral Coefficients), LPC(Linear Predictive Coeffi-
cients). Acoustical parameters used in speech/music/noise
segmentation are : ZCR (zero crossing rate), RF (roll-off
point), centroid. Zero Crossing Rate (ZCR) is the number
of crossings on time-domain through zero-voltage within
an analysis frame. Roll-off Point (RF) is the frequency
which is above 95% of the power spectrum. Centroid rep-
resents the balancing point of the spectral power distribu-
tion within a frame.

3.2 GMM

The classification with a GMM method supposes that the
acoustical parameters repartition for a sound class may be
modeled with a sum of Gaussian distributions. This method
evolves in two steps: a training step and a classification
step. In the training step for each sound class the Gaus-
sian model is estimated. The training step start with a K-
Means algorithms followed by EM algorithm (Expectation-
Maximization) in 20 steps. In the classification step the
likelihood for each sound class is calculated for each acous-
tical vector. The global likelihood for each class is the ge-
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Figure 6. Extracted cough noise at 0dB SNR (a), +10dB
(b) and +20dB (c), detected end values are displayed

ometrical average of all acoustical vector likelihood. The
signal belongs to the sound class for which likelihood is
maximum.

Since identification decision is made by comparison
between average of all vector likelihood, a signal truncation
is less important than an addition of noise vectors at the
end of signal. This addition will alter average with noise
likelihood in the same ratio of number of added vectors to
number of original vectors.

3.2.1 Model Selection

The Bayesian Information Criterion (BIC) is used in this
paper in order to determinate the optimal number of Gaus-
sian [10]. BIC criterion selects the model trough the maxi-
mization of integrated likelihood: BICm,K = −2.Lm,K +
νm,K ln(n). Where Lm,K is logarithmic maximum of like-
lihood, equal to log f(x |m,K, θ̂) (f is integrated likeli-
hood), m is the model and K the component number of
model, νm,K is the number of free parameters of model m
and n is the number of frames. The minimum value of BIC
indicates the best model.

The BIC criterion has been calculated for the sound

class with the smallest number of files, for 2, 4, 5 and 8
Gaussian in case of 16 MFCC parameters. The results of
the table 5 are obtained for 16 MFCC parameters. Since
these results, a number of Gaussian between 3 and 5 seems
to correspond to the best sound modeling. We have decided
to use 4 Gaussian.

No. of
2 3 4 5 8

Gaussian

BIC 11043 10752 10743 10757 13373

Table 5. BIC for 2, 3, 4, 5 et 8 Gaussian distributions (1577
tests)

3.3 Noise attenuation

In order to increase the classification efficiency, wavelet fil-
tering is applied before sound classification. The Wavelet
Transform is more adapted to analyze and process impul-
sive signals than Fourier Transform which is adapted to pe-
riodical signals.

Two methods are tested on our test set. The general
steps of the method are : DWT calculation on 256 samples
window (7 wavelet coefficients), the application of thresh-
olds on the DWT Coefficients, DWT inverse calculation.

Thresholds are applied to the absolute value of each
Wavelet Transform coefficients. For the first method (F1)
values under the threshold are cleared and other values are
unmodified. For the second method (F2) values under the
threshold are cleared; for other values a subtraction of es-
timated noise value is made (Bi

max/10). Threshold values
for each DWT Coefficient are:





Ti = 1.2 ∗Bi
max for i 6 2

Ti = 0.9 ∗Bi
max for i = 3

Ti = 0 for i = 4 . . . 7

where Ti is the threshold applied to coefficient i of DWT
and Bi

max the maximal value of coefficient i of DWT for
the noise. The valueBi

max is estimated on the last 100ms of
signal -before the detection- which are considered to con-
tain only environmental noise.

This filtering threshold choice results from a study of
the HIS noise and sounds. The sounds contain less useful
information in the first five DWT coefficients, whereas in
the case of HIS noise almost all information is located in
low hierarchical level coefficients of DWT.

3.4 Classification results in noisy conditions

The sound classification is validated on the test set with 7
classes (the pure sounds and the sounds mixed with HIS
noise at 0 dB, 10 dB, 20 dB and 40 dB of SNR). The sound
classification performances are evaluated through the error



SNR [dB]
Filtering 0 10 20 40 > 55

Without 48.3 27.2 13.1 11.1 10.1

With F1 40 20.5 14.6 10.4 10

With F2 40.4 20.9 15.1 10.7 10

Table 6. ECR for 16MFCC+ZCR+RF+Centroid in the HIS
noise presence (1577 tests for each SNR)

classification rate (ECR) which represent the ratio between
the bad classified sounds and the total number of sounds to
be classified.

In the table 6 the classification results for 16 MFCC
acoustical parameters coupled with zero crossing rate,
Roll-off point and centroid are presented. We can observe
that for ”pure” sounds we have 10% of classification error.
In the noise conditions, the wavelet filtering give a gain, in
absolute, of 8% for the ECR. The two methods of wavelet
filtering give approximately the same results.

4 Conclusion

Extraction method presented in this paper is allowing us
to detect and classify a sound event recorded in a nursing
home. An evaluation of the proposed detection method has
been made on an adapted corpus in an experimental noisy
environment. This method introduces a low delay after sig-
nal beginning -typically 14 ms- and acceptable end of sig-
nal truncation so that link to classification step is not dis-
turbed.

Detection is error-less for 10dB SNR and upper and
classification error rate of 20% or better are reached in the
same noise conditions; according to these two results we
can conclude that this detection/classification system may
be used under realistic conditions with moderate noise.

We are working to apply proposed detection tech-
niques to speech recognition in order to allow call for help
by the patient in our medical application.

These identification methods may have possible ap-
plications in multimedia classification or security sound
surveillance.
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