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Abstract.

The geometry of cosets in the subgroupsH of the two-generator free groupG =< a, b >

nicely fits, via Grothendieck’s dessins d’enfants, the geometry of commutation for

quantum observables. Dessins stabilize point-line incidence geometries that reflect the

commutation of (generalized) Pauli operators [Information 5, 209 (2014); 1310.4267

and 1404.6986 (quant-ph)]. Now we find that the non-existence of a dessin for which the

commutator (a, b) = a−1b−1ab precisely corresponds to the commutator of quantum

observables [A,B] = AB − BA on all lines of the geometry is a signature of quantum

contextuality. This occurs first at index |G : H | = 9 in Mermin’s square and at index

10 in Mermin’s pentagram, as expected. Commuting sets of n-qubit observables with

n > 3 are found to be contextual as well as most generalized polygons. A geometrical

contextuality measure is introduced.

PACS numbers: 03.65Aa, 03.65.Fd, 03.67.-a, 02.20.-a, 02.10.Ox

MSC codes: 11G32, 81P13 ,81P45, 51A45,14H57, 81Q35

1. Introduction

Never ask for the meaning of a word in isolation, but only in the context of a

sentence (Gottlob Frege, Grundlagen der Arithmetik, 1884).

There is no quantum world. There is only an abstract quantum physical description.

It is wrong to think that the task of physics is to find out how Nature is. Physics concerns

what we say about Nature [Niels Bohr, Spoken at the Como conference, 1927].

The lack of commutativity of quantum observations gives rise to the concept of

contextuality, a kind of impossibility to recover the quanta of reality irrespectively of our

words for describing it. In a nutshell, Kochen-Specker theorem states that contextuality

is needed to reproduce all quantum mechanical predictions on a d-dimensional (d > 3)

system [1]. Since this foundational no-go theorem was discovered, many quantum

systems carrying quantum contextuality have been displayed, see [2, 3, 4] for a recent

hint. One of the most transparent contextuality proofs consist of particular sets of

observables in a four-dimensional (two-qubit) or in a eight-dimensional (three-qubit)

system, through the geometries of Mermin’s square and pentagram, respectively [5, 6].

Contextuality in such systems was shown to be experimentally testable [7].
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We recently found a mathematical scheme giving rise to the aforementioned

geometries as well as many related ones [8]-[10]. Our work is based on Grothendieck’s

great insight about the relationship between algebra, geometry and topology, called by

him dessins d’enfants [11] ‡. In the present note, the elusive ‘contextual’ geometries

are given a precise definition. We compare the (ring) commutativity of observables and

the (group theoretical) commutativity of cosets that both coordinatize the vertices of

the relevant geometry. We find that the non-existence of a dessin for which the coset

commutator (a, b) = a−1b−1ab exactly corresponds to the commutator of observables

[A,B] = AB − BA on all lines of the geometry is a convincing signature of quantum

contextuality. In this definition, contextuality arises first for 9 and 10 vertices like in

Mermin’s point-line configurations.

In Sec. 2, we shortly explain how the two-generator free group and its subgroups are

given the coset structure of a Grothendieck’s dessin d’enfant D, how a D may stabilize

a point/line geometry G, then we introduce our criterion for geometrical contextuality.

In Sec. 3, we fully explicit the algebraic/topological/geometrical meaning of small non-

trivial dessins in relation to their (non-)contextuality, including the case of Mermin’s

structures. In Sec. 4, it is shown how contextuality arises in maximum sets of commuting

operators starting with the 4-qubit case. Finally, in Sec. 5, a geometrical contextuality

measure is introduced and applied to generalized polygons.

2. Coset graphs, dessins d’enfants and finite geometries

Let F = 〈a, b〉 be the free group on two generators. Elements in the group are

words u, that are products of elements of F and their inverses modulo the only defining

relation uu−1 = e, with e the identity element. In the following, we restrict to the

free group G = 〈a, b | b2 = 1〉, which accounts for an extra involution b. The index

n := |G : H| of a subgroup H in G counts the number of cosets/copies of H that fill up

G. A right coset with respect to an element g ∈ G is defined as Hg = {hg : h ∈ H}.
The set of right cosets partitions G. In other words, every g ∈ G belongs to just one

right coset. Similar statements holds for left cosets.

A transversal is an indexed set of (right) coset representatives for H in G, and

the coset table is a way to express the action of generators a, b and of the non-trivial

inverse a−1 on them. The algorithm performing this task is the Coxeter-Todd algorithm

[13]. Under the action of a and b, the indexed coset representatives are mapped to a

two-generator permutation group P = 〈g0, g1〉. The latter corresponds to a map on a

compact orientable surface that is, a triple (g0, g1, g∞) with g0g1g∞ = 1, from which the

V vertices, E edges and F faces of the map are defined by the cycles of g0, g1 and g∞
[14, 15]. Grothendieck was enthusiastic in seing such a map as a bicolored map D, also

called an hypermap [16], with B black vertices and W white vertices, in such a way

that the adjacent vertices have always opposite color and the corresponding segments

‡ For another mathematical approach of quantum contextuality based on sheaf theory, the reader

should look at [12] and the references therein.
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are the n edges [11]. For bicolored maps derived from G, the valency of white vertices

is ≤ 2. The resulting dessin d’enfant is endowed a natural topological structure with

Euler characteristic 2− 2g = B +W + F − n, where g stands for the topological genus.

Grothendieck also recognized a dessin as an object defined over the field Q̄ of

algebraic numbers as a complex algebraic curve. Technically, given f(x), a rational

function of the complex variable x, a critical point of f is a root of its derivative and

a critical value of f is the value of f at the critical point. Let us define a so-called

Belyi function corresponding to a dessin D as a rational function f(x) of degree n

embedded into the Riemann sphere Ĉ in such a way that (i) the black vertices are the

roots of the equation f(x) = 0 with the multiplicity of each root being equal to the

degree of the corresponding (black) vertex, (ii) the white vertices are the roots of the

equation f(x) = 1 with the multiplicity of each root being equal to the degree of the

corresponding (white) vertex, (iii) the bicolored map is the preimage of the segment

[0, 1], that is D = f−1([0, 1]), (iv) there exists a single pole of f(x), i. e. a root of the

equation f(x) = ∞, at each face, the multiplicity of the pole being equal to the degree of

the face, and (v) besides 0, 1 and ∞, there are no other critical values of f . In addition,

the coefficients of Belyi functions are algebraic numbers [15].

Finally, coset graphs and the related dessins provide a coordinatization to

many point-line geometries occuring in the investigation of commutation of quantum

observables [8]-[10]. Taking the permutation group P (it identifies a dessin D)

corresponding to a subgroup H of G, one proceeds by first listing the m non-isomorphic

subgroups Sm stabilizing a pair of elements/cosets. Given a Sm, all points on a line

of the putative geometry Gm should share the same two-point stabilizer subgroup of

P . The lines of a Gm are thus distinguished by their (isomorphic) stabilizers acting on

different G-sets. Doing this, the cosets happen to coordinatize the edges of the D and,

at the same time, the vertices of the resulting geometries Gm.

Identifying commutation for cosets and for observables: contextuality

The key point, not recognized by us before, is that, not only there should exist a

bijection between a point-line geometry Gm stabilized by a dessin D and the point-line

geometry occuring in a set of quantum observables (quantum observables as cosets), but

the commutation structure in both cases should also correspond (commuting operators

on a line as commuting cosets). While the commutator [A,B] = AB−BA for observables

A and B is that for a ring, the commutator for the representative of two cosets a and

b is the group theoretical one (a, b) = a−1b−1ab. We identify a contextual geometry

as one where at least one line of p points/cosets fails to satisfy the ‘commutation law’

(a1, a2, . . . , ap) = e whatever the ordering of cosets. Observe that, in our definition of

non-contextuality, we do not ask the commutation of all pairs of cosets but that of their

product.

A few non-contextual and contextual geometries are described at the next section.

The smallest index contextual geometry is recognized to be a 3 × 3-grid (a Mermin
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square of observables) as it could have been expected.

3. From non-contextual to contextual point-line geometries

Recovering the octahedron

Let us apply our approach to a very simple geometry, that of the octahedron O
whose ‘lines’ are the triangles. There exist 56 subgroups of index 6 in G and, while

many of the corresponding dessins may be used to recover O, most of them are of the

contextual type.

Figure 1. (i) A contextual hypermap (top) stabilizing the octahedron (bottom) with

the corresponding coset labelling. The vertices of the dessin are in the extension field

Q(
√
3) as shown. The triangles with thick lines do not have all their edges indexed

with commuting cosets. (j) A non-contextual map (top) stabilizing the octahedron

(bottom). The octahedron is also given a set 3-qubit coordinates that are mutually

commuting at the vertices of a triangle.

For instance, the permutation group P1 = 〈(1, 2, 3)(4, 5, 6), (2, 4)(3, 5)〉
[where the G-set {1, 2, 3, 4, 5, 6} is an ordered set of indices for the transversal

{e, a, a−1, ab, a−1b, aba−1}] can be used to recover O as shown in Fig. 1 (i). The cosets

that serve as coordinates of the edges of the dessin and as coordinates of the vertices

of O are shown. In this setting, only the triangles above the square in O have their

coordinates satisfying the commutation law so that the dessin is of the contextual type.
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Since the dessin for P1 is of a small size, it is an easy task to derive its corresponding

Belyi curve as

f1(x) = − 1

64x3
(x− 1)3(x+ 3)2.

To see this, take the derivative f ′

1(x) = 3(x − 1)2(x + 3)2(x2 + 3)/(64x3). The critical

points are the black points at x = 1 and x = −3 ( where the valency is 3) and the white

points at x = ±i
√
3 (where the valency is 2). Then, solving the equation f1(x) = 0,

one gets of course the two solutions x = 1 and −3 corresponding to the black points

while solving for f1(x) = 1 one gets the critical (white) points at x = ±i
√
3 and the

real (white) points at x = −3±2
√
3. Hence the coordinates of vertices of the dessin are

those shown in Fig. 1 (i). The two solutions of the equation f1(x) = ∞ are x = 0 and

x = ∞, they correspond to the center of the faces.

Besides P1, there are four permutation groups P isomorphic to the group Z2 × Z6

that may be used to recover O. Two of them are tree-like as is the dessin shown

in [9, Fig. 2] and one can check that they are of the contextual type. The other

two are non-contextual as the one shown in Fig. 1 (j) where the permutation group

is P2 = 〈(1, 2, 4, 6, 5, 3), (2, 3)(4, 5)〉 [here the G-set {1, 2, 3, 4, 5, 6} is an ordered set of

indices for the transversal {e, a, a−1, a2, a−2, a3}]. The Belyi curve for this dessin is easily

found as

f2(x) =
4

27

x6

(x2 − 1)2
,

and this function allows to coordinatize the vertices of the dessin in Fig. 2 (j).

Observe that all coordinates of both dessins in Fig. 1 live in the extension field

Q(
√
3).

Recovering the n-simplex and the 2r-ortoplex

In our earlier work, we found that there exist many dessins D of index n stabilizing

the n-simplex and, when n is even (n = 2r), also stabilizing the r-orthoplex: the smallest

orthoplex structures are the square, the octahedron and the 16-cell for which r = 2, 3

and 4, respectively [10, Table 1]. The vertices in these trivial structures can always be

coordinatized in terms of single-generator cosets aq, for some q ∈ Z and |q| ≤ n/2. The

commutator of every pair of cosets is thus the identity so that the n-simplex and the

r-orthoplex are of the non-contextual type.

Recovering geometries of small index

In this line of thoughts, the first connected and non-trivial geometries that are

D-stabilizable are the bipartite graph K(3, 3), the Fano plane and the bipartite graph

K(4, 4) corresponding to the index (the number of vertices) 6, 7 and 8, respectively.

As for the graph K(3, 3) and stricto sensu, we found no dessin D built from the free

group G and that respects the non-contextual definition that the edges of the graph are
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Figure 2. (i) A non-contextual hypermap (left) stabilizing the bipartite graph K(3, 3)

(right) with the corresponding coset labelling. (j) A non-contextual map/dessin (top)

stabilizing the Fano plane (bottom). (k) A non-contextual map/dessin (left) stabilizing

the bipartite graph K(4, 4) (right) with the corresponding coset labelling. The graph

K(3, 3) and the Fano plane are given a set of two- and three-qubit coordinates,

respectively. The seven 3-qubit coordinates in the Fano plane are mutually commuting

and the product of the three coordinates on any line is the identity matrix (see Sec.

4).

defined by commuting cosets. But there exists an hypermap built on the general free

group F = 〈a, b〉 that satisfies the latter constraint as shown on Fig. 2 (i).

As for the Fano plane, there exists a map and a single-generator and non-contextual
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Figure 3. (i) A contextual map/dessin (top) stabilizing the Mermin square (bottom)

with the corresponding coset labelling. The right hand side column is defective as in

the original proof of Kochen-Specker theorem derived for two-qubit coordinates. (j) A

contextual map/dessin (top) stabilizing Mermin pentagram (bottom). The thick lines

are defective: not all of their cosets are commuting. The lines of the pentagram are

given three-qubit coordinates in such a way that the product of operators on a thick

line is minus the identity matrix, see [18] for all such configurations.

coset coordinatization shown in Fig. 2 (j). Then, a dessin d’enfant D stabilizing the

bipartite graph K(4, 4) in terms of two-generator cosets and in a non-contextual way is

shown in Fig. 2 (k).

Recovering contextual geometries

The smallest size and contextual point-line geometry (in the sense of our definition

in Sec. 2) is the (3×3)-grid, also known as Mermin’s square in honor of D. Mermin who

made use of it to prove the Kochen-Specker theorem in the four-dimensional Hilbert

space [5, 6]. There exists a unique (genus 1) map stabilizing the Mermin’s square shown

in Fig. 3 (i) (also pictured in [9, Fig. 7]). There are two subgroups S1
∼= Z1 (a single-

element group) and S2
∼= Z2 (a two-element group) stabilizing a pair of elements in the

permutation group attached to the dessin. Both stabilizer subgroups lead to Mermin

squares that are skewed to each other. The former one is non-contextual that is the

cosets on the lines/triads of the grid are commuting (not shown); the other grid is

contextual as shown at the bottom of Fig. 3 (i) in that the right column does not had

all his triples of cosets commuting. This observation establishes a striking parallel with
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the proof of the Kochen-Specker theorem based on this geometry. It does not come

as a surprise that two other D-stabilized geometries of index 9, the Pappus and Hesse

configurations, that contain the (3 × 3)-grid, are also found to be contextual. But the

multipartite graph K(3, 3, 3) admits a two-generator non-contextual dessin (not shown).

For the index ten, there are four non-trivial graph/configurations that may be D-

stabilized. The Petersen graph and the Mermin’s pentagram corresponds to two distinct

stabilizer subgroups Si, (i = 1..2) of the permutation group P for the relevant D, see

[10, Fig. 10]. Another disguise of both is the Desargues configuration that can also be

D-stabilized as shown in [10, Fig. 11]. The last D-stabilized connected structure is the

bipartite graph K(5, 5). All the four structures are contextual. In Fig. 3 (j), one plots

one of the three D-stabilized pentagrams. In the corresponding dessin, one notices that

coordinates on the right of the vertical axis are obtained from the ones at the left by

replacing a by a−1. The bold lines of the pentagram are those that are defective for the

commutativity of the cosets on them.

4. Contextuality in maximum sets of commuting observables

While maximum sets of mutually commuting observables arising from the two-

qubit and three-qubit Pauli group are non-contextual -they correspond to the triangle

and Fano plane [17] [also Fig. 2 (j)], respectively- this is no longer true for commuting

sets in the general n-qubit Pauli group, n > 3.

In the four-qubit Pauli group, such a maximum set comprises 24−1 = 15 operators

arranged as 35 triads on which the product of operators is the identity matrix. The

point/line geometry is that of the projective space PG(3, 2). We ask two questions: (i)

does it exist a dessin of index 15 stabilizing PG(3, 2)? (ii) are the coset coordinates

such that each line of PG(3, 2) has commuting cosets as its points? The answer to (i)

is yes but the answer to (ii) is definitely no, as shown below.

For recovering/stabilizing PG(3, 2), we start from a subgroup G′ of the free group

F of finite representation G′ = F/[b2 = a8 = (ba−1)7] = 1. The selected relations at

the quotient were suggested by the finite representation of the symmetric group S8.

There are four subgroups H of G′ of index 15 and permutation group P isomorphic

to the alternating group A8, of cardinality 2520. The stabilizer of one point in P is

the group PSL(2, 7) and that of a pair of points is the alternating group A4. The

geometry that arises from A4 is that of the projective space PG(3, 2). We selected the

dessin that produces as many lines as possible such that their points/cosets satisfy the

commutation law, only nine over the 35 have this property. Thus the projective space

is clearly contextual. The result is illustrated in Fig. 4 with the dessin (i) and the

corresponding three-dimensional projective space (j).

A similar methodology holds for PG(2n−1), n > 3, which is a model of a maximal

commuting set in the (n+ 1)-qubit setting.
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Figure 4. (i) A contextual hypermap/dessin stabilizing the projective space PG(3, 2).

The edges are labelled in terms of an indexed G-set and the corresponding cosets. (ii)

The projective space PG(3, 2) as a model of a 4-qubit maximal commuting set. A

few lines/triads inside are not drawn. Thick triads are such that their points are

commuting cosets.

5. Quantifying geometrical contextuality

Once one accepts that the coset structure of finite geometries induced by dessins

d’enfants may reveal a geometrical contextuality, it is tempting to arrive at a

quantification of such a contextuality. Quantifying quantum contextuality is currently

an active subject [12, 19, 20]. From our definition in Sec. 2, a contextual finite geometry

G cannot have all its lines encoded with commuting cosets. Let l be the number of lines

of G and u the number of them with commuting cosets. Thus G is contextual as soon

as l

u
> 1 so that a possible measure of contextuality is c = l−u

l
where 0 ≤ c ≤ 1 and c

vanishes for a non-contextual geometry.

Our earlier work featured a few generalized polygons [the Mermin’s square GQ(2, 1)

is the smallest one] § useful for encoding the commutation law of quantum operators in

§ A Tits generalized polygon (or generalized n-gon) is a point-line incidence structure whose incidence

graph has diameter n and girth 2n. A generalized polygon of order (s, t) is such that every line contains

s+1 points and every point lies on t+1 lines. According to Feit-Higman theorem, the finite generalized

n-gons, s, t ≥ 2, exist for n = 2, 3, 4, 6 or 8. One uses the notation GQ (for a generalized quadrangle),
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Figure 5. The generalized hexagon GH(2, 2)(a) is stabilized by the genus zero dessin

(b). Only three lines of GH(2, 2) have mutually commuting cosets (not shown).
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Figure 6. The dual of generalized hexagon GH(2, 2)(a) is stabilized by the genus one

dessin (b). Only four lines in this dual have mutually commuting cosets (not shown).

the generalized Pauli group. In such structures, the number h of geometric hyperplanes

is known ‖ and h happens to grow with the contextual parameter l
u
roughly as log2 h,

GH (for a generalized hexagon) and GO (for a generalized octagon) corresponding to n = 4, 6 and 8,

respectively.
‖ A geometric hyperplane of a generalized polygon is a proper subspace meeting each line at a unique
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as shown in Table 1.

Table 1. Geometric contextuality measure l/u (l the number of lines and u the

number of them with commuting cosets) for a few generalized polygons compared to

the base-two logarithm of the number h of hyperplanes within the selected geometry.

Geometry l u l/u log2(h) Remark

GQ(2, 1) 6 5 1.2 4 Mermin square, Fig. 3 (i)

GQ(2, 2) 15 3 5 5 two-qubit commutation [9, 10]

GQ(2, 4) 45 5 9 6 black-hole/qubit analogy [9]

GH(2, 1) 14 2 7 8 in the dual of GH(2, 2) [21]

GO(2, 1) 30 2 15 16 in GO(2, 4) [23]

GH(2, 2) 63 3 21 14 [21] and Fig. 5

dual of GH(2, 2) 63 4 15.75 14 [21] and Fig. 6

The generalized hexagon GH(2, 2)

The generalized hexagon GH(2, 2) (with 63 vertices and dually 63 lines/triads) is

an excellent geometrical model of 3-qubit contextuality [17, 18]. The hexagon GH(2, 2)

and its dual can be stabilized by dessins d’enfant. For recovering them, one can start

from a subgroup G′′ = F/[b2 = a4 = (ab)7 = (a, b)6] of the free group F . There

are just two subgroups H of G′′ of index 63 inducing a dessin with permutation

group P of order 12096. The first dessin in Fig. 5 (b) is of genus 0 and signature

(B,W, F, g) = (35, 21, 9, 0), it stabilizes GH(2, 2) shown in Fig. 5 (a) through the

stabilizer subgroup S1
∼= Z3

2 ⋊ Z2
2 . The second dessin in Fig. 6 (b) is of genus 1 and

signature (B,W, F, g) = (36, 19, 9, 1), it stabilizes the dual of GH(2, 2) shown in Fig. 6

(a) through the stabilizer subgroup S2
∼= E+

32 (the extraspecial group of order 32).

It has been recognized that the size 12096 of the automorphism group of GH(2, 2)

is also the number of 3-qubit pentagrams and is related to the number of copies of

hyperplanes in each class [18]. For this hexagon (resp. its dual), the geometrical

contextuality measure l

u
= 21 (resp l

u
= 15.75) is larger than log2 h = 14, while it

is not the case for the other polygons in the table. The hexagon GH(2, 2) can be

consided as ‘strongly contextual’ in this respect.

6. Conclusion

We provided a striking comparison between the commutativity of quantum observables

and that of cosets of subgroups of the two-generator free group. This parallel allowed

us to propose a new definition of contextuality based on the coset structure of

point or containing the whole line. The set of hyperplanes can be constructed in an efficient way by

using an addition law for the hyperplanes: the ‘sum’ of two hyperplanes is just the complement of the

symmetric difference in the relevant G-set of indices labelling the vertices of the geometry [21, 22].
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Grothendieck’s dessins d’enfants, in close correspondence with the standard quantum

one. In particular, geometric contextuality in small generalized polygons starting with

the (3×3)-grid was investigated. Further work may focus on identifying and quantifying

contextuality in higher size geometries. Since a complex algebraic curve defined over

the field Q̄ of algebraic numbers [that is a Belyi function f(x)] [11, 15] is attached to

any dessin d’enfant D, it is expected that the contextuality criterion features specific

curves through the action of the group of automorphisms Gal(Q̄/Q) of the field Q̄ (the

absolute Galois group) on dessins that would be helpful to recognize.
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