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PINNING MODEL WITH HEAVY-TAILED DISORDER

NICCOLÒ TORRI

Abstract. We study the pinning model, which describes the behavior of a Markov chain interacting
with a distinguished state. The interaction depends on an external source of randomness, called
disorder. Inspired by [2] and [11], we consider the case when the disorder is heavy-tailed, while
the return times of the Markov chain are stretched-exponential. We prove that the set of times at
which the Markov chain visits the distinguished state, suitably rescaled, has a limit in distribution.
Moreover there exists a random threshold below which this limit is trivial. Finally we complete a
result of [2] on the directed polymer in a random environment.

1. Set-up and Results

The pinning model can be defined as a random perturbation of a random walk or, more generally,
of a Markov chain called S . In this model we modify the law of the Markov chain by weighing
randomly the probability of a given trajectory up to time N. Each time S touches a distinguished
state, called 0, before N, say at time n, we give a reward or a penalty to this contact by assigning
an exponential weight exp(βωn − h), where β ∈ R+ := (0,∞), h ∈ R and (ω = (ωn)n∈N, P) is an
independent random sequence called disorder. The precise definition of the model is given below.

In this model we perturb S only when it takes value 0, therefore it is convenient to work with its
zero level set. For this purpose we consider a renewal process (τ = (τn)n∈N, P), that is an N0-valued
random process such that τ0 = 0 and (τ j − τ j−1) j∈N is an i.i.d. sequence. This type of random
process can be thought of as a random subset of N0, in particular if S 0 = 0, then by setting τ0 = 0
and τ j = inf{k > τ j−1 : S k = 0}, for j > 0, we recover the zero level set of the Markov chain S .
From this point of view the notation {n ∈ τ} means that there exists j ∈ N such that τ j = n. We
refer to [1, 9] for more details about the theory of the renewal processes.

In the literature, e.g. [7, 10, 9], typically the law of τ1, the inter-arrival law of the renewal process,
has a polynomial tail and the disorder has finite exponential moments. In our paper we study the
case in which the disorder has polynomial tails, in analogy with the articles [2] and [11]. To get
interesting results we work with a renewal process where the law of τ1 is stretched-exponential (cf.
Assumptions 1.2). Possible generalizations will be discussed in Section 7.

1.1. The Pinning Model. In this paper we want to understand the behavior of τ/N ∩ [0, 1] =
{τ j/N : τ j ≤ N}, the rescaled renewal process up to time N,when N gets large.

We denote by PN the law of τ/N∩[0, 1], which turns out to be a probability measure on the space
of all subsets of {0, 1/N, · · · , 1}. On this space, for β, h ∈ R we define the pinning model Pω

β,h,N
as a
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probability measure defined by the following Radon-Nikodym derivative

dPω
β,h,N

dPN

(I) =
1

Zω
β,h,N

exp
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
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
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

N−1
∑

n=1

(βωn − h)1(n/N ∈ I)

















1(1 ∈ I), (1.1)

where Zω
β,h,N

is a normalization constant, called partition function, that makes Pω
β,h,N

a probability.
Let us stress that a realization of τ/N ∩ [0, 1] has non-zero probability only if its last point is equal
to 1. This is due to the presence of the term 1(1 ∈ I) in (1.1). In such a way the pinning model is a
random probability measure on the space X of all closed subsets of [0, 1] which contain both 0 and
1

X = {I ⊂ [0, 1] : I is closed and 0, 1 ∈ I} (1.2)

with support given by X(N), the set of all subsets of {0, 1/N, · · · , 1} which contains both 0 and 1.

The pinning model Pω
β,h,N

is a random probability measure, in the sense that it depends on a
parameter ω, called disorder, which is a quenched realization of a random sequence. Therefore in
the pinning model we have two (independent) sources of randomness: the renewal process (τ, P)
and the disorder (ω, P). To complete the definition we thus need to specify our assumptions about
the disorder and the renewal process.

Assumption 1.1. We assume that the disorder ω is an i.i.d. sequence of random variables whose

tail is regularly varying with index α ∈ (0, 1), namely

P(ω1 > t) ∼ L0(t)t−α, t → ∞, (1.3)

where α ∈ (0, 1) and L0(·) is a slowly varying function, cf. [5]. Moreover we assume that the law of

ω1 has no atom and it is supported in (0,∞), i.e. ω1 is a positive random variable. The reference

example to consider is given by the Pareto Distribution.

Assumption 1.2. Given a renewal process, we denote the law of its first point τ1 by K(n) :=
P(τ1 = n), which characterizes completely the process. Throughout the paper we consider a non-

terminating renewal process τ, i.e.,
∑

n∈N K(n) = 1, which satisfies the two following assumptions

(1) Subexponential, cf. A:

∀ k > 0, lim
n→∞

K(n + k)/K(n) = 1 and lim
n→∞

K∗(2)(n)/K(n) = 2,

(2) Stretched-exponential

∃ γ ∈ (0, 1), c > 0 : lim
n→∞

log K(n)/nγ = −c

Remark 1.3. Roughly speaking, up to local regularity assumptions (subexponentiality), we take
K(n) � e−cn

γ

. More precisely these conditions are satisfied if

K(n) ∼ L(n)
nρ

e−cn
γ

, n→ ∞, (1.4)

with ρ ∈ R and L(·) a slowly varying function, cf. Section A.

1.2. Main Results. The aim of this paper is to study the behavior of τ/N ∩ [0, 1] under the prob-
ability Pω

β,h,N
, when N gets large. To have a non trivial behavior we need to fix h > 0 (which is

actually equivalent to set h = 0 in (1.1) and consider a terminating renewal process, cf. Section 4.1)
and send β to 0 as N → ∞. If β goes to 0 too slowly (or if it does not go to 0 at all), then τ/N∩ [0, 1]
will always converge to the whole [0, 1], if it goes too fast, it will converge to {0, 1}. The interesting
regime is the following:

βN ∼ β̂Nγ−
1
α ℓ(N), N → ∞, (1.5)
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with ℓ a particular slowly varying function defined by L0 in (1.3). Under such rescaling of β and
such choice of h > 0 we prove the existence of a random threshold β̂c: if β̂ < β̂c then τ/N ∩ [0, 1]
converges to {0, 1}, while if β̂ > β̂c then its limit has at least one point in (0, 1).

To prove these facts we proceed by steps. In the first one we show that there exists a random
set around which τ/N ∩ [0, 1] is concentrated with respect to the Hausdorff distance: given two
non-empty sets A, B ⊂ [0, 1]

dH(A, B) = max

{

sup
a∈A

d(a, B), sup
b∈B

d(b, A)

}

, (1.6)

where d(z,C) = infc∈C |z − c| is the usual distance between a point and a set.

Theorem 1.4. Let (βN)N be as in (1.5). Then for any N ∈ N, β̂ > 0 there exists a random set IβN ,N

(i.e. an X-valued random variable) such that for any δ, h > 0 one has that Pω
βN ,h,N

(

dH(I, IβN ,N) > δ
)

converges to 0 as N → ∞ in probability (with respect to the disorder ω). More precisely for any

ε > 0 there exist ν = ν(ε, δ) and N̂ such that for all N > N̂

P
(

PωβN ,h,N

(

dH(I, IβN ,N) > δ
)

< e−νN
γ
)

> 1 − ε. (1.7)

The second step regards the convergence in law of IβN ,N.

Theorem 1.5. Let (βN)N be as in (1.5). Then for any β̂ > 0 there exists a random closed subset

Îβ̂,∞ ∈ X (i.e. an X-valued random variable), which depends on a suitable continuum disorder

(defined in section 2.1), such that

IβN ,N

(d)
→ Îβ̂,∞, N →∞ (1.8)

on (X, dH).

As a consequence of these Theorems, if we look at Pω
βN ,h,N

as a random probability on X, i.e. as
a random variable inM1(X, dH), the space of the probability measures on X, then Theorems 1.4
and 1.5 imply that it converges in law to the δ-measure concentrated on the limit set Îβ̂,∞.

Theorem 1.6. Let (βN)N be as in (1.5). Then for any h, β̂ ∈ (0,∞),

PωβN ,h,N

(d)
→ δÎβ̂,∞

, N → ∞ (1.9)

onM1(X, dH) equipped with the weak topology.

This concludes our results about the convergence of the random set τ/N ∩ [0, 1], now we want
to discuss the structure of its limit. We prove that there exists a critical point β̂c such that, if β < β̂c,
then τ/N ∩ [0, 1] has a trivial limit, given by {0, 1}. Otherwise, if β > β̂c, then the limit sets has
points in (0, 1).

We define the random threshold β̂c as

β̂c = inf{β̂ : Îβ̂,∞ . {0, 1}}. (1.10)

Denoting by P the law of the continuum disorder, by a monotonicity argument (cf. Section 5)
we have that

(1) If β̂ < β̂c, then Îβ̂,∞ ≡ {0, 1}, P-a.s.

(2) If β̂ > β̂c, then Îβ̂,∞ . {0, 1}, P-a.s.

Moreover the structure of β̂c is described by the following result
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Theorem 1.7. For any choice of α, γ ∈ (0, 1) we have that β̂c > 0 P-a.s., where α is the disorder

exponent in Assumption 1.1, while γ is the renewal exponent of Assumption 1.2.

By using the same technique we complete the result [2, Prop. 2.5] about the structure of βc, the
random threshold defined for the directed polymer model in a random environment with heavy tails
(we recall its definition in Section 6). Precisely

Theorem 1.8. Let βc as in (6.5), then, if P∞ denotes the law of the continuum environment,

(1) For any α ∈ (0, 1
2 ), βc > 0, P∞-a.s.

(2) For any α ∈ [1
2 , 2), βc = 0, P∞-a.s.

Remark 1.9. In [2] the value of βc was unknown for α ∈ (1/3, 1/2).

1.3. Organization of the Paper. In rest of the paper we prove the results of this section. Section
2 contains some preliminary definitions and tools that we use for our proofs. Sections 3 contains
the proof of Theorem 1.5 and Section 4 the proof of Theorems 1.4 and 1.6. In Section 5 we prove
Theorem 1.7 and then in Section 6 we recall the definition of the Directed Polymer Model, proving
Theorem 1.8. Finally in Section 7 we discuss the choice of the parameters α, γ and the future
perspectives.

2. Energy & entropy

In this section we define the random sets Iβ,N , Îβ̂,∞ and we motivate the choice of βN in (1.5).

To define the random set Iβ,N we compare the Energy and the entropy of a given configuration:
for a finite set I = {x0 = 0 < x1 < · · · < xℓ = 1} we define its Energy as

σN(I) =
N−1
∑

n=1

ωn1(n/N ∈ I) (2.1)

and its entropy as

E(I) =
ℓ

∑

k=1

(xi − xi−1)γ. (2.2)

By using these two ingredients we define

Iβ,N = arg max
I∈X(N)

(

βσN(I) − cNγE(I)
)

, (2.3)

where γ and c are defined in (2) of Assumption 1.2 and X(N) is the space of all possible subsets of
{0, 1/N, · · · , 1} containing 0 and 1.

By using (2.3) we can find the right rescaling for β: indeed it has to be chosen in such a way
to make the Energy and the entropy comparable. For this purpose it is convenient to work with a
rescaled version of the disorder. We consider (M̃

(N)
i

)N−1
i=1 the ordered statistics of (ωi)N−1

i=1 — which

means that M̃
(N)
1 is the biggest value among ω1, · · · , ωN−1, M̃

(N)
2 is the second biggest one and so on

— and (Y (N)
i

)N−1
i=1 a random permutation of { 1

N
, · · · 1 − 1

N
}, independent of the ordered statistics. The

sequence ((M̃
(N)
i
, Y

(N)
i

)N−1
i=1 recovers the disorder (ωi)N−1

i=1 . The asymptotic behavior of such sequence
is known and it allows us to get the right rescaling of β. Let us recall the main result that we need.
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2.1. The Disorder. Let us start to note that for any fixed k as N → ∞

(Y (N)
i

)i=1,··· ,k
(d)
→ (Y (∞)

i
)n=1,··· ,k, (2.4)

where (Y (∞)
i

)i∈N is an i.i.d. sequence of Uniform([0, 1]).

For the ordered statistics, from classical extreme value theory, see e.g. [14, Section 1.1], we have
that there exists a sequence (bN)N such that for any fixed k > 0, as N → ∞

(M
(N)
i

:= b−1
N M̃

(N)
i

)i=1,··· ,k
(d)
→ (M

(∞)
i

)n=1,··· ,k, (2.5)

where M
(∞)
i
= T

−1/α
i

, with Ti a sum of i independent exponentials of mean 1 and α is the exponent
of the disorder introduced in (1.3). The sequence bN is characterized by the following relation

P (ω1 > bN) ∼ 1
N
, N → ∞. (2.6)

This implies that bN ∼ N
1
α ℓ0(N), where ℓ0(·) is a suitable slowly varying function uniquely defined

by L0(·), cf. (1.3).

We can get a stronger result without a big effort, which will be very useful in the sequel. Let us
consider the (independent) sequences (M

(N)
i

)N−1
i=1 and (Y (N)

i
)N−1
i=1 and

w
(N)
i

:=















(M
(N)
i
, Y

(N)
i

)N−1
i=1 , i < N,

0, i ≥ N,
(2.7)

w
(∞)
i

:= (M
(∞)
i
, Y

(∞)
i

)i∈N, (2.8)

We can look at w(N)
= (w(N)

i
)i∈N and w(∞)

= (w(∞)
i

)i∈N as random variables taking values in S :=
(R2)N. Let us equip S with the product topology: a sequence x(N) converges to x(∞) if and only if
for any fixed i ∈ N one has limN→∞ x

(N)
i
= x

(∞)
i

. In such a way S is a completely metrizable space
and a S-valued random sequence (w(N))N converges in law to w(∞) if and only if for any fixed k, the
truncated sequence (w(N)

1 , · · · ,w
(N)
k
, 0, · · · ) converges in law to (w(∞)

1 , · · · ,w
(∞)
k
, 0, · · · ). Therefore

(2.4) and (2.5) imply that

w(N) (d)
→ w(∞), N → ∞ (2.9)

in S. Henceforth we refer to w(N) as the Discrete Disorder of size N, and to w(∞) as the Continuum
Disorder.

2.2. The Energy. Recalling (2.1) we define the rescaled discrete Energy function σ̂N : X → R+
as

σ̂N(·) = σN(·)
bN

=

N−1
∑

i=1

M
(N)
i

1(Y (N)
i
∈ ·), (2.10)

and (2.3) becomes
I Nγ

bN
β,N
= arg max

I∈X(N)

(βσ̂N(·) − cE(I)) , (2.11)

Therefore we choose βN such that

β̂N :=
bN

Nγ
βN (2.12)

converges to β̂ ∈ (0,∞). This is equivalent to relation (1.5). Since in the sequel we will study the
set I Nγ

bN
β,N

, it is convenient to introduce the notation

Îβ,N = I Nγ

bN
β,N
. (2.13)
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In particular Îβ̂N ,N
= IβN ,N .

Remark 2.1. Let us stress that the value of c is inessential and it can be included in the parameter
β̂ by a simple rescaling. Therefore from now on we assume c = 1.

It is essential for the sequel to extend the definition of Îβ,N to the whole space X equipped with
the Hausdorff metric. This generalization leads us to define the same kind of random set introduced
in (2.11) in which we use suitable continuum Energy and entropy.

We define the continuum Energy Function σ̂∞ : X→ R+ as

σ̂∞(·) =
∞
∑

i=1

M
(∞)
i

1(Y (∞)
i
∈ ·), (2.14)

where (M
(∞
i

)i∈N and (Y (∞
i

)i∈N are the two independent random sequences introduced in (2.4) and
(2.5).

Remark 2.2. Let us observe that σ̂∞(I) < ∞ for all I ∈ X, because the series
∑∞

i=1 M
(∞)
i

converges

a.s. Indeed, the law of large numbers ensures that a.s. M
(∞)
i
∼ i−

1
α as i→ ∞, cf. its definition below

(2.5), and α ∈ (0, 1).

We conclude this section by proving that σ̂N , with N ∈ N ∪ {∞}, is an upper semi-continuous
function. For this purpose, for k,N ∈ N ∪ {∞} we define the k-truncated Energy function as

σ̂
(k)
N

(·) =
(N−1)∧k
∑

i=1

M
(N)
i

1(Y (N)
i
∈ ·). (2.15)

Let us stress that the support of σ̂(k)
N

is given by the space of all possible subsets of Y (N,k), the set of
the first k-maxima positions

Y (N,k)
= {Y (N)

i
, i = 1, 2, 3, · · · , (N − 1) ∧ k} ∪ {0, 1}. (2.16)

Whenever k ≥ N we write simply Y (N).

Theorem 2.3. For any fixed k,N ∈ N∪{∞} and for a.e. realization of the disorder w(N), the function

σ̂
(k)
N

: X→ R+ is upper semi-continuous (u.s.c.).

Remark 2.4. For sake of clarity let us underline that in the Hausdorffmetric, cf. (1.6), dH(A, B) < ε
if and only if for any x1 ∈ A there exists x2 ∈ B such that |x1 − x2| < ε and vice-versa switching the
role of A and B.

Proof. Let us start to consider the case N ∧ k < ∞. For a given I0 ∈ X, let ι be the set of all points
of Y (N,k) which are not in I0. Since Y (N,k) has a finite number of points there exists η > 0 such that
d(z, I0) > η for any z ∈ ι. Then if I ∈ X is sufficiently close to I0, namely dH(I, I0) ≤ η/2, then
d(z, I) > η/2 > 0 for any z ∈ ι. Therefore, among the first k-maxima, I can at most hit only the
points hit by I0, namely σ̂(k)

N
(I) ≤ σ̂(k)

N
(I0) and this concludes the proof of this first part.

For the case N ∧ k = ∞ it is enough to observe that the difference between the truncated Energy
and the original one

sup
I∈X

∣

∣

∣

∣

σ̂∞(I) − σ̂(k)
∞ (I)

∣

∣

∣

∣

= sup
I∈X

∣

∣

∣

∣

∣

∣

∣

∞
∑

i=1

M
(∞)
i

1(Y (∞)
i
∈ I) −

k
∑

i=1

M
(∞)
i

1(Y (∞)
i
∈ I)

∣

∣

∣

∣

∣

∣

∣

≤
∑

i>k

M
(∞)
i
, (2.17)

converges to 0 as k → ∞ because
∑

i M
(∞)
i

is a.s. finite, cf. Remark 2.2. Therefore the sequence of

u.s.c. functions σ̂(k)
∞ converges uniformly to σ̂∞ and this implies the u.s.c. of the limit. �
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2.3. The entropy. Let us define

X(fin)
= {I ∈ X : |I| < ∞} (2.18)

and remark that it is a countable dense subset of X with respect to the Hausdorff Metric.

For a given set I = {x0 < x1 < · · · < xℓ} ∈ X(fin) we define the entropy as

E(I) =
ℓ

∑

k=1

(xi − xi−1)γ. (2.19)

Theorem 2.5. The following holds

(1) The entropy E(·) is strictly increasing with respect to the inclusion of finite sets, namely if

I1, I2 ∈ X(fin) and I1 ( I2, then E(I2) > E(I1),
(2) The function E : X(fin) → R+ is lower semi continuous (l.s.c.).

Proof. To prove (1) let us note that if I2 = {0, a1, x, a2, 1} and I2 = {0, a1, a2, 1}, with 0 ≤ a1 < x <

a2 ≤ 1 then E(I2)−E(I1) = (x−a1)γ+(a2−x)γ−(a2−a1)γ > 0 because γ < 1, thus aγ+bγ > (a+b)γ

for any a, b > 0. The claim for the general case follows by a simple induction argument.
To prove (2) we fix I0 ∈ X(fin) and we show that if (In)n is a sequence of finite set converging

(in the Hausdorff metric) to I0, then it must be lim infn→∞ E(In) ≥ E(I0) and by the arbitrariness of
the sequence the proof will follow.

Let I0 ∈ X(fin) be fixed and let us observe that if we fix ε > 0 small (precisely smaller than the
half of the minimum of the distance between the points of I0), then by Remark 2.4 any set I for
which dH(I, I0) < ε must have at least the same number of points of I0, i.e. |I| ≥ |I0|. In such a way
if (In) is a sequence of finite sets converging to I0, then for any n large enough we can pick out a
subset I′n of In with the same number of points of I0 such that (I′n)n converges to I0. Necessary the
points of I′n converge to the ones of I0, so that limn→∞ E(I′n) = E(I0). By using Part (1) we have
that for any n, E(In) ≥ E(I′n), so that lim infn→∞ E(In) ≥ E(I0) and the proof follows. �

We are now ready to define the entropy of a generic set I ∈ X. The goal is to obtain an extension
which conserves the properties of the entropy E on X(fin), cf. Theorem 2.5. This extension is not
trivial because E is strictly l.s.c., namely given I ∈ X(fin) it is always possible to find two sequences
(I(1)

N
)N , (I

(2)
N

)N ∈ X(fin) converging to I such that limN→∞ E(I(1)
N

) = E(I) and limN→∞ E(I(2)
N

) = ∞.

For instance let us consider the simplest case, when I = {0, 1}. Then we may consider I
(1)
N
≡ I

for any N, so that E(I(1)
N

) ≡ E({0, 1}), and I
(2)
N

the set made by 2N points such that the first N are
equispaced in a neighborhood of 0 of radius N−ε and the others N in a neighborhood of 1 always
of radius N−ε, with ε = ε(γ) small. Then I

(2)
N
→ I as N → ∞ and E(I(2)

N
) = 2N · 1/Nγ(1+ε) + (1 −

2/Nε)γ = O(N1−γ(1+ε))→ ∞ as N → ∞ if ε < (1 − γ)/γ.
In order to avoid this problem for I ∈ X we define

Ē(I) = lim inf
J→I,J∈X(fin)

E(J). (2.20)

Let us stress that Ē is nothing but the smallest l.s.c. extension of E to the whole space X, see e.g.
[6, Prop. 5 TG IV.31].

Theorem 2.6. The following hold:

(1) The function Ē(·) is increasing with respect to the inclusion of sets, namely if I1, I2 ∈ X
with I1 ⊂ I2 then Ē(I2) ≥ Ē(I1).

(2) The function Ē : X→ R+ is l.s.c. and Ē |X(fin)≡ E.
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Remark 2.7. To be more clear we recall that

Ē(I) = lim inf
J→I,J∈X(fin)

E(J) := sup
δ>0

[

inf
{

E(J) : J ∈ BH(I, δ) ∩ X(fin)\{I}
}]

, (2.21)

where BH(I, δ) denotes the disc of radius δ centered on I in the Hausdorff Metric.

If Ē(I) ∈ R such definition is equivalent to say

(a) For any ε > 0 and for any δ > 0 there exists J ∈ BH(δ, I) ∩ X(fin)\{I} such that Ē(I) + ε >
E(J).

(b) For any ε > 0 there exists δ0 > 0 such that for any J ∈ BH(δ0, I) ∩ X(fin)\{I}, E(J) >
Ē(I) − ε.

Note that (a) expresses the property to be an infimum, while (b) corresponds to be a supremum.

Proof of Theorem 2.6. We have only to prove (1). Let I, J ∈ X such that J ⊂ I. If Ē(I) = ∞ there is
nothing to prove, therefore we can assume that Ē(I) ∈ R.

Let us fix ε > 0 and δ > 0 (which will be chosen in the sequel). By (a) there exists I′ ∈ X(fin)

such that Ē(I) + ε ≥ E(I′) and dH(I, I′) < δ. By the definition of the Hausdorff metric, the family
of discs of radius δ indexed by I′ — (B(x, δ))x∈I′ — covers I and thus also J. Therefore if J′ ⊂ I′

is the minimal cover of J obtained from I′, i.e. J′ := min{L ⊂ I′ : J ⊂ ∪x∈LB(x, δ)}, then it must
hold that dH(J, J′) < δ. By Theorem 2.5 it follows that E(I′) ≥ E(J′) and thus Ē(I) + ε ≥ E(J′).
Let us consider Ē(J) and take δ0 > 0 as prescript in (b), then as soon as δ < δ0, it must hold that
E(J′) ≥ Ē(J) − ε and this concludes the proof. �

From now on in order to simplify the notation we use E instead of Ē to indicate the function E

defined on all X.

Corollary 2.8. Let I ∈ X such that E(I) < ∞. Let x < I, then E(I ∪ {x}) > E(I). It follows that the

function E is strictly increasing whenever it is finite: if I ( J and E(I) < ∞, then E(I) < E(J).

Proof. Let I ∈ X and let us assume that E(I) < ∞. Note that x < I means that there exists δ > 0
such that I ∩ (x− δ, x+ δ) = ∅ because I is closed. We consider a, b the left and right closest points
to x in I. Then the proof will follow by proving that

E(I ∪ {x}) − E(I) ≥ (x − a)γ + (b − x)γ − (b − a)γ, (2.22)

because the r.h.s. is a quantity strictly bigger than 0, since γ < 1.

To prove (2.22), we show that the result is true for any finite set in an ε-neighborhood (in the
Hausdorff metric) of I ∪ {x} and then we deduce the result for E(I), by using its definition (2.20).
Let us start to observe that for any ε small enough, if A is a set in an ε-neighborhood of I ∪ {x},
then it can be written as union of two disjoint sets D,C where D is in a ε-neighborhood of I and C

in a ε-neighborhood of {x}. In particular this holds when A is a finite set, and thus

BH(I ∪ {x}, ε) ∩ X(fin)
= {A ∈ X(fin) : A = D ∪ C, D ∈ BH(I, ε) and C ∈ BH({x}, ε)}.

Furthermore, we can partition any such D in two disjoint sets D′ = D ∩ [0, x) and D′′ = (x, 1].

For a fixed set S ∈ X , let lS be its smallest point bigger than 0 and rS its biggest point smaller
than 1. By using this notation it follows from the definition of the entropy of a finite set (2.19) that
for any such A ∈ BH(I ∪ {x}, ε) ∩ X(fin) we have

E(A) = E(D∪C) = E(D)−(lD′′−rD′)
γ
+E(C∪{0, 1})−l

γ

C
−(1−rC)γ+(lC−rD′)

γ
+(lD′′−rC)γ. (2.23)

By Theorem 2.5 we can bound E(C∪{0, 1}) ≥ l
γ

C
+ (1−rC )γ+ (rC − lC)γ. Putting such expression

in (2.22) we obtain
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E(A) = E(D ∪C) ≥
E(D) − (lD′′ − rD′)

γ
+ (lC − rD′)

γ
+ (lD′′ − rC)γ + (rC − lC)γ ≥ E(D) + e(ε),

(2.24)

where
e(ε) = inf{(lC − rD′)

γ
+ (lD′′ − rC)γ + (rC − lC)γ − (lD′′ − rD′)

γ}.
Such inf is taken among all possible D = D′ ∪D′′ ∈ BH(I, ε)∩X(fin) and C ∈ BH({x}, ε)})∩X(fin).

Finally (2.24) implies that inf E(A) ≥ inf E(D) + e(ε), where the inf is taken among all possible
A = D ∪ C ∈ BH(I ∪ {x}, ε) ∩ X(fin)\{I ∪ {x}}. By taking the limit for ε → 0 we have e(ε) →
(x−a)γ + (b− x)γ − (b−a)γ and the result follows by (2.21), since the r.h.s. of (2.24) is independent
of C. �

Proposition 2.9. For any 0 ≤ a < b ≤ 1 we have that E([a, b]) = ∞.

Proof. Let us consider the case in which a = 0, b = 1, the other cases follow in a similar way. By
Theorem 2.5 we have that E([0, 1]) ≥ E({0, 1/N, · · · , 1}) = N1−γ ↑ ∞ as N ↑ ∞ because γ < 1. �

2.4. The Energy-entropy.

Definition 2.10. For any N, k ∈ N ∪ {∞} and β ∈ (0,∞) we define, cf. (2.15) and (2.20),

U
(k)
β,N

(I) = βσ̂(k)
N

(I) − E(I). (2.25)

Note that U
(k)
β,N

is upper semi-continuous on (X, dH), a compact metric space, therefore its maxi-
mizer

û
(k)
β,N
= max

I∈X
U

(k)
β,N

(I). (2.26)

is well defined.

Whenever k ≥ N we will omit the superscript (k) from the notation.

Theorem 2.11. For any N, k ∈ N ∪ {∞}, β > 0 and for a.e. realization of the disorder w(N), the

maximum û
(k)
β,N

is achieved in only one set, i.e. the solution at

Î
(k)
β,N
= arg max

I∈X
U

(k)
β,N

(I) (2.27)

is unique. Moreover for any N ∈ N we have that Î
(k)
β,N
∈ X(N).

Proof. We claim that if I is a solution of (2.27), then by using Corollary 2.8

I ⊂ Y (N,k), if N ∧ k < ∞, (2.28)

I = I ∩ Y (∞) if N ∧ k = ∞. (2.29)

Indeed if N ∧ k < ∞ and (2.28) fails, then there exists x ∈ I such that x < Y (N,k) and this implies
σ̂

(k)
N

(I) = σ̂(k)
N

(I − {x}), but E(I − {x}) < E(I) by Corollary 2.8. Therefore U
(k)
β,N

(I − {x}) > U
(k)
β,N

(I) =

û
(k)
β,N

, a contradiction. The case N ∧ k = ∞ follows in an analogous way always by using Corollary
2.8, because the set in the r.h.s. of (2.29), which is a subset of I, has the same Energy as I but
smaller entropy. Now we are able to conclude the uniqueness, by following the same ideas used in
[11, Proposition 4.1] or [2, Lemma 4.1]: let I1, I2 be two subsets achieving the maximum. By using
(2.28) and (2.29) if I1

, I2, then there would exist Y
(N)
j

such that Y
(N)
j
∈ I1 and Y

(N)
j
< I2. Note that

if N ∧ k = ∞, by (2.29) we can assume Y
(N)
j
∈ Y (∞), so that

max
I:Y (N)

j
∈I

U
(k)
β,N

(I) = max
I:Y (N)

j
<I

U
(k)
β,N

(I) (2.30)
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and this leads to

βM
(N)
j
= βσ̂

(k)
N

(Y (N)
j

) = max
I:Y (N)

j
<I

U
(k)
β,N

(I) − max
I:Y (N)

j
∈I























β
∑

k, j:Y (N)
k
∈I

M
(N)
k
− E(I)























. (2.31)

Let us stress that the r.h.s. is independent of M
(N)
j

, which is on the l.h.s. Then, by conditioning on

the values of (M
(N)
i

)i∈N,i, j and (Y (N)
i

)i∈N we have that the l.h.s. has a continuous distribution, while
the r.h.s. is a constant, so that the event in which the r.h.s. is equal to the l.h.s. has zero probability.
By countable sub-additivity of the probability we have that a.s. I1 = I2. �

3. Convergence

The aim of this section is to discuss the convergence of Îβ̂N ,N
, (2.27), and ûβ̂N ,N

, (2.26), when

limN→∞ β̂N = β̂ ∈ (0,∞), cf. (2.12).

For technical convenience we build a coupling between the discrete disorder and the continuum
one. We recall that by (2.9) w(N) converges in distribution to w(∞) on S, a completely metrizable
space. Therefore by using Skorokhod’s representation Theorem (see [4, theorem 6.7]) we can define
w(N) and w(∞) on a common probability space in order to assume that their convergence holds
almost surely.

Lemma 3.1. There is a coupling (that, with a slight abuse of notation, we still call P) of the

continuum model and the discrete one, under which

w(N)
= (M

(N)
i
, Y

(N)
i

)i∈N
S−−−−→
P−a.s.

w(∞)
= (M

(∞)
i
, Y

(∞)
i

)i∈N, as N → ∞. (3.1)

In particular for any fixed ε, δ > 0 and k ∈ N there exists N̂ < ∞ such that for all N > N̂

P



















(N−1)∧k
∑

j=1

| M(N)
j
− M

(∞)
j
|< ε



















> 1 − δ, (3.2)

P



















(N−1)∧k
∑

j=1

| Y (N)
j
− Y

(∞)
j
|< ε



















> 1 − δ, (3.3)

3.1. Convergence Results. Let us rewrite an equivalent, but more handy definition of Î
(k)
β,N

and

û
(k)
β,N

: for a given k ∈ N let

Ck = {A : A ⊂ {1, · · · , k}} (3.4)

and for any k ∈ N, N ∈ N ∪ {∞} and A ⊂ {1, · · · , k} let Y
(N)
A
= {Y (N)

i
}i∈A ∪ {0, 1}, which is well

defined also for A = ∅. Therefore by Theorem 2.11 we can write

û
(k)
β,N
= max

A∈Ck















β
∑

i∈A

M
(N)
i
− E(YA)















,

Î
(k)
β,N
= Y

(N)

A
(k)
β,N

,

(3.5)

for a suitable random set of indexes A
(k)
β,N

(which can be empty or not). We have our first convergence
result.
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Proposition 3.2. Assume that β̂N → β̂ as N → ∞. Then for any fixed δ > 0 and k ∈ N there exists

Nk such that for any N > Nk

P

(

A
(k)
β̂N ,N
= A

(k)
β̂,∞

)

> 1 − δ. (3.6)

Proof. To prove the claim by using the sub-additivity of the probability, it is enough to prove that
for any r ∈ {1, · · · , k}

P

(

r < A
(k)
β̂N ,N
, r ∈ A

(k)
β̂,∞

)

→ 0, N → ∞, (3.7)

P

(

r ∈ A
(k)
β̂N ,N
, r < A

(k)
β̂,∞

)

→ 0, N → ∞. (3.8)

We detail the first one, the second one follows in an analogous way. On the event {r < A
(k)
β̂N ,N
, r ∈

A
(k)
β̂,∞
} we consider

û(r) := max
A∈Ck,r<A















β̂
∑

i∈A

M
(∞)
i
− E(YA)















< û
(k)
β̂,∞ (3.9)

because r ∈ A
(k)
β̂,∞ and the set that achieves the maximum is unique. Then

max
A∈Ck,r<A















β̂N

∑

i∈A

M
(N)
i
− E(YA)















≤ max
A∈Ck,r<A















β̂
∑

i∈A

M
(∞)
i
− E(YA)















+ |β̂N − β̂|
k

∑

i=1

M
(N)
i
+ β̂

k
∑

i=1

|M(N)
i
− M

(∞)
i
|

= û(r) + |β̂N − β̂|
k

∑

i=1

M
(N)
i
+ β̂

k
∑

i=1

|M(N)
i
− M

(∞)
i
| (3.10)

and in the same way, always on the event {r < A
(k)
β̂N ,N
, r ∈ A

(k)
β̂,∞},

max
A∈Ck,r∈A















β̂N

∑

i∈A

M
(N)
i
− E(YA)















≥ û
(k)
β̂,∞ − |β̂N − β̂|

k
∑

i=1

M
(N)
i
− β̂

k
∑

i=1

|M(N)
i
− M

(∞)
i
|. (3.11)

Therefore by using the assumption that r < A
(k)
β̂N ,N

we have that the l.h.s. of (3.10) is larger than the

l.h.s. of (3.11). Together with (3.9) we obtain 0 < û
(k)
β̂,∞ − û(r) ≤ 2β̂

∑k
i=1 |M

(N)
i
− M

(∞)
i
| + 2|β̂N −

β̂|∑k
i=1 M

(N)
i

, and a simple inclusion of events gives

P

(

r < A
(k)
β̂N ,N
, r ∈ A

(k)
β̂,∞

)

≤ P
















0 < û
(k)
β̂,∞ − û(r) ≤ 2β̂

k
∑

i=1

|M(N)
i
− M

(∞)
i
| + 2|β̂N − β̂|

k
∑

i=1

M
(N)
i

















. (3.12)

The proof follows by observing that the r.h.s. converges to 0 as N → ∞ by Lemma 3.1. �

The following proposition contains the convergence results for the truncated quantities Î
(k)
β̂N ,N

and

û
(k)
β̂N ,N

, cf. (2.27) and (2.26) respectively.

We introduce the maximum of U
(k)
β,N

, cf. (2.25), outside a neighborhood of radius δ of Î
(k)
β,N
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Definition 3.3. For any δ > 0, β ∈ (0,∞) we define

û
(k)
β,N

(δ) = max
I∈X:dH (I,Î(k)

β,N
)≥δ

U
(k)
β,N

(I), (3.13)

where U
(k)
β,N

is defined in (2.25).

Proposition 3.4. Assume that β̂N → β̂ as N → ∞. The following hold

(1) For every fixed δ > 0, β ∈ (0,∞) P
(

lim inf
k→∞

(û(k)
β,∞ − û

(k)
β,∞(δ)) > 0

)

= 1.

(2) For any ε, δ > 0 and for any fixed k there exists Nk such that P

(

|û(k)
β̂N ,N
− û

(k)
β̂,∞
| < ε

)

> 1 − δ,
for any N > Nk.

(3) For any ε, δ > 0 and for any fixed k there exists Nk such that P

(

dH(Î(k)
β̂N ,N
, Î

(k)
β̂,∞

) < ε
)

> 1−δ,
for any N > Nk.

(4) For any ε, δ > 0, there exist η,K > 0 and (Nk)k>K , such that P

(

û
(k)
β̂N ,N

(ε) < û
(k)
β̂N ,N
− η

)

> 1−δ,
for any k > K, and N > Nk.

Proof. We follow [2, Part (3,4) of Proof of Lemma 4.1]. By contradiction if there exists δ > 0 such
that lim infk→∞(û(k)

β,∞−û
(k)
β,∞(δ)) = 0, then we may find a sequence Ik j

such that lim sup j→∞U
(k j)
β,∞(Ik j

) ≥
lim inf j→∞ U

(k j)
β,∞(Î

(k j)
β,∞) and dH(Î

k j

β,∞, Ik j
) > δ. By compactness of the space X we can suppose that

there exists I0 ∈ X such that lim j→∞ Ik j
= I0, therefore by using the u.s.c. property of U

(k)
β,N

, cf.

Section 2.4, that for any fixed k ∈ N, Uβ,∞(I) ≥ U
(k)
β,∞(I) and U

(k)
β,∞(I) ↑ Uβ,∞(I) as k ↑ ∞, we get

Uβ,∞(I0) ≥ lim sup
j→∞

Uβ,∞(Ik j
) ≥ lim sup

j→∞
U

(k j)
β,∞(Ik j

) ≥

≥ lim inf
j→∞

U
(k j)
β,∞(Î

(k j)
β,∞) ≥ lim inf

j→∞
U

(k j)
β,∞(Îβ,∞) = Uβ,∞(Îβ,∞) = ûβ,∞, (3.14)

namely, Uβ,∞(I0) = ûβ,∞. The uniqueness of the maximizer, cf. Theorem 2.11, implies I0 = Îβ,∞.
Thus if we show that limk→∞ Î

(k)
β,∞ = Îβ,∞, then we obtain the desired contradiction, because the two

sequences (Ik j
) j and (Î

(k j)
β,∞) j are at distance at least δ therefore they cannot converge to the same

limit. By compactness of X we can assume that Î
(k)
β,∞ converges to I1. Therefore, again by u.s.c. of

Uβ,∞, we get

Uβ,∞(I1) ≥ lim sup
k→∞

Uβ,∞(Î(k)
β,∞) ≥ lim sup

k→∞
U

(k)
β,∞(Î(k)

β,∞) ≥ lim sup
k→∞

U
(k)
β,∞(Îβ,∞) = Uβ,∞(Îβ,∞). (3.15)

The uniqueness of the maximizer forces Îβ,∞ = I1 and this concludes the proof. �

To prove Part (2) we observe that

û
(k)
β̂,∞ = max

A∈Ck















β̂
∑

i∈A

M
(∞)
i
− E(YA)















≤ û
(k)
β̂N ,N
+ |β̂N − β̂|

k
∑

i=1

Mi + β̂N

k
∑

i=1

|M(∞)
i
− M

(N)
i
|, (3.16)

û
(k)
β̂N ,N
= max

A∈Ck















β̂N

∑

i∈A

M
(N)
i
− E(YA)















≤ û
(k)
β̂,∞ + |β̂N − β̂|

k
∑

i=1

M
(N)
i
+ β̂

k
∑

i=1

|M(∞)
i
− M

(N)
i
|. (3.17)

and the proof follows by Lemma 3.1 and the assumption on β̂N . �

To prove Part (3) we observe that by Lemma 3.1 for any fixed ε, δ > 0 and k ∈ N, there exists
Nk such that, for all N > Nk, P

(

d(Y (k)
i
, Y

(∞)
i

) < ε, for any i = 1, · · · , k
)

> 1 − δ/2. By Proposition
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3.2 we can furthermore suppose that for any N > Nk, P
(

A
(k)
β̂N ,N
= A

(k)
β̂,∞

)

> 1 − δ/2, cf. (3.5). The

intersection of such events gives the result. �

To prove Part (4) we prove first an intermediate result: for any given δ, ε, η > 0, and k ∈ N there
exists Nk such that

û
(k)
β̂N ,N

(ε) < û
(k)
β̂,∞(ε/4) + η/4, (3.18)

with probability larger than 1 − δ/2, for all N > Nk.
For this purpose, by Part (3), for any k > 0 there exists Nk > 0 such that for all N > Nk,

dH(Î(k)
β̂N ,N
, Î

(k)
β̂,∞) < ε4 with probability larger than 1 − δ/4. Let I be a set achieving û

(k)
β̂N ,N

(ε), so that

by definition dH(I, Î(k)
β̂N ,N

) ≥ ε. It is not difficult to see that I ⊂ Y (N,k) (points outside Y (N,k) does

not contribute to the Energy, but increase the entropy). We claim that for any η > 0 there exists
I′ ⊂ Y (∞,k) ∈ X(fin) such that dH(I′, I) < ε/2 and U

(k)
β̂N ,N

(I) ≤ U
(k)
β̂,∞(I′) + η/4 with probability larger

than 1 − δ/4 . This relation implies that û
(k)
β̂N ,N

(ε) ≤ û
(k)
β̂,∞(ε/4) + η/4, because dH(I′, Î(k)

β̂,∞) > ε/4

and (3.18) follows. The existence of I′ is explicit: we observe that I = {0, Y (N)
i1
, · · · , Y (N)

iℓ
, 1}, for a

suitable choice of indexes {i1, · · · , iℓ} ⊂ {1, · · · , k}. By using Lemma 3.1 it is not difficult to show
that we can choose I′ = {0, Y (∞)

i1
, · · · , Y (∞)

iℓ
, 1}, possibly by enlarging N.

The proof of (4) follows by observing that by Part (1), there exist η > 0 and K > 0 such that
û

(k)
β̂,∞(ε/4) ≤ û

(k)
β̂,∞ − η with probability larger than 1 − δ/4, for any k > K. This provides an upper

bound for (3.18) and Part (2) allows to complete the proof. �

Let us stress that for any fixed N ∈ N we have that Î
(k)
β̂N ,N

≡ Îβ̂N ,N
as k > N. In the following

Proposition we show that this convergence holds uniformly on N.

Proposition 3.5. The following holds

(1) For any N, k ∈ N ∪ {∞} we define

ρ
(k)
N

:= sup
I∈X

∣

∣

∣

∣
σ̂N(I) − σ̂(k)

N
(I)

∣

∣

∣

∣
=

∑

i>k

M
(N)
i
. (3.19)

Then for any ε, δ > 0 there exists K > 0 such that P(ρ(k)
N
> ε) < δ for all k > K, uniformly

on N ∈ N.

(2) P

(

lim
k→∞

Î
(k)
β̂,∞ = Îβ̂,∞

)

= 1.

(3) For any ε, δ > 0 there exists K > 0 such that P

(

dH(Î(k)
β̂N ,N
, Îβ̂N ,N

) < ε
)

> 1 − δ for all k > K,

uniformly on N.

Proof. Part (1) is similar to [11, Proposition 3.3] and actually simpler. Here we give a short sketch
of the proof. We note that if k ≥ N, then ρ(k)

N
≡ 0, therefore we can suppose k < N. For such k we

consider the "good event", like in [11, (3.8)]

B(N)
k
=

{

F−1
(

1 − 2r

N

)

≤ M̃
(N)
r ≤ F−1

(

1 − 1
N

)

, for all k ≤ r ≤ N − 1

}

. (3.20)

Then, cf. [11, Lemma 3.4] P
(

B(N)
k

)

→ 1 as k → ∞, uniformly on N. By partitioning with respect
to the "good event" and then by using Markov’s inequality, we get that for any ε > 0

P
(

ρ
(k)
N
> ε

)

≤ P
(

B(N)
k

fails
)

+ ε−1
N−1
∑

r=k

E
[

M
(N)
r ;B(N)

k

]

. (3.21)
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To conclude the proof it is enough to show that
∑N−1

r=k
E

[

M
(N)
r ;B(N)

k

]

converges to 0 as k → ∞,

uniformly on N > k. An upper bound for E
[

M
(N)
r ;B(N)

k

]

is provided by [11, Lemma 3.8]: for any
δ > 0 there exist c0, c1 and c2 > 0 such that for any 2(1 + 1/α) < k < r < N

E
[

M
(N)
r ;B(N)

k

]

≤ c0r−
1
α
+δ
+ c1b−1

N 1{r>c2n}.

This allows to conclude that there exist c′0, c
′
1 > 0 such that

N−1
∑

r=k

E
[

M
(N)
r ;B(N)

k

]

≤ c′0k−
1
α
+1+δ
+ c′1Nb−1

N .

Since α ∈ (0, 1) and Nb−1
N
→ 0 as N → ∞, cf. (2.6), we conclude that the r.h.s. converges to 0 as

k → ∞, uniformly on N > k. �

Part (2) has been already proven in the proof of Part (1) of Proposition 3.4. �

Part (3) is a consequence of (4). Let us fix k such that (4) holds for any N > Nk and that
P(β̂Nρ

(k)
N
< η/4) > 1 − δ uniformly on N, cf. (3.19). In such case we claim that, for any ℓ > k and

N > Nk

dH(Î(k)
β̂N ,N
, Î

(ℓ)
β̂N ,N

) < ε, (3.22)

with probability larger than 1 − 2δ. Otherwise if dH(Î(k)
β̂N ,N
, Î

(ℓ)
β̂N ,N

) ≥ ε for some ℓ > k, then it holds

that
û

(ℓ)
β̂N ,N

≤ U
(k)
β̂N ,N

(Î(ℓ)
β̂N ,N

) + β̂Nρ
(k)
N
≤ û

(k)
β̂N ,N

(ε) + η/4. (3.23)

Relation (4) provides an upper bound for the r.h.s. of (3.23), giving û
(ℓ)
β̂N ,N
≤ û

(k)
β̂N ,N
− η/4 and this

is a contradiction because ℓ 7→ û
(ℓ)
β̂N ,N

is non-decreasing and thus û
(ℓ)
β̂N ,N

≥ û
(k)
β̂N ,N

. By using (3.22)

together with the triangle inequality we conclude that for any ℓ > k and N > Nk

dH(Îβ̂N ,N
, Î

(ℓ)
β̂N ,N

) < 2ε, (3.24)

with probability larger than 1 − 4δ. To conclude we have to consider the case in which N ≤ Nk.
For any such N, Î

(k)
β̂N ,N

converges to Îβ̂N ,N
as k → ∞. To be more precise, whenever k > N we have

that Î
(k)
β̂,N
= Îβ̂,N . This concludes the proof. �

3.2. Proof of theorem 1.5. The proof is a consequence of [4, Theorem 3.2], which can be written
as follows

Theorem 3.6. Let us suppose that the r.v’s X
(k)
N
, X(k), XN , X take values in a separable metric space

(S, dS) and X
(k)
N
, XN are defined on the same probability space. Then if the following diagram holds

X
(k)
N

k→∞in probability, uniformly in N

��

N→∞
(d)

// X(k)

(d) k→∞
��

XN X

then XN

(d)
→X. The expression in probability, uniformly in N means

lim
k→∞

lim sup
N→∞

P
(

dS(X(k)
N
, XN) ≥ ε

)

= 0, (3.25)

for any fixed ε > 0.
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In our case we have X
(k)
N
= Î

(k)
β̂N ,N

, X(k)
= Î

(k)
β̂,∞, XN = Îβ̂N ,N

and X = Îβ̂,∞ and by Propositions 3.4

and 3.5 the diagram above holds.

Remark 3.7. Let us stress that under the coupling introduced in Lemma 3.1 we have that in The-
orem 1.5 the convergence of Îβ̂N ,N

to Îβ̂,∞ holds in probability, namely for any ε, δ > 0 one has

P
(

dH(Îβ̂N ,N
, Îβ̂,∞) < ε

)

> 1 − δ for all N large enough. This follows by Part (3) of Proposition 3.4
and Parts (2), (3) of Proposition 3.5.

4. Concentration

In this section we discuss the concentration of τ/N∩ [0, 1] around the set Îβ̂N ,N
, cf. (2.13), giving

a proof of Theorems 1.4, 1.6.

4.1. General Setting of the Section. Let us stress that in the pinning model (1.1) we can replace
h > 0 in the exponent of the Radon-Nikodym derivative by h = 0 by replacing the original renewal τ
with a new one, τ̃ defined by P(τ̃1 = n) = ehP(τ1 = n) and P(τ̃1 = ∞) = 1−eh. Note that the renewal
process τ̃ is terminating because h < 0. In this case (cf. A) the renewal function ũ(n) := P(n ∈ τ̃)
satisfies

lim
n→∞

log ũ(n)
nγ

= −c, (4.1)

with the same γ and c used in Assumptions 1.2 for the original renewal process τ.
In the sequel we assume c = 1 (as already discussed in Section 3), h = 0 and we omit the

tilde-sign on the notations, writing simply τ and u(·) instead of τ̃ and ũ(·).

4.2. Proof of Theorem 1.4. To prove Theorem 1.4 we proceed in two steps. In the first one we
consider a truncated version of the Gibbs measure (1.1) in which we regard only the first k-maxima
among ω1, · · · , ωN−1 and we prove concentration for such truncated pinning model, cf. Lemma 4.3.
In the second step we show how to deduce Theorem 1.4.

Let us define the truncated pinning model. For technical reasons it is useful to write the energy
using σ̂N defined in (2.10).

Definition 4.1. For N, k ∈ N, β > 0, the k-truncated Pinning Model measure is a probability
measure defined by the following Radon-Nikodym derivative

dP̂(k)
β,N

dPN

(I) =
eNγβσ̂

(k)
N

(I)
1(1 ∈ I)

Ẑ(k)
β,N

, (4.2)

where PN is the law of τ/N ∩ [0, 1] used in (1.1).
In the sequel we use the convention that whenever k ≥ N, the superscript (k) will be omitted.

Remark 4.2. Note that whenever β = β̂N , the Radon-Nikodym derivative (4.2) with k ≥ N recovers
the original definition (1.1) with β = βN .

Lemma 4.3. Let (β̂N)N be a sequence converging to β̂ ∈ (0,∞). For any fixed ε, δ > 0 there exist

ν = ν(ε, δ) > 0, K = K(ε, δ) and (Nk)k≥K such that

P

(

P̂(k)
β̂N ,N

(

dH(I, Î(k)
β̂N ,N

) > δ
)

≤ e−Nγν
)

> 1 − ε (4.3)

for all k > K and N > Nk.
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Roughly speaking to prove Lemma 4.3 we need to estimate the probability that a given set ι =
{ι1, · · · , ιℓ}, with ι j < ι j+1, is contained in τ/N. In other words we need to compute the probability
that ι1, · · · , ιℓ ∈ τ/N when N is large enough.

For this purpose we fix ι = {ι1, · · · , ιℓ} ⊂ [0, 1] and we consider ι(N)
= {ι(N)

1 , · · · , ι
(N)
ℓ
}, where ι(N)

i

is the nearest point to ιi in the lattice {0, 1/N, · · · , 1}. We define uN(ι) =
∏ℓ

i=1 u(N(ι(N)
i
− ι(N)

i−1)) , with

ι
(N)
0 := 0. The behavior of uN(ι) as N → ∞ is given by the following result

Proposition 4.4. Let ι = {ι1, · · · , ιℓ} ⊂ [0, 1] be a fixed and finite set and consider the associated

real sequence (uN(ι))N . Then limN→∞
1

Nγ
log uN(ι) = −∑ℓ

i=1(ιi − ιi−1)γ and it holds uniformly in the

space of all subsets ι with points spaced at least by ξ, for any fixed ξ > 0.

Proof. The convergence for a fixed set is a consequence of (4.1). To prove the uniformity we note
that if ιi − ιi−1 > ξ, then ι(N)

i
− ι(N)

i−1 > ξ/2 as soon as 1/N < ξ/2, which is independent of such ι. This
shows the claim for all such ι with two points and this concludes the proof because uN(ι) is given
by at most 1

ξ
+ 1-factors in this form. �

Another simple, but important, observation is that for a fixed k ∈ N, with high probability the
minimal distance between Y

(N)
1 , · · · , Y

(N)
k

(the positions of the first k-maxima introduced in Section
2) cannot be too small even if N gets large. To be more precise, by using Lemma 3.1, we have that
for any fixed ε > 0 and k ∈ N there exist ξ = ξ(k, ε) > 0 and Nk such that for any N > Nk the event

{∣

∣

∣

∣
Y

(N)
i
− Y

(N)
j

∣

∣

∣

∣
> ξ, Y

(N)
ℓ
∈ (ξ, 1 − ξ), ∀ ℓ, i , j ∈ {1, · · · , k}

}

(4.4)

has probability larger than 1 − ε. By Proposition 4.4 this implies that for any fixed ζ > 0 on the
event (4.4), for all N large enough and uniformly on ι = {ι0 = 0 < ι1 < · · · < ιℓ < 1 = ιℓ+1} ⊂ Y (N,k),
cf. (2.16), it holds that

e−NγE(ι)−ζNγ ≤ P(ι1, · · · , ιℓ ∈ τ/N) ≤ e−NγE(ι)+ζNγ , (4.5)

where E(ι) =
∑ℓ+1

i=1 (ιi − ιi−1)γ is the entropy of the set ι, cf. (2.19).

Proof of Lemma 4.3. The aim of this proof is to show that for any given δ > 0 and k ∈ N large

enough, P̂(k)
β̂N ,N

(

dH(Î(k)
β̂N ,N
, I) > δ

)

→ 0 as N → ∞, with an explicit rate of convergence. Our strategy

is the following: given a set I ⊂ {0, 1/N, · · · , 1}, with 0, 1 ∈ I, we consider

I(N,k) := I ∩ Y (N,k), (4.6)

the intersection of I with the set of the positions of the first k-maxima: it can have distance larger
or smaller than δ2 from Î

(k)
β̂N ,N

. This induces a partition of the set of all possible I’s. This allows us to

get the following inclusion of events
{

dH(Î(k)
β̂N ,N
, I) > δ

}

⊂
{

dH(Î(k)
β̂N ,N
, I(N,k)) ≥

δ

2

}

∪
{

dH(Î(k)
β̂N ,N
, I(N,k)) <

δ

2
, dH(I(N,k), I) >

δ

2

}

. (4.7)

We have thus to prove our statement for

P̂(k)
β̂N ,N

(

dH(Î(k)
β̂N ,N
, I(N,k)) ≥

δ

2

)

, (4.8)

P̂(k)
β̂N ,N

(

dH(Î(k)
β̂N ,N
, I(N,k)) <

δ

2
, dH(I, I(N,k)) >

δ

2

)

. (4.9)

For this purpose we fix ε > 0 and ξ = ξ(ε, k) > 0, Nk > 0 such that the event (4.4) holds with
probability larger than 1 − ε, for any N > Nk.
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Our goal is to find a good upper bound for (4.8) and (4.9). Let us start to consider (4.8). Let A

be the set of all possible values of I(N,k), cf. (4.6), on the event {dH(Î(k)
β̂N ,N
, I(N,k)) ≥ δ2 }, namely

A =

{

ι ⊂ Y (N,k) : dH(ι, Î(k)
β̂N ,N

) ≥ δ
2

and 0, 1 ∈ ι
}

. (4.10)

An upper bound of (4.8)) is

P̂(k)
β̂N ,N

(

dH(Î(k)
β̂N ,N
, I(N,k)) ≥

δ

2

)

≤
∑

ι∈A

P̂(k)
β̂N ,N

(I(N,k) = ι). (4.11)

Let us fix ζ > 0 (we choose in a while its precise value) and assume that Relation (4.5) holds if
Nk is sufficiently large. Then

P̂(k)
β̂N ,N

(I(N,k) = ι) =
EN

(

eNγ β̂N σ̂
(k)
N

(I)
1(I(N,k) = ι); 1 ∈ τ/N

)

EN

(

eNγβ̂N σ̂
(k)
N

(I); 1 ∈ τ/N
) ≤ eNγβ̂N σ̂

(k)
N

(ι)PN (ι ⊂ I)

e
Nγβ̂N σ̂

(k)
N

(

Î
(k)
β̂N ,N

)

PN

(

Î
(k)
β̂N ,N
⊂ I

)

(4.5)
≤

(4.12)

≤ exp
{

−Nγ(û(k)
β̂N ,N
− U

(k)
β̂N ,N

(ι)) + 2Nγζ

}

≤ exp
{

−Nγ(û(k)
β̂N ,N
− û

(k)
β̂N ,N

(δ/2)) + 2Nγζ

}

,

where U
(k)
β̂N ,N

has been introduced in Definition 2.10. By Proposition 3.4, Part (4), if k and Nk are

taken large enough, it holds that û
(k)
β̂N ,N
− û

(k)
β̂N ,N

(δ/2) > η, for some η > 0, with probability larger

than 1 − ε. We conclude that if ζ in (4.5) is chosen smaller than η/4, then the l.h.s. of (4.12) is
bounded by e−Nγ

η
2 , uniformly in ι ∈ A. By observing that A has at most 2k elements we conclude

that
(4.8) ≤

∑

ι∈A

P̂(k)
β̂N ,N

(I(N,k) = ι) ≤ |A|e−Nγη/2 ≤ 2ke−Nγη/2. (4.13)

For (4.9) we use the same strategy: Let B be the set of all possible values of I(N,k), cf. (4.6), on
the event {dH(Î(k)

β̂N ,N
, I(N,k)) < δ2 },

B =

{

ι ⊂ Y (N,k) : dH(ι, Î(k)
β̂N ,N

) <
δ

2
and 0, 1 ∈ ι

}

, (4.14)

Then

P̂(k)
β̂N ,N

(

dH(Î(k)
β̂N ,N
, I(N,k)) <

δ

2
, dH(I, I(N,k)) >

δ

2

)

≤
∑

ι∈B

P̂(k)
β̂N ,N

(

dH (ι, I) >
δ

2
, I(N,k) = ι

)

. (4.15)

Let us observe that for such a given ι

P̂(k)
β̂N ,N

(

dH (ι, I) >
δ

2
, I(N,k) = ι

)

=

EN

(

eNγ β̂N σ̂
(k)
N

(I)
1(dH (ι, I) > δ2 , I(N,k) = ι); 1 ∈ I

)

EN

(

eNγ β̂N σ̂
(k)
N

(I); 1 ∈ I

) (4.16)

≤
PN

(

dH (ι, I) > δ2 , I(N,k) = ι
)

PN (ι ⊂ I)
.

We have reduced our problem to compute the probability of the event
{

dH (ι, I) > δ2 , I(N,k) = ι
}

under the original renewal distribution PN .
Note that, if ι ⊂ I, then dH (ι, I) > δ2 if and only if there exists x ∈ I such that d(x, ι) > δ2 . Thus

{

dH (ι, I) >
δ

2
, I(N,k) = ι

}

=

{

∃x ∈ I, d(x, ι) >
δ

2
, I(N,k) = ι

}

. (4.17)
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For ι = {ι0 = 0 < ι1 < · · · < ιℓ = 1} ∈ B, we define U j,δ := [ι j + δ2 , ι j+1 − δ2 ] ∩ N
N

, which is empty
if the distance between ι j and ι j+1 is strictly smaller than δ. We can decompose the event (4.17) by
using such U j,δ, i.e., {∃x ∈ I, d(x, ι) > δ2 , I(N,k) = ι} =

⋃ℓ−1
j=0

⋃

x∈U j,δ
{x ∈ I, I(N,k) = ι}, and we get

PN

(

dH (ι, I) > δ, I(N,k) = ι
) ≤

ℓ−1
∑

j=0

∑

x∈U j,δ

PN

(

x ∈ I, I(N,k) = ι
) ≤

ℓ−1
∑

j=0

∑

x∈U j,δ

PN (x ∈ I, ι ⊂ I) . (4.18)

Let us consider PN (x ∈ I, ι ⊂ I). Since x does not belong to ι, there exists an index j such that
ι j < x < ι j+1. Then , recalling that u(n) = P(n ∈ τ),

PN (x ∈ I, ι ⊂ I)
PN (ι ⊂ I)

=

























ℓ−1
∏

k=1,
k, j

u(N(ιk+1 − ιk))

























u(N(x − ι j))u(N(ι j+1 − x))

ℓ−1
∏

k=1
u(N(ιk+1 − ιk))

=
u(N(x − ι j))u(N(ι j+1 − x))

u(N(ι j+1 − ι j))

(4.5)
≤ e

−Nγ
(

(x−ι j)γ+(ι j+1−x)γ−(ι j+1−ι j)γ
)

+2ζNγ ≤ e−Nγ(21−γ−1)δγ+2ζNγ ,

(4.19)

uniformly on all such ι j, ι j+1 and x. Note that the last inequality follows by observing that for all
such ι j, ι j+1 and x one has (x − ι j)γ + (ι j+1 − x)γ − (ι j+1 − ι j)γ ≥ (21−γ − 1)δγ. We conclude that,
making possibly further restrictions on the value of ζ as function of δ, there exists a constant C > 0
such that PN ({x}∪ι⊂I)

PN (ι⊂I) ≤ e−CNγ uniformly in ι ∈ B. This leads to have that

(4.9) ≤
∑

ι∈B

P̂(k)
β̂N ,N

(

dH

(

Î
(k)
β̂N ,N
, I

)

>
δ

2
, I(N,k) = ι

)

≤ |B|Ne−C Nγ ≤ 2kNe−C Nγ . (4.20)

�

Proof of Theorem 1.4. First of all we are going to prove concentration around Î
(k)
β̂N ,N

. Let k > 0 be

fixed. Its precise value will be chosen in the following. Then, recalling Definition 4.1,

P̂β̂N ,N

(

dH

(

Î
(k)
β̂N ,N
, I

)

> δ

)

≤ (4.21)

≤P̂(k)
β̂N ,N

(

dH

(

Î
(k)
β̂N ,N
, I

)

> δ

)

· sup



















dP̂β̂N ,N

dP̂(k)
β̂N ,N

(I) : dH

(

Î
(k)
β̂N ,N
, I

)

> δ



















.

To control the first term, by Lemma 4.3 for any ε, δ > 0 there exist ν > 0 and Nk such that for

all N > Nk, P̂(k)
β̂N ,N

(

dH

(

Î
(k)
β̂N ,N
, I

)

> δ

)

≤ e−Nγν with probability larger than 1 − ε . To control the

Radon-Nikodym derivative we may write

dP̂β̂N ,N

dP̂(k)
β̂N ,N

(I) =
Ẑ(k)
β̂N ,N

Ẑβ̂N ,N

eNγ β̂N σ̂N (I)

eNγ β̂N σ̂
(k)
N

(I)
≤ eβ̂N Nγ(β̂N σ̂N (I)−β̂N σ̂

(k)
N

(I)) ≤ eβ̂N Nγρ
(k)
N , (4.22)

where ρ(k)
N
=

∑

i>k M
(N)
i

is defined in (3.19). By using Part (1) of Proposition 3.5 we choose k large

enough such that β̂Nρ
(k)
N
< ν/2 with probability 1 − ε, uniformly in N. This forces to have

P

(

P̂β̂N ,N

(

dH

(

Î
(k)
β̂N ,N
, I

)

> δ

)

≤ e−Nγν/2
)

≥ 1 − 2ε. (4.23)
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The proof follows by observing that if k is large enough, then dH(Î(k)
β̂N ,N
, Îβ̂N ,N

) < δ/2 with probability

larger than 1 − ε, uniformly on N, cf. Point (3) Proposition 3.5. �

4.3. Proof of Theorem 1.6. In this section we prove Theorem 1.6. The proof is based on the
following result

Lemma 4.5. Let (S, dS) be a metric space and let xN be a sequence converging to x̄. Let µN ∈
M1(S) be such that for any ε > 0, limN→∞ µN (x : d(xN , x) > ε) = 0. Then µN ⇀ δx̄.

Proof. The proof is a consequence of the Portmanteau’s Lemma [4, Section 2]. �

Proof of Theorem 1.6. Let µN = P̂β̂N ,N
and µ∞ = δÎβ̂,∞

. Note that µN is a random measure on

X depending on the discrete disorder w(N), while µ∞ depends on the continuum disorder w(∞).
Therefore if we couple together these disorders as in Lemma 3.1 we have that by Theorems 1.4,

1.5 (see Remark 3.7) µN

(

I | dH(Îβ̂N ,N
, I) > δ

) P→ 0 and Îβ̂N ,N

P→ Îβ̂,∞. To conclude the proof let us
observe that the law of µN is a probability measure onM1(X), the space of the probability measures
on X, which is a compact space because X is compact. Therefore we can assume that µN has a limit
in distribution. We have thus to show that this limit is the law of µ∞. For this purpose it is enough to

show that there exists a subsequence Nk such that µNk

(d)→ µ∞. It is not difficult to check that we can

find a subsequence Nk such that µNk

(

I | dH(Îβ̂Nk
,Nk
, I) > δ

)

P−a.s.→ 0 and Îβ̂Nk
,Nk

P−a.s.→ Îβ̂,∞, therefore

by Lemma 4.5 we conclude that µNk

P−a.s.
⇀ µ∞ and this concludes the proof. �

5. Proof of Theorem 1.7

The goal of this section is to give a proof of Theorem 1.7.

As a preliminary fact let us show that if β < β̂c then Îβ,∞ ≡ {0, 1}, while if β > β̂c then Îβ,∞ .
{0, 1}.

To this aim let us consider the maximum of the difference between the Continuum Energy (2.14)
and the entropy (2.20), ûβ,∞ = σ̂∞(Îβ,∞) − E(Îβ,∞), defined in (2.26). Then whenever ûβ,∞ ≤ −1,
we have that −1 = −E({0, 1}) ≤ ûβ,∞ ≤ −1 and this implies that Îβ,∞ ≡ {0, 1} by uniqueness of the
maximizer. On the other hand, if ûβ,∞ > −1, then there exists I . {0, 1} such that Uβ,∞(I) > −1
because Uβ,∞({0, 1}) = −1, so that {0, 1} ( Îβ,∞. In particular, since β 7→ ûβ,∞ is non-decreasing,
we have that Îβ,∞ ≡ {0, 1} if β < β̂c and Îβ,∞ . {0, 1} if β > β̂c.

To prove the theorem we proceed in two steps: in the first one we show that a.s. for any ε > 0
there exists β0 = β0(ε) > 0 random for which Îβ,∞ ⊂ [0, ε] ∪ [1 − ε, 1] for all β < β0. In the second
one we show that if ε is small enough, then the quantity of energy that we can gain is always too
small to hope to compensate the entropy. To improve this strategy we use some results on the Pois-
son Point Process that we are going to recall.

Let us start to note that the process (Y (∞)
i
,M

(∞)
i

)i∈N ⊂ [0, 1] × R+ is a realization of a Poisson
Point Process Π with intensity

µ(dxdz) = 1[0,1](x)
α

z1+α
1[0,∞)(z)dxdz. (5.1)

In such a way, as proved in [13], the process

Xt =

∑

(x,z)∈Π
z1 (x ∈ [0, t] ∪ [1 − t, 1]) , t ∈

[

0,
1
2

]

(5.2)
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is an α-stable subordinator. The behavior of an α-stable subordinator in a neighborhood of 0 is
described by [3, Thm 10 Ch. 3], precisely if (Xt)t is such subordinator with α ∈ (0, 1) and h : R+ →
R+ is an increasing function, then lim supt→0+ Xt/h(t) = ∞ or 0 a.s. depending on whether the

integral
∫ 1

0
h(t)−αdt diverges or converges. In particular by taking q > 1 and h(t) = t1/α logq/α(1/t)

in a neighborhood of 0, we have the following result

Proposition 5.1. Let (Xt)t be an α-stable subordinator, with α ∈ (0, 1), then for every q > 1 a.s.

there exists a random constant C > 0 such that

Xt ≤ Ct
1
α log

q

α

(

1
t

)

(5.3)

in a neighborhood of 0.

Remark 5.2. The process Xt is the value of the sum of all charges in the set [0, t] ∪ [1 − t, 1].
Therefore it gives an upper bound on the energy that we can gain by visiting this set.

5.0.1. Step One. Let us show that a.s. for any ε > 0 there exists β0 = β0(ε) > 0 for which
Îβ,∞ ⊂ [0, ε] ∪ [1 − ε, 1] for all β < β0. Otherwise there should exist ε > 0 and a sequence βk > 0,
βk → 0 as k → ∞ such that Îβk,∞ ∩ (ε, 1 − ε) , ∅. Let x be one of such points, then, by Theorem
2.6 we have that E(Îβk ,∞) ≥ E({0, x, 1}) ≥ εγ + (1 − ε)γ. Let S =

∑

i∈N M
(∞)
i

, which is a.s. finite, cf.
Remark 2.2. Therefore by observing that ûβk ,∞ = βkσ̂∞(Îβk,∞) − E(Îβk ,∞) ≥ −1 we get

βkS ≥ βkσ̂∞(Îβk ,∞) ≥ E(Îβk ,∞) − 1 ≥ εγ + (1 − ε)γ − 1. (5.4)

There is a contradiction because the l.h.s. goes to 0 as βk → 0, while the r.h.s. is a strictly positive
number.

Remark 5.3. Let us note that if we set β0 = β0(ε) = (εγ + (1 − ε)γ − 1)/S then for all β < β0 it
must be that Îβ,∞ ⊂ [0, ε] ∪ [1 − ε, 1]. Moreover β0 ↓ 0 as ε ↓ 0.

5.0.2. Step Two. Now let us fix ε > 0 small and β0 = β0(ε) ≤ 1 as in Remark 5.3. Let

ε1 = sup Îβ,∞ ∩ [0, ε], (5.5)

ε2 = inf Îβ,∞ ∩ [1 − ε, 1]. (5.6)

Let ε̂ = max{ε1, 1 − ε2}. If ε̂ = 0 we have finished. Then we may assume that ε̂ > 0 and we choose
q > 1, C > 0 for which Proposition 5.1 holds for any t < ε, namely

βσ̂∞(Îβ,∞) ≤ β0Xε̂ ≤ Cε̂
1
α log

q

α

(

1
ε̂

)

, (5.7)

By Theorem 2.6 we get a lower bound for the entropy

E(Îβ,∞) ≥ ε̂γ + (1 − ε̂)γ. (5.8)

In particular if ε is small enough, we have that

E(Îβ,∞) − 1 >
ε̂γ

2
. (5.9)

Therefore with a further restrictions on ε and β0, if necessary, by recalling that α, γ ∈ (0, 1) we
conclude that for all β < β0

E(Îβ,∞) − 1 ≤ βσ̂∞(Îβ,∞) ≤ Cε̂
1
α log

q

α

(

1
ε̂

)

≤ ε̂
γ

2
< E(Îβ,∞) − 1, (5.10)

which is a contradiction. Therefore ε̂ must be 0 and this implies that Îβ,∞ ≡ {0, 1} for each β < β0.
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6. The Directed polymer in random environment with heavy tails

Originally introduced by [12], the directed polymer in random environment is a model to de-
scribe an interaction between a polymer chain and a medium with microscopic impurities. From a
mathematical point of view we consider the set of all possible paths of a 1 + 1 - dimensional sim-
ple random walk starting from 0 and constrained to come back to 0 after N-steps. The impurities
— and so the medium-polymer interactions — are idealized by an i.i.d. sequence ({ωi, j}i∈N, j∈Z, P).
Each random variable ωi, j is placed on the point (i, j) ∈ N × Z. For a given path s we define the
Gibbs measure

µβ,N(s) =
eβσN (s)

Qβ,N
, (6.1)

where σN(·) = ∑

i, j ωi, j1(si = j) is the energy and Qβ,N is a normalization constant.
In [2] is studied the case in which the impurities have heavy tails, namely the distribution of ω1,1

is regularly varying with index α ∈ (0, 2). In this case to have a non-trivial limit as N → ∞, we have
to choose β = βN ∼ β̂N1−2/αL(N), with L a slowly varying function, cf. [2, (2.4),(2.5)]. For such
a choice of β, cf. [2, Theorem 2.1], one has that the trajectories of the polymer are concentrated
in the uniform topology around a favorable curve γ̂βN ,N. In [2, Theorem 2.2] one shows that there
exists a limit in distribution for the sequence of curves γ̂βN ,N, denoted by γ̂β. Moreover there exists
a random threshold βc below which such limit is trivial (γ̂β ≡ 0), cf. [2, Proposition 2.5]. Anyway
a complete description of βc was not given, see Remark 1.9. In our work we solve this problem, cf.
Theorem 1.8.

The rest of the section is consecrated to prove Theorem 1.8.

Definition 6.1 (entropy). Let us consider L0
= {s : [0, 1] → R : s is 1−Lipschitz, s(0) = s(1) = 0}

equipped with L∞-norm, denoted by ‖ · ‖∞.
For a curve γ ∈ L0 we define its entropy as

E(γ) =
∫ 1

0
e

(

d

dx
γ(x)

)

dx, (6.2)

where e(x) = 1
2 ((1 + x) log(1 + x) + (1 − x) log(1 − x)).

Let us observe that E(·) is the rate function in the large deviations principle for the sequence of
uniform measures on L0

N
, the set of linearly interpolated 1

N
-scaled trajectories of a simple random

walk.

Definition 6.2. We introduce the continuous environment π∞ as

π∞(γ) =
∑

i

T
− 1
α

i
δZi

(

graph(γ)
)

, γ ∈ L0. (6.3)

Here graph(γ) = {(x, γ(x)) : x ∈ [0, 1])} ⊂ D := {(x, y) ⊂ R2 : |y| ≤ x ∧ (1 − x)} is the graph of
γ, α ∈ (0, 2) is the parameter related to the disorder, Ti is a sum of i-independent exponentials of
mean 1 and (Zi)i∈N is an i.i.d.-sequence of Uniform(D) r.v.’s. These two sequences are assumed to
be independent with joint law denoted by P∞.

For β < ∞ we introduce
γ̂β = arg max

γ∈L0
{ βπ∞(γ) − E(γ) } (6.4)

and we set uβ = βπ∞(γ̂β) − E(γ̂β). Since βπ∞(γ ≡ 0) − E(γ ≡ 0) = 0 a.s. we have that uβ ≥ 0 a.s.,
consequently we define the random threshold as

βc = inf{β > 0 : uβ > 0} = inf{β > 0 : γ̂β . 0}. (6.5)
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6.1. The Structure of βc. The random set (Zi, T
− 1
α

i
)i∈N ⊂ D × R+ is a realization of a Poisson

Point Process , denoted by Π∗, with density given by

µ∗(dxdydz) =
1D(x, y)
|D|

α

z1+α
1[0,∞)(z)dxdydz. (6.6)

Let us introduce the process

Ut =

∑

(x,y,z)∈Π∗
z1 ((x, y) ∈ A(t)) , t ∈

[

0,
1
2

]

(6.7)

with A(t) = {(x, y) ∈ D : x ∈ [0, 1], |y| ≤ t}. Let us observe that the process (Ut)t∈[0, 12 ] is "almost" a
Lévy Process, in sense that it has càdlàg trajectories and independent but not homogeneous incre-
ments because the area of A(t) does not grow linearly. Anyway, by introducing a suitable function
φ(t) > t, we can replace A(t) by A(φ(t)) to obtain a process with homogeneous increment. In partic-
ular we take φ(t) = 1/2(1−

√
1 − 4t) in order to have that Leb(A(φ(t))) = t for all t ∈ [0, 1/4]. Then

the process
Wt = Uφ(t) (6.8)

is a subordinator and Wt ≥ Ut for any t ∈ [0, 1/4].

Before giving the proof of Theorem 1.8, we prove a general property of the model:

Proposition 6.3. For any fixed α ∈ (0, 2), P∞-a.s. for any ε > 0 there exists β0 = β0(ε) > 0 such

that ‖γ̂β‖∞ < ε (that is, graph(γ̂β) ⊂ A(ε)) for all β < β0.

Let us recall some preliminary results necessary for the proof.

Proposition 6.4. Let E be the entropy of Definition 6.1. Then for all γ ∈ L0 if z = (x, y) ∈ graph(γ̂β)
we have that

E(γ) ≥ E(γz), (6.9)

where γz is the curve obtained by linear interpolation of {(0, 0), z, (1, 0)}.

Proof. [2, Proposition 3.1] �

As shown in [2, Proof of Proposition 2.5], there exist two constants C1,C2 > 0 such that for all

z = (x, y) ∈ D we have C1

(

y2

x
+

y2

1−x

)

≤ E(γz) ≤ C2

(

y2

x
+

y2

1−x

)

. This implies that there exists C0 > 0

for which
E(γz) ≥ C0y2, (6.10)

uniformly on z ∈ D.

Proof of Proposition 6.3. By contradiction let us suppose that there exists ε > 0 such that for
a sequence βk → 0 as k → ∞ we have ‖γ̂βk

‖∞ ≥ ε. By continuity of γ̂βk
there exists a point

x ∈ [ε, 1 − ε] such that γ̂βk
(x) = ε. By [11, Proposition 4.1], with probability 1 there exists a

random set A ⊂ N such that S =
∑

i∈A T
− 1
α

i
< ∞ and for any γ ∈ L0 it holds that S ≥ π∞(γ).

For instance if α ∈ (0, 1), then we can choose A ≡ N, while if α > 1, then A ( N. Since uβk
=

βkπ∞(γ̂βk
) − E(γ̂βk

) ≥ 0 we obtain that a.s.

βkS ≥ βkπ∞(γ̂βk
) ≥ E(γ̂βk

) ≥ E(γz=(x,ε)) ≥ C0ε
2. (6.11)

Sending βk → 0 we obtain a contradiction because the l.h.s. converges to 0. �

We are now ready to prove Theorem 1.8.
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Proof of Theorem 1.8. We have to prove only the point (1), the other one has been already proven
in [2]. Let ε > 0 be fixed and β0 = β0(ε) such that ‖γ̂β‖∞ < ε for all β < β0 ≤ 1. Moreover we
define ε̂ := max |γ̂β(x)|.

An upper bound for the energy gained by γ̂β is given by
∑

i∈N T
− 1
α

i
1(Zi∈Aε̂), the sum of all charges

contained in the region Aε̂. Such quantity is estimated by the process Wε̂, cf. (6.8). Therefore by
Proposition 5.1 we can choose suitable constants q > 1 and C > 0 such that

π∞(γ̂β) ≤
∑

i∈N
T
− 1
α

i
1(Zi∈Aε̂) ≤ Uε̂ ≤ Cε̂

1
α log

q

α

(

1
ε̂

)

. (6.12)

A lower bound for the entropy is provided by (6.10):

E(γ̂β) ≥ C0ε̂
2. (6.13)

Conclusion: if ε is small enough we get

βπ∞(γ̂β) ≤ Cε̂
1
α log

q

α

(

1
ε̂

)

≤ C0ε̂
2 ≤ E(γ̂β), (6.14)

because α < 1
2 and this forces uβ = 0 for all β < β0. �

7. Possible Generalizations and Perspective

This work represents the first analysis of such model with this particular choice of the disorder
and renewal process. There are several open questions regarding mainly, but not only, the compre-
hension of the model with different choices of renewal process:

• (γ ≥ 1) The condition γ ≥ 1 implies that the entropy function E(I), cf. (2.10), is non-
increasing (strictly non-increasing if γ > 1) with respect to the inclusion of sets in X(N),
cf. (2.18). It turns out that for any fixed β > 0 and N ∈ N, the solution of (2.3) is Iβ,N =

{0, 1/N, · · · , 1}. Therefore, whenever N → ∞, the limit set is given by the interval [0, 1],
independently of our choice of βN . We conjecture that τ/N converges to the whole segment
[0, 1].

• (γ = 0) The case γ = 0 corresponds to consider a renewal process with polynomial tail,
that is K(n) := P(τ1 = n) ∼ L(n)n−ρ, with ρ > 1, cf. (1.4). In this case we conjecture that
the correct rescaling is given by β = βN ∼ N−1/α log N and the limit measure for the the
sequence Pω

βN ,h,N
(·) is given by a more complicated structure than the δ-measure of a single

set. This would mean that we do not have concentration around a single favorable set.

• An interesting open problem is given by the structure of Îβ̂,∞, cf. (2.27) and Theorem 1.5.

In Theorem 1.7 we have proven that if β̂ is small enough, then Îβ̂,∞ ≡ {0, 1} a.s., otherwise,

if β̂ is large, {0, 1} ( Îβ̂,∞. We conjecture that for any finite β̂ > 0 it is given by a finite
number of points.

Appendix A. Asymptotic Behavior for Terminating Renewal Processes

In this section we consider a terminating renewal process (τ, P) and K(n) = P(τ1 = n), with
K(∞) > 0. The aim is to study the asymptotic behavior of the renewal function u(N) = P(N ∈ τ) =
∑

m K∗(m)(N), where K∗(m) is the mth-convolution of K with itself, under the assumption that K(·) is
subexponential. We refer to [8] for the general theory of the subexponential distributions.
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Definition A.1 (Subexponential distribution). We say that a discrete probability density q on N is
subexponential if

∀ k > 0, lim
n→∞

q(n + k)/q(n) = 1 and lim
n→∞

q∗(2)(n)/q(n) = 2, (A.1)

The result we are interested in is the following

Theorem A.2. Let K(·) be a discrete probability density on N ∪ {∞} such that K(∞) > 0 and let

δ = 1 − K(∞) < 1. Let q(·) be defined as q(n) = δ−1K(n). If q is subexponential, then

lim
n→∞

u(n)
K(n)

=
1

K(∞)2
. (A.2)

Its proof is a simple consequence of the Dominated Convergence Theorem by using the follow-
ing results

Lemma A.3. Let q be a subexponential discrete probability density on N, then for any m ≥ 1

q∗(m)(n) n→∞∼ mq(n). (A.3)

Proof. [8, Corollary 4.13]. �

Theorem A.4. Let q be a subexponential discrete probability density on N. Then we have that for

any ε > 0 there exist N0 = N0(ε) and c = c(ε) such that for any n > N0 and m ≥ 1

q∗(m)(n) ≤ c(1 + ε)mq(n). (A.4)

Proof. [8, Theorem 4.14]. �

A.1. The case of K(n) � e−cn
γ

. In this section we want to show that (1.4) satisfies Assumption 1.2.
The fact that it is stretched-exponential, (2), is obvious, then it is left to prove that it is subexponen-
tial, (1).

By [8, Theorem 4.11], we can assume K(n) = nρL̃(n)e−cn
γ

, where L̃ is another slowly varying
function such that L̃(n) ∼ L(n) as n → ∞. Since γ ∈ (0, 1) we get that for any fixed k > 0,
limn→∞ K(n + k)/K(n) = 1. Such property goes under the name of long-tailed and it allows to
apply [8, Theorem 4.7]: to prove that K is subexponential, we have to prove that for any choice
of h = h(n) → ∞ as n → ∞, with h(n) < n/2, we have that

∑n−h(n)
m=h(n) K(n − m)K(m) = o(K(n)),

as n → ∞. Let us consider R(y) = yγ, with γ ∈ (0, 1). R is a concave increasing function and
R′(y) = γyγ−1 is strictly decreasing, so that given two integer points n,m such that n − m > m we
have

R(n) − R(n − m) ≤ mR′(n − m) ≤ mR′(m) = γmγ = γR(m), (A.5)

By Karamata’s representation for slowly varying functions [5, Theorem 1.2.1] there exists c1 ≥ 1
for which L̃(xr) ≤ c1L̃(r) for any x ∈ [1

2 , 1] and r ≥ 1. This implies also that for any ρ ∈ R there
exists c = c(ρ) such that (xr)ρL̃(xr) ≤ crρL̃(r) for any x ∈ [1

2 , 1] and r ≥ 1. Therefore in our case,
whenever n − m ≥ n/2 we have that K(n − m) ≤ nρL̃(n)e−c(n−m)γ

= K(n)eR(n)−R(n−m). Summarizing,
by using all these observations we conclude that

n
2

∑

m=h(n)

K(n − m)K(m)
K(n)

≤ c

∞
∑

m=h(n)

mρL̃(m)e−c(1−γ)R(m), (A.6)

which goes to 0 as h(n)→ ∞ and the proof follows by observing that

n−h(n)
∑

m=h(n)

K(n − m)K(m)
K(n)

= 2

n
2

∑

m=h(n)

K(n − m)K(m)
K(n)

. (A.7)

�
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