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Pinning Model with Heavy Tailed Disorder

Niccolò Torri

ABSTRACT. We study the so-called pinning model, which describes the behavior of a Markov
chain interacting with a distinguished state. The interaction depends on an external source
of randomness, called disorder, which can attract or repel the Markov chain path, and is
tuned by a parameter β. Inspired by [AL11, HM07], we focus on the case when the disorder
is heavy-tailed, with exponent α ∈ (0,1), while the return times of the Markov chain have a
stretched-exponential distribution, with exponent γ ∈ (0,1). We prove that the set of times
at which the Markov chain visits the distinguished state, suitably rescaled, converges in
distribution to a limit set, which depends only on the disorder and on the interplay of the
parameters α,γ,β. We also show that there exists a random threshold of β below which
the limit set is trivial. As a byproduct of our techniques, we improve and complete a result
of A.Auffinger and O.Louidor [AL11, Proposition 2.5] on the directed polymer in a random
environment with heavy tailed disorder.

1. Set-up and Results

The Pinning Model can be defined as a random perturbation of a random walk or, more
generally, of a Markov chain called S. In this model we modify the law of the Markov chain
by weighing randomly the probability of a given trajectory up to time N: each time S touches
a distinguished state, called 0, before N, say at time n, we give a reward or a penalty to this
contact by assigning an exponential weight exp(βωn −h), where β ∈ R+ := (0,∞), h ∈ R and
(ω = (ωn)n∈N,P) is an independent random sequence called disorder. The precise definition
of the model is given below.

Since we regard the process S only on the set where it takes value 0, it is convenient
to work directly on this random set. For this purpose we consider a renewal process (τ =
(τn)n∈N,P), that is an N0-valued random process such that τ0 = 0 and (τ j − τ j−1) j∈N is an
i.i.d. sequence. This type of random process can be thought of as a random subset of N0, in
particular if S0 = 0, then by setting τ0 = 0 and τ j = inf{k > τ j−1 : Sk = 0}, for j > 0, we recover
the set of zeros of the Markov chain S. From this viewpoint the notation {n ∈ τ} means that
there exists j ∈ N such that τ j = n. We refer to [Asm03, Gia07] for more details on the
theory of the renewal processes.

Typically in the literature (e.g. [dH07, Gia10, Gia07]) the law of τ1, the inter-arrival
law of the renewal process, has a polynomial tail and the disorder has finite exponential
moments. In our paper we study the case in which the disorder has polynomial tails, in
analogy with the articles of A. Auffinger & O. Louidor [AL11] and B. Hambly & J.B. Martin
[HM07]. To get interesting results we work with a renewal process where the law of τ1
is stretched-exponential (cf. Assumptions 1.2). Possible generalization will be discussed in
Section 7.
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1.1. The Pinning Model. In this paper we are interested in the behavior of τ/N ∩
[0,1]= {τ j/N : τ j ≤ N}, the rescaled renewal process up to time N.

We call PN the law of τ/N ∩ [0,1], which turns out to be a probability measure on the
space of all subsets of {0,1/N, · · · ,1}. On this space for β,h ∈ R we define the Pinning Model
Pω
β,h,N as a probability measure defined by the following Radon-Nikodym derivative

(1.1)
dPω

β,h,N

dPN
(I)= 1

Zω
β,h,N

exp

(
N−1∑
n=1

(βωn −h)1(n/N ∈ I)

)
1(1 ∈ I),

where Zω
β,h,N is a normalization constant, called Partition Function, that makes Pω

β,h,N a
probability. Let us stress that the term 1(1 ∈ I) constrains the last point of τ/N ∩ [0,1] to be
always equal to 1. In such way the Pinning Model is a random probability measure on the
space X of the all closed subsets of [0,1] which contain both 0 and 1

(1.2) X= {I ⊂ [0,1] : I is closed and 0,1 ∈ I}

with support given by X(N), the set of the all subset of {0,1/N, · · · ,1} which contain both 0
and 1.

The adjective random stresses that Pω
β,h,N is a probability measure indexed by ω, an

independent random sequence (called disorder). Therefore in the Pinning Model we have
two source of the randomness: the renewal process (τ,P) and the disorder (ω,P). To complete
the definition we thus need to specify our assumptions on the disorder and on the renewal
process.

ASSUMPTION 1.1. We assume that the disorder ω is an i.i.d. sequence of random vari-
ables whose tail is regularly varying with index α ∈ (0,1), namely

(1.3) P(ω1 > t)∼ L0(t)t−α, t →∞,

where α ∈ (0,1) and L0(·) is a slowly varying function, cf. [BGT89]. Moreover we assume that
the law of ω1 has no atom and it is supported in [0,∞), i.e. ω1 is a positive random variables.
The reference example to consider is given by the Pareto Distribution.

ASSUMPTION 1.2. Given a renewal process, we denote the law of its first point τ1 by
K(n) := P(τ1 = n), which characterizes completely the process. Through out this paper we
consider a non-terminating renewal process τ, i.e. such that

∑
n∈NK(n) = 1, satisfying the

following two assumptions
(1) subexponential: limn→∞ K(n+k)/K(n)= 1 for any k > 0 and limn→∞ K∗(2)(n)/K(n)=

2 (see Appendix A),
(2) stretched-exponential: limn→∞ logK(n)/Nγ =−C , for a suitable constant C > 0 and

γ ∈ (0,1).

Roughly speaking, up to local regularity assumptions (subexponentiality), we take K(n)�
e−C nγ . For instance (cf. Section A) these conditions are satisfied if

(1.4) K(n)∼ nρL(n)e−C nγ , n →∞,

with ρ ∈R and L(·) a slowly varying function.

1.2. Main Results. The goal of this paper is to study the behavior of τ/N∩ [0,1] under
the probability Pω

β,h,N when N →∞. To see interesting things in this limit we need to fix
h > 0 (which is actually equivalent to setting h = 0 in (1.1) and to consider a terminating
renewal process, cf. Section 4.1) and to rescale β by sending it to 0 with N. If β goes to 0
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too slowly (or if it does not go to 0 at all), then τ/N ∩ [0,1] will always converge to the whole
[0,1], if it goes too fast, it will converge to {0,1}. The interesting regime is the following:

(1.5) βN ∼ β̂Nγ− 1
α `(N), N →∞,

with ` a particular slowly varying function depending of L0 in (1.3). Under this rescaling of
β and this choice of h > 0 we prove the existence of a random threshold β̂c: if β̂ < β̂c then
τ/N ∩ [0,1] converges to {0,1}, while if β̂> β̂c then its limit has at least three points.

To prove these facts we proceed by steps. In the first one we show that there exists a
random set around which τ/N ∩ [0,1] is concentrated in the Hausdorff distance: given two
non-empty sets A,B ⊂ [0,1]

(1.6) dH(A,B)=max
{

sup
a∈A

d(a,B),sup
b∈B

d(b, A)
}

,

where d(z,C)= infc∈C |z− c| is the usual distance between a point and a set.

THEOREM 1.3. Let (βN )N be as in Equation (1.5). Then for any N ∈N, β̂> 0 there exists
a random set IβN ,N (i.e. a X-valued random variable) such that for any δ,h > 0 one has that
Pω
βN ,h,N

(
dH(I, IβN ,N )> δ)

converges to 0 as N →∞ in probability (with respect to the disorder
ω). More precisely for any ε> 0 there exists ν= ν(ε,δ) and N̂ such that for all N > N̂

(1.7) P
(
Pω
βN ,h,N

(
dH(I, IβN ,N )> δ)< e−νNγ

)
> 1−ε.

The second step regards the convergence in law of IβN ,N .

THEOREM 1.4. Let (βN )N be as in Equation (1.5). Then for any β̂ > 0 there exists a
random closed subset Îβ̂,∞ ∈X (i.e. a X-valued random variable), which depends of a suitable
continuum disorder (defined in section 2.1), such that

(1.8) IβN ,N
(d)→ Îβ̂,∞

on (X,dH).

As a consequence of these Theorems if we look at Pω
βN ,h,N as a random probability on

X, i.e. as a random variable which takes values in M1(X,dH), the space of the probability
measures on X, then Theorems 1.3 and 1.4 imply that it converges in law to the δ-measure
concentrated on the limit set Îβ̂,∞.

THEOREM 1.5. Let (βN )N as in Equation (1.5). Then for any h, β̂ ∈ (0,∞),

(1.9) Pω
βN ,h,N

(d)→ δÎβ̂,∞

on M1(X,dH) equipped with the weak topology.

This concludes the results on the convergence of the random set τ/N∩[0,1]. It turns out
that to say when τ/N ∩ [0,1] has a trivial limit or not it is sufficient to study when the limit
set Îβ̂,∞ is given by {0,1} or not. For this purpose we define the random threshold β̂c as

(1.10) β̂c = inf{β̂ : Îβ̂,∞ . {0,1}}.

Denoting by P the law of the continuum disorder, by a monotonicity argument (cf. Section
5) we have that

(1) If β̂< β̂c then Îβ̂,∞ ≡ {0,1}, P-a.s.
(2) If β̂> β̂c then Îβ̂,∞ . {0,1}, P-a.s.

Moreover the structure of β̂c is described by the following theorem
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THEOREM 1.6. For any choice of α,γ ∈ (0,1) we have that β̂c > 0 P-a.s., where α is the
disorder exponent in Assumption 1.1, while γ is the renewal exponent of Assumption 1.2.

By using the same technique we complete the result [AL11, Prop. 2.5] about the struc-
ture of βc, the random threshold defined for the directed polymer model in a random envi-
ronment with heavy tails (we recall the definition in section 6). Precisely

THEOREM 1.7. Let βc as in (6.5), then denoting by P∞ the law of the continuum envi-
ronment

(1) For any α ∈ (0, 1
2 ), βc > 0, P∞-a.s.

(2) For any α ∈ [1
2 ,2), βc = 0, P∞-a.s.

Let us stress that in the original paper [AL11] the value of βc was unknown for α ∈
(1/3,1/2).

1.3. Organization of the Paper. In rest of the paper we prove the results of this
section. Section 2 contains some preliminary definitions and tools that we use for our proofs.
Sections 3 contains the proof of Theorem 1.4 and Section 4 the proof of Theorems 1.3 and
1.5. In Section 5 we prove Theorem 1.6 and then in Section 6 we recall the definition of the
Directed Polymer Model, proving Theorem 1.7. Finally in Section 7 we discuss the choice of
the parameters α,γ and the future perspectives.

2. Energy & Entropy

In this section we define the random set Iβ,N , Îβ̂,∞ and we motivate the choice of βN in
(1.5).

To define the random set Iβ,N we compare the Energy and the Entropy of a given con-
figuration: for a finite set I = {x0 = 0< x1 < ·· · < x` = 1} we define its Energy as

(2.1) σN (I)=
N−1∑
n=1

ωn1(n/N ∈ I)

and its Entropy as

(2.2) E(I)= ∑̀
k=1

(xi − xi−1)γ.

By using these two ingredients we define

(2.3) Iβ,N = argmax
I∈X(N)

(
βσN (I)−C NγE(I)

)
,

where γ and C are the same constants introduced in (2) of Assumption 1.2 and X(N) is
defined as the space of the all possible subsets of {0,1/N, · · · ,1} containing 0 and 1.

By using (2.3) we can find the right rescaling for β: indeed it has to be chosen in such
way to make the Energy and the Entropy comparable. To make this, it is convenient to work
with a rescaled version of the disorder. For this purpose we consider (M̃(N)

i )N−1
i=1 the ordered

statistics of (ωi)N−1
i=1 — which means that M̃(N)

1 is the biggest value among ω1, · · · ,ωN−1, M̃(N)
2

is the second biggest one and so on — and (Y (N)
i )N−1

i=1 a random permutation of { 1
N , · · ·1− 1

N }
independent of the ordered statistics. Therefore the sequence ((M̃(N)

i ,Y (N)
i )N−1

i=1 recovers the
disorder (ωi)N−1

i=1 . The interesting point is that the asymptotic behavior of this sequence is
known. Let us recall the main results that we need to find the right rescaling for β.
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2.1. The Disorder. Let us start to note that for any fixed k as N →∞
(2.4) (Y (N)

i )i=1,··· ,k
(d)→ (Y (∞)

i )n=1,··· ,k,

where (Y (∞)
i )i∈N is an i.i.d. sequence of Uniform([0,1]).

Moreover, coming to the ordered statistics, from classical extreme value theory (see e.g.
[Res87, Section 1.1]) we have that there exists a sequence (bN )N such that for any fixed
k > 0 as N →∞
(2.5) (M(N)

i := b−1
N M̃(N)

i )i=1,··· ,k
(d)→ (M(∞)

i )n=1,··· ,k,

where M(∞)
i = T−1/α

i , with Ti be a sum of i independent exponentials of mean 1 and α is the
exponent of the disorder introduced in Equation (1.3).

In particular bN can be written as bN ∼ N
1
α `0(N), where `0(·) is a suitable slowly vary-

ing function depending of L0(·) (cf. Equation (1.3)).

We can get a stronger result without much effort, which will be very useful in the sequel.
Let us take the sequences (M(N)

i )N−1
i=1 and (Y (N)

i )N−1
i=1 independently and consider

w(N)
i :=

{
(M(N)

i ,Y (N)
i )N−1

i=1 , i < N,
0, i ≥ N,

(2.6)

w(∞)
i := (M(∞)

i ,Y (∞)
i )i∈N,(2.7)

We can look at w(N) = (w(N)
i )i∈N and w(∞) = (w(∞)

i )i∈N as random variables taking values in
S := (R2)N. Let us equip S with the product topology: a sequence x(N) converges to x(∞) if
and only if for any fixed i ∈ N one has limN→∞ x(N)

i = x(∞)
i . In such way S is a completely

metrizable space and a S -valued random sequence (w(N))N converges in law to w(∞) if
and only if for any fixed k, the truncated sequence (w(N)

1 , · · · ,w(N)
k ,0, · · · ) converges in law to

(w(∞)
1 , · · · ,w(∞)

k ,0, · · · ). Therefore Equations (2.4) and (2.5) imply that

(2.8) w(N) (d)→ w(∞)

in S . Henceforth we refer to w(N) as the Discrete Disorder of size N, and to w(∞) as the
Continuum Disorder.

2.2. The Energy. Recalling (2.1) we define the rescaled discrete Energy function σ̂N :
X→R+ as

σ̂N (·)= σN (I)
bN

=
N−1∑
i=1

M(N)
i 1(Y (N)

i ∈ ·),(2.9)

and Equation (2.3) becomes

(2.10) I Nγ

bN
β,N = argmax

I∈X(N)

(
βσ̂N (·)−C E(I)

)
,

Therefore we choose βN such that

(2.11) β̂N := bN

Nγ
βN

converges to β̂ ∈ (0,∞). This is equivalent to the relation (1.5). Since in the sequel we will
study the set I Nγ

bN
β,N , it is convenient introduce the notation

(2.12) Îβ,N = I Nγ

bN
β,N .

In particular Îβ̂N ,N = IβN ,N .
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REMARK 2.1. Let us stress that the value of C is quite inessential and it can be included
in the parameter β̂ by a simple rescaling. Therefore from now on we assume C = 1.

It is essential for the sequel to extend the definition of Îβ,N to the whole space X
equipped with the Hausdorff metric. This generalization leads us to define the same kind of
random set introduced in (2.10) in which we use suitable continuum Energy and Entropy.

We define the continuum Energy Function σ̂∞ : X→R+ as

σ̂∞(·)=
∞∑

i=1
M(∞)

i 1(Y (∞)
i ∈ ·),(2.13)

where (M(∞
i )i∈N and (Y (∞

i )i∈N are the two independent random sequences introduced in (2.4)
and (2.5). Since α ∈ (0,1) we have that σ̂∞(I) <∞ for all I ∈ X, because the series

∑
i M(∞)

i
converges a.s.

Before extending the definition of the Entropy to the whole space X, let us conclude
this section on the Energy function by proving that σ̂N , with N ∈N∪ {∞} is an upper semi-
continuous function. The proof of this fact for N finite is simple, while the continuum case
requires an argument of approximation. Thus it is useful to define for k, N ∈ N∪ {∞} the
k-truncated Energy function as

σ̂(k)
N (·)=

(N−1)∧k∑
i=1

M(N)
i 1(Y (N)

i ∈ ·).(2.14)

Let us stress that the support of σ̂(k)
N is the space of the all possible subsets of Y (N,k), the set

of the positions of the first k-maxima

(2.15) Y (N,k) = {Y (N)
i , i = 1,2,3, · · · , (N −1)∧k}∪ {0,1}.

Whenever k ≥ N we write simply Y (N).

THEOREM 2.2. For any fixed k, N ∈N∪ {∞} and for a.e. realization of the disorder w(N),
the function σ̂(k)

N : X→R+ is upper semi-continuous (u.s.c.).

REMARK 2.3. For sake of clarity let us underline that in the Hausdorff metric (cf. (1.6))
dH(A,B) < ε if and only if for any x1 ∈ A there exists x2 ∈ B such that |x1 − x2| < ε and
vice-versa switching the role of A and B.

PROOF. Let us start to consider the case N ∧ k <∞. For a given I0 ∈ X, let ι be the set
of all points of Y (N,k) which are not in I0. Since Y (N,k) has a finite number of points there
exists η> 0 such that d(z, I0)> η for any z ∈ ι. Then if I ∈X is sufficiently close to I0, namely
dH(I, I0) ≤ η/2, then d(z, I) > η/2 > 0 for any z ∈ ι. Therefore, among the first k-maxima, I
can at most hit only the points hit by I0, namely σ̂(k)

N (I) ≤ σ̂(k)
N (I0) and this concludes the

proof of this first part.
For the case N∧k =∞ it is enough to observe that the difference between the truncated

Energy and the original one

(2.16) sup
I∈X

∣∣∣σ̂∞(I)− σ̂(k)
∞ (I)

∣∣∣= sup
I∈X

∣∣∣∣∣ ∞∑
i=1

M(∞)
i 1(Y (∞)

i ∈ I)−
k∑

i=1
M(∞)

i 1(Y (∞)
i ∈ I)

∣∣∣∣∣≤ ∑
i>k

M(∞)
i ,

converges to 0 as k →∞. Therefore the sequence of u.s.c. functions σ̂(k)∞ converges uniformly
to σ̂∞ and this implies the u.s.c. of the limit. �
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2.3. The Entropy. Let us define

(2.17) X(fin) = {I ∈X : |I| <∞}

and stress that it is a countable dense subset of X with respect to the Hausdorff Metric.

For a given set I = {x0 < x1 < ·· · < x`} ∈X(fin) we define the Entropy as

(2.18) E(I)= ∑̀
k=1

(xi − xi−1)γ.

THEOREM 2.4. The following hold
(1) The Entropy E(·) is strictly increasing with respect to the inclusion of finite sets,

namely if I1, I2 ∈X(fin) and I1 ( I2, then E(I2)> E(I1),
(2) The function E : X(fin) →R+ is lower semi continuous (l.s.c.).

PROOF. To prove (1) let us note that if I2 = {0,a1, x,a2,1} and I2 = {0,a1,a2,1}, with
0≤ a1 < x < a2 ≤ 1 then E(I2)−E(I1)= (x−a1)γ+ (a2−x)γ− (a2−a1)γ > 0 because γ< 1, thus
aγ+bγ > (a+b)γ for any a,b > 0. The claim for the general case follows by a simple induction
argument.

To prove (2) we fix I0 ∈ X(fin) and we show that if (In)n is a sequence of finite set con-
verging (in the Hausdorff metric) to I0, then it must be liminfn→∞ E(In)≥ E(I0) and by the
arbitrariness of the sequence the proof will follow.

Let I0 ∈ X(fin) be fixed and let us observe that if we fix ε > 0 small, namely smaller
than the half of the minimum of the distance between the points of I0, then by Remark 2.3
any set I for which dH(I, I0) < ε must have at least the same number of points of I0, i.e.
|I| ≥ |I0|. In such way if (In) is a sequence of finite sets converging to I0, then for any n
large enough we can pick out a subset I ′n of In with the same number of points of I0 such
that (I ′n)n still converges to I0. Necessary the points of I ′n converge to the ones of I0, so
that limn→∞ E(I ′n) = E(I0). By using Part (1) we have that for any n, E(In) ≥ E(I ′n), so that
liminfn→∞ E(In)≥ E(I0) and the proof follows. �

Now we are ready to define the Entropy of a generic set I ∈ X. The goal is to obtain
an object for which the properties of the Entropy E on X(fin) still hold. This extension is
not trivial because E is strictly l.s.c., namely given I ∈ X(fin) it is always possible to find
two sequences (I(1)

N )N , (I(2)
N )N ∈ X(fin) converging to I such that limN→∞ E(I(1)

N ) = E(I) and
limN→∞ E(I(2)

N )=∞. For instance let us consider the simplest case, when I = {0,1}. Then we
may consider I(1)

N ≡ I for any N, so that E(I(1)
N )≡ E({0,1}), and I(2)

N the set made by 2N points
such that the first N are equispaced in a neighborhood of 0 of radius N−ε and the others N
in a neighborhood of 1 always of radius N−ε, with ε= ε(γ) small, then I(2)

N → I as N →∞ and
E(I(2)

N )= 2N ·1/Nγ(1+ε) + (1−2/Nε)γ =O(N1−γ(1+ε))→∞ as N →∞ if ε< (1−γ)/γ.
In order to avoid this problem for I ∈X we define

(2.19) Ē(I)= liminf
J→I,J∈X(fin)

E(J).

Let us stress that Ē is nothing but the l.s.c. extension of E to the whole space X, see e.g.
[Bou71, Prop. 5 TG IV.31].

THEOREM 2.5. The following hold:
(1) The function Ē(·) is increasing with respect to the inclusion of sets, namely if I1, I2 ∈

X with I1 ⊂ I2 then Ē(I2)≥ Ē(I1).
(2) The function Ē : X→R+ is l.s.c. and Ē |X(fin)≡ E.
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REMARK 2.6. To make more clear the definition we recall that

(2.20) Ē(I)= liminf
J→I,J∈X(fin)

E(J) := lim
δ→0

[
inf

{
E(J) : J ∈ BH(I,δ)∩X(fin)\{I}

}]
,

where BH(I,δ) denotes the disc of radius δ centered on I in the Hausdorff Metric. If Ē(I) ∈R
the definition is equivalent to say
(a) For any ε> 0 and for any δ> 0 there exists J ∈ BH(δ, I)∩X(fin)\{I} such that Ē(I)+ ε>

E(J).
(b) For any ε > 0 there exists δ0 > 0 such that for any J ∈ BH(δ0, I)∩X(fin)\{I}, E(J) >

Ē(I)−ε.
PROOF. We have only to prove (1). Let I, J ∈ X such that J ⊂ I. If Ē(I) = ∞ there is

nothing to prove, therefore we can assume that Ē(I) ∈ R. Then, by property (a), for any
ε,δ > 0 there exists I ′ ∈ X(fin) such that Ē(I)+ ε ≥ E(I ′) and dH(I, I ′) < δ. Directly by the
definition of the Hausdorff metric, the family of discs of radius δ indexed by I ′ — (B(x,δ))x∈I ′

— covers I and thus also J, therefore if J′ ⊂ I ′ is the minimal cover of J coming from I ′, i.e.
J′ := min{L ⊂ I ′ : J ⊂ ∪x∈LB(x,δ)}, then it must be dH(J, J′) < δ. Moreover by Theorem 2.4
we have E(I ′) ≥ E(J′) and thus Ē(I)+ ε ≥ E(J′). Let now δ0 = δ0(ε) > 0 as prescript in (b),
then as soon as δ< δ0 it must hold that E(J′)≥ Ē(J)−ε and this conclude the proof. �

From now on in order to simplify the notation we use E instead of Ē to indicate the
function E defined on all X.

COROLLARY 2.7. Let I ∈ X and let us suppose that there exists x ∉ I and E(I) <∞, then
E(I ∪ {x}) > E(I). It follows that the function E is strictly increasing whenever it is finite: if
I ( J and E(I)<∞, then E(I)< E(J).

PROOF. Let us recall that x ∉ I means that there exists δ> 0 such that I∩(x−δ, x+δ)=;
because I is closed. Let a,b ∈ I the two points of I closest to x respectively at its left and at
its right, then the proof will follow by proving that

E(I ∪ {x})−E(I)≥ (x−a)γ+ (b− x)γ− (b−a)γ,(2.21)

because the r.h.s. is a quantity strictly bigger than 0. For this purpose we start by observing
that for any ε small enough if A is a set of a ε-neighborhood of I∪{x}, then it can be written as
union of two disjoint sets D,C where D is in a ε-neighborhood of I and C in a ε-neighborhood
of {x}. namely BH(I ∪ {x},ε)∩X(fin) = {A ∈ X(fin) : A = D ∪C,D ∈ BH(I,ε) and C ∈ BH({x},ε)};
moreover we can partition any such D in two disjoint sets D = D′∪D′′ where D′ = D∩ [0, x)
and D′′ = (x,1].

For a fixed set S, let lS be its smallest point bigger than 0 and rS its biggest point
smaller than 1. By using this notation it follows from the definition of the Entropy for a
finite set (2.18) that for any such A ∈ BH(I ∪ {x},ε)∩X(fin) we can write

(2.22) E(A)= E(D∪C)= E(D)−(lD′′−rD′)γ+E(C∪0,1)−lγC−(1−rC)γ+(lC−rD′)γ+(lD′′−rC)γ.

By Theorem 2.4 we have that E(C∪0,1)≥ lγC + (1− rC)γ+ (rC − lC)γ, from which follows

(2.23) E(A)= E(D∪C)≥
E(D)− (lD′′ − rD′)γ+ (lC − rD′)γ+ (lD′′ − rC)γ+ (rC − lC)γ ≥ E(D)+ e(ε),

where e(ε)= inf{(lC−rD′)γ+(lD′′−rC)γ+(rC− lC)γ−(lD′′−rD′)γ}. This inf is taken among the
all possible D = D′∪D′′ ∈ BH(I,ε) and C ∈ BH({x},ε)}. Now the r.h.s. of (2.23) is independent
of C, so that infE(A) ≥ infE(D)+ e(ε), where the inf is taken among the all possible A =
D ∪C ∈ BH(I ∪ {x},ε)∩X(fin)\{I ∪ {x}}. We conclude the proof by taking the limit for ε→ 0,
because e(ε)→ (x−a)γ+ (b− x)γ− (b−a)γ as ε→ 0. �
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PROPOSITION 2.8. For any 0≤ a < b ≤ 1 we have that E([a,b])=∞.

PROOF. Let us consider the case where a = 0,b = 1, the other cases follow in a similar
way. By Theorem 2.4 we have that E([0,1])≥ E({0,1/N, · · · ,1})= N1−γ ↑∞ as N ↑∞ because
γ< 1. �

2.4. The Energy-Entropy.

DEFINITION 2.9. For any N,k ∈ N∪ {∞} and β ∈ (0,∞) we define, recalling (2.14) and
(2.19),

(2.24) U (k)
β,N (I)=βσ̂(k)

N (I)−E(I).

Note that U (k)
β,N is u.s.c. on (X,dH), a compact metric space, then its maximizer

(2.25) û(k)
β,N =max

I∈X
U (k)
β,N (I).

is well defined.

Whenever k ≥ N we will omit the superscript (k) from the notation.

THEOREM 2.10. For any N,k ∈N∪{∞}, β> 0 and for a.e. realization of the disorder w(N),
the maximum û(k)

β,N is achieved in only one set, i.e. the solution at

(2.26) Î(k)
β,N = argmax

I∈X
U (k)
β,N (I)

is given by only one set. Moreover for any N ∈N we have that Î(k)
β,N ∈X(N).

PROOF. We claim that if I is a solution of Equation (2.26), then by using Corollary 2.7

I ⊂Y (N,k), if N ∧k <∞,(2.27)

I = I ∩Y (∞) if N ∧k =∞.(2.28)

Indeed if N ∧ k < ∞ and (2.27) fails, then there exists x ∈ I such that x ∉ Y (N,k) and this
implies σ̂(k)

N (I)= σ̂(k)
N (I − {x}), but E(I − {x})< E(I) by Corollary 2.7. Therefore U (k)

β,N (I − {x})>
U (k)
β,N (I) = û(k)

β,N , a contradiction. The case N ∧ k =∞ follows in an analogous way always by
using Corollary 2.7 because the set in the r.h.s. of (2.28), which is a subset of I, has the same
Energy as I but smaller Entropy. Now we are able to conclude the uniqueness (following the
same ideas used in [HM07, Proposition 4.1] or [AL11, Lemma 4.1]): let I1, I2 be two subsets
achieving the maximum. By using (2.27) and (2.28) if I1 , I2, then there would exist Y (N)

j

such that Y (N)
j ∈ I1 and Y (N)

j ∉ I2, so that

(2.29) max
I:Y (N)

j ∈I
U (k)
β,N (I)= max

I:Y (N)
j ∉I

U (k)
β,N (I)

and this leads to

βM(N)
j =βσ̂(k)

N (Y (N)
j )= max

I:Y (N)
j ∉I

U (k)
β,N (I)− max

I:Y (N)
j ∈I

β ∑
k, j:Y (N)

k ∈I

M(N)
k −E(I)

 .(2.30)

Let us stress that the r.h.s. is independent of M(N)
j , which is in the l.h.s. Then, by condi-

tioning on the values of (M(N)
i )i∈N,i, j and (Y (N)

i )i∈N we have that the l.h.s. has a continuous
distribution, while the r.h.s. is a constant, so that the event in which the r.h.s. is equal to
the l.h.s. has zero probability. By countable sub-additivity of the probability we have that
a.s. I1 = I2. �
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3. Convergence

The aim of this section is to discuss the convergence of Îβ̂N ,N and ûβ̂N ,N under the
assumption that limN→∞ β̂N = β̂ ∈ (0,∞). See respectively (2.26), (2.25) and (2.11).

For technical convenience let us start to build a coupling between the discrete disorder
and the continuum one. We recall that by Equation (2.8) w(N) converges in distribution to
w(∞) on S , a completely metrizable space. Therefore by using Skorokhod’s representation
theorem (see [Bil99, Theorem 6.7]) we can define w(N) and w(∞) on a common probability
space in order to assume that their convergence holds almost surely.

LEMMA 3.1. There is a coupling, which with a slight abuse of notation we still call P, of
the continuum model and the discrete one, under which

(3.1) w(N) = (M(N)
i ,Y (N)

i )i∈N
S−−−−→

P−a.s.
w(∞) = (M(∞)

i ,Y (∞)
i )i∈N, as N →∞.

In particular for any fixed ε,δ> 0 and k ∈N there exists N̂ <∞ such that for all N > N̂

P

(
(N−1)∧k∑

j=1
| M(N)

j −M j |< ε
)
> 1−δ,(3.2)

P

(
(N−1)∧k∑

j=1
|Y (N)

j −Y j |< ε
)
> 1−δ,(3.3)

3.1. Convergence Results. Let us rewrite an equivalent, but more handy definition
of Î(k)

β,N and û(k)
β,N : for a given k ∈N let

Ck = {A : A ⊂ {1, · · · ,k}}(3.4)

and for any k ∈ N, N ∈ N∪ {∞} and A ⊂ {1, · · · ,k} let Y (N)
A = {Y (N)

i }i∈A ∪ {0,1}, which is well
defined also for A =;. Therefore by Theorem 2.10 we can write

û(k)
β,N = max

A∈Ck

[
β

∑
i∈A

M(N)
i −E(YA)

]
,(3.5)

Î(k)
β,N =Y (N)

A(k)
β,N

,(3.6)

for a suitable random index set A(k)
β,N (which can be empty or not). We have our first conver-

gence result.

PROPOSITION 3.2. Assume that β̂N → β̂ as N →∞. Then for any fixed δ > 0 and k ∈N
there exists Nk such that for any N > Nk

(3.7) P
(
A(k)
β̂N ,N

= A(k)
β̂,∞

)
> 1−δ.

PROOF. To prove the claim by using the sub-additivity of the probability, it is enough to
prove that for any r ∈ {1, · · · ,k}

P
(
r ∉ A(k)

β̂N ,N
, r ∈ A(k)

β̂,∞
)
→ 0, N →∞,(3.8)

P
(
r ∈ A(k)

β̂N ,N
, r ∉ A(k)

β̂,∞
)
→ 0, N →∞.(3.9)

We detail the first one, the second one follows in an analogous way. On the event {r ∉
A(k)
β̂N ,N

, r ∈ A(k)
β̂,∞} we consider

(3.10) û(r) := max
A∈Ck,r∉A

[
β̂

∑
i∈A

Mi −E(YA)

]
< û(k)

β̂,∞
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because r ∈ A(k)
β̂,∞ by our assumption and by uniqueness of the set that achieves the maxi-

mum. Now

(3.11) max
A∈Ck,r∉A

[
β̂N

∑
i∈A

M(N)
i −E(YA)

]

≤ max
A∈Ck,r∉A

[
β̂

∑
i∈A

Mi −E(YA)

]
+|β̂N − β̂|

k∑
i=1

M(N)
i + β̂

k∑
i=1

|M(N)
i −Mi|

= û(r) +|β̂N − β̂|
k∑

i=1
M(N)

i + β̂
k∑

i=1
|M(N)

i −Mi|

and in the same way, always on the event {r ∉ A(k)
β̂N ,N

, r ∈ A(k)
β̂,∞},

(3.12) max
A∈Ck,r∈A

[
β̂N

∑
i∈A

M(N)
i −E(YA)

]
≥ û(k)

β̂,∞−|β̂N − β̂|
k∑

i=1
M(N)

i − β̂
k∑

i=1
|M(N)

i −Mi|.

Therefore by using the assumption that r ∉ A(k)
β̂N ,N

we have that the l.h.s. of (3.11) is smaller

than that of (3.12), thus û(k)
β̂,∞− û(r) ≤ 2β̂

∑k
i=1 |M(N)

i −Mi|+2|β̂N −β̂|∑k
i=1 M(N)

i . Summarizing
a simple inclusion of events gives

(3.13) P
(
r ∉ A(k)

β̂N ,N
, r ∈ A(k)

β̂,∞
)
≤P

(
0< û(k)

β̂,∞− û(r) ≤ 2β̂
k∑

i=1
|M(N)

i −Mi|+2|β̂N − β̂|
k∑

i=1
M(N)

i

)
and the proof follows by observing that the r.h.s. converges to 0 as N →∞ by Lemma 3.1. �

The following Proposition contains mainly the convergence results on the truncated
quantities û(k)

β̂N ,N
and Î(k)

β̂N ,N
. To make such computation we need to compare the maximum

on the all space X with the one achieved out of a neighborhood of radius δ of Î(k)
β,N .

DEFINITION 3.3. For any δ> 0, β ∈ (0,∞) we define

(3.14) û(k)
β,N (δ)= max

I∈X:dH (I,Î(k)
β,N )≥δ

U (k)
β,N (I).

PROPOSITION 3.4. Assume that β̂N → β̂ as N →∞. The following hold

(1) For every fixed δ> 0, β ∈ (0,∞) P
(
liminfk→∞(û(k)

β,∞− û(k)
β,∞(δ))> 0

)
= 1.

(2) For any ε,δ> 0 and for any fixed k there exists Nk such that P
(
|û(k)

β̂N ,N
− û(k)

β̂,∞| < ε
)
>

1−δ, for any N > Nk.
(3) For any ε,δ> 0 and for any fixed k there exists Nk such that P

(
dH(Î(k)

β̂N ,N
, Î(k)
β̂,∞)< ε

)
>

1−δ, for any N > Nk.
(4) For any ε,δ > 0, there exist η,K > 0, (Nk)k>K such that P

(
û(k)
β̂N ,N

(ε)< û(k)
β̂N ,N

−η
)
>

1−δ, for any k > K and N > Nk.

PROOF. Part (1). By observing that U (k)
β,N is an u.s.c. function on a compact set, we use

the same outline of [AL11, Part (3,4) of Proof of lemma 4.1]. Indeed by contradiction if there
exists δ> 0 such that liminfk→∞(û(k)

β,∞− û(k)
β,∞(δ)) = 0, then we may find a sequence Ik j such

that limsup j→∞U (k j)
β,∞(Ik j ) ≥ liminf j→∞U (k j)

β,∞(Î(k j)
β,∞) and dH(Îk j

β,∞, Ik j ) > δ. By compactness of
the space X we can suppose that there exists I0 ∈ X such that lim j→∞ Ik j = I0, therefore by
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using the u.s.c. property of U (k)
β,N we get, recalling that for any fixed k ∈N, Uβ,∞(I)≥U (k)

β,∞(I)

and U (k)
β,∞(I) ↑Uβ,∞(I) as k ↑∞,

(3.15) Uβ,∞(I0)≥ limsup
j→∞

Uβ,∞(Ik j )≥ limsup
j→∞

U (k j)
β,∞(Ik j )≥

≥ liminf
j→∞

U (k j)
β,∞(Î(k j)

β,∞)≥ liminf
j→∞

U (k j)
β,∞(Îβ,∞)=Uβ,∞(Îβ,∞)= ûβ,∞,

that is Uβ,∞(I0)= ûβ,∞ and by uniqueness of the maximizer we obtain that I0 = Îβ,∞. Thus
if we show that limk→∞ Î(k)

β,∞ = Îβ,∞, then we obtain the desired contradiction, because the

two sequences (Ik j ) j and (Î(k j)
β,∞) j are at distance at least δ and cannot converge to the same

limit. By compactness of X we can assume that Î(k)
β,∞ converges to I1. Therefore by u.s.c. of

Uβ,∞ we get
(3.16)

Uβ,∞(I1)≥ limsup
k→∞

Uβ,∞(Î(k)
β,∞)≥ limsup

k→∞
U (k)
β,∞(Î(k)

β,∞)≥ limsup
k→∞

U (k)
β,∞(Îβ,∞)=Uβ,∞(Îβ,∞).

The uniqueness of the maximizer forces to have Îβ,∞ = I1 and this concludes the proof. �
To prove Part (2) we observe that

û(k)
β̂,∞ = max

A∈Ck

[
β̂

∑
i∈A

Mi −E(YA)

]
≤ û(k)

β̂N ,N
+|β̂N − β̂|

k∑
i=1

Mi + β̂N

k∑
i=1

|Mi −M(N)
i |,(3.17)

û(k)
β̂N ,N

= max
A∈Ck

[
β̂N

∑
i∈A

M(N)
i −E(YA)

]
≤ û(k)

β̂,∞+|β̂N − β̂|
k∑

i=1
M(N)

i + β̂
k∑

i=1
|Mi −M(N)

i |.(3.18)

and the proof follows by Lemma 3.1 and the assumption on β̂N . �
Part (3) is a consequence of Proposition 3.2 and Lemma 3.1. �
Part (4) is a direct consequence of the previous Parts (1), (2) and (3). First of all let us

prove an intermediate statement: for all δ,ε,η> 0 and k ∈N there exists Nk <∞ such that
for all N > Nk

(3.19) P
(
û(k)
β̂N ,N

(ε)< û(k)
β̂,∞(ε/4)+η/4

)
> 1−δ/2.

For this purpose let us fix δ,ε > 0. By Part (3) for any fixed k ∈ N there exists Nk > 0 such
that for all N > Nk, dH(Î(k)

β̂N ,N
, Î(k)
β̂,∞)< ε

4 w.p. 1−δ/4. Let I be a set achieving û(k)
β̂N ,N

(ε), so that

by definition dH(I, Î(k)
β̂N ,N

) ≥ ε. It is not difficult to see that I ⊂ Y (N,k) (points outside Y (N,k)

does not contribute to the Energy, but increase the Entropy). We claim that for any η > 0
w.p. at least 1−δ/4 there exists I ′ ⊂ Y (∞,k) ∈ X(fin) such that dH(I ′, I) < ε/2 and U (k)

β̂N ,N
(I) ≤

U (k)
β̂,∞(I ′)+η/4. If it is true then û(k)

β̂N ,N
(ε)≤ û(k)

β̂,∞(ε/4)+η/4 because dH(I ′, Î(k)
β̂,∞)> ε/4. To prove

the existence of I ′ we observe that I = {0,Y (N)
i1

, · · · ,Y (N)
i`

,1}, for a suitable choice of indexes
{i1, · · · , i`} ⊂ {1, · · · ,k} so that by using Lemma 3.1 it is not difficult to show that we can
choose I ′ = {0,Y (∞)

i1
, · · · ,Y (∞)

i`
,1}, possibly enlarging N.

To conclude the proof, by Part (1) for any ε> 0 there exists η> 0 and K > 0 such that for all
k > K , û(k)

β̂,∞(ε/4)≤ û(k)
β̂,∞−η w.p. 1−δ/4 . Then by using Part (2) together with Equation (3.19)

for any k > K we can find Nk such that for all N > Nk

(3.20) P
(
û(k)
β̂N ,N

(ε)≤ û(k)
β̂N ,N

−η/4
)
> 1−δ.

�
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Let us note that for any fixed N ∈Nwe have that Î(k)
β̂N ,N

≡ Îβ̂N ,N as k > N. In the following
Proposition we show that this convergence holds uniformly on N.

PROPOSITION 3.5. The following hold
(1) For any N,k ∈N∪ {∞} we define

(3.21) ρ(k)
N := sup

I∈X

∣∣∣σ̂N (I)− σ̂(k)
N (I)

∣∣∣= ∑
i>k

M(N)
i .

Then for any ε,δ > 0 there exists K > 0 such that P(ρ(k)
N > ε) < δ for all k > K, uni-

formly on N ∈N.

(2) P
(

lim
k→∞

Î(k)
β̂,∞ = Îβ̂,∞

)
= 1.

(3) For any ε,δ> 0 there exists K such that P
(
dH(Î(k)

β̂N ,N
, Îβ̂N ,N )< ε

)
> 1−δ for all k > K

and uniformly on N > k.

PROOF. Part (1) is like [HM07, Proposition 3.3]. �
Part (2) has been already proven in the proof of Part (1) of Proposition 3.4. �
To prove Part (3) let ε,δ > 0 be fixed and let us fix k ∈ N and η > 0 to have that Part

(4) of Proposition 3.4 holds for any N > Nk. Moreover possibly enlarging k we can suppose
that P(ρ(k)

N < η/2)> 1−δ uniformly on N. Then we claim that dH(Î(k)
β̂N ,N

, Î(`)
β̂N ,N

)< ε with high

probability for any `> k and N > Nk. Otherwise if dH(Î(k)
β̂N ,N

, Î(`)
β̂N ,N

)≥ ε for some `> k, then

it must hold that û(`)
β̂N ,N

≤ û(k)
β̂N ,N

(ε)+ β̂Nρ
(k)
N . Therefore w.p. greater than 1−2δ it must be

û(`)
β̂N ,N

≤ û(k)
β̂N ,N

− η/2 and this is a contradiction because ` 7→ û(`)
β̂N ,N

is non-decreasing and

thus û(`)
β̂N ,N

≥ û(k)
β̂N ,N

. The restriction on N > k is obtained by observing that we only left
a finite number of N, namely all those in the set {k+ 1, · · ·Nk}. For any of such N there
exists kN such that Î(kN )

β̂N ,N
= Îβ̂N ,N (actually we can choose any kN > N). Therefore by setting

K =max{k,kk+1, · · · ,kNk } we extend the result at any k > K and N > k. �

3.2. Proof of Theorem 1.4. The proof is a consequence of [Bil99, Theorem 3.2], which
can be written as follows

THEOREM 3.6. Let us suppose that the r.v’s X (k)
N , X (k), XN , X they take values in a sepa-

rable metric space (S ,dS ) and X (k)
N , XN are defined on the same probability space. Then if

the following diagram holds

X (k)
N

k→∞in probability, uniformly in N
��

N→∞
(d) // X (k)

(d) k→∞
��

XN X

then XN
(d)→X. The expression in probability, uniformly in N means

(3.22) lim
k→∞

limsup
N→∞

P
(
dS (X (k)

N , XN )≥ ε
)
= 0,

for any fixed ε> 0.

In our case we have X (k)
N = Î(k)

β̂N ,N
, X (k) = Î(k)

β̂,∞, XN = Îβ̂N ,N and X = Îβ̂,∞ and by Proposi-
tions 3.4 and 3.5 the diagram above holds.
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REMARK 3.7. Let us stress that under the coupling introduced in Lemma 3.1 we have
that in Theorem 1.4 the convergence of Îβ̂N ,N to Îβ̂,∞ holds in probability, namely for any

ε,δ> 0 one has P
(
dH(Îβ̂N ,N , Îβ̂,∞)< ε

)
> 1−δ for all N large enough. This follows by Part (3)

of Proposition 3.4 and Parts (2), (3) of Proposition 3.5.

4. Concentration

In this section we discuss the concentration of τ/N∩[0,1] around the set Îβ̂N ,N (cf. (2.12)),
giving a proof of Theorems 1.3, 1.5.

4.1. General Setting of the Section. Let us stress that in the Pinning Model (1.1),
the factor h > 0 in the exponent of the Radon-Nikodym derivative plays a role to bias the law
of the renewal process. W.l.o.g. we may set h = 0, provided to replace the original renewal τ
with a new one, τ̃ defined by P(τ̃1 = n)= e−hP(τ1 = n) and P(τ̃1 =∞)= 1− e−h. Note that the
renewal process τ̃ is terminating because h > 0. In this case (cf. Appendix A) the renewal
function ũ(n) :=P(n ∈ τ̃) satisfies

(4.1) lim
n→∞

log ũ(n)
nγ

=−C ,

with the same γ and C used in Assumptions 1.2 for the original renewal process τ.
In the sequel we assume C = 1, as already discussed in the Section 3, h = 0 and we omit

the tilde-sign on the notations, writing simply τ, u(·) instead of τ̃, ũ(·).

4.2. Proof of Theorem 1.3. To prove Theorem 1.3 we proceed in two steps. In the first
one we consider a truncated version of the Gibbs measure (1.1) in which we regard only
the firsts k-maxima of ω1, · · · ,ωN−1 proving an analogous result for this truncated Pinning
Model (cf. Lemma 4.3). In the second step we show how to deduce Theorem 1.3.

Let us thus define the truncated Pinning Model. For technical reasons it is useful write
the Energy by using σ̂N defined in (2.9).

DEFINITION 4.1. For N,k ∈N we define the k-truncated Pinning Model measure by the
following Radon-Nikodym derivative

(4.2)
dP̂(k)

β,N

dPN
(I)= eNγβσ̂(k)

N (I)1(1 ∈ I)

Ẑ(k)
β,N

,

where PN is the law of τ/N ∩ [0,1] used in (1.1).
In the sequel we use the convention that whenever k ≥ N, the superscript (k) will be

omitted.

REMARK 4.2. Note that whenever β = β̂N the Equation (4.2) with k ≥ N recovers the
original Gibbs measure (1.1) with β=βN .

LEMMA 4.3. Let (β̂N )N be a sequence converging to β̂ ∈ (0,∞). For any fixed ε,δ> 0 there
exist ν= ν(ε,δ)> 0, K = K(ε,δ) and (Nk)k≥K such that

(4.3) P
(
P̂(k)
β̂N ,N

(
dH(I, Î(k)

β̂N ,N
)> δ

)
≤ e−Nγν

)
> 1−ε

for all k > K and N > Nk.

REMARK 4.4. Roughly speaking the proof of the Lemma 4.3 is based on the estimation
of the probability that a given set ι= {ι1, · · · , ι`}, with ι j < ι j+1, is included in τ/N, namely to
compute the probability that ι1, · · · , ι` ∈ τ/N when N is large enough.
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Precisely we fix ι = {ι1, · · · , ι`} ⊂ [0,1] and consider ι(N) = {ι(N)
1 , · · · , ι(N)

`
}, where ι(N)

i is the
nearest point to ιi on the lattice {0,1/N, · · · ,1}. We define uN (ι) =∏`

i=1 u(N(ι(N)
i − ι(N)

i−1)) (here
and henceforth we use the notation ι0 := 0) and we want to know the behavior of uN (ι) as
N →∞. The answer is given by the following result

PROPOSITION 4.5. Let ι = {ι1, · · · , ι`} ⊂ [0,1] be a fixed and finite set and consider the
associated real sequence (uN (ι))N . Then limN→∞ 1

Nγ loguN (ι) =−∑`
i=1(ιi − ιi−1)γ and it holds

uniformly in the space of the all subsets ι with points spaced at least ξ, for any fixed ξ> 0.

PROOF. The convergence for a fixed set is a consequence of (4.1). To prove the uniformity
we note that if ιi − ιi−1 > ξ, then ι(N)

i − ι(N)
i−1 > ξ/2 as soon as 1/N < ξ/2, which is independent of

such ι. This shows the claim for all such ι with two points and it is sufficient to conclude the
proof because in general each factor of uN (ι) is written on the form of distance between two
points and we have at most 1

ξ
+1-factors. �

Another simple, but important, observation is that for a fixed k ∈N w.h. probability the
minimal distance between Y (N)

1 , · · · ,Y (N)
k , the positions of the first k-maxima introduced in

Section 2, cannot go to 0 as N →∞. Precisely, by using Lemma 3.1, we have that for any
fixed ε> 0 and k ∈N there exists ξ= ξ(k,ε)> 0 and Nk such that for any N > Nk the event

(4.4)
{∣∣∣Y (N)

i −Y (N)
j

∣∣∣> ξ,Y (N)
`

∈ (ξ,1−ξ),∀`, i , j ∈ {1, · · · ,k}
}

holds w.p. larger than 1− ε. By Proposition 4.5 this implies that for any fixed ζ > 0 on the
event (4.4) for all N large enough and uniformly on ι = {ι0 = 0 < ι1 < ·· · < ι` < 1 = ι`+1} ⊂
Y (N,k), the set of the fist k-maxima (2.15), we have that

e−NγE(ι)−ζNγ ≤P(ι1, · · · , ι` ∈ τ/N)≤ e−NγE(ι)+ζNγ

,(4.5)

where E(ι)=∑`+1
i=1 (ιi − ιi−1)γ is the entropy (2.18).

PROOF OF LEMMA 4.3. The aim of this proof is to prove that for any given δ> 0 and k ∈
N large enough, P̂(k)

β̂N ,N

(
dH(Î(k)

β̂N ,N
, I)> δ

)
→ 0 as N →∞, with an explicit rate of convergence.

Our strategy is the following: given a set I ⊂ {0,1/N, · · · ,1}, with 0,1 ∈ I (chosen according to
the Pinning Model of Definition 4.2) we regard I(N,k) := I ∩Y (N,k), the intersection of I with
the set of the position of the firsts k-maxima: it can have distance bigger or smaller than
δ
2 from Î(k)

β̂N ,N
. This leads to make a partition of the set of the all possible I ’s, therefore by

using an inclusion of events and the triangle inequality we conclude

{
dH(Î(k)

β̂N ,N
, I)> δ

}
⊂

{
dH(Î(k)

β̂N ,N
, I(N,k))≥

δ

2

}
∪

{
dH(Î(k)

β̂N ,N
, I(N,k))<

δ

2
,dH(I(N,k), I)> δ

2

}
.

(4.6)

We have thus to prove our original statement for

P̂(k)
β̂N ,N

(
dH(Î(k)

β̂N ,N
, I(N,k))≥

δ

2

)
,(4.7)

P̂(k)
β̂N ,N

(
dH(Î(k)

β̂N ,N
, I(N,k))<

δ

2
,dH(I, I(N,k))>

δ

2

)
.(4.8)

Let us define the good event to consider for the disorder. Let ε,δ,ζ> 0 and the associated
k ∈N, η,K > 0 be fixed such that for any N > Nk

(1) the event (4.4) and the relation (4.5) hold w.p. larger than 1−ε/2 (the precise value
of ζ will be chosen in the sequel),

(2) the event {û(k)
β̂N ,N

(δ/2)< û(k)
β̂N ,N

−η} holds w.p. larger than 1−ε/2 (cf. Part (4) of Propo-
sition 3.4, Definition 2.9 and 3.3).
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In the rest of the proof we work on the intersection of such two events, which has P-
probability larger than 1−ε.

We recall that our goal is to find a good upper bound for (4.7) and (4.8). Let us start to
consider (4.7). Let

(4.9) A =
{
ι⊂Y (N,k) : dH(ι, Î(k)

β̂N ,N
)≥ δ

2
and 0,1 ∈ ι

}
.

Then (4.7)≤ ∑
ι∈A

P̂(k)
β̂N ,N

(I(N,k) = ι) and if Nk is sufficiently large

P̂(k)
β̂N ,N

(I(N,k) = ι)=
EN

(
eNγβ̂N σ̂

(k)
N (I)1(I(N,k) = ι);1 ∈ τ/N

)
EN

(
eNγβ̂N σ̂

(k)
N (I);1 ∈ τ/N

) ≤ eNγβ̂N σ̂
(k)
N (ι)PN (ι⊂ I)

e
Nγβ̂N σ̂

(k)
N

(
Î(k)
β̂N ,N

)
PN

(
Î(k)
β̂N ,N

⊂ I
) (4.5)≤

(4.10)

≤exp
{
−Nγ(û(k)

β̂N ,N
−U (k)

β̂N ,N
(ι))+2Nγζ

}
≤ exp

{
−Nγ(û(k)

β̂N ,N
− û(k)

β̂N ,N
(δ/2))+2Nγζ

}
,

where U (k)
β̂N ,N

has been defined in Definition 2.9. By assumption (2) we have that û(k)
β̂N ,N

−
û(k)
β̂N ,N

(δ/2)> η. We conclude that if ζ is chosen small than η/4, depending only of η, then the

l.h.s. of (4.10) ≤ e−Nγ η

2 , uniformly in ι ∈ A. Summarizing for all such k and N, by observing
that A has at most 2k elements,

(4.11) (4.7)≤ ∑
ι∈A

P̂(k)
β̂N ,N

(I(N,k) = ι)≤ |A|e−Nγη/2 ≤ 2ke−Nγη/2.

For (4.8) we introduce

(4.12) B =
{
ι⊂Y (N,k) : dH(ι, Î(k)

β̂N ,N
)< δ

2
and 0,1 ∈ ι

}
,

Thus (4.8)≤ ∑
ι∈B

P̂(k)
β̂N ,N

(
dH (ι, I)> δ

2
, I(N,k) = ι

)
. Let us observe that for a given such ι

P̂(k)
β̂N ,N

(
dH (ι, I)> δ

2
, I(N,k) = ι

)
=

EN

(
eNγβ̂N σ̂

(k)
N (I)1(dH (ι, I)> δ

2 , I(N,k) = ι);1 ∈ τ/N
)

EN

(
eNγβ̂N σ̂

(k)
N (I);1 ∈ τ/N

)(4.13)

≤
PN

(
dH (ι, I)> δ

2 , I(N,k) = ι
)

PN (ι⊂ I)
.

We have brought back our problem to compute the probability under the renewal distri-
bution PN . Note that

{
dH (ι, I)> δ

2 , I(N,k) = ι
}
⊂ {∃x ∈ I,dH(x, ι) > δ

2 , I(N,k) = ι} and that if

ι = {ι0 = 0 < ι1 < ·· · < ι` = 1} ∈ B and we define U j,δ = [ι j + δ
2 , ι j+1 − δ

2 ]∩ N
N , which is empty

if the distance between ι j and ι j+1 is strictly smaller than δ, then {∃x ∈ I,dH(x, ι)> δ
2 , I(N,k) =

ι}=∪`−1
j=0 ∪x∈U j,δ {x ∈ I, I(N,k) = ι}. Therefore

PN
(
dH (ι, I)> δ, I(N,k) = ι

)≤ `−1∑
j=0

∑
x∈U j,δ

PN
(
x ∈ I, I(N,k) = ι

)≤ `−1∑
j=0

∑
x∈U j,δ

PN (x ∈ I, ι⊂ I) .(4.14)
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Take j for which ι j < x < ι j+1, then by using the i.i.d. structure of the interval-arrival of the
renewal process, we also have, recalling that u(n)=P(n ∈ τ),

(4.15)
PN ({x}∪ ι⊂ I)

PN (ι⊂ I)
= u(N(x− ι j))u(N(ι j+1 − x))

u(N(ι j+1 − ι j))
(4.5)≤ e−Nγ((x−ι j)γ+(ι j+1−x)γ−(ι j+1−ι j)γ)+2ζNγ ≤ e−Nγ(21−γ−1)δγ+2ζNγ

,

uniformly on N ∈ N and on all such ι j, ι j+1 and x. Note that the last inequality follows by
observing that for all such ι j, ι j+1 and x one has (x−ι j)γ+(ι j+1−x)γ−(ι j+1−ι j)γ)≥ (21−γ−1)δγ.

We conclude that possibly decreasing the value of ζ, there exists a constant Cδ > 0 such
that PN ({x}∪ι⊂I)

PN (ι⊂I) ≤ e−CδNγ

uniformly in ι ∈ B.
This leads to have that

(4.16) (4.8)≤ ∑
ι∈B

P̂(k)
β̂N ,N

(
dH

(
Î(k)
β̂N ,N

, I
)
> δ

2
, I(N,k) = ι

)
≤ |B|Ne−CδNγ ≤ 2kNe−CδNγ

.

�

PROOF OF THEOREM 1.3. First of all we are going to prove concentration around Î(k)
β̂N ,N

.
Let k > 0 be fixed (which we will choose in the following). Then, recalling Definition 4.1,

P̂β̂N ,N

(
dH

(
Î(k)
β̂N ,N

, I
)
> δ

)
≤(4.17)

≤P̂(k)
β̂N ,N

(
dH

(
Î(k)
β̂N ,N

, I
)
> δ

)
·sup

dP̂β̂N ,N

dP̂(k)
β̂N ,N

(I) : dH

(
Î(k)
β̂N ,N

, I
)
> δ

 .

By Lemma 4.3 for any ε,δ > 0 there exists ν > 0 independent of k and N̂k such that for all
N > N̂k, P

(
P̂(k)
β̂N ,N

(
dH

(
Î(k)
β̂N ,N

, I
)
> δ

)
≤ e−Nγν

)
> 1−ε . To control the Radon-Nikodym deriva-

tive we may write

dP̂β̂N ,N

dP̂(k)
β̂N ,N

(I)=
Ẑ(k)
β̂N ,N

Ẑβ̂N ,N

eNγβ̂N σ̂N (I)

eNγβ̂N σ̂
(k)
N (I)

≤ eβ̂N Nγ(β̂N σ̂N (I)−β̂N σ̂
(k)
N (I)) ≤ eβ̂N Nγρ(k)

N ,(4.18)

where ρ(k)
N =∑

i>k M(N)
i is defined in (3.21). By using Part (1) of Proposition 3.5 we choose k

large enough such that β̂Nρ
(k)
N < ν/2 w.p. 1−ε, uniformly in N. This forces to have

(4.19) P
(
P̂β̂N ,N

(
dH

(
Î(k)
β̂N ,N

, I
)
> δ

)
≤ e−Nγν/2

)
≥ 1−2ε.

The theorem follows by observing that for all large k, dH(Î(k)
β̂N ,N

, Îβ̂N ,N ) < δ/2 w.p. 1− ε, uni-
formly on N (Proposition 3.5). �

4.3. Proof of Theorem 1.5. In this section we prove Theorem 1.5. The proof is based
on the following result

LEMMA 4.6. Let (S ,dS ) be a metric space and let xN be a sequence converging to x̄. Let
µN ∈M1(S ) be such that for any ε> 0, limN→∞µN (x : d(xN , x)> ε)= 0. Then µN * δx̄.

PROOF. The proof is a consequence of the Portmanteau’s lemma [Bil99, Section 2]. �

PROOF OF THEOREM 1.5. Let µN = P̂β̂N ,N and µ∞ = δÎβ̂,∞
. Note that µN is a random

measure on X depending of the discrete disorder w(N), while µ∞ depends of the continuum
disorder w(∞). Therefore if we couple together these disorders as in Lemma 3.1 we have
that by Theorems 1.3, 1.4 (see Remark 3.7) µN

(
I | dH(Îβ̂N ,N , I)> δ

)
P→ 0 and Îβ̂N ,N

P→ Îβ̂,∞.
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To conclude the proof let us observe that the law of µN is a probability measure on
M1(X), the space of the probability measures on X, which is a compact space because X is.
Therefore we can assume that µN has a limit in distribution. We have thus to show that this
limit is the law of µ∞. For this purpose it is enough to show that there exists a subsequence
Nk such that µNk

(d)→µ∞. It is standard to check that we can find a subsequence Nk such that

µNk

(
I | dH(Îβ̂Nk ,Nk

, I)> δ
)
P−a.s.→ 0 and Îβ̂Nk ,Nk

P−a.s.→ Îβ̂,∞, therefore by Lemma 4.6 we conclude

that µNk

P−a.s.
* µ∞ and this conclude the proof. �

5. Proof of Theorem 1.6

The goal of this section is to give a proof of Theorem 1.6.

As preliminary fact let us show that if β < β̂c then Îβ,∞ ≡ {0,1}, while if β > β̂c then
Îβ,∞ . {0,1}.

To make this let us consider the maximum of the difference between the Continuum En-
ergy (2.13) and the Entropy (2.19), ûβ,∞ = σ̂∞(Îβ,∞)−E(Îβ,∞), defined in (2.25). Then when-
ever ûβ,∞ ≤−1, we have that −1 =−E({0,1}) ≤ ûβ,∞ ≤−1 and this implies that Îβ,∞ ≡ {0,1}
by uniqueness of the maximizer. On the other hand, if ûβ,∞ >−1, then there exists I . {0,1}
such that Uβ,∞(I) > −1 because Uβ,∞({0,1}) = −1, so that {0,1} ( Îβ,∞. In particular, since
β 7→ ûβ,∞ is non-decreasing, we have that Îβ,∞ ≡ {0,1} if β< β̂c and Îβ,∞ . {0,1} if β> β̂c.

To prove the theorem we proceed in two steps: in the first one we show that a.s. for any
ε > 0 there exists β0 = β0(ε) > 0 random for which Îβ,∞ ⊂ [0,ε]∪ [1− ε,1] for all β < β0. In
the second one we show that if ε is small enough, then the quantity of Energy that we can
gain is always too small to hope to compensate the Entropy. To improve this strategy we
use some results on the Poisson Point Process that we are going to recall.

Let us start to note that the process (Y (∞)
i , M(∞)

i )i∈N ⊂ [0,1]×R+ is a realization of a
Poisson Point Process Π with intensity

(5.1) µ(dxdz)= 1[0,1](x)
α

z1+α1[0,∞)(z)dxdz.

In such way, as proved in [Kin93], the process

(5.2) X t =
∑

(x,z)∈Π
z1 (x ∈ [0, t]∪ [1− t,1]) , t ∈

[
0,

1
2

]
is a α-stable subordinator. The behavior of a α-stable subordinator in a neighborhood of 0
is described by [Ber96, Thm 10 Ch. 3], precisely if (X t)t is such subordinator with α ∈ (0,1)
and h : R+ → R+ is an increasing function, then limsupt→0+ X t/h(t) =∞ or 0 a.s. depending
on whether the integral

∫ 1
0 h(t)−αdt diverges or converges. In particular by taking q > 1 and

h(t)= t1/α logq/α(1/t) in a neighborhood of 0, we have the following result

PROPOSITION 5.1. Let (X t)t be a α-stable subordinator, with α ∈ (0,1), then for every
q > 1 a.s. there exists a random constant C > 0 such that

(5.3) X t ≤ Ct
1
α log

q
α

(
1
t

)
in a neighborhood of 0.

REMARK 5.2. Let us stress that the process X t is the value of the sum of the all charges
in the set [0, t]∪ [1− t,1]. Therefore it gives an upper bound on the energy that we can gain
by visiting this set.
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5.0.1. Step One. Let us show that a.s. for any ε> 0 there exists β0 = β0(ε)> 0 for which
Îβ,∞ ⊂ [0,ε]∪[1−ε,1] for all β<β0. Otherwise there should exist ε> 0 and a sequence βk > 0,
βk → 0 as k →∞ such that Îβk,∞∩(ε,1−ε),;. Let x be one of such points, then, by Theorem
2.5 we have that E(Îβk,∞) ≥ E({0, x,1}) ≥ εγ+ (1− ε)γ. Let S =∑

i∈N M(∞)
i , which is a.s. finite.

Therefore by observing that ûβk,∞ =βkσ̂∞(Îβk,∞)−E(Îβk,∞)≥−1 we get

(5.4) βkS ≥βkσ̂∞(Îβk,∞)≥ E(Îβk,∞)−1≥ εγ+ (1−ε)γ−1.

There is a contradiction because the l.h.s. goes to 0 as βk → 0, while the r.h.s. is a strictly
positive number.

REMARK 5.3. Let us note that if we set β0 =β0(ε)= (εγ+(1−ε)γ−1)/S then for all β<β0
it must be that Îβ,∞ ⊂ [0,ε]∪ [1− ε,1]. Moreover let us stress that which such choice β0 ↓ 0
as ε ↓ 0.

5.0.2. Step Two. Now let us fix ε> 0 small and β0 =β0(ε)≤ 1 as in Remark 5.3. Let

ε1 = sup Îβ,∞∩ [0,ε],(5.5)

ε2 = inf Îβ,∞∩ [1−ε,1].(5.6)

Let ε̂ = max{ε1,1− ε2}. If ε̂ = 0 we have finished. Then we may assume that ε̂ > 0 and we
choose q > 1, C > 0 for which Proposition 5.1 holds for any t < ε, namely

βσ̂∞(Îβ,∞)≤β0X ε̂ ≤ Cε̂
1
α log

q
α

(
1
ε̂

)
,(5.7)

Moreover, by Theorem 2.5 we have that

(5.8) E(Îβ,∞)≥ ε̂γ+ (1− ε̂)γ.

In particular if ε is small enough, we have that

(5.9) E(Îβ,∞)−1> ε̂γ

2
.

Therefore with, if necessary, a further restrictions on ε and β0 by recalling that α,γ ∈ (0,1)
we conclude that for all β<β0

E(Îβ,∞)−1≤βσ̂∞(Îβ,∞)≤ Cε̂
1
α log

q
α

(
1
ε̂

)
≤ ε̂γ

2
< E(Îβ,∞)−1,(5.10)

which is a contradiction. Therefore ε̂ must be 0 and this implies that Îβ,∞ ≡ {0,1} for each
β<β0.

6. The Directed Polymer in Heavy Tailed Random Environment

Originally introduced by [HH85], the directed polymer is a model to describe an inter-
action between a polymer chain and a medium with microscopic impurities. From a mathe-
matical point of view we consider the set of all paths of a 1+1 - dimensional simple random
walk starting from 0 and constrained to come back to 0 after N-steps. The impurities —
and so the medium-polymer interactions — are an i.i.d. sequence ({ωi, j}i, j∈N,P) placed on
all integers that can be touched by the walk (note that for any N we have about N2 points
which can be touched). More precisely for a given path s we define the Gibbs measure

(6.1) µβ,N (s)= eβσN (s)

Qβ,N
,

where σN (·)=∑
i, jωi, j1(si = j) is the Energy and Qβ,N is a normalization constant.

In [AL11] is studied the case in which the impurities have heavy tails, namely the
distribution of ω1,1 is regularly varying with index α ∈ (0,2). In this case we have to consider
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an ordered statistics built on a sample of i.i.d. random variables of size about N2, therefore
in (2.5) we have to consider bN2 instead of bN as good rescaling for the Energy, cf. [AL11,
(2.4),(2.5)]. This leads to have that to see interesting behavior in the limit of N →∞ we have
to send β to 0 with N by choosing β=βN ∼ β̂N1−2/αL(N), with L a slowly varying function.

Under this scaling of β by [AL11, Theorem 2.1] one has that the trajectories of the
polymer are concentrated in the uniform topology around a favorable curve γ̂βN ,N . In [AL11,
Theorem 2.2] one shows that there exists a limit in distribution for the sequence of curves
γ̂βN ,N , denoted by γ̂β. By working on this limit curve one shows that the existence of a
random threshold βc, cf. [AL11, Proposition 2.5]. A problem still open concerns the complete
description of its structure. In our work we answer this problem, see Theorem 1.7. The aim
of this section is to give its proof.

DEFINITION 6.1 (Entropy). Let us consider L 0 = {s : [0,1] → R : s is 1−Lipschitz, s(0) =
s(1)= 0} equipped with L∞-norm, denoted by ‖ ·‖∞.

For a curve γ ∈L 0 we define its entropy as

(6.2) E(γ)=
∫ 1

0
e
(

d
dx

γ(x)
)

dx,

where e(x)= 1
2 ((1+ x) log(1+ x)+ (1− x) log(1− x)).

Let us observe that such E(·) is the rate function in the large deviations principle for the
sequence of uniform measures on L 0

N , the set of linearly interpolated 1
N -scaled trajectories

of a simple random walk.

DEFINITION 6.2. We introduce the continuous environment π∞ as

(6.3) π∞(γ)=∑
i

T
− 1
α

i δZi

(
graph(γ)

)
,γ ∈L 0.

Here graph(γ) = {(x,γ(x)) : x ∈ [0,1])} ⊂ D = {(x, y) ⊂ R2 : |y| ≤ x∧ (1− x)} is the graph of γ,
α ∈ (0,2) is the parameter related to the disorder, Ti is a sum of i-independent exponentials
of mean 1 and (Zi)i∈N is an i.i.d.-sequence of Uniform(D) r.v.’s. These two sequences are
assumed to be independent with joint law denoted by P∞.

For β<∞ we introduce

(6.4) γ̂β = argmax
γ∈L 0

{
βπ∞(γ)−E(γ)

}
and we set uβ = βπ∞(γ̂β)−E(γ̂β). Since βπ∞(γ ≡ 0)−E(γ ≡ 0) = 0 a.s. we have that uβ ≥ 0
a.s., consequently we define the Random Phase Transition as

(6.5) βc = inf{β> 0 : uβ > 0}= inf{β> 0 : γ̂β . 0}.

6.1. The Structure of βc. The random set (Zi,T
− 1
α

i )i∈N ⊂ D ×R+ is a realization of a
PPP(µ∗) called Π∗ with density given by

(6.6) µ∗(dxdydz)= 1D(x, y)
|D|

α

z1+α1[0,∞)(z)dxdydz.

Let us introduce the process

(6.7) Ut =
∑

(x,y,z)∈Π∗
z1 ((x, y) ∈ A(t)) , t ∈

[
0,

1
2

]
with A(t) = {(x, y) ∈ D : x ∈ [0,1], |y| ≤ t}. The problem is that (Ut)t∈[0, 1

2 ] is not a Lévy Pro-
cess, but, at the same time, it is not too far from it. Indeed it has càdlàg trajectories and



PINNING MODEL WITH HEAVY TAILED DISORDER 21

independent but not homogeneous increments because the area of A(t) does not grow lin-
early. Therefore by introducing a suitable function φ(t) > t we can replace A(t) by A(φ(t))
in order to obtain a process with homogeneous increment. In particular we take φ(t) =
1/2(1− p

1−4t) in such a way that Leb(A(φ(t))) = t for all t ∈ [0,1/4]. Then the process
Wt =Uφ(t) is a subordinator and Wt ≥Ut for any t ∈ [0,1/4].

To prove Theorem 1.7 we start showing a general fact of this model: for any α ∈ (0,2)
and for any ε> 0 we have that ‖γ̂β‖∞ < ε (that is graph(γ̂β) ⊂ A(ε)) if β small enough. To do
this we need some preliminary results

PROPOSITION 6.3. Let E be the entropy of Definition 6.1. Then for all γ ∈L 0 if z = (x, y) ∈
graph(γ̂β) we have that

(6.8) E(γ)≥ E(γz),

where γz is the curve obtained by linear interpolation of {(0,0), z, (1,0)}.

PROOF. [AL11, Proposition 3.1] �

Moreover as shown in [AL11, Proof of Proposition 2.5], there exist two constants C1,C2 >
0 such that for all z = (x, y) ∈ D we have C1

(
y2

x + y2

1−x

)
≤ E(γz) ≤ C2

(
y2

x + y2

1−x

)
. This leads to

have that there exists C0 > 0 for which

(6.9) E(γz)≥ C0 y2,

uniformly on z ∈D.

PROPOSITION 6.4. For any fixed α ∈ (0,2), P∞-a.s. for any ε> 0 there exists β0 =β0(ε)> 0
such that ‖γ̂β‖∞ < ε for all β<β0.

PROOF. By contradiction let us suppose that there exists ε> 0 such that for a sequence
βk → 0 as k →∞ we have ‖γ̂βk‖∞ ≥ ε. By continuity of γ̂βk there exists a point x ∈ [ε,1− ε]
such that γ̂βk (x)= ε.

By [HM07, Proposition 4.1] with probability 1 there exists a random set A ⊂ N such

that S =∑
i∈A T

− 1
α

i <∞ and for any γ ∈L 0 it holds that S ≥ π∞(γ). For instance if α ∈ (0,1),
then A ≡N, while if α> 1 then A (N. Since uβk =βkπ∞(γ̂βk )−E(γ̂βk )≥ 0 we obtain that a.s.

(6.10) βkS ≥βkπ∞(γ̂βk )≥ E(γ̂βk )≥ E(γz=(x,ε))≥ C0ε
2.

Sending βk → 0 we obtain a contradiction because the l.h.s. converges to 0. �

PROOF OF PROPOSITION 1.7. We have to prove only the point (1), the other one has
been already proven in [AL11]. Let ε> 0 be fixed and β0 = β0(ε) such that ‖γ̂β‖∞ < ε for all
β < β0 ≤ 1. Let moreover ε̂ = max |γ̂β(x)|. Our intention is to estimate the energy gained by
γ̂β by computing the total charges contained in the region Aε̂. For this purpose let, q > 1
and C > 0 for which Proposition 5.1 holds for the process Wt and then for Ut. Therefore

(6.11) π∞(γ̂β)≤ ∑
i∈N

T
− 1
α

i 1(Zi∈Aε̂) ≤Uε̂ ≤ Cε̂
1
α log

q
α

(
1
ε̂

)
.

For the Entropy we use directly Equation (6.9):

(6.12) E(γ̂β)≥ C0ε̂
2.

Conclusion: if ε is small enough we get

(6.13) βπ∞(γ̂β)≤ Cε̂
1
α log

q
α

(
1
ε̂

)
≤ C0ε̂

2 ≤ E(γ̂β),

because α< 1
2 and this forces to have uβ = 0 for all β<β0. �
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7. Possible Generalizations and Perspectives

Let us discuss what happens with different choices of the parameters γ and h.

(γ≥ 1) If γ≥ 1, then for any (xi)`i=1 ⊂ (0,1) one has that (
∑`

k=1 xk)γ ≥∑`
k=1 xγk (where the

equality holds only if γ= 1). This implies (by a simple induction argument) that the Entropy
function E(I) is non-increasing (strictly non-increasing if γ > 1) on X(N), therefore for any
fixed β> 0 and N ∈N, the solution of Equation (2.3) is Iβ,N = {0,1/N, · · · ,1}. Thus whenever
N →∞ the limit set is the interval [0,1], independently of our choice of βN . Unfortunately
with this choice of γ, the function K(·) is not sub-exponential and thus we are not able to
prove concentration of τ/N around IβN ,N . Anyway we conjecture that τ/N converges always
to the whole segment [0,1].

(γ= 0) To give sense to this limiting case it is convenient to consider Equation (1.4), that
is K(n) :=P(τ1 = n)∼ L(n)nρ, with ρ <−1. This particular case is very interesting, since the
power-polynomial case is the most studied case in this type of model, due to the physical
interpretation and its mathematical richness, see for instance [Gia07, Gia10, dH07]. If we
work with such renewal process, we conjecture that the correct rescaling will be given by
β= βN ∼ N−1/α log N and the limit measure for the the sequence Pω

βN ,h,N (·) will be give by a
more complicated structure than the δ-measure of a single set. This would mean that we do
not have concentration around a single favorable set.
The conjecture on βN appears by analyzing the specific case in which ρ ∈ (−2,−1). In that
case our strategy is to write the Gibbs measure in a Polynomial Chaos expansion, as done
in [CSZ14] and consider the first term of the sum. Then we prove that if we take β=βN as
above, the Laplace transform converges, therefore if a good rescaling exists it should be βN .
We thus conjecture that the same rescaling works for all possible choice of ρ <−1.

(h ≤ 0) According to the first part of Section 4, in the Pinning Model (1.1) we can always
assume h = 0 by changing the underlying renewal process. If h > 0 this new renewal process
turns out to be terminating. In this regime, however, the behavior of its renewal function
u(n) := P(n ∈ τ) cannot be stretch-exponential, as proven in [BL08, Theorem 2.1], thus our
proof about the concentration cannot work. We conjecture that in this case τ/N converges
always to [0,1].

Appendix A. Asymptotic Behavior for Terminating Renewal Processes

In this section we consider a terminating renewal process (τ,P) and K(n) = P(τ1 = n),
with K(∞)> 0. The aim is to study the asymptotic behavior of the renewal function u(N)=
P(N ∈ τ) = ∑

m K∗(m)(N), where K∗(m) is the mth-convolution of K with itself under the as-
sumption that K(·) is subexponential. We refer to [FKZ09] for the general theory on the
subexponential distribution and for the notations that we follow.

DEFINITION A.1 (Long-Tailed Distribution). We say that a discrete probability density
q on N0 is long-tailed if q(n)> 0 for any n large enough and if

(A.1) lim
n→∞

q(n+k)
q(n)

= 1

for any fixed k > 0.

DEFINITION A.2 (Sub-exponential Distribution). We say that a discrete probability den-
sity q on N is subexponential if it is long-tailed and

(A.2) q∗(2)(n)∼ 2q(n), n →∞.
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The result in which we are interested in is the following

THEOREM A.3. Let K(·) be a discrete probability density on N∪ {∞} such that K(∞) > 0
and let δ= 1−K(∞)< 1. Let q(·) defined as q(n)= δ−1K(n). If q is subexponential, then

(A.3) lim
n→∞

u(n)
K(n)

= 1
K(∞)2 .

Its proof is a simple consequence of the Dominated Convergence Theorem by using the
following results

LEMMA A.4. Let q be a subexponential discrete probability density on N, then for any
m ≥ 1

(A.4) q∗(m)(n) n→∞∼ mq(n).

PROOF. [FKZ09, Corollary 4.13]. �

THEOREM A.5. Let q be a subexponential discrete probability density on N. Then we
have that for any ε > 0 there exists N0 = N0(ε) and c = c(ε) such that for any n > N0 and
m ≥ 1

(A.5) q∗(m)(n)≤ c(1+ε)mq(n).

PROOF. [FKZ09, Theorem 4.14]. �

A.1. The case of K(n) � e−C nγ . The goal of this section is to prove that if we take
a non-terminating renewal process such that K(n) ∼ nρL(n)e−C nγ , where γ ∈ (0,1), C > 0,
ρ ∈R and L(n) is a slowly varying function, then it is subexponential.

By [FKZ09, Theorem 4.11] w.l.o.g. we can assume K(n) = nρ L̃(n)e−C nγ , with L̃ be an-
other slowly varying function. Since γ ∈ (0,1) it is not difficult to see that such K(·) is
long-tailed. We have to show that limn→∞ K∗(2)(n)/K(n) = 2. By [FKZ09, Theorem 4.7] it
is enough to prove that for any choice of h = h(n) →∞ as n →∞, with h(n) < n/2, we have
that

∑n−h(n)
m=h(n) K(n−m)K(m)= o(K(n)), as n →∞.

Let us consider R(y)= yγ, with γ ∈ (0,1). R is a concave increasing function and R′(y)=
γyγ−1 is strictly decreasing, so that given two integer points n,m such that n−m > m we
have

R(n)−R(n−m)≤ mR′(n−m)≤ mR′(m)= γmγ = γR(m),(A.6)

By Karamata’s representation for slowly varying functions [BGT89, Theorem 1.2.1] there
exists c1 ≥ 1 for which L̃(xr) ≤ c1L̃(r) for any x ∈ [1

2 ,1] and r ≥ 1. This implies also that for
any ρ ∈ R there exists c = c(ρ) such that (xr)ρ L̃(xr) ≤ crρ L̃(r) for any x ∈ [1

2 ,1] and r ≥ 1.
Therefore in our case, whenever n− m ≥ n/2 we have that K(n− m) ≤ nρ L̃(n)e−C (n−m)γ =
K(n)eR(n)−R(n−m).

Summarizing, by using all these observations we conclude that

(A.7)

n
2∑

m=h(n)

K(n−m)K(m)
K(n)

≤ c
∞∑

m=h(n)
mρ L̃(m)e−C (1−γ)R(m),

which goes to 0 as h(n)→∞ and the proof follows by observing that

(A.8)
n−h(n)∑
m=h(n)

K(n−m)K(m)
K(n)

= 2

n
2∑

m=h(n)

K(n−m)K(m)
K(n)

.

�
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