
HAL Id: hal-01088192
https://hal.science/hal-01088192v1

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Alloy4SPV : A Formal Framework for Software Process
Verification

Yoann Laurent, Reda Bendraou, Souheib Baarir, Marie-Pierre Gervais

To cite this version:
Yoann Laurent, Reda Bendraou, Souheib Baarir, Marie-Pierre Gervais. Alloy4SPV : A Formal Frame-
work for Software Process Verification. ECMFA 2014 - 10th European Conference on Modelling
Foundations and Applications, Jul 2014, York, United Kingdom. pp.83-100, �10.1007/978-3-319-09195-
2_6�. �hal-01088192�

https://hal.science/hal-01088192v1
https://hal.archives-ouvertes.fr

Alloy4SPV: a Formal Framework for Software
Process Verification

Yoann Laurent1, Reda Bendraou1, Souheib Baarir1,2, and Marie-Pierre
Gervais1,2

1 Sorbonne Universites, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
France

2 Universite Paris Ouest Nanterre La Défense, F-92001, Nanterre, France
{yoann.laurent,souheib.baarir,reda.bendraou,marie-pierre.gervais}@lip6.fr

Abstract. In this paper we present a framework for software process
verification called Alloy4SPV which uses a subset of UML2 Activity
Diagrams as a process modeling language. In order to achieve software
process verification, we i) define a formal model of our process modeling
language using first-order logic, ii) we give it a formal semantics based
on the fUML standard, and iii) we implement this formalization using
the Alloy language [1]. In order to ease its adoption by process mod-
elers, our framework comes with a graphical tool and a ready to use
and customizable set of software process properties. We categorize these
properties into two categories, syntactical and behavioral. We extend the
set of behavioral properties we identified from the literature with two new
categories that we defined, namely, organizational properties which re-
late to resource management and planning during process execution and
business properties which are project/process specific properties.

1 Introduction

In the current state of practice, process model defects are discovered too late,
usually at realization time, after the process has proved to be inefficient or having
some behavioral issues such as deadlocks, unreachable activities, inefficient use
of resources and timing problems. This could have been avoided with adequate
process verification tools that would have formally verified the process model be-
fore its deployment in real projects. By process verification we mean determining
in advance that the process model exhibits a certain desirable behavior.

In the field of business processes many approaches have been proposed for
process verification [2,3,4,5,6,7]. These approaches address mainly the verifica-
tion of some well-known behavioral properties that must be guaranteed by all
process’s executions. The literature addresses essentially what it is called sound-
ness properties [7]. These properties guarantee the absence of deadlocks, un-
reachable activities, and other anomalies that can be detected without domain
knowledge.

Software processes are concerned with additional and critical constraints re-
lated to their human-oriented nature. They imply many creative tasks that rely
on many factors such as time, human agents and resource management. The
success of a software process depends then also on the preservation of many best
practices and organizational constraints. We call these constraints organizational
properties and we consider them as a subcategory of behavioral properties since a

2 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

state space exploration is required to guarantee their preservation for all possible
process’s executions. Examples of such properties are to make sure, for instance,
that the process or an activity will terminate before a given deadline whatever
the execution path, make sure that there will be enough agents to perform the
activities of the process, etc.

Another point with current process verification approaches is about the for-
malism and tools they rely on for performing the verification. Whatever the
process modeling language, a formal semantics is given to the language by map-
ping its constructs to either variants of automata [2,8], Petri Nets [9,10,7,6,5]
or process algebra [3,4]. However this means that we are relying on the seman-
tics and concepts of the targeted formal language in terms of expressiveness,
e.g. Petri Nets, instead of the modeling language itself. Even if Petri Nets (with
their different variants) can represent anything defined in terms of an algorithm,
this does not imply that the modeling effort is acceptable. Van der Aalst’s paper
[11] gives concrete examples of some Workflow Patterns that need very complex
Petri Nets extensions and tricks to represent them while this is expressed very
naturally in UML Activity diagrams (AD) [12].

The approach we promote in this paper through our framework Alloy4SPV
is different in the sense that we define the formal semantics of the process model-
ing language using Alloy instead of relying on the semantics of any of the above-
mentioned formal languages. Alloy is a declarative modeling language based on
first-order logic and relational calculus for expressing complex structural and
behavioral constraints [1]. Alloy’s logic is quite generic and does not commit to
a particular specification style [13]. We believe that this is more natural and
allows to preserve the expressiveness of the process modeling language.

As a software process modeling language (SPML), Alloy4SPV uses UML2
Activity Diagrams (AD) which have been given recently a precise execution
semantics through the new OMG’s fUML standard (Foundational UML) [14].
The choice of UML AD is motivated by the fact that AD are part of a standard
widely used in the industry, it has been identified as a good SPML candidate
[15,16], a good tooling support is provided, and it supports most of the workflow
patterns as identified by [17]. However, it is worth noticing that our approach
is applicable to other languages such as the BMPN which is more used in the
business process community.

Finally, Alloy4SPV comes with a graphical tool that includes a ready to
use and configurable set of process properties in order to ease its adoption by
process modelers. Our main goal is to gather under the same umbrella a graphical
tool for software process modeling, execution and verification which supports all
kinds of properties and most of all which preserves the semantics of the process
modeling language. We hope that this would encourage a larger adoption of
the process verification discipline and thus, a better management of software
projects costs and quality.

The next section starts by introducing the set of properties we identified for
software process verification. Section 3 and 4 give the different steps we followed
for building Alloy4SPV. An evaluation of our framework is given in Section 5.
Related work is given in Section 6. Conclusion and some promising perspectives
are sketched in Section 7.

Alloy4SPV: a Formal Framework for Software Process Verification 3

2 Properties for Software Process Verification

In this section we present a categorization of the different properties that can be
expressed on software process models. It represents the outcome of a literature
review in the business process domain and in software methods and practices.

Over the last decade, many kinds of process properties have been studied
[7,5]. They mainly fall into two categories: syntactical properties and behavioral
properties. They are used respectively either to enforce some structural con-
straints, viewed as invariants, that cannot be expressed with the process model-
ing language itself or to determine in advance whether a process model exhibits
certain (un)desirable behaviors. Even if syntactical errors seem quite obvious
to detect by process modelers and enforced by process editors, some constraints
may escape the modeler’s attention which leads to incorrect process models. This
has been confirmed by the study in [18], where 34 process models among 600 of
the SAP company process referential were incorrect after analysis.

While the verification of syntactical properties is well supported by many
approaches [19], they neither guarantee the soundness of process models nor
that organizational constraints will be respected. To this aim, in the following
we introduce behavioral properties. We will give the definition of soundness and
focus on the two subcategories of behavioral properties that we introduce, namely
organizational and business properties.

2.1 Behavioral Properties

They express constraints that must be guaranteed by all possible executions of
the process. The literature addresses essentially a subcategory of such prop-
erties called soundness properties. As introduced in [7], soundness tends to
check three desirable properties: (i) a started process can always complete (op-
tion to complete); (ii) it should not have any other activity running when the
process ends (proper completion); and (iii) the process should not contain ac-
tivities that will never be executed (no dead transition). For instance, to an-
swer the question “will the process terminate?” on the process from Figure 1,
a property is expressed to check that whatever the process execution, at the
end, the ActivityFinalNode is executed. Here, a counter-example is exhibited:
{Initial, A,Decision,B,Merge}, when the DecisionNode chooses to execute
action B, then action D can never be executed (since action C is not) leading to
a deadlock situation.

In the literature, we also find references that relate to soundness focusing
on data-flow analysis rather than on control-flow [5]. The goal is to validate the
workflow against different data problems such as missing data, i.e., when a data
element needs to be accessed, but either it has never been created or it has been
deleted without having been created again, inconsistent data, i.e., if an activity
is using this data while another one is writing to it or is destroying it in parallel,
and so on.

Fig. 1: Example of deadlock in a UML AD due to the control flow

4 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Fig. 2: Example of a UML AD with duration associated to actions

Existing approaches for process verification focus either on control-flow or
data-flow, and only few of them ensure both [20]. However, as stated in the
introduction, none of them takes into account the particularity of software pro-
cesses. They treat the process as a simple workflow without covering the range of
properties related to the organizational or business constraints which can highly
influence the execution of the process. We introduce these kinds of properties
through two new subcategories.

Organizational Properties. They cover organizational constraints about the time
to perform the activities of the process, and different kinds of resources (agents,
equipment...) problems like missing resource, i.e., when an activity requires a
resource which may not be available and inefficient resource use, i.e., when the
resource is inefficiently utilized during the process execution. The goal is to
answer questions like: “is it possible to finish the process on time whatever the
path taken?” “Is the agent always busy?” “Would the process be at activity X
before a given deadline?” All these questions are important since they directly
influence the decisions taken by the project manager. Figure 2 shows a process
on which each activity is associated with a duration and a table displaying the
3 execution paths. Assuming that the process manager plans to do the process
in 3 hours, there is 2 cases on which the process will not finish on time: (i)
when the DecisionNode chooses to execute B2 and (ii) when the DecisionNode

chooses to execute B3 and the decision continue is chosen more than once after
the execution of B3.

Business Properties. While the other categories specify properties that must
hold for all processes, business properties represent specific properties tailored
to a given process. They play an important role since a process could be syn-
tactically correct and valid against some soundness properties but still violates
some business constraints. Therefore, business properties can be used to high-
light the importance of a given activity in the process, the fact that one activity
should be executed, before, after or between other activities, and so on. Fig-
ure 3 shows a simple process considered correct against all the properties from
the precedent categories (i.e., syntactical, soundness, organizational). However,
ImportantAction activity is considered critical in the sense that the process

Fig. 3: Example of a correct UML AD

Alloy4SPV: a Formal Framework for Software Process Verification 5

Category Definition

(1) Syntactical

SynWorkflow Syntactical errors on the workflow of the process (e.g. the source and target of an edge are different)
SynOrganizational Syntactical errors on the organizational part of the process (e.g. the same agent cannot be assigned more

than one time to the same activity)

(2) Soundness

OptionToComplete A started process can always complete
ProperCompletion No other activity should be running when the process terminates
NoDeadTransition All the activities must be reachable

Soundness with data

MissingData The data are always present when they need to be accessed (e.g. no data missing to start an activity)
UselessData The data created are always used (e.g. no data created but never used before the process ends)
InconsistentData The data can never be in an inconsistent state (e.g. no data modified by multiple activities in parallel)

(3) Organizational

InTime There is enough time to perform the activities (e.g. the process will terminate before X hours/days)
MissingResource No missing resource to start an activity (e.g. there are enough agents to do the process)
InefficientResourceUse No resources that are inefficiently used (e.g. the agents have always activity to do)

(4) Business

ExistenceActivity A is executed more/less/(between) X (and Y) times
ExistenceTimeActivity A is executed before/after/(between) X (and Y) time unit
ExistenceTimeData ArtefactA is available before/after/(between) X (and Y) time unit
ExistenceTimeResource ResourceA is used before/after/(between) X (and Y) time unit

Relation A is executed before/after/in-parallel/in-exclusion/(between) B (and C)
RelationData ArtefactA is available before/after/in-exclusion of ArtefactB
RelationActivityData ArtefactA is available before/after/in-parallel/in-exclusion/(between) the execution of B (and C)
... ...

LogicBased e.g. Existence(A) implies Existence(B) else Existence(C)
e.g. Existence(A) implies (ExistenceData(ArtefactA) and ExistenceData(ArtefactB))

... ...

Table 1: Overview of the software properties we identified

modeler wants it to be executed at least one time during the process enactment.
“Is ImportantAction executed whatever the choice made during the process
execution?” On this example, it is not always the case since the execution path
{Initial, A,Decision,B,Merge,D, F inal} finishes the process without execut-
ing ImportantAction. Another question here could be: “is ImportantArtefact
(i.e., the goal of the process) always available at the end of the process? ” The
other execution path {Initial, A,Decision, ImportantAction,Merge,D, F inal}
shows that it exists a path on which the artefact is not created.

Table 1 summarizes the set of properties we identified. Due to space restric-
tions we cannot detail all of them. Some of them were already introduced to
illustrate the examples while others will be used in Section 5. It is worth noting
that the properties distinguish two versions: weak and strong. The strong one
ensures that whatever the execution, the property holds while the weak one is
more permissible and ensures that the property holds for at least one execu-
tion. An example of the weak and strong concepts are given in the case study
presented in Section 5.1. Now that we have introduced the set of properties to
be integrated into our framework Alloy4SPV, the next section presents the
required steps for the formal software process verification.

3 Formal verification of software processes

The classical approach to achieve the verification of a model (a process model in
our case) with respect to a given property, consists beforehand in defining the two
entities formally. Then, these entities are submitted to a so-called model-checker
tool, which will answer to the question of (un)satisfaction of the property by the
process model.

In a previous work, we proposed a first-order formalization of fUML for pro-
cess verification [21]. We have formally reduced the representation of a software
process to a vertex-labeled graph. Each graph’s node corresponds to a UML
Activity node according to its type (i.e. Control, Executable or Object Node).
Each graph’s arc corresponds to a UML Activity edge (i.e. Control or Object
Flow). The execution semantics of this formalism is based on the notions of

6 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Fig. 4: Excerpt of the fUML Activity meta-model handled by our formalization

states, enabling and firing of transitions, similar to those used in the Colored
Petri Nets [22]. Figure 4 shows an excerpt of the UML class diagram handled
by our formalization. The formalization addresses a subset of fUML encompass-
ing only the concepts required for process modeling as identified in [15]. To be
able to reason about each dimension of the process, the formalization covers
both control and data-flow of the process through the use of the AD notations,
and takes into account the associated organizational data such as resources and
timing constraints.

3.1 Alloy: a language and tool for relational models

Using our formalization [21], the next step is to choose an implementation lan-
guage. Alloy [1] was chosen for this purpose. Alloy is a formal language, which has
been applied to modelling of systems in a wide range of application domains.
It is supported by the Alloy Analyzer, a tool, which allows fully automated
analysis through SAT solving. Hereunder, we highlight the valuable points that
motivated our choice for Alloy:
– It supports a wide variety of properties such as invariants, user-defined as-

sertions, LTL [13] and CTL formulas with fairness constraints [23].
– It is expressive enough to represent a UML-based model associated with

OCL constraints [24].
– Alloy’s logic is quite generic and does not enforce the user to a particular

specification style for modeling and verifying reactive systems.
– It allows one to choose the on-the-shelf SAT-solvers (MiniSat, ZChaff,...).
– It owns a graphical tool as well as an API to integrate seamlessly the verifi-

cation into a process environment.
The Alloy language provides a set of concepts allowing to specify elements

and constraints using the notions of signatures, relations, facts and predicates.
A signature (sig) defines a set of idioms and relationships between them. They
are similar to type declarations in an object-oriented language, and represent
the basic entities. Facts (fact) are statements that specify constraints about
idioms and relationships. These statements must always hold; they are close to
the concept of invariants in other specification languages. Predicates (pred), as
opposed to facts, define constraints which can evaluate to true or false. Alloy
provides two commands to run the Alloy Analyzer: run and check. Command
run instructs the analyzer to search for an instance satisfying a given formula,
and check attempts to contradict a formula by searching for a counter-example.

Alloy4SPV: a Formal Framework for Software Process Verification 7

Fig. 5: High-level overview of Alloy4SPV

4 Alloy4SPV: a Framework for Software Process
Verification

This section presents our framework based on the concepts presented so far. We
present the high-level overview of our approach and introduce how to represent
the different concepts of the software process using the Alloy language in order
to enable their automatic verification. Then, we introduce the tool built on top
of our framework.

4.1 High-level overview

Alloy4SPV is the name of our framework enabling software process verifica-
tion. This framework is based on our fUML formalization and is implemented
using different Alloy modules. Figure 5 shows an overview of the workflow to
achieve the process verification using Alloy4SPV within a Process-centered
Software Engineering Environments (PSEE). It takes a Process Model in the
form of UML2 AD as input. The Properties View allows the process model-
ers to select and express properties through a graphical interface. The Process

View displays the results about the verification.
Alloy4SPV is composed of four modules, i.e., Semantic.als, Syntax.als,

ProcessModel.als and Properties.als. In the following, we detail the con-
tent of these static and dynamic Alloy4SPV modules required by the Alloy

Analyzer to check a process model. The goal here is to give an overview of the
way Alloy4SPV is implemented using the Alloy language rather than giving
an exhaustive definition.

4.2 Static modules

Syntax.als represents the syntax of the software process modeling language
(SPML). It contains signatures and relations that represent meta-classes and
attributes from a subset of the UML AD meta-model (see Figure 4). Listing of
Figure 6 shows a sample focusing on the ActivityEdge. The signatures follow
the hierarchy of the UML AD metamodel.

Semantic.als corresponds to the behavioral part of the SPML. It represents
the notions of states, enabling and firing of transitions defined in the formaliza-
tion. Since Alloy does not commit to a particular specification style, there is no
standard way to model and verify reactive systems. However, several patterns
have been proposed to address this issue. We adopt the traces pattern [1] to
model the sequences of executions of an abstract machine. This pattern imposes

8 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

 abstract sig FumlObject {···}
 abstract sig Element extends FumlObject {···}
 abstract sig NamedElement extends Element {···}
 abstract sig RedefinableElement extends NamedElement {···}
 abstract sig ActivityEdge extends RedefinableElement {
 source : ActivityNode,
 target : ActivityNode
 }
 abstract sig ControlFlow extends ActivityEdge {}

 abstract sig ObjectFlow extends ActivityEdge {}

Fig. 6: Focus on ActivityEdge from Syntax.als

a total ordering over the State signature and forces that every pair of consec-
utive states satisfy the given predicate. Listing 1.1 shows a simplified excerpt
of this module. The State signature represents the configuration on which the
process is at a given time of its execution. Therefore, a set of States represent
a complete execution.

 open util/ordering[State]
 // a State carries the execution information (e·g·, tokens, offers, timing and so on)·
 sig State {
 heldTokens : ActivityNode →one Int,
 offers : ActivityEdge →one Int,
 localClock : ExecutableNode →one Int,
 globalClock : Int,
 running : Status
 }

 // traces pattern, the regular way to model reactive systems using Alloy
 fact traces {
 // constrains all the State to abide from the transition predicate
 all s: State - last | let s’ = s·next | {
 s·running = Running implies {
 transition[s,s’] // use ‘‘enabling’’ and ‘‘firing’’ predicates, defined in the

formalization
 } else {
 endLoop[s,s’]
 } } }

Listing 1.1: Excerpt of Semantic.als

4.3 Dynamic modules

ProcessModel.als represents the instance of the process to analyze. Listing
of Figure 7 shows a basic process represented using signatures declared in
Syntax.als. This module is generated from the Process Model using a sim-
ple model transformation routine, the ProcessToAlloy routine, we developed
using Java Emitter template (JET); it is basically the Alloy representation of
the input Process Model [24].

Properties.als contains the commands to run the Alloy Analyzer over
a given set of properties to be checked. Listing 1.2 shows an example
of Properties.als generated using the PropertiesToAlloy routine. The
checkFinal predicate states that there is some State on which the Final node
is active. Then, the check command tries to contradict this predicate by finding
a model execution on which there is no State with this last property. If the
Alloy Analyzer finds a counter-example, this means that the Process Model

is subject to a deadlock. The problems given to the Alloy Analyzer are solved
within a user-specified scope that bounds the size of the domains making it fi-
nite and reducible to a boolean formula to be checked by the SAT solver. All
the scope of the Alloy signatures are straightforwardly determined by the input

Alloy4SPV: a Formal Framework for Software Process Verification 9

 // Process - Workflow
 one sig Initial extends InitialNode {} {···}
 one sig Code extends CallBehaviorAction {} {···}
 one sig Final extends ActivityFinalNode {} {···}
 one sig InitialToA extends ControlFlow {} {
 source = Initial
 target = Code }
 one sig AToFinal extends ControlFlow {} {
 source = Code

 target = Final }
 // Process - Organizational
 one sig Coder extends Role {}
 one sig John extends Agent {}
 fun role : Agent →set Role { John →Coder }
 fun reqRole : ExecutableNode →set Role { Code →Coder }
 fun reqNbAgent : ExecutableNode →Int { Code →1 }
 fun reqTiming : ExecutableNode →Int { Code →1 }

Fig. 7: ProcessModel.als represented in the Alloy4SPV framework

process model, e.g. 3 ActivityNodes on the process imply a scope of 3 for the
ActivityNode signature. The only exception concerns the scope of the State

signature, i.e. the trace length on which the process is analyzed, which is deter-
mined using incremental-scoping technique.

 pred checkFinal {some s : State | s·getTokens[Final] = 1}
 check {checkFinal} for 0 but 5 State, 5 FumlObject, 1 Role, 1 Agent

Listing 1.2: Example of verification from Properties.als

4.4 Analysis of the results

When satisfying solutions and/or counter-examples are computed by the Alloy

Analyzer, the results are displayed back to the Process View using the
AlloyToProcess routine. This routine analyzes the results returned by the Alloy
Analyzer (e.g., extracting the path leading to the deadlock) and displays it on
the Process View. Figure 8 shows a model found by the Alloy Analyzer. In
this figure, the model is an instance satisfying the checkFinal predicate (run
command) on the (simple) process from Figure 7. The simple and double stroke
circle represent respectively the ActivityFinalNode and the InitialNode. The
hexagons correspond to the ActivityEdge while the ActivityNode corresponds
to the yellow inversed house. Thus, the AlloyToProcess routine simply consists
in looking through the set of relations of the found model.

4.5 Graphical tool associated to Alloy4SPV

On top of Alloy4SPV, we have developed a prototype currently provided as
an Eclipse EMF plugin. It comes with a library of predefined properties ready

(a) (b)

Fig. 8: (a) Model satisfying the checkFinal predicate found by the Alloy

Analyzer, (b) projected over the first State signature

10 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Fig. 9: Process Analyzer using the Alloy4SPV framework

to be checked and also allows to add some common business properties through
a graphical interface. The user only has to check in the interface the desired
properties, and fill the parameter if required (e.g., maximum time to terminate
the process). The business properties can be added through pre-defined tem-
plates, e.g. select the ActionA which must always be executed before ActionB.
Figure 9 shows a screenshot of our tooling for process modeling and enactment
emphasizing the process view and its analyzer. The prototype relies on Obeo
UML Designer for modeling and displaying graphically the process. When the
verification is performed, the path leading to the counter-example (if any) is
highlighted in green for “run” properties, and in red for “check” properties.
Moreover, CommentNodes are directly inserted into the model displaying the er-
rors which must be corrected on the model. It is worth noting that the prototype
does not require any formal background by the process agent. Everything is au-
tomated through the use of the graphical interface to ease tool’s adoption.

5 Evaluation

This section presents the evaluation of Alloy4SPV, by checking some of the
properties on a sample of the OpenUP process [25] and on randomly generated
processes [26].

5.1 OpenUP case study

We use the software process model illustrated in Figure 10 as a motivating exam-
ple. It is the DevelopSolutionIncrement activity from the OpenUP process [25]
represented using UML2 AD. In OpenUP, when a requirement needs to be de-
veloped in an iteration, a new DevelopSolutionIncrement activity is assigned
to a developer and a tester. The responsability of the developer is to create a
design and an implementation for that requirement while the tester writes and
runs developer tests against the implementation to make sure that it works as
designed. This activity contains 15 ActivityNode and 18 ActivityEdge. Note
that ObjectNodes are excluded for sake of readability.

In the following, some properties from each category of Table 1 are presented.
The goal here is to show how the properties are expressed with Alloy4SPV
rather than presenting every single one exhaustively.
(1) Syntactical properties: Testing that each edge has a different source and
target is expressed such as:

 pred edgeDifferentTargetSource {
 all n : ActivityEdge | { not n·source = n·target }
 }
 check {edgeDifferentTargetSource} for ···

Alloy4SPV: a Formal Framework for Software Process Verification 11

Fig. 10: DevelopSolutionIncrement activity from OpenUP

(2) Soundness properties: The option-to-complete property is expressed by
declaring that at the end, there must be some State in which the Final node
is active:

 pred OptionToComplete {
 some s : State | s·hasTokens[Final]
 }
 run {OptionToComplete} for ···
 check {OptionToComplete} for ···

The run command asks the Alloy Analyzer to find a model on which the pro-
cess terminates. If a result is found, it means that there is at least an execution
on which the process terminates (weak option-to-complete). The check com-
mand ensures the strong option-to-complete by checking for a counter-example
on which the execution will not lead to the Final node. It is worth noting that
the OptionToComplete property will always find a counter-example due to the
loops inside the workflow. This is because no fairness constraints is applied. We
eliminate this problem by adding a fact constraint inside the Semantic.als

module that forces fairness (i.e., the same outgoing edge cannot be taken in-
finitely often).
(3) Organizational properties: To check that it is possible to finish the pro-
cess in less than x hours, the OptionToComplete predicate is augmented such
that the execution time value at the last State is below a given value:

 pred finalAndTiming[t:Int] {
 OptionToComplete and last·globalClock < t
 }
 run {finalAndTiming[5]} for ···

To check that, at any time during the process execution, there are enough agents
to perform the running activities (assuming that all agents are identical) is ex-
pressed such as:

 pred enoughAgent {
 all s:State | #{ node : ExecutableNode | s·hasTokens[node] } < = #Agent
 }
 check {enoughAgent} for ···

In this case, the enoughAgent predicate states that at each State of the process
execution, the number of executing activities is less or equal to the total number
of performers.

There is also the possibility to have a finer grained property which takes into
account different roles (e.g., coder, designer...) of the agents. The first check

verifies only for the Developer role while the latter verifies all the roles of the
process:

12 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Property Vars Clauses CNF Gen. SAT Solving Model found?

check edgeDifferentTargetSource 7k 20k 1s 9ms no
run OptionToComplete 663k 1842k 57s 2s yes
check OptionToComplete 658k 1840k 56s 15s no
check enoughAgent 664k 1848k 51s 48s no
check enoughAgentFor[Developer] 664k 1845k 45s 38s no
check after[I.S., R.D.T.] 664k 1843k 49s 16s no
run finalAndTiming[5] 1470k 4612k 125s 23s yes

Table 2: Metrics from the Alloy Analyser executed on the
DevelopSolutionIncrement activity

 pred enoughAgentFor[r : Role] {
 all s:State | #{ node : ExecutableNode | s·hasTokens[node] and r in node·reqRole} <

= #{ a : Agent | a·role = r}
 }
 check {enoughAgentFor[Developer]} for ···
 check {all r:Role | enoughAgentFor[r]} for ···

(4) Business properties: The process modeler may want to check that
when the ImplementSolution activity is performed, the developed solution
is always tested with the RunDeveloperTests activity afterward. To express
this business property, the process modeler does not have to manipulate
the Alloy language but just to select the two actions ImplementalSolution

and RunDeveloperTests and apply the after constraint through the Al-
loy4SPV graphical interface. Thus, the property checks that anytime the
ImplementSolution is executed, there is some State in the future (s.^next
is the transitive closure of next and corresponds to all the following State of
s such as s.next+s.next.next+s.next...) on which RunDeveloperTests is
executed:

 pred after[a,b:ExecutableNode] { // defined in the Semantics·als module
 all s:State | s·hasTokens[a] implies
 some ss : s·̂next | ss·hasTokens[b]
 }
 check {after[ImplementSolution, RunDeveloperTests]} for ···

In order to perform the verification of the aforementioned properties with
respect to the part of the OpenUP process in Figure 10, Alloy Analyzer re-
duces the verification to a SAT problem. It is presented to a SAT solver (MiniSat
among others) in a Conjunctive Normal Form (CNF) format. A CNF is a con-
junction of clauses. Each clause represents a disjunction of variables. A satisfying
assignement to a SAT problem consists of a boolean affectation to the variables
such that all clauses are satisfied. Usually, the complexity of a SAT problem is
measured by the numbers of clauses and variables.

All analyses were performed on a MacBook Air 2011 with Intel Core i5 pro-
cessor and 4GB of RAM with Mavericks as OS. Table 2 summarizes the obtained
results where column 1 represents the analyzed property. Columns 2 and 3 rep-
resent, respectively, the number of generated variables and clauses. Columns 4
and 5 represent, respectively, the time to generate the CNF and to solve the
SAT problem. Finally, column 6 indicates if a model is found (i.e. satisfiability
for a run command, and counter-example for a check command).

Besides, these results highlight the effectiveness of our tool w.r.t. a con-
crete example [25]. Actually, even if the whole generated SAT problems present
a relatively high complexity (almost 2 million clauses and over 600 thousand
variables), the solving time is less than one minute for untimed properties. The

Alloy4SPV: a Formal Framework for Software Process Verification 13

Fig. 11: Total time to check the OptionToComplete property depending on the
process size

timed-related properties (run finalAndTiming[5]) have a similar ratio in terms
of clauses and variables but require more time due to the presence of extra states
introduced by the clocks to handle the time elapsing. The full details with ex-
amples of the Alloy4SPV modules can be found on our website3.

5.2 Randomly generated processes

One of the challenges we face to validate our approach is the inability to find
realistic data and models. The small set of samples and “toy” models publically
available in the literature is insufficient to conduct a serious empirical study to
validate works around software process analysis and verification. Moreover, due
to privacy reasons, partner companies are reluctant to share their models repre-
senting the result of years of best practices and the capitalization of developers
and project managers know-how which took time to design.

This problem led us to develop our own process generator [26]. We used it to
randomly generate processes ranging from 10 to 100 UML elements. These pro-
cesses have only control-flow nodes without loops and contain sequential rout-
ing (ControlFlow edges), action to perform (OpaqueAction), parallel routing
(ForkNode), synchronizer (JoinNode), conditional routing (DecisionNode) and
merging structure (MergeNode). Even if our processes are artificial, they present
a high-level of realism. The model generator reproduces how a modeler could
have developed a process in a real situation. It generates the process through
a sequence of Change Patterns [27]. Each process is then checked w.r.t. the
OptionToComplete property and only models without counter-examples are kept
(only the largest verification time is of interest).

Figure 11 shows the solving-times to check this property. These results show
that the solving times are reasonable w.r.t. the complexity of the generated
models (in terms of number of UML elements). Actually, the generated SAT
problem of the model with 100 UML elements contains almost 18 billion clauses
and 8 million variables and is resolved in 31 minutes which highlights the fact
that our SAT problems belong to a relatively easy-to-solve SAT category. Once
again, this emphasizes the effectiveness of our approach.

6 Related Work

There is an extensive literature on verifying process models. Since a lot of the
work has been done in the business process community, we do not restrict our-
selves to the verification of software processes. Generally, the verification is based

3 http://pagesperso-systeme.lip6.fr/Yoann.Laurent/

http://pagesperso-systeme.lip6.fr/Yoann.Laurent/

14 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

on mapping the process model into mathematical formalisms used to model sys-
tems such as automata, Petri Nets or process algebra.

Many approaches have origins in the Petri Nets formalism, either because
the modeling language is based on it (e.g., Workflow Nets [9]) or through a
mapping to it [10]. In [9], Van der Aalst et al. introduce the Workflow Nets, a
particular class of Petri Nets dedicated to the modeling of workflow with an aug-
mented graphical notation (e.g., AND-splits, AND-joins and so on). In [6] a large
number of industrial business processes have been successfully checked on the
soundness properties using the LoLa model checker. In [10], the process modeled
in UML AD is mapped to Colored Petri Nets [22] in order to enable automatic
verification. Due to the fact that Petri Nets enjoy an easily understandable and
graphical notation as well as a plethora of mature tools enabling efficient analy-
sis, they have been widely applied in the process analysis field. However, even if
the verification of Petri Nets based process is efficient to check properties such as
reachability, liveness and boundness, they fail when the system needs to handle
a wide variety of data. The use of data on the system multiplies the number of
places and introduces some state space explosion problems making the analysis
difficult (sometimes impossible). Moreover, these approaches focus only on the
soundness properties.

Other approaches use process algebra [3,4], a strict and well-established the-
ory that support the automatic verification of properties of systems behavior
as well as Petri Nets. In [3], the authors show how the Communicating Sequen-
tial Processes (CSP) algebra can be applied to model complex workflow systems.
They use the FDR (Failures-Divergences Refinement) model-checker to automat-
ically check behavioural properties. Liu et al. [4] transforms models expressed in
Business Process Execution Language (BPEL) into π-calculus. They also cap-
ture compliance rules in the graphical Business Property Specification Language
(BPSS) and automatically translate them into temporal logic. This approach is
able to handle the verification of both soundness and business properties. How-
ever, process algebra such as π-calculus is limited in the ability to support most
of the workflow patterns [17] used in processes.

Further approaches are based on domain-specific language. Eshuis et al. [2]
check UML AD in the context of workflow modeling by translating the activity
into the input language of NuSMV, a symbolic model checker. The work was
done before the finalisation of the UML 2.0 specification, thus the semantics
used remains unclear and many assumptions have been made about it. Guelfi
et al. [8] propose a translation of UML AD into Promela (Process or Protocol
Meta Language) in order to check behavioral properties with the model-checker
SPIN. However, no implementation is provided and the set of properties which
may be checked are not precise.

In the case of UML AD verification, all these formalisms have been investi-
gated: (1) process algebra using π-calculus [28] and CSP (Communicating Se-
quential Processes) [29], (2) automaton using NuSMV formalism [2] and Promela
(Process or Protocol Meta Language) [8], and (3) Petri Nets formalism through
transformation [10]. However, only the work of Abdelhalim et al. [29] is based
on the fUML semantics, but lacks by focusing the verification only on deadlocks.

To sum up, most of the approaches focus on verifying control-flow related
properties and only a few treat the data on the process. Despite the numerous
approaches to check behavioral properties on a process, none of them proposes to

Alloy4SPV: a Formal Framework for Software Process Verification 15

check the organizational properties. To our knowledge, no approach proposes to
check syntactical and all the behavioral properties in a unified way as promoted
by Alloy4SPV.

7 Conclusion and Future Work

While verification is a critical and an important endeavor in software develop-
ment, it still remains the Achilles heel of software processes and a main source
of their low adoption. Indeed, with the increasing complexity and size of pro-
cesses, process modelers need adequate tooling support to simulate and to verify
their processes before their use in real projects. Some critical processes may reach
more than 250 activities, with very complex workflows, dependencies, loops, syn-
chronizations, and without an automated and exhaustive verification, possible
sources of inconsistencies and problems may persist. The formalization on which
Alloy4SPV is based is able to deal with control- and data-flow, resources,
and timing aspects of the process in a unified way. Therefore, Alloy4SPV and
its associated interface is able to verify automatically a wide range of prop-
erties without the user’s intervention and allows one to verify some business
properties. Currently, the tool is under evaluation within the European MERgE
project, whose main goal is to develop and demonstrate innovative concepts and
design tools addressing both “safety” and “security” concerns in development
processes.

The case study and the tool proved the feasibility of our approach, however
some improvements to our approach are already under realization. Even if our
evaluation shows relatively good performance, we believe that there is still room
for improvement. Many optimization techniques can be explored: (1) using slic-
ing technique, i.e. partially generates the Semantic.als to cope only with the
need of the properties; (2) using graph reduction techniques to reduce the size of
the process [30]; and (3) treat the properties related to time in a more efficient
way based on the expertise of well-known approaches such as timed automata
[31].

Acknowledgments. The authors’ work is funded by the MERgE project (ITEA
2 Call 6 11011).

References

1. Jackson, D.: Software Abstractions: logic, language and analysis. Mit Pr (2011)
2. Eshuis, R.: Symbolic model checking of uml activity diagrams. TOSEM 15(1)

(2006) 1–38
3. Wong, P., Gibbons, J.: A process-algebraic approach to workflow specification and

refinement. In: Software Composition, Springer (2007) 51–65
4. Liu, Y., Muller, S., Xu, K.: A static compliance-checking framework for business

process models. IBM Systems Journal 46(2) (2007) 335–361
5. Trčka, N., van der Aalst, W., Sidorova, N.: Data-flow anti-patterns: Discovering

data-flow errors in workflows. In: AISE, Springer (2009) 425–439
6. Fahland, D., Favre, C., Jobstmann, B., Koehler, J., Lohmann, N., Völzer, H.,

Wolf, K.: Instantaneous soundness checking of industrial business process models.
Business Process Management (2009) 278–293

7. van der Aalst, W., Van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek, H., Voorho-
eve, M., Wynn, M.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects of Computing 23(3) (2011) 333–363

16 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

8. Guelfi, N., Mammar, A.: A formal semantics of timed activity diagrams and its
promela translation. In: Software Engineering Conference, 2005. APSEC’05. 12th
Asia-Pacific, IEEE (2005) 8–pp

9. van der Aalst, W.M.: The application of petri nets to workflow management.
Journal of circuits, systems, and computers 8(01) (1998) 21–66

10. Jung, H.T., Joo, S.H.: Transformation of an activity model into a colored petri
net model. In: TISC, IEEE (2010) 32–37

11. Ter Hofstede, A.: Workflow patterns: On the expressive power of (petri-net-based)
workflow languages. In: of DAIMI, University of Aarhus, Citeseer (2002)

12. Wohed, P., van der Aalst, W.M., Dumas, M., ter Hofstede, A.H., Russell, N.:
Pattern-based analysis of the control-flow perspective of uml activity diagrams.
In: Conceptual Modeling–ER 2005. Springer (2005) 63–78

13. Cunha, A.: Bounded model checking of temporal formulas with alloy. arXiv
preprint arXiv:1207.2746 (2012)

14. OMG: Semantics of a foundational subset for executable uml models (fuml) version
1.0. http://www.omg.org/spec/FUML/ (2011)

15. Bendraou, R., Gervais, M.P., Blanc, X.: Uml4spm: A uml2. 0-based metamodel
for software process modelling. MoDELS (2005) 17–38

16. Bendraou, R., Jézéquel, J., Gervais, M., Blanc, X.: A comparison of six uml-based
languages for software process modeling. Software Engineering, IEEE Transactions
on 36(5) (2010) 662–675

17. van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and parallel databases 14(1) (2003) 5–51

18. Mendling, J., Moser, M., Neumann, G., Verbeek, H., van Dongen, B., van der
Aalst, W.: Faulty epcs in the sap reference model. Business Process Management
(2006) 451–457

19. Hsueh, N., Shen, W., Yang, Z., Yang, D.: Applying uml and software simula-
tion for process definition, verification, and validation. Information and Software
Technology 50(9) (2008) 897–911

20. Trcka, N., van der Aalst, W., Sidorova, N.: Analyzing control-flow and data-flow
in workflow processes in a unified way. Computer Science Report (08-31) (2008)

21. Laurent, Y., Bendraou, R., Baarir, S., Gervais, M.P.: Formalization of fUML: an
Application to Process Verification. In: CAISE. (2014)

22. Jensen, K.: Coloured petri nets. Petri nets: central models and their properties
(1987) 248–299

23. Vakili, A., Day, N.: Temporal logic model checking in alloy. Abstract State Ma-
chines, Alloy, B, VDM, and Z (2012) 150–163

24. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: Uml2alloy: A challenging model
transformation. Model Driven Engineering Languages and Systems (2007) 436–450

25. Eclipse: Openup. http://epf.eclipse.org/wikis/openup/
26. Laurent, Y., Bendraou, R., Gervais, M.P.: Generation of Process using Multi-

Objective Genetic Algorithm. In: Proceedings of the 2013 International Conference
on Software and Systems Process, ACM (2013) to be published

27. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features–enhancing flexibility in process-aware information systems. Data & knowl-
edge engineering 66(3) (2008) 438–466

28. Dong, Y., ShenSheng, Z.: Using π-calculus to formalize uml activity diagram for
business process modeling. In: ECBS, IEEE (2003) 47–54

29. Abdelhalim, I., Sharp, J., Schneider, S., Treharne, H.: Formal verification of to-
keneer behaviours modelled in fuml using csp. In: Formal Methods and Software
Engineering. Springer (2010) 371–387

30. Sadiq, W., Orlowska, M.E.: Analyzing process models using graph reduction tech-
niques. Information systems 25(2) (2000) 117–134

31. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science
126(2) (1994) 183–235

http://www.omg.org/spec/FUML/
http://epf.eclipse.org/wikis/openup/

	Lecture Notes in Computer Science
	Introduction
	Properties for Software Process Verification
	Behavioral Properties

	Formal verification of software processes
	Alloy: a language and tool for relational models

	Alloy4SPV: a Framework for Software Process Verification
	High-level overview
	Static modules
	Dynamic modules
	Analysis of the results
	Graphical tool associated to Alloy4SPV

	Evaluation
	OpenUP case study
	Randomly generated processes

	Related Work
	Conclusion and Future Work

