
HAL Id: hal-01088190
https://hal.science/hal-01088190v1

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formalization of fUML: An Application to Process
Verification

Yoann Laurent, Reda Bendraou, Souheib Baarir, Marie-Pierre Gervais

To cite this version:
Yoann Laurent, Reda Bendraou, Souheib Baarir, Marie-Pierre Gervais. Formalization of fUML: An
Application to Process Verification. CAiSE 2014 - The 26th International Conference on Advanced
Information Systems Engineering, Jun 2014, Thessaloniki, Greece. pp.347-363, �10.1007/978-3-319-
07881-6_24�. �hal-01088190�

https://hal.science/hal-01088190v1
https://hal.archives-ouvertes.fr

Formalization of fUML: an Application to
Process Verification

Yoann Laurent1, Reda Bendraou1, Souheib Baarir1,2, and Marie-Pierre
Gervais1,2

1 Sorbonne Universites, UPMC Univ Paris 06, UMR 7606, LIP6, F-75005, Paris,
France

2 Universite Paris Ouest Nanterre La Défense, F-92001, Nanterre, France
{first.last}@lip6.fr

Abstract. Much research work has been done on formalizing UML Ac-
tivity Diagrams for process modeling to verify different kinds of sound-
ness properties (deadlock, unreachable activities and so on) on process
models. However, these works focus mainly on the control-flow aspects
of the process and have done some assumptions on the precise execution
semantics defined in natural language in the UML specification. In this
paper, we define a first-order logic formalization of fUML (Foundational
Subset of Executable UML), the official and precise operational seman-
tics of UML, in order to apply model checking techniques and therefore
verify the correctness of fUML-based process models. Our formalization
covers the control-flow, data-flow, resources, and timing dimensions of
processes in a unified way. A working implementation based on the Al-
loy language has been developed. The implementation showed us that
many kinds of behavioral properties not commonly supported by other
approaches and implying multiple dimensions of the process can be effi-
ciently checked.

Keywords: Formalization, Model-checking, fUML, Alloy

1 Introduction

With the increasing complexity of processes, whatever their kind (i.e. business,
software, medical, military), process modelers need adequate tooling support to
simulate and to ensure their correctness before to use them in a real context.
Recent studies reported a significant rate of errors in industrial process mod-
els [1,2]. Typical errors are deadlocks, unreachable activities, inefficient use of
resources and timing problems.

UML Activity Diagrams (AD) are well-known for describing dynamic behav-
ior and have been extensively used as a process modeling language (PML) [3,4,5].
UML is a standard with a good tooling support and AD allow the expression of
most of the workflow patterns as identified by [6]. In order to verify UML-based
process models, current state-of-the-art has already proposed some formaliza-
tions of the way an AD operates [7,8,9]. These formalizations are mandatory
to apply model-checking techniques enabling an exhaustive and an automatic
verification of their models. However, in the current UML specification [10], the
operational semantics remains unclear, imprecise and ambiguous. This semantics
is explained in natural language and dispersed through the specification. Due to

2 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

this fact, the authors of these formalizations have done some assumptions on
the precise operational semantics. As a consequence, the same process might
be executed and verified differently from one tool into another, implying a gap
between the semantics adopted respectively by each tool.

Recently, the OMG released fUML (Semantics of a Foundational Subset for
Executable UML Models) [11], a new standard that precisely defines the ex-
ecution semantics for a subset of UML 2.3 in a form of an Execution Model
implemented in a virtual machine. However, even if the semantics is now clear
and not subject to human interpretation, the semantics is not given in a for-
mal way but in the form of pseudo Java-code. Therefore, it is not possible to
straightforwardly apply model checking techniques.

In this paper, we define a formal model of fUML using first-order logic (FOL).
The formalization addresses a subset of fUML encompassing only the concepts
required for process modeling as identified in [3]. Current formalizations pro-
posed in the literature focus mainly on the control-flow aspects of the process
preventing to verify many kinds of properties related to data-flow, resources
and timing constraints [12]. Therefore, our formalization covers both control
and data-flow of the process through the use of the AD notations, and takes
into account the associated organizational data such as resources and timing
constraints. Then, we implement our formalization by using the Alloy modeling
language [13] and we build a graphical tool on top of the implementation. The
result of the verification is then graphically displayed on the process.

The rest of this paper is organized as follows. Section 2 presents the fUML
standard and its execution semantics. Section 3 presents our FOL formalization
of fUML. Section 4 gives an overview of interesting properties supported by
our formalism. The implementation of the formalization and a case study are
presented in Section 5. Finally, related work is addressed in Section 6 and Section
7 concludes by sketching some future perspectives of this work.

2 fUML

fUML is an OMG standard that precisely defines the execution semantics of a
subset of UML 2.3. The standard defines a virtual machine in the form of pseudo
Java-code, enabling compliant fUML models (i.e., UML models using only el-
ements comprised in the fUML subset) to be executed. It can be decomposed
in three main parts: (i) the abstract syntax represented by a subset of UML,
mainly composed by the Class Diagram and most of the Activity Diagram;
(ii) the Execution Model which defines the execution semantics of the abstract
syntax and (iii) the model library which defines primitive types and behaviors
(e.g. integer type and addition between two integers). In this section we give an
overview of the Execution Model.

2.1 Execution model

The Execution Model is itself a model, written in fUML, that specifies how fUML
models are executed. The execution semantics adopted by fUML is quite similar
to Coloured Petri Nets (CPN) and is based on the principle of offering and
consuming object or control tokens between the different activity constituents.

To illustrate this concept, Figure 1 shows a simple process represented
with an AD composed of one InitialNode, two Action nodes and an

Formalization of fUML: an Application to Process Verification 3

Fig. 1: Call between the UML elements within the Execution Model

ActivityFinalNode. Each of these nodes are connected with a ControlFlow

edge. The sequence diagram shows the corresponding calls between the nodes
in the Execution Model. The diagram is a simplified version of what really hap-
pens during the execution and focuses on the interaction between elements.
ActionActivation and ActivityEdgeInstance are the instantiation of the cor-
responding abstract syntax.

When the fUML virtual machine invokes this activity, it starts by inserting a
token in each InitialNode. Then, the nodes with a token (i.e., the InitialNode
in our example) fire (i.e., execute their own behavior) and sendOffer on each of
their outputs ControlFlow. The ControlFlow is then able to call on its target
node A to receiveOffer. When the node “A” receives an offer, it first checks if the
prerequisites for its execution are satisfied, if yes, takes the offered tokens from
the input control flows and fires. At the end of the firing operation, the node
directly sendOffer on its outputs ControlFlow. The execution of an activity is
then an extended chain of sendOffer -receiveOffer -fire-sendOffer calls between
the activity constituents. When an ActivityFinalNode is reached or if there
are no nodes still able to execute, the activity is terminated. Each abstract
syntax element of an activity diagram has its own semantics. For example, a
DecisionNode will offer a token only on one of its output edges determined
during its fire execution.

Similarly to CPN, tokens positions and contents on the system represent the
actual execution state. Since the goal of this paper is mainly on the verification
of fUML-based process models, we focus on the formalization of the tokens game
between the semantics elements of an UML AD. Note that we call “tokens game”
the rules and conditions on which a token may pass through an edge to another
node to form a complete execution.

3 Formalization of the fUML tokens game

In the following, we present our formalization of the fUML tokens game by
defining the syntax of the langage and its semantics.

3.1 Syntax

Figure 2 shows an excerpt of the UML class diagram handled by our formal-
ization. Here we concentrate only on those elements that are part of the fUML
standard and useful for the definition of a process as identified in [3].

An Activity is a graph with three kinds of ActivityNodes: ObjectNode,
ControlNode and ExecutableNode. An ObjectNode represents the data in a
process, a ControlNode coordinates the execution flow and an ExecutableNode

represents a node that can be executed, i.e. process action. There are two kinds

4 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Fig. 2: Excerpt of the fUML Activity Diagram meta-model handled by our for-
malization

of ActivityEdge to link the nodes: ObjectFlow and ControlFlow. ObjectFlow
edges connect ObjectNodes and can have data passing along it. ControlFlow
edges constrains the desired order of execution of the ActivityNodes.
ControlNode can be used for parallel routing (ForkJoin), conditional routing
(DecisionNode), synchronization (JoinNode) and merging multiple alternate
flows (MergeNode). InitialNode and AcitivityFinalNode represent respec-
tively the beginning and the end of an Activity while FlowFinal terminates
a flow. InputPin and OutputPin are anchored to Actions to represent the
required input data and the output data produced by the action. Similarly,
an Activity can have multiple ActivityParameterNode to represent its data
input and output. Thus, an Activity can represent a process by defining a
coordinated sequencing set of actions using both control- and data-flow.

Formally, we consider three basic elements: Control, Executable, and Object.
– Control = {fork, join, decision,merge, initial, activityF inal, flowFinal}

represents the different ControlNode types,
– Executable = {action} represents the ExecutableNode type,
– Object = {activityParameter, outputP in, inputP in} represents the

ObjectNode type,
– Types = Control ∪ Executable ∪Object represents the set of all types.

Thus, we introduce the notion of diagram as a vertex-labeled graph:

Definition 1. A Diagram is a tuple D = (V,E, Types, lab, lower, upper) such that:
– V is the set of vertices.
– E ⊆ V × V is the set of edges.
– lab : V 7→ Types is the labeling function associating to each vertice v ∈ V a Types.
– lower/upper : V 7→ N ∪ {ε} are functions that return, respectively, the lower and

upper multiplicity of an object node.

lower(v)
def
=

{
n ∈ N if lab(v) ∈ Object
ε otherwise

The function upper has the same definition.

For a Diagram D = (V,E, Types, lab, lower, upper), we introduce the follow-
ing auxiliary functions that will help us to define formally an AD.
– V lab : Types 7→ 2V is the function that returns all the vertices of a type:

V lab(t)
def
= {v ∈ V | lab(v) = t}

– incoming/outgoing : V 7→ 2E are functions that return, respectively, the
incoming and outgoing edges of a node:

incoming(v)
def
= {(a, v) ∈ E | ∀a ∈ V }

Formalization of fUML: an Application to Process Verification 5

outgoing(v)
def
= {(v, a) ∈ E | ∀a ∈ V }

– source/target : E 7→ V are functions that return, respectively, the source
and target of an edge.

source(e)
def
= {s ∈ V | e = (s, t), ∀t ∈ V }

target(e)
def
= {t ∈ V | e = (s, t), ∀s ∈ V }

– input/output : V 7→ 2V are functions that return, respectively, the input
and output pins of an action node.

input(v)
def
=

in ⊆ V if lab(v) = action ∧ ∀v′ ∈ in, lab(v′) = inP in ∧
((v, v′) ∈ E ∨ (v′, v) ∈ E)

∅ otherwise

output(v)
def
=

out ⊆ V if lab(v) = action ∧ ∀v′ ∈ out, lab(v′) = outP in ∧
((v, v′) ∈ E ∨ (v′, v) ∈ E)

∅ otherwise

Now, we can define the notion of Activity Diagram. Actually, it is a Dia-
gram with some additional structural constraints.

Definition 2. An Activity Diagram is a Diagram, AD = (V, E, Types, lab, lower,
upper), with the following additional constraints:

– No node is disconnected: ∀v ∈ V, incoming(v) 6= ∅ ∨ outgoing(v) 6= ∅.
– The source and target of an edge are different: ∀e ∈ E, source(e) 6= target(e).
– Initial nodes have no incoming edge:

∀v ∈ V lab(initial) : incoming(v) = ∅
– All activity final and flow final nodes have no outgoing edge:

∀v ∈ (V lab(flowFinal) ∪ V lab(activityF inal)) : outgoing(v) = ∅
– Pin nodes are connected to a unique pin node:

∀v ∈ V lab(inP in) : |incoming(v) = {(a, v) ∈ E | ∀a ∈ V }| = 1 ∧
∀v ∈ V lab(inP in), ∀e ∈ incoming(v),∀a ∈ source(e) : lab(a) = outP in ∧
∀v ∈ V lab(outP in) : |outgoing(v) = {(v, a) ∈ E | ∀a ∈ V }| = 1 ∧
∀v ∈ V lab(outP in), ∀e ∈ outgoing(v), ∀a ∈ target(e) : lab(a) = inP in

– The lower bound of an Object node is not greater than its upper bound:

∀v ∈ V lab(Object) : lower(v) ≤ upper(v)

– The upper bound of an Object node is at least equal to one:

∀v ∈ V lab(Object) : upper(v) ≥ 1

Generally, a process is characterized by two main parts: the workflow and the
associated organizational information. Here, the workflow is represented using
UML AD. The organizational information is attached directly to the actions to
give insight about the execution. This information is domain dependent. For
instance, software processes might focus on the number of agents and their
skills, while medical processes require instrumentation and drugs. Therefore,
we define a process as an AD extended with most commonly used organizational
information: resources and time. Note that the definition can be easily extended
to take into account other domain dependent information.

Definition 3. A Process is a tuple P = (V, E, Types, lower, upper, lab, Resource,
Use, T iming) where:

– (V,E, Types, lab, lower, upper) forms an Activity Diagram s.t.:
• V contains at least one initial node: ∃n ∈ V, lab(v) = initial.
• V contains at least one activity final node: ∃n ∈ V, lab(v) = activityfinal.

– Resource is a finite set of resources,

6 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

– Use : V 7→ 2Resource is the function that maps each action to a set of resources:

Use(v)
def
=

{
r ⊆ Resource if lab(v) = action

∅ otherwise

– T iming : V 7→ N ∪ {ε} is the function that associates to each action a time to
perform it:

T iming(v)
def
=

{
v ∈ N if lab(v) = action

ε otherwise

3.2 Semantics

The semantics of our model follows the newly defined fUML standard [11]. We
formalize the way the tokens transit between the nodes and edges that compose
an fUML AD model. Moreover, to be able to reason about the timing constraints
of the process, we extend the formalization with discrete clocks representing the
time spent during the process execution.

The semantics of our formalism is based on the notions of states, enabling
and firing of transitions (similar to those used in CPN).

State. A state formalizes the configuration on which the process is at any time
of its execution.
Definition 4 (State). A state of a process P = (V, E, Types, lower, upper, lab,
Resource, Use, T iming) is a tuple s = (m, gc, lc) such that:

– m : V ∪ E 7→ N is the function, called marking, that associates to each node and
edge a natural number.
• for v ∈ V , m(v) is the number of tokens,
• for e ∈ E, m(e) is the number of offers.

– gc ∈ N is the global discrete clock representing the current time spent on the process,
– lc : V 7→ N ∪ {ε} is the local discrete clock representing the current time spend on

a given action:

lc(v)
def
=

{
n ∈ N if lab(v) = action

ε otherwise

The set of all states of a process P is noted States.

Definition 5 (Initial State). An initial state s0 = (m0, gc0, lc0) of the system is
always defined as follows:

– All nodes own 0 token, except (i) the initial nodes which start with 1 token and (ii)
the input activity parameter node which start with a number of tokens that varies
between its lower and upper bounds:

m0(v) =

1 if lab(v) = initial

n ∈ {lower(v), ..., upper(v)} if lab(v) = activityParameter ∧
incoming(v) = ∅

0 otherwise
– The global clock is initialized to zero: gc0 = 0.
– Local clocks are initialized to zero:

lc0(v) =

{
0 if lab(v) = action

ε otherwise

Transition. The dynamic of a process, i.e. its execution, is defined through
the notion of transition. To move from a state to another one, a transition is
first enabled then fired. Therefore, the enabling notion corresponds to a pre-
condition while the firing notion corresponds to a post-condition. We first define
the enabling notion, and then formalize the firing concept.

Formalization of fUML: an Application to Process Verification 7

Transition enabling. A transition is said to be enabled when some preconditions
are met (to allow the firing of the transition). By abstracting the way the fUML
Execution Model executes an AD, two cases can be distinguished: (i) a node is
ready to execute; (ii) a node is ready to terminate. In our framework, these are
represented by predicates eStart and eFinish, respectively. Also, note that the
system can progress through time elapsing using the eTime predicate.
Let us consider a process P = (V, E, Types, lower, upper, lab, Resource, Use,
T iming) and a state s = (m, gc, lc). To simplify our notation, we assume that
s is implicitly available in the following enabling predicates.

1. eStart is the predicate that determines if a node v is ready to be executed.
Its formal definition relies on the following auxiliary predicates.
– The first condition corresponds to check if the node is not already exe-

cuting (not owning tokens) and have incoming edges:

pAll(v)
def
= (m(v) = 0) ∧ incoming(v) 6= ∅

– An activity node needs an offer on all of its incoming edges:

pNode(v)
def
= pAll(v) ∧

∧
e∈incoming(v)

(m(e) > 0)

– An action node extends the behavior with input and output pins, so the
number of offers on its incoming pins are also checked:

pAction(v)
def
= pNode(v) ∧

∧
e∈incoming(input(v))

(m(e) ≥ lower(v))

– Unlike other activity nodes, a merge node needs at least one of its in-
coming edge to have an offer:

pMerge(v)
def
= pAll(v) ∧

∨
e∈incoming(v)

(m(e) > 0)

Then, the enabling test corresponds to:

eStart(v)
def
=

pAction(v) if lab(v) = action

pMerge(v) if lab(v) = merge

pNode(v) otherwise

2. eFinish is the predicate that determines if a node is ready to terminate and
relies on the following auxiliary predicates.
– The node must own tokens:

haveTokens(v)
def
= (m(v) > 0)

– An action must have its local clock incremented at least until its defined
timing:

pT iming(v)
def
= (lc(v) ≥ T iming(v))

Then, the enabling test to terminate a node corresponds to:

eF inish(v)
def
=

{
haveTokens(v) ∧ pT iming(v) if lab(v) = action

haveTokens(v) otherwise

3. eTime determinates if the clocks can be increased. The clocks can be in-
creased only during working time, i.e. when there is at least one action that
is executing:

eT ime()
def
=

∨
v∈V,lab(v)=action

((m(v) > 0) ∧ (lc(v) < Timing(v)))

8 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Transition firing. The firing of a transition and the effect it has on a state can
be defined as follows. Also here, two cases have to be distinguished: (i) firing a
transition on a node that can start; (ii) firing a transition on a node that can
terminate and (iii) firing a transition to represent the elapsing time.

Let us consider a second state s′ = (m′, gc′, lc′). fStart, fFinish and fTime
express the constraints that must be satisfied to ensure that s′ is a successor
of s. fStart is a constraint related to a staring node (a node that satisfies the
enabling predicate eStart), fFinish is a constraint related to a finishing node (a
node that satisfies the enabling predicate eFinish), and fTime is a constraint
related to the increasing of the clocks (if the current state satisfies the enabling
predicate eTime). For simplification, we assume that s and s′ are implicitly
available in the following firing predicates.
We first introduce the predicate fz that constrains to equality the marking of
all the vertices and edges of s and s′, except the one given as parameter p:

fz(p ∈ (V ∪ E))
def
=

∨
v∈{(V ∪E)\p}

(m′(v) = m(v))

1. fStart is based on the following auxiliary predicates.
– An activity node is executed by adding a token on it and removing the

offers from its incoming edges:

sNode(v)
def
= (m′(v) = m(v) + 1) ∧

∧
e∈incoming(v)

(m′(e) = m(e)−m′(v))

∧fz(v ∪ incoming(v))

– An action node requires some additional conditions due to the presence
of input and output pins. Offers from the incoming edge of its input pin
are consumed up to the maximum bound allowed by the multiplicity.
Then, tokens are produced on the output pin between the lower and
upper multiplicity bound:

sActionIP in(v)
def
=

∧
i ∈ input(v),

inc ∈ incoming(i)

((¬(upper(i) ≥ m(inc)) ∧m′(i) = m(inc))

∨ ((upper(i) ≥ m(inc)) ∧m′(i) = upper(i)))

sActionOPin(v)
def
=

∧
o∈output(v)

(m′(o) ≥ lower(o) ∧m′(o) < upper(o))

sActionEdge(v)
def
=

∧
e ∈ incoming(v)

∪incoming(input(v))

(m′(e) = m(e)−m′(v))

sAction(v)
def
= (m′(v) = m(v) + 1) ∧ sActionIP in(v)

∧ sActionOpin(v) ∧ sActionEdge(v)
∧ fz(v ∪ input(v) ∪ output(v)

∪ incoming(v) ∪ incoming(input(v))

– Unlike the other nodes, a merge node is executed by removing offers
from only one of its incoming edges:

sMerge(v)
def
= (m′(v) = m(v) + 1) ∧ (

∨
e ∈ incoming(v),

m(e) > 0

(m′(e) = m(e)−m′(v))

∧ fz(e ∪ v))

Formalization of fUML: an Application to Process Verification 9

Then, the transition firing, for a starting node, is characterized by:

fStart(v)
def
=

sAction(v) if lab(v) = action

sMerge(v) if lab(v) = merge

sNode(v) otherwise

2. fFinish is based of the following auxiliary predicates.
– An activity node remove its owning tokens and offers it on all its outgoing

edges:

fNode(v)
def
= (m′(v) = m(v)− 1) ∧

∧
e∈outgoing(v)

(m′(e) = m(e) +m(v))

∧ fz(v ∪ outgoing(v))

– A flowFinal node removes its token but do not offer it:

fF lowFinal(v)
def
= (m′(v) = m(v)− 1) ∧ fz(v)

– A decision node only offers its token only on one of its outgoing edges:

fDecision(v)
def
= (m′(v) = m(v)− 1)

∧
∨

e∈outgoing(v)

(m′(e) = m(e) +m(v) ∧ fz(v ∪ e))

– An action node requires to reset its tokens on both its input and output
pins, and offers its tokens on its outgoing edges and outgoing edges of
its output pins. Moreover, its local clock is reinitialized to 0:

fActionP in(v)
def
=

∧
p∈(output(v)∪input(v))

(m′(p) = 0)

fActionEdge(v)
def
=

∧
e ∈ (outgoing(v)

∪outgoing(output(v)))

(m′(e) = m(e) +m′(v))

fAction(v)
def
= (m′(v) = m(v)− 1) ∧ fActionP in(v) ∧ fActionEdge(v)

∧ (lc′(v) = 0) ∧ fz(v ∪ input(v) ∪ output(v)
∪ outgoing(v) ∪ outgoing(output(v))

Then, the transition firing, for a finishing node, is defined by:

fF inish(v)
def
=

fF lowFinal(v) if lab(v) = flowFinal

fDecision(v) if lab(v) = decision

fAction(v) if lab(v) = action

fNode(v) otherwise
3. fTime increases the local clock of each action currently executing and in-

creases the global clock as well:

fT ime()
def
= (gc′ = gc+ 1) ∧

∧
v ∈ V lab(action)
∧(m(v) > 0)

(lc′ = lc+ 1) ∧ fz(∅)

At this point we are able to define the complete transition (successor relation
between states). Basically, when an activity final node is executed, or when there
is no other node that can either start or terminate, the execution is over.
Definition 6 (Successor Relation). Let P = (V, E, Types, lower, upper, lab,
Resource, Use, T iming) be a process. Let s = (m, gc, lc) and s′ = (m′, gc′, lc′) be
two states of P . s′ is a successor of s, iff the predicate transition(s, s′) holds:

step(v)
def
= (eStart(v) ∧ fStart(v))
∨ (eF inish(v) ∧ fF inish(v))
∨ (eT ime() ∧ fT ime())

transition(s, s′)
def
=

∧
v∈V lab(activityFinal)

(m(v) = 0) ∧
∨
v∈V

(step(v))

10 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Thus, to represent a process execution, we define the notion of trace:

Definition 7 (Trace). Let P = (V, E, Types, lower, upper, lab, Resource, Use,
T iming) be a process. A Trace is an ordered set of states denoted σ = 〈s0, s1, ..., sn〉 ∈
States∗ s.t.: ∀i ∈ N, transition(σ[i], σ[i+ 1]) holds, where σ[i] denotes the i-th state of
the trace and s0 is the initial state. The set of all trace is noted Traces.

4 Properties for Process Verification

To study the properties of the modelled process using our formalization we need
a formal logic. Many logics exist and can express different kind of properties:
Computation Tree Logic (CTL), Linear Temporal Logic (LTL), etc. In our case,
almost all our properties can be handled using LTL.

LTL formulae are constructed from atomic propositions, logical operators ∨,
∧, ¬, and temporal operators X (meaning “next”), G (“globally”), U (“until”)
and F (“eventually”) [14]. In our formalism, atomic propositions are statical
(related to the structure of the process) or dynamical, of the form m(n) op v or
gc op v where n ∈ V ∪ E, op ∈ {=, 6=, <,≤, >,≥} and v ∈ N.

Given a process P = (V, E, Types, lower, upper, lab, Resource, Use,
T iming) and an LTL property φ, we say that P |= φ, iff ∀σ ∈ Traces, σ |= φ. It
is worth noting that LTL semantics is defined over infinite traces. To treat the
case of finite traces, we just used the so-called stuttering principle to extend a
trace to an infinite one.

In the following, we give an overview of interesting properties that can be
verified on a process and give some examples. Due to space restriction, we choose
only some relevant constraints from each aspect of the process dimension. The
goal here is to show the ability of our formalism to deal with a wide variety of
process constraints rather than presenting them exhaustively.

Control-flow. Control-flow analysis deals with questions like “does the process
terminate?”, “Is there any deadlock?”, “Does TaskA ever happen?”, etc. These
properties are often referred as soundness properties [12] in the literature. Sound-
ness tends to check some desirable properties such that a started process can
always complete (option to complete).
– Option to complete can be checked by verifying that at least one

ActivityFinalNode of the process is always executed:

F (
∨

v∈V lab(activityFinal)

(m(v) > 0)) (1)

Data-flow. The goal of data flow analysis [15] is to validate the process against
different data problems such as missing data, i.e. when a data element needs to
be accessed, but either it has never been created or it has been deleted without
having been created again.
– Missing data can be checked by ensuring that when a node has offers on its

control edges, it will finally have offers on its input pin:

G (
∧

v∈V lab(action)

(pNode(v) =⇒ F(pAction(v))) (2)

Formalization of fUML: an Application to Process Verification 11

Resources. Resources properties deal with resource problems like missing re-
source, i.e., when an activity requires a resource which may not be available.
– Missing resource can be checked by verifying that when an action is ready to

start, there is no other action currently executing utilizing the same resource:

∧
v ∈ V lab(action),
r ∈ Resource,
r ∈ Use(v)

G (eStart(v) =⇒ (
∧

o ∈ V lab(action),
o 6= v

(r ∈ Use(o) =⇒ m(o) = 0))) (3)

Time. The goal of timing properties is to answer questions like “Is it possible
to finish the process on time whatever the path taken?”.
– To check that the process can terminate before max time unit can be ex-

pressed by the following LTL property:

F(
∨

v∈V lab(activityFinal)

(m(v) > 0) ∧ (gc > max)) (4)

A counter-example to this formula means that at least one execution can
terminate before max time unit. This answers the original property.

Business. While the other categories specify properties that must hold for
all processes, business properties represent specific properties tailored to a
given process. They play an important role since a process could be syntac-
tically correct and valid against the precedent properties but still violates some
business constraints. Business properties deal with questions like “does the
ImportantAction is executed whatever the choice made during the execution?”
or “Is ImportantArtefact (i.e., the goal of the process) always available at the
end of the process?”.
– Let P = (V, E, Types, lower, upper, lab, Resource, Use, T iming) be

a process. Let actionA, actionB ∈ V, lab(ationA) = lab(actionB) = action
be two action nodes and let max ∈ N be a natural representing the maximum
time between the execution of two actions. To verify that when actionA is
executed, actionB is always executed afterwards before max time units the
property is expressed as follows:

∀i ∈ N : G((m(actionA) > 0 ∧ (gc = i)) =⇒
F((m(actionB) > 0) ∧ (gc ≤ max+ i))) (5)

Note that this constraint use infinite domain of integer which makes it not
a standard LTL formula. However, we can turn it back to classical LTL
formula by a simple modification of the treated model. For a sake of clarity,
we do not burden the model and stick to our expression.

5 Implementation

We implement our formalization using the Alloy language [13]. It is is a declara-
tive modeling language based on FOL and relational calculus for expressing com-
plex structural and behavioral constraints. It is associated to a tool, called Alloy

Analyzer: a constraint solver that provides fully automatic simulation and check-
ing based on model-finding through SAT-solving (Satisfiability-solving).

On top of the formal framework implemented using Alloy, we have developed
a prototype currently provided as an Eclipse EMF plugin. The main intent of
this prototype is to assist the modeler by automatically verifying fUML-based

12 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

Fig. 3: Process Analyzer integrated inside our process environment, displaying a
counter-example for the option-to-complete property.

Fig. 4: ProcessOrder process represented as an fUML Activity Diagram

processes in the form of XMI Instances. It comes with a library of predefined
properties ready to be checked, but also allows to add some common business
properties through a graphical interface. The user only has to check in the in-
terface the desired properties, and fill the parameter if required (e.g., maximum
time to terminate the process). The business properties can be added through
pre-defined templates, e.g. select the ActionA which must always be executed
before ActionB. Figure 3 shows a screenshot of our tooling for process model-
ing and enactment emphasizing the process view and its analyzer. When the
verification is performed, the path leading to the counter-example (if any) is
highlighted in green for reachability properties, and in red otherwise.

5.1 Case Study

This section presents a case study on the Alloy implementation by checking the
properties presented in section 4 on the ProcessOrder process from the UML
specification [10]. This process simply proceeds the arrival of a new order and is
visible on Figure 4.

To perform the verification, the process and the properties are translated into
an Alloy specification. Then, this specification is given as input to the Alloy

Analyzer which reduces the verification to a SAT problem. It is presented to a
SAT solver (MiniSat among others) in a Conjunctive Normal Form (CNF) for-
mat. A CNF is a conjunction of clauses. Each clause represents a disjunction of
variables. A satisfying assignement to a SAT problem consists of a boolean affec-
tation to the variables such that all clauses are satisfied. Usually, the complexity
of a SAT problem is measured by the number of clauses and variables.

Let P = (V, E, Types, lower, upper, lab, Resource, Use, T iming) be
the process from Figure 4 where (V,E, Types, lab) are displayed on the figure,
Resource = {BankConnector}, Use = {AcceptPayment 7→ {BankConnector}}
and Timing = {ReceiveOrder 7→ 1, FillOrder 7→ 2, SendInvoice 7→ 1,
MakePayment 7→ 1, AcceptPayment 7→ 2, ShipOrder 7→ 3, CloseOrder 7→ 1

Formalization of fUML: an Application to Process Verification 13

Property T. Semantics Vars Clauses CNF Gen. SAT Solving C.E.

(1) Control-flow 410k 1239k 31s 5s no
(2) Data-flow 427k 1286k 27s 5s no
(3) Resources 419k 1261k 33s 0.3s no
(4) Time X 2361k 8716k 185s 3s yes
(5) Business X 2385k 8716k 201s 199s no

Table 1: Metrics from the Alloy Analyzer executed on the ProcessOrder from
Figure 4

}. Generally, these pieces of information are available with the model through
UML Profiling [10] or as direct extension of the UML AD metamodel [3]. For
sake of clarity, we do not propose some graphical representation of these data
(Resource, Use and Timing) but directly give their formal representation.

Table 1 summarizes the obtained results. Column 1 represents the analyzed
property from Section 4. For the “(4) time” property, we are using max = 4.
Concerning the “(5) business” property, we choose the two actions FillOrder

and SendInvoice, and max = 6. Columns 2 specifies if we are using the timed
semantics for the verification. Due to the presence of the global and local clock
ticks, a lot of extra states are introduced to support the properties related to
the time. For efficiency reason, we also implemented a version of the semantics
without these clocks on each state for the properties which are not relying on it.
Columns 3 and 4 represent, respectively, the number of generated variables and
clauses. Columns 5 and 6 represent, respectively, the time to generate the CNF
and to solve the SAT problem. Columns 7 specifies the result of the verification,
if there is any counter-example. All analyses were performed on a MacBook Air
2011 with Intel Core i5 processor and 4GB of RAM with Mavericks as OS.

These results highlight the effectiveness of our tool w.r.t. a concrete exam-
ple. Actually, even if the whole generated SAT problems present a relatively
high complexity (over 1 million clauses and over 410 thousand variables), the
solving time is less than 1 minute for the untimed properties. The timed-related
properties have a similar ratio in terms of clauses and variables but require few
minutes due to the presence of extra states. Interested readers can download the
complete Alloy formalization with the case study from our website3.

6 Related Work

There is an extensive literature on verifying process models. A complete overview
of the related work would be beyond the scope of this paper (see [12]). Therefore,
we focus on the work directly relevant to this paper, namely formal verification
approaches of UML AD.

Generally, the verification is based on mapping the process model into math-
ematical formalisms used to model systems such as automata, Petri Nets or
process algebra. All of these formalisms have been investigated for the verifica-
tion of UML AD. Jung et al. [16] propose a transformation from UML AD to
Colored Petri Nets. Dong et al. [7] presents an approach for formalizing UML
AD using π-calculus, a kind of computing models for representing concurrent
systems and express the interactions between evolving processes. Eshuis et al.

3 http://pagesperso-systeme.lip6.fr/Yoann.Laurent/

http://pagesperso-systeme.lip6.fr/Yoann.Laurent/

14 Yoann Laurent, Reda Bendraou, Souheib Baarir, and Marie-Pierre Gervais

[8] check UML AD in the context of workflow modeling by translating the ac-
tivity into the input language of NuSMV, a symbolic model checker. Guelfi et
al. [9] propose a translation of UML AD extended with timing constraints into
Promela (Process or Protocol Meta Language) in order to check behavioral prop-
erties with the model-checker SPIN. However, these works are not based on the
new fUML standard and have done some assumptions on the precise operational
semantics which creates tool-interoperability problems. Moreover, the semantics
richness of these approaches are less complete than fUML, many simplifications
have been carried out. While all of these approaches propose to check control-
flow related properties, data-flow are not always considered and only [9] supports
the timing constraints. Properties related to the resources are never supported.

Montogna et al. [17] propose an approach allowing the definition of a virtual
machine for fUML in the K-Framework, enabling the execution of models on a
more formal definition than the current Java-based implementation. To the best
of our knowledge, there is no temporal logic verification proposed.

Abdelhalim et al. [18] present an approach to manually map an fUML mod-
els into the process algebraic specification language CSP (Communicating Se-
quential Processes) and use the FDR (Failures-Divergences Refinement) model-
checker to check if the model is deadlock free. When a deadlock is found, a
counter-example trace which led to the deadlock is generated. Their formaliza-
tion focuses only on the asynchronous communication between objects within
fUML which has been guided by their case study.

To the best of our knowledge, our work is the first attempt to formalize the
tokens game of the fUML standard to verify process models. If a comparison
is made between the above-mentioned work, our approach is not relying on the
semantics and concepts of the targeted formal language in terms of expressive-
ness, e.g. Petri Nets, instead of the modeling language. In these approaches, the
assumption is made that the semantics choices made in these formal techniques
are valid as well for UML AD.

7 Conclusion and Future Work

This paper proposes a first-order logic formalization of the newly defined fUML
specification to verify fUML-based process models. The formalization is able to
deal with the control- and data-flow, resources, and timing aspects of the process
in a unified way. A tool implementation based on the Alloy modeling language
has been successfully integrated in an Eclipse-based process environment. The
tool is able to verify automatically a wide range of properties without the user’s
intervention and allows one to verify some business properties. Currently, the
tool is under evaluation within the European MERgE project, which main goal
is to develop and demonstrate innovative concepts and design tools addressing
both “safety” and “security” concerns in development processes.

The case study and the tool proved the feasibility of our approach, how-
ever some improvements are already under realization. The first one consists
in covering the formalization of more UML AD concepts that can be of in-
terest for the modeling of more complex processes. Examples of such concepts
are DataStoreNode (a buffer for non-transient data), AcceptEventAction and
SendSignalAction (for dealing with events) and StructuredActivity (expan-
sion, loop, conditional nodes). Moreover, we are working on extending the for-
malization to be data-aware. Currently, the contents of the tokens within the

Formalization of fUML: an Application to Process Verification 15

ObjectNodes are not taken into account. This prevents, for example, to ex-
press guard on edge to determine if the edge can be traversed. Some formal-
izations have taken some of these concepts into accounts [8]. However, much
simplification has been done in comparison of the way fUML operates and only
integers are considered. In fUML, each tokens can have a simple value type (in-
teger, string, natural, boolean) or more complex Classifier type defined in
a Class Diagram. Then, tokens are manipulated using the action nodes from
the IntermediateActions package. This package defines the classical actions to
create, read, suppress and modify tokens at runtime within the AD and formal-
izing such concepts is a non-trivial task. Finally, we are exploring optimizations
techniques to treat the properties related to time in a more efficient way based
on the expertise of well-known approaches such as timed automata.

Acknowledgments. This work was funded by the MERgE project (ITEA 2
Call 6 11011).

References

1. Mendling, J.: Empirical studies in process model verification. In: Transactions on
Petri Nets and Other Models of Concurrency II. Springer (2009) 208–224

2. Mendling, J., Verbeek, H., van Dongen, B.F., van der Aalst, W.M., Neumann, G.:
Detection and prediction of errors in epcs of the sap reference model. Data &
Knowledge Engineering 64(1) (2008) 312–329

3. Bendraou, R.: Uml4spm: A uml2. 0-based metamodel for software process mod-
elling. MoDELS (2005) 17–38

4. Bendraou, R., Jézéquel, J., Gervais, M., Blanc, X.: A comparison of six uml-based
languages for software process modeling. Software Engineering, IEEE Transactions
on 36(5) (2010) 662–675

5. Russell, N., van der Aalst, W.M., Ter Hofstede, A.H., Wohed, P.: On the suitability
of uml 2.0 activity diagrams for business process modelling. In: Proceedings of the
3rd Asia-Pacific conference on Conceptual modelling-Volume 53

6. van Der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and parallel databases 14(1) (2003) 5–51

7. Dong, Y., ShenSheng, Z.: Using π-calculus to formalize uml activity diagram for
business process modeling. In: ECBS, IEEE (2003) 47–54

8. Eshuis, R.: Symbolic model checking of uml activity diagrams. TOSEM (2006)
9. Guelfi, N., Mammar, A.: A formal semantics of timed activity diagrams and its

promela translation. In: APSEC, IEEE (2005)
10. OMG: Uml version 2.4.1. http://www.omg.org/spec/UML/ (2011)
11. OMG: Fuml version 1.1. http://www.omg.org/spec/FUML/ (2013)
12. van der Aalst, W., Van Hee, K., ter Hofstede, A., Sidorova, N., Verbeek, H., Voorho-

eve, M., Wynn, M.: Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects of Computing 23(3) (2011) 333–363

13. Jackson, D.: Software Abstractions: logic, language and analysis. MIT Press (2011)
14. Pnueli, A.: The temporal logic of programs. In: Foundations of Computer Science,

1977., 18th Annual Symposium on, IEEE (1977) 46–57
15. Trčka, N., van der Aalst, W., Sidorova, N.: Data-flow anti-patterns: Discovering

data-flow errors in workflows. In: AISE, Springer (2009) 425–439
16. Jung, H.T., Joo, S.H.: Transformation of an activity model into a colored petri

net model. In: TISC, IEEE (2010) 32–37
17. Motogna, S., Cr Ciun, F., Lazar, I., Pârv: Formal definition of fuml in k-framework.

Studia Universitatis Babes-Bolyai, Informatica 58(3) (2013)
18. Abdelhalim, I., Sharp, J., Schneider, S., Treharne, H.: Formal verification of toke-

neer behaviours modelled in fuml using csp. In: FMSE. Springer (2010) 371–387

http://www.omg.org/spec/UML/
http://www.omg.org/spec/FUML/

	Lecture Notes in Computer Science
	Introduction
	fUML
	Execution model

	Formalization of the fUML tokens game
	Syntax
	Semantics
	State.
	Transition.

	Properties for Process Verification
	Control-flow.
	Data-flow.
	Resources.
	Time.
	Business.

	Implementation
	Case Study

	Related Work
	Conclusion and Future Work

