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ABSTRACT
The growing complexity of processes whatever their kind
(i.e. business, software, medical, military) stimulates the
adoption of process execution, analysis and verification tech-
niques. However, such techniques cannot be accurately val-
idated as it is not possible to obtain numerous and realis-
tic process models in order to stress test them. The small
set of samples and “toy” models publically available in the
literature is usually insufficient to conduct serious empirical
studies and thus, to validate thoroughly work around process
analysis and verification. In this paper, we face this prob-
lem by proposing a process model generator using a multi-
objective genetic algorithm. The originality of our approach
comes from the fact that process models are built through
a sequence of high-level operations inspired by the way a
process modeler could have actually performed to model a
process. A working generator prototype has been imple-
mented and shows that it is possible to quickly generate
huge, syntactically sound and user-tailored process models.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Data generators

General Terms
Algorithms, Design

Keywords
Process, Generator, UML Activity, Genetic Algorithm

1. INTRODUCTION
One frustrating situation that most scientists have to face

frequently is the inability to validate their approaches be-
cause of a lack of realistic data and models. By realistic,
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we mean not only having models of a given size but mod-
els exposing specific properties and complex constructs that
can be comparable to what a modeler could produce in real
projects. The community of process modeling and anal-
ysis particularly suffers from such lack. Indeed, with the
growing complexity of processes whatever their kind (i.e.
business, software, medical, military), many approaches and
tools were proposed to verify and to analyze them. However,
some approaches cannot be accurately validated as it is not
possible to obtain numerous and realistic process models in
order to stress test them. The small set of samples and
“toy” models publically available in the literature is usually
insufficient to conduct serious empirical studies and thus, to
validate thoroughly work around process analysis and veri-
fication. They are also often in textual or an inappropriate
formalism and need to be converted to the input format ex-
pected by the verification tool.

One solution could be to promote initiatives in order to
put in place open repositories of real world models. However,
such initiatives face privacy issues and thus only few organi-
zations accept to share their models (ex. Only 150 models
where submitted to the Moogle repository). Additionally,
there is no guaranty about the correctness of these models
or if they hold interesting properties required for testing the
validity of the verification approach.

In the literature many approaches were proposed to au-
tomatically generate models for testing purposes [9, 2, 6,
11]. All these approaches concerned the generation of mod-
els that related to structural concerns i.e., mainly class dia-
grams, instances of EMF-based meta-models [9] and to our
knowledge none of them addressed behavioral models. Their
main goal was to test the scalability of tools and approaches.
These generators were used to produce huge models for test-
ing for instance the scalability of consistency checking lan-
guages, model comparison approaches or the generation of
test models.

Process verification approaches are more concerned about
checking behavioral properties present in process models
than of their size (ex. does the process ends one day? Would
activity X be executed before the end of the process, etc.).
That’s why having an approach that randomly generates a
given number of activities, edges, and object flows is not
enough. These approaches need realistic process models,
holding some workflow patterns [13], with complex constructs
such as loops, forks, conditional branches with valuated guard,
the whole combined in a consistent way as it was modeled



by a process modeler. This is what the approach we propose
in this paper aims to.

Our contribution comes in a form of a process model gen-
erator that uses a multi-objective genetic algorithm [3]. The
originality of our approach comes from the fact that process
models are built through a sequence of high-level operations
inspired from the catalogue of process change patterns pro-
posed in [15]. A working and scalable generator prototype
has been implemented which shows that it is possible to
quickly generate huge, syntactically sound and user-tailored
process models.

2. GENERATING PROCESS MODEL
Before presenting our solution, we first introduce the ge-

netic algorithm and finally, apply it in order to generate
process models though a sequence of high-level operations.

2.1 Genetic Algorithm
Genetic Algorithm (GA) [3] are probabilistic search algo-

rithms that use the principle of natural selection (based on
Darwin’s theory of evolution) to evolve iteratively a set of
solutions (called population) toward an optimum solution. A
potential solution is called a chromosome. A chromosome is
composed of multiple genes. A gene is a distinct component
of a potential solution.

During each evolution, natural selection is applied to de-
termine which solutions survive and which are discarded.

In order to proceed to the selection process, a so-called fit-
ness function is required to be able to evaluate how “good”
is a solution relative to other potential solutions. The fit-
ness function is responsible for performing this evaluation
and returning a positive integer number, or “fitness value”,
that reflects how optimal the solution is (e.g., the higher the
number, the better the solution). The fitness values are then
used in a process of natural selection to choose which poten-
tial solutions will continue on to the next generation, and
which will die out. However, the natural selection process
does not obviously choose the top x number of solutions.
The solutions are instead chosen statistically such there is
more chance that a solution with a higher fitness value will
be chosen, but it is not guaranteed. Indeed, a solution can
be temporally weaker than the others, but may evolve in
few generations into something even better than the previ-
ous ”better” solutions.

To evolve the population into a new one, genetic opera-
tions are applied on the population such as: (i) reproduction,
i.e. making a copy of a potential solution, (ii) crossover, i.e.
swapping gene values between two potential solutions, sim-
ulating the ”mating” of the two solutions and (iii) mutation,
i.e. randomly altering the value of a gene in a potential
solution.

The evolution continue until a fixed termination goal is
reached such as time limit or sufficient fitness achieved.

Thus, the outline of a genetic algorithm corresponds to:
1. Genesis: Creation of an initial set (population) of n

candidate solutions (randomly or provided).
2. Evaluation: Evaluate each member of the population

using some fitness function.
3. Survival of the Fittest: Select a number of mem-

bers of the evaluated population, favouring those with
higher fitness scores.

4. Evolution: Generate a new population using genetic
operations.

Figure 1: Outline of the GA for process generation

5. Iteration: Repeat steps 2-4 until the termination con-
dition is met.

2.2 Using GA for Process Generation
The purpose of using a GA to generate processes is to

simulate the natural way a process modeler could have ac-
tually followed to model a process. However, there are gener-
ally different objectives behind each generation of a process.
For instance, if the purpose of the generation needs to test
the execution scalability of an approach, one needs to in-
fluence the generation towards massively parallel processes.
We identify three main generation objectives: (i) the size of
the generated process (e.g., the process will contain approx-
imately 100 nodes), (ii) the number of each elements (e.g.,
the process will contain more than 3 ForkNode and less than
30 Action), and (iii) constraints to specify the static struc-
ture of the process (e.g., all the ForkNode will have more
than 4 output edges). An example of an application using
such objectives could be to generate a sample of processes
containing some Workflow Patterns [16] (supported by UML
Activity diagrams in our case) to test a specific verification
approach.

The objectives are then the soft goals which need to be
achieved as good as possible. Adding objectives on the gen-
eration goals implies more restriction to the set of possible
solutions. Of course, these objectives are not mutually ex-
clusive

Figure 1 shows how the GA is used to generate processes
and is explained in the following. A chromosome corre-
sponds to a process while process elements (i.e., nodes and
edges) represent its genes.

Genesis: To configure the initial population, some in-
formation are required. (i) The length of the population,
which corresponds to the maximum number of possible pro-
cess solutions. A higher value ensures to find more satisfy-
ing solutions at the cost of increasing the total computation
time. A big population also ensures a better diversity in
the generated processes. (ii) The initial process which will
evolve through the evolution. By default, the process cor-
responds to a simple process with an InitialNode and an
ActivityFinalNode (since all processes have a start and a
end). However, it is possible to use a user-defined process
for the initial population (the generation will be a derivation
of the process). Then, the input process is copied into all
the initial populations.

Evaluation: The fitness function evaluate the given chro-
mosome regarding the defined objectives. Assuming that p
is a process candidate, Cs is the desired size of the generated
process, Cm the margin accepted on the size Cs, Ce the set



which contains the desired number of each element, Cc the
set of syntactical constraints and Ws, We, Wr the weight ac-
corded to each objective. Let W be the sum of all the weight.
Let hold(candidate, objective) be a function which returns 1
if the objective holds on the candidate and 0 otherwise. Let
size(candidate) be a function which returns the size of the
process. Let margin(x) be a threshold function used for the
margin size of the models. The fitness(candidate) function
returns a real number between [0, 1] that reflects how opti-
mal the solution is (higher value means that the solution is
better):

margin(x) =

{
0 iffx 6 Cm

1 iffx > Cm

(1)

fitness(p) =

(
1

1 + margin(|size(p)− Cs|)

)
∗ Ws

W

+

(∑
e∈Ce

hold(p, e)

card(Ce)

)
∗We

W
+

(∑
c∈Cc

hold(p, c)

card(Cc)

)
∗Wc

W
(2)

Let δ be the acceptance threshold a real number between
[0, 1]. Let fitenough(candidate) be the function which re-
turns a boolean determining if the solution is considered fit
enough (i.e., if the objectives are met). Note that a lower
value assigned to δ implies more rigidity in order to consider
a chromosome fit. Thus, p is considered fit enough iff:

fitenough(p) = 1− fitness(p) < δ (3)

Survival of the Fittest: Selection must favour fitter
candidates over weaker candidates but there are no fixed
rules, there is no one strategy that is best for all prob-
lems. We use the most common fitness-propertionate selec-
tion technique called Roulette Wheel Selection (RWS) [1].
Conceptually, each member of the population is allocated a
section of an imaginary roulette wheel. A proportion of the
wheel is assigned to each of the possible selections based on
their fitness value. The wheel is then spun and the indi-
vidual associated with the winning section is selected. The
wheel is spun as many times as is necessary to select the
full set of parents for the next generation. To ensure that
good candidates are not lost during each generation, we use
the principle of elitism. Elitism involves copying a propor-
tion of the fittest candidates, unchanged, into the next gen-
eration. The candidates which meet the objectives (i.e., fit
enough) are directly added to the ”elite”population and stop
to evolve.

Figure 2: Construction of a process in 6 steps using
only Insert Process Fragment patterns

Evolution: At each evolution, some genetic operations
are applied on each solution of the population. We use only
the principle of mutation operations. In our case, a muta-
tion is the application of a given change pattern. The change
patterns have been introduced by Weber et al. [15] and rep-
resent a set of 18 high-level process adaptations. The appli-

Figure 3: Overview of the Change Pattern, taken
from [15]

cation of a change pattern transforms a process schema S
into another process schema S′. The most common change
patterns are presented on the figure 3 and an example of
application is visible on figure 2. Due to space restriction, it
is not possible to explain the whole set of change patterns.
In order to generate realistic processes, there is a need to
specify a probability on the chance to apply a given change
pattern on the candidate. Indeed, when a modeler builds a
process, there is more chances that he performs the seri-

alInsert than the conditionalInsert patterns. Thus, the
evolution function needs to take into account a user-defined
probability on each change pattern. For example, augment-
ing the probability of the parallelInsert will augment the
chance to generate massively parallel processes while low-
ering it will build more sequential processes. A fine-tuned
probability on each change pattern enables the generation
of realistic processes. Thus, the mutation applies a relevant
change pattern according to its associated probability to be
chosen. The entire population evolves in parallel.

Iteration: The generation halts when there is no im-
provement in the overall fitness observed after x generations
(stagnation termination) or when the desired number of fit
solution is reached. In addition, a timed-out condition en-
sures that the algorithm does not run indefinitely. Usually
genetic algorithm seeks to find one optimal solution while
here we are looking for multiple solutions which meet the
objectives. Using a huge population to generate a smaller
set of solutions prevent the convergence towards an homo-
geneous set of solutions.

When the evolution stops, the algorithm sends back all
the candidates which are fit enough. Thus, these candidates
are the solutions, i.e. the generated processes.

2.3 Correctness of the Generated Processes
The notions of correctness for a process model concern

two aspects: (i) to verify if the process is well-formed (i.e.,
syntactical correctness), and (ii) to determine in advance,
whether the model exhibits certain desirable behaviors (i.e.,
behavioral correctness).

Concerning the verification of the syntactical correctness,
it corresponds to check if the syntax of the model respects
its metamodel and its associated constraints. This kind of
verification is well supported by many tools and approaches
[8] and such constraints are checked almost instantaneously
[5]. However, in our case the construction of the process
using only change pattern ensure its syntactical correctness
[15] without performing such verification.

Formal notions such as soundness [14] define behavioral
anomalies in process models. Some advanced process mod-
eling tools implement verification methods based on these
notions to automatically detect such anomalies [7, 12].



Figure 4: Prototype of the Process Generator integrated into Eclipse

Figure 5: Deadlock due to the application of the
addControlDependency change pattern.

The problem with behavioral correctness is that unless the
whole state space is explored, it is not possible to provide
evidence for it. Unfortunately, it is not possible to afford it
at each step of the process generation since exploring the en-
tire state space is notoriously an exponential problem which
fails in computation time for huge models [7].

Figure 5 shows the application of the addControlDepen-

dency change pattern which implies the creation of a dead-
lock on the process. Both Action after the ForkNode re-
quire a token on all their input ControlFlow to start which
is not possible with these two added ControlFlow. However,
our goal while generating processes is to simulate how the
process modeler builds processes. Therefore, the generated
processes may contain behavioral anomalies the same way
as a modeler may build a process with behavioral anomalies.
Moreover, generating process with behavioral anomalies is
an important point in order to test formal verification ap-
proaches.

3. EVALUATION
The prototype we developed is currently provided as an

Eclipse Juno EMF plugin. We use the Watchmaker Frame-
work [4] to implement the multi-objectives genetic algorithm.
This framework provide an extensible, high-performance (multi-
threaded), object-oriented API to implement evolutionary
and genetic algorithm in Java.

Figure 4 shows a screenshot of the prototype. The intent
of this prototype is to assist the modeler by automatically
generates UML 2.0 Activity-based processes in the form of
XMI Instance. The generation is customizable in multiple
ways:
• (label 1) Destination folder of the generation, number

of nodes with margin and population used for the GA.
• (label 2) Probability of each change pattern.
• (label 3) Add OCL [10] syntax constraints.
• (label 4) Set a specific process to populate the initial

population.
• (label 5) Number of each elements (equal and less/more

than a value).

Table 1: Generation step and building time to gen-
erate 100 processes using a population of 1000

Size (10% margin) Generation step Building time
50 36 1 164ms
100 73 2 427ms
200 156 5 602ms
400 319 12 207ms
600 483 20 112ms
800 649 31 238ms
1000 816 45 040ms

Default value exists for each input configuration, the user
only needs to specify a destination folder to start its first
generation. For ease of use, the weight value of each objective
and the δ value is already predefined such as Ws = 2, We =
1, Wr = 1, and δ = 0.1.

All the following executions are done on a MacBook Air
2011 with the Intel Core i5 processor and 4 GB of RAM.
Each result corresponds to the average timing of 100 execu-
tions.

We initialize the objectives (for the fitness function) such
as Cs = 50 (number of nodes), Cm = 10% (margin for
the size), Ce = {Activity → 1} (objective number of each
element), Cc = ∅ (no OCL constraints).

Concerning the parameter for the evolution process, let
Ep be the set which associates to each change pattern a
probability, Es the size of the population and Ei the ini-
tial process. We initialize these parameter such as Ep =
{serialInsert→ 10, conditionalInsert→ 1, parallelInsert
→ 1, delete → 1, copy → 2} (probability on each change
pattern), Es = 100 (size of the population) and Ei uses the
default process with a simple initial and final node.

Using these parameters, the average timing for generating
one model which fulfil the defined objectives takes 74ms and
needs 32 generation steps. An example of such generated
model is visible on the label 6 of figure 4.

To test the scalability of the generation, we change the
size of the population such as Es = 1000 and run the evo-
lution until 100 candidates are fit enough. Table 1 shows
the average generation step and building time needed to
generate the processes regarding a specific size (Cs). The
experimentation shows that the approach is able to fastly
generate huge and realistic processes such as the building
time is linear with the size of the generated process.

4. RELATED WORK
Mougenot et al. [9] propose a uniform random generator



of huge metamodel instances. The approach relies on the
Boltzmann random sampling method that generates, in a
scalable way, uniform samplings of any given size. In addi-
tion, the approach is able to influence the generation out-
put by adding ponderations on elements. However, this ap-
proach does not support the additional constraints on the
syntax and produces models only valid to its metamodel.

Brottier et al. [2] present a formalism to generate random
constrained models, which is used in the context of model
transformation testing. The approach consists in deriving a
set of inputs example models to random alike instances using
an homemade algorithm. One drawback of the approach
is that it require instance of the model to generate others,
therefore the outputted models may have a lot of similarities.

Ehrig et al. [6] present an algorithm that can generate in-
stances of metamodels by transforming it into a set of graph
specification rules. Then, the rules are selected randomly in
order to perform the generation

Pietsch et al. [11] present a generator of test models for
model processing tools. They use a stochastic controller
to apply low-level operations (create, delete, update, move)
and more complex operations (composed of these low-level
operations) to elements of the model. Elements are chosen
using a random selection method inspired from the genetic
algorithms one.

Unfortunately, [9, 6, 11, 2] are not adapted for the gener-
ation of behavioral models (e.g., process) and may produce
unrealistic processes since the possibility of influencing the
generation (add some ponderations) is either not available
or handled only on given elements/attributes. The problem
comes from the fact that these approaches aim at generating
static models and are not tailored towards behavioral models
generation.

5. CONCLUSION AND FUTURE WORK
This paper presented a multi-objective genetic algorithm

to generate processes. The resulting generator has three in-
teresting particularities. First it is scalable, the complexity
of the generating algorithm is linear with the size of the
generated processes. The size is controllable and allows to
generate quickly huge processes. It also generates processes
with multi-objectives allowing to generate user-tailored pro-
cess models. Finally, the generation ensures syntax correct-
ness through the sequence of change pattern and simulates
the way a process modeler could have actually done to model
a process. This ensure realistic processes while simulating
the errors a modeler may have done.

The algorithm can be easily extended with new generation
objectives by modifying the fitness function. The objectives
presented on this paper focus on the syntactical aspects with
associated constraint on it. However, we can imagine be-
havioral objectives by adding a process engine or a model-
checker inside the fitness function (e.g., the process can only
have 2 Action simultaneously executing). Moreover, some
new genetic operators based on the crossover principle might
improving the efficiency by combining multiple candidates
(or part of the candidate) in order to converge faster to the
objectives.

The generation focus only on the structural aspect of the
process (i.e., the workflow). A possible extension might
be to generate also the organizational information (such as
resources, actors, deadline...) associated to the workflow.
However, these information are generally domain-dependent

and it can be hard to find a generic solution that suits all
kinds. Moreover, one drawback of the set of change pattern
comes from the fact that they focus only on the control-
flow. A set of change patterns including data elements must
be used to generate the data-flow and the control-flow in a
unified way.

Finally, the generation technique used here opens the way
to broader applications than generating process samples.
For instance, by initializing the population with a given pro-
cess and setting the right goal into the fitness function, it
might be possible to automatically search for a derivation
of the process which meet the desired needs (e.g., towards
automatic correction of behavioral errors).
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