
HAL Id: hal-01088183
https://hal.science/hal-01088183v1

Submitted on 27 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planning for Declarative Processes
Yoann Laurent, Reda Bendraou, Souheib Baarir, Marie-Pierre Gervais

To cite this version:
Yoann Laurent, Reda Bendraou, Souheib Baarir, Marie-Pierre Gervais. Planning for Declarative
Processes. SAC’14 - The 29th Annual ACM Symposium on Applied Computing, Mar 2014, Gyeongju,
South Korea. pp.1126-1133, �10.1145/2554850.2554998�. �hal-01088183�

https://hal.science/hal-01088183v1
https://hal.archives-ouvertes.fr

Planning for Declarative Processes

Yoann Laurent
LIP6

UPMC Paris Universitas
France

yoann.laurent@lip6.fr

Reda Bendraou
LIP6

UPMC Paris Universitas
France

reda.bendraou@lip6.fr

Souheib Baarir
LIP6

University of Paris Ouest
Nanterre
France

souheib.baarir@lip6.fr
Marie-Pierre Gervais

LIP6
University of Paris Ouest

Nanterre
France
marie-

pierre.gervais@lip6.fr

ABSTRACT
Recently, declarative process modeling have gained a wide
attention from both industry and academia to model loosely-
structured processes, mediating between flexibility and sup-
port. Instead of describing step by step in an imperative way
the set of activities to perform (e.g., Petri-net, UML Activity,
BPMN), declarative languages define constraints between
the process activities that must not be violated during the
execution. Even if these languages allow for a high degree
of flexibility, this freedom leads to some understandability
problems. Indeed, having a mental representation of the pos-
sible process executions becomes too complex for humans
as the number of constraints increases on the model. This
paper presents a novel and formal approach to automati-
cally synthesize execution plans of declarative processes. At
design-time, the plans can increase the understanding and
the confidence in the model by providing an early and direct
experience with it while being modeled. At run-time, the
planning component is primordial to ensure that an execution
may still lead to a desired goal by giving the possible execu-
tion traces leading to it. A working implementation based
on the Alloy model-finding method [10] has been developed.
The evaluation of this implementation showed us that plans
can be generated efficiently and quickly.

Categories and Subject Descriptors
K.6.1 [Project and People Management]: Strategic in-
formation systems planning; H.4.1 [Office Automation]:
Workflow management; I.2.4 [Knowledge Representation
Formalisms and Methods]: Predicate logic, Temporal
logic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’14 March 24-28, 2014, Gyeongju, Korea.
Copyright 2014 ACM 978-1-4503-2469-4/14/03 ...$15.00.

Keywords
Process model, Declarative, Planning, First-order Logic, Alloy

1. INTRODUCTION
Traditional process modeling languages (PML) such as

Business Process Modeling and Notation (BPMN), UML
Activity Diagram or more formal languages such as Petri-
Nets [16] and Pi calculus [14] define a process model as a
detailed specification of a step-by-step procedure that should
be followed during the process execution. These PMLs have
their roots in imperative programming languages, adopting
concepts such as conditional branching and loops in order
to represent the execution flow in the process model. These
approaches strictly specify how the process will be executed
and yield highly structured processes. Their enactment is
generally carried-out by a dedicated engine which takes as
input the process and automatize its execution.

In recent years, declarative languages have gained increas-
ingly in popularity to model loosely-structured processes, bal-
ancing between support and flexibility [18]. These languages
are based on declaring the different elements of the process
(i.e., activities, resource, data and so on) and applying con-
straints on these elements that must hold during the process
execution. In this case, the process execution is driven by the
constraints: everything that does not violate a constraint is
enabled for execution and at the end of the execution all the
constraints must be satisfied. Table 1 shows a small sample
of control-flow related constraints which can be applied on
the activities of the process.

The key difference between declarative and imperative lan-
guages for process modeling is that in the former, everything
is permitted unless explicitly prohibited by the constraints,
while in the second, everything is prohibited unless explicitly
specified by the workflow. The major limitations of imper-
ative languages is the fact that most decisions about the
execution are already made during the process modeling
phase and must be unfolded and modeled explicitly. This
leads sometimes to complex process models that are hard
to understand and maintain causing some problems with
respect to the flexibility of process management systems [22].
Flexibility is the ability to deal with the increasingly wide

Graphical Predicate Description
existence[a,N,M] Acitivity a must be executed be-

tween N and M times.

co-

existence[a,b]

If one of the activities a and b is
executed, the other one has to be
executed too.

response[a,b] Every time activity a executes, ac-
tivity b has to be executed after
it.

precedence[a,b] Activity b can be executed, only if
activity a has been executed before
it.

Table 1: Some example of control-flow related con-
straints

Figure 1: A declarative process with its imperative
“equivalence” modeled with UML Activity

range of variations that those systems are subject to in order
to remain viable. Declarative languages have been proved to
be more suitable for achieving a higher degree of flexibility
because they do not require an explicit specification of exe-
cution alternatives, but allow for the implicit specification
of execution alternatives [17]. They support a wide range of
flexibility mechanisms such as defer (decide to decide later),
change (decide to change the model), deviate (decide to ig-
nore the model), both ad-hoc and evolutionary changes and
allow their verification [24]. Figure 1 illustrates the differ-
ence between these two paradigms by showing a declarative
process with its imperative equivalence. Note that it is not
possible to precisely represent this declarative process since
the activity “c” can be executed at any moment during the
process enactment.

1.1 Achilles’heel of Declarative paradigm
Even if declarative process modeling allows for a high de-

gree of flexibility, this freedom comes at the cost of both
understandability and maintainability problems [27, 5, 6, 29].
Indeed, declarative process models are hard to read and un-
derstand as the number of constraints increases on the model,
becoming rapidly too complex for humans to deal with [17].
Especially the hidden dependencies [8] which are hard to de-
tect. Figure 1 shows an example of these hidden dependencies.
Activity “b” must be executed during the process enactment
due to the existence[b,1,*] constraint which requires at
least one execution. Activity “b” also requires to execute the
activity “a” before its execution due to the precedence[a,b]

constraint. Thus, activity “a” is obviously executed during
the enactment even if this behavior is not explicitly visible.
The modeler can not only rely on the information displayed
explicitly, but also has to carefully examine the process model.
These problems are not surprising since cognitive research
has demonstrated that imperative programs deliver sequen-
tial information much better while declarative programs offer
clear insights into circumstantial information [5].

1.2 Planning value for Declarative Processes
Automated planning is related to decision theory and can

be a valuable asset to overcome most of the drawbacks of the
declarative paradigm. Indeed, planning is a branch of Artifi-
cial Intelligence [7] that concerns the production of strategies
or plans for a given goal. In the process community, a plan
corresponds generally to a sequence of activities to perform
which leads to the desired goal, e.g. “which sequence of ac-
tivities will lead to the availability of DocumentA in less than
5 hours?”. The sequence of activities to perform and their
ordering constitute the output of the planning algorithm.
Planning can be particularly helpful during two phases of
the process lifecycle [25]:
Modeling. The planning component can help the process
modeler to get an a priori experience with the model through
simulation [21]. This way, the modeler can directly look into
some potential execution scenarios to find some flaws inside
the design of the model and gain some process understand-
ing. Unlike imperative processes, declarative processes do
not suffer from soundness problems [26] (e.g. deadlock, live-
lock and so on) since there is no tokens-game driving the
execution. However, a declarative model can contain dead
activities (an activity that can never be executed) and con-
flicting constraints (if there is no execution that would fulfil
the set of constraints) [18]. They can also suffer from being
over-constrained or under-constrained. The first case implies
that some desired execution scenarios are not available due
to the presence of some constraints; the latter implies that
some unwanted execution scenarios actually exist due to a
lack of constraints. The planning component can cover these
verification needs by searching for an execution on which
the given activity is executed (dead activities), on which the
set of constraints is satisfied (conflicting constraints) and by
ensuring that a plan (not) exists under some circumstances
(over/under-constrained).
Execution. The planning component can support the exe-
cution by (1) proposing plans which align the activities of
the process with the availability of the resources and the
timing constraints, and (2), proposing plans that will lead to
the satisfiability of the desired goals.

1.3 Contributions
This paper proposes an approach that increases the under-

standability and support of declarative processes by enabling
the generation of execution plans for a given goal, while pre-
serving the satisfiability of the process constraints. The main
contributions of this paper concern the following points: (1)
a first-order logic with relational calculus formalization of
the declarative process concepts supporting the control-flow,
data-flow, resources, and timing dimensions; including, merg-
ing and extending constraints from various sources of the
literature [18, 23, 20, 28, 15], (2) a novel approach to automat-
ically generate plans using the Alloy model-finding method
[10] and (3) a prototype implementation of the framework,
evaluated using case studies from the existing literature.

The key contribution of our approach is not only to help
the process modeler in modeling the right trade-off between
leeway and constraints, but also to foreseeing the future
execution in order to avoid process deviations [19].

The paper is organized as follows. Section 2 discusses the
related work. Section 3 presents our formalization of the
declarative process and planning concepts. Section 4 presents
the implementation of our formalization using the Alloy

modeling language. An evaluation of our approach is given
in Section 5. Finally, Section 6 concludes by sketching some
future perspectives of this work.

2. RELATED WORK
The majority of work around declarative processes are

resulting from the valuable work of Van Der Aalst and Pesic
on Declare [24, 18]. Declare is a constraint-based system that
uses declarative languages for the specification and execution
of business processes. One of the advantages of Declare is that
its semantics can be characterized in different logic-based
approaches, enabling a wide range of reasoning and verifica-
tion capabilities. The original version of Declare uses Linear
Temporal Logic (LTL) over finite traces [20]. Each constraint
corresponds to an LTL formula. By building an automaton
for each LTL-based constraint it is possible to see whether
the execution of an activity will violate the constraint. They
also construct an overall automaton based on the conjunction
of all constraints to distinguish a constraint that is either in
state satisfied, temporarily violated (i.e., the constraint may
be satisfied in the future) or violated (i.e., the constraint is
not satisfiable in the future). The automaton are also used
to drive the process execution by determining the next en-
abling activities. This way, Declare offers most of the features
similar to traditional workflow management systems such
as process modeling, design-time verification (dead activities
and conflicting constraints), monitoring, execution and learn-
ing from past executions. However, this version of Declare is
only defined to tackle control-flow aspects and is not able to
check if the model is over-constrained or under-constrained.

Westergaard et al. [28] propose a timed version of Declare,
using MTL (Metric Temporal Logic) [13], a real-time ex-
tension of LTL with quantitative temporal operators. They
translate the MTL constraints into timed-automata using the
Uppaal model-checker. This way, they extend the original
possibility of Declare [18] with the ability to give advices
about the actions to undertake in order to obey the latencies
and the deadlines specified by the compliance model. The
advice corresponds to colored alerts on the model depending
on the timing “severity”. However, it is up to the user to
choose which activities to perform from the advice; no plans
are proposed ensuring that it is still possible to perform the
process in time.

Montali et al. [15] propose an extension of Declare towards
Data-Aware Constraints based on Event Calculus (EC). The
key idea is to add anchor to activities and then attach some
data constraints on them. Chesani et al. [2] presents a run-
time verification method of web-service choreographies based
on a DecSerFlow [23] model (a declarative language tailored
towards the specification of service). They select a core set
of DecSerFlow elements and formalize them using a reactive
version of EC. In these approaches, the trace composed of
event is checked against the constraints by looking for a given
set of events on this trace. These approaches allow the users
to identify eventual violations only after it has occurred and
it is not possible to prevent violations from taking place. EC
formalization is primarily thought for monitoring.

Stegan et al. [29] propose to tackle the problems of un-
derstandability and maintainability by using the so-called
Test Driven Modeling (TDM) methodology. The idea is to
define different testcases (a trace execution, the assertion and
the terminal condition) and to verify them iteratively on the
declarative process. This approach can give some confidence

in the model by checking automatically the testcases in a
test environment. However, the testcases must include the
trace execution and be defined by hand while a planning
component can verify the assertion directly on the model
without the need of providing a trace.

To summarize, current state-of-art lacks of proposing plan-
ning approaches for the declarative paradigm. During the
modeling phase, the approaches are confined to the detec-
tion of the dead activities and the conflicting constraints
[20]. No approach proposes to ensure that some scenarios are
(not) possible on the process. This lack of support concern-
ing the cognitive comprehension of the process may prevent
the adoption of the declarative paradigm from the average
engineers. During the execution, most of the approaches are
only able to monitor the constraints in a posteriori way [15,
2], enabling the next possible activities [24, 18] or offering
recommendations for decisions based on past experiences [18].
None proposes to generate execution plans increasing the
confidence in the model at both design- and run-time.

3. FORMALIZATIONS OF DECLARATIVE
PROCESSES

This section presents our first-order logic (FOL) with rela-
tional calculus formalization of the declarative process con-
cepts, supporting the control- and data-flow, resources and
timing dimensions. Then, this section formalizes the planning
problem for the declarative paradigm.

3.1 Declarative Process and Trace
Declarative process consists of activities, resources, data

and constraints. An activity is a piece of work that is executed
by resources. A resource can be an agent, a computer, an
equipment or any supply that may be required by an activity.
The data are consumed and produced by the activities and
can be an integer, a string, an artifact, a document, a model
and so on. A constraint specifies a certain rule that should
hold in any execution of the model.

Definition 1 (Process). A Process is a tuple D =
(A,R,D,UseResource) such that:
• A is a set of activities,
• R is a set of resources,
• D is a set of data,
• UseResource : A → 2R is the function that maps to each

activity a set of resources.

During the execution of a declarative process, some activi-
ties can be executing, some data might be available and the
time from the start of the process is continually increasing
while performing the activities. Then, we define the notion of
state that formalizes the configuration on which the process
is at a given time of the process execution:

Definition 2 (State). A state of a Process D =

(A,R,D,UseResource) is a tuple s = (a, d, t) ∈ (2A × 2D × N)
such that:
• a is the set of running activities,
• d is the set of available data, and
• t is the current discrete time of the execution.

The set of all states of a process D is noted S = (2A × 2D × N).

In the following, we use the notation s.a, s.d and s.t to access
to the corresponding “a”, “d” and “t” of a given state s. Since
our examples are mostly control-flow based, we only write
the running activities instead of the complete tuple to denote
a state.

We define the notion of sequence of states as follows:

Definition 3 (Sequence). A sequence σ of a Process
D = (A,R,D,UseResource) is a finite ordered set of states de-
noted σ = 〈s1, s2, ..., sn〉 ∈ S∗. By notational convenience, we also
use σ to denote the set of states of the sequence. The set of all
sequences is noted Seqs = S∗.

In addition, we define some auxiliary notations and func-
tions to easily manipulate a sequence:
• |σ| = n represents the length of the sequence,
• Empty sequence is denoted by 〈〉,
• We use + to concatenate sequences into a new sequence, i.e.
〈s1, s2, ..., sn〉+ 〈s′1, s′2, ..., s′m〉 = 〈s1, s2, ..., sn, s′1, s′2, ..., s′m〉

• first : Seqs → S returns the first state of a sequence.
first(〈s1, s2, ..., sn〉) = s1.

• last : Seqs → S returns the last state of a sequence.
last(〈s1, s2, ..., sn〉) = sn.

• σ[i] denotes the i-th state of the sequence,
• next : Seqs× S→ S is a bijective function returning the next

state of a given state in the sequence:

next(σ, s)
def
=

σ[i+ 1] if s = σ[i] ∧ 1 ≤ i < |σ|
s if s = σ[|σ|]
∅ otherwise

• prev : σ × S→ S is a bijective function returning the previous
state of a given state in the sequence such that:

prev(σ, s)
def
=

σ[i− 1] if s = σ[i] ∧ 1 < i ≤ |σ|
s if s = σ[1]

∅ otherwise

• σ[i, j] denotes all states between σ[i] and σ[j] inclusively:

σ[i, j]
def
= (σ[i] ∪ next(σ, σ[i])∗) ∩ (σ[j] ∪ prev(σ, σ[j])∗)

Note that next(σ ∈ Seqs, s ∈ S)∗ corresponds to the transitive
closure of next(σ ∈ Seqs, s ∈ S).

To represent a process execution, we define the notion of
trace: a constrained sequence with global invariants.

Definition 4 (Trace). A trace of a Process D =
(A,R,D,UseResource) is a sequence σt that respects the following
constraints:
• (1) The first state of the trace is initialized such that:

first(σt).a = ∅ ∧ first(σt).d = ∅ ∧ first(σt).t = 0

• (2) The trace ends properly with no remaining activities exe-
cuting:

last(σt).a = ∅
• (3) for each pair of successive states : (i) the time is always

equals or increasing and (ii) only one activity can start or
terminate:

∀s ∈ σt, (next(σt, s).t ≥ s.t)
∧ (|s.a ∪ next(σt, s).a| ∈ {|s.a| − 1, |s.a|, |s.a|+ 1})

The set of all traces is noted Traces.

For a Process D = (A,R,D,UseResource) and a trace σt,
we also introduce some auxiliary functions and predicates:

• start/finish : Traces× S×A is the predicate which determines
from a state if a given activity is starting (resp. finishing):

start(σt, s, a)
def
= a 6∈ s.a ∧ a ∈ next(σt, s).a

finish(σt, s, a)
def
= a ∈ s.a ∧ a 6∈ next(σt, s).a

• activation : Traces×A→ 2S is the function which returns the
set of states on which the given activity is starting:

activation(σt, a)
def
= {s ∈ σt | start(σt, s, a)}

To constrain the execution of the process, we define the
notion of constraint, i.e. a rule that should be followed during
the execution. The constraints are defined on the elements
which compose a declarative process and constrain the execu-
tion (i.e., the possible traces) on any aspect of the declarative
process (control, data, resources and time):

Definition 5 (Constraint). A constraint is a predicate
or a formula which specifies relations between the process ele-
ments of a Process D = (A,R,D,UseResource) w.r.t a given
trace σt. We denote Constraints the set of all constraints. Let
c ∈ Constraints. We denote σt |= c if σt satisfies the constraint c.

In the following, we give some examples of constraints
expressed with the formalism described precedently. Due to
space restriction, we choose only some relevant constraints
from each aspect of the process dimension (control-flow, data-
flow, resources and timing aspect). Interested reader by the
full list of constraints we formalized can check the link in
Section 5.2.

The response(σt,a,b) constraint requires that every time
the activity“a” terminates, activity“b” has to be started after
it:

Definition 6 (Response Constraint). response :
Traces × A × A is a constraint applied on a trace σt, and two
activities:

response(σt, a, b)
def
= ∀s ∈ σt, (finish(σt, s, a)⇒

∃s′ ∈ σt , s′ ∈ σ[next(σt, s), last(σt)] ∧ start(σt, s
′, b))

The precedence(σt,a,b) constraint requires that activity
“b” can be executed only if activity “a” has been executed
before it:

Definition 7 (Precedence Constraint).
precedence : Traces × A × A is a constraint applied on a
trace σt, and two activities:

precedence(σt, a, b)
def
= ∀s ∈ σt, (start(σt, s, b)⇒

∃s′ ∈ σt , s′ ∈ σ[first(σt), prev(σt, s)] ∧ finish(σt, s
′, a))

The existence(σt,a,min,max) constraint requires that
activity “a” must be executed between “min” and “max” times:

Definition 8 (Existence Constraint). existence :
Traces × A × N × N is a constraint applied on a trace σt, an
activity and two natural number:

existence(σt, a,min,max)
def
= |activation(σt, a)| ≥ min

∧ |activation(σt, a)| ≤ max

The dataOut(σt,a,d) constraint requires that at the end
of the execution of activity “a”, the set of data “d” must have
been created:

Definition 9 (DataOut Constraint). dataOut :

Traces×A× 2D is a constraint applied on a trace σt, an activity
and a set of data elements:

dataOut(σt, a, data)
def
= ∀s ∈ σt , (finish(σt, s, a)⇒

(next(σt, s).d = s.d ∪ data))

The limitedResourceUse(σt,r,n) constraint restricts the
usage of the resource “r” to only “n” activity in parallel:

Definition 10 (LimitedResourceUse Constraint).
limiteResourceUse : Traces × R × N is a constraint applied on a
trace σt, a resource and a natural number such that:

limiteResourceUse(r, n)
def
= ∀s ∈ σt ,

(|{a ∈ s.a | r ∈ UseResource(a)}| ≤ n)

The timingExistence(σt,a,from,to) constraint specifies
that at least one execution of activity “a” must happen in
the (discrete) time interval [“from”,“to”] of a trace σt:

Definition 11 (TimingExistence Constraint).
timingExistence : Traces × A × N × N is a constraint applied on
an activity and two natural number such that:

timeExistenceStart(σt, a, from, to)
def
= ∃s ∈ σt,

(start(σt, s, a) ∧ next(σt, s).t ≥ from ∧ next(σt, s).t ≤ to)

timeExistenceFinish(σt, a, from, to)
def
= ∃s ∈ σt,

(finish(σt, s, a) ∧ next(σt, s).t ≥ from ∧ next(σt, s).t ≤ to)

timeExistence(σt, a, from, to)
def
=

timeExistenceStart(σt, a, from, to)
∧ timeExistenceFinish(σt, a, from, to)

At this point, we are able to extend the definition of a
process with a set of constraints:

Definition 12 (DeclarativeProcess). A
DeclarativeProcess is a tuple CD = (A,R,D,UseResource, C)
such that (A,R,D,UseResource) forms a Process and C is the
set of Constraints of the process.

To distinguish valid process executions from bad ones, we
introduce the notion of valid trace, i.e. a trace on which all
the process constraints are satisfied:

Definition 13 (Valid Trace). A valid trace of a
DeclarativeProcess CD = (A,R,D,UseResource, C) is a trace σv
where ∀c ∈ C, σv |= c. The set of all valid traces (i.e. the possible
process execution of a declarative process) is denoted VTraces.

Since our constraints must hold on all traces (universally
quantified in def. 13), we will omit them from the parameters
list of the constraints that we will use in the remaining
sections.

3.2 Planning Problem
The planning problem for a process can be described as

follows. Given (1) a process, (2) a current execution (empty
or not) and (3) a set of goals (or objectives), which sequence
of activities must be performed by the agents to reach the
goals? The identified set of sequences of activities to perform
is called the set of plans.

This planning problem can be easily described using our
formalism. In our case, the process is a declarative process on
which any execution are allowed unless explicitly prohibited
by the constraints. The current execution can be represented
directly as a sequence. In the declarative paradigm, the goals
corresponds to a set of constraints, e.g. activity “a” and “b”
must be executed in less than 5 hours. Thus, under these
settings, all valid traces of the process are the so-called plans.

Definition 14 (Planning Problem). Let CD =
(A,R,D,UseResource, C) be a DeclarativeProcess. Let σc be
a sequence corresponding to the current execution sequence.
The planning problem is defined by looking for a valid trace
σplan ∈ VTraces where σplan = σc + σgen and σgen ∈ Seqs. The
set of all solutions of the planning problem (i.e. the valid traces)
is denoted Plans.

Example 1. Consider the declarative process from Figure
1. Let CD = (A,R,D,UseResource, C) be this declarative pro-
cess where A = {a, b, c}, R = ∅, D = ∅, UseResource = ∅ and
C = {existence(σc, b, 1,∞), existence(c, 0,∞), precedence(a, b)}.
Let σc = 〈〉 be the current execution sequence. Then, the set {
σ1 = 〈∅, a, b, ∅〉, σ2 = 〈∅, a, b, c, c, ∅〉, σ3 = 〈∅, b, b, a, ∅〉 } ⊂ Traces
and only {σ1, σ2} ⊂ VTraces since σ3 violates the constraint
precedence(a, b).

4. ALLOY FOR DECLARATIVE PROCESSES
Once we formalized declarative processes concepts, traces

and planning using FOL, the next step is to choose an imple-
mentation language. Alloy [10] was chosen for this purpose.
This section gives some background about Alloy and explains
how the planning is performed through SAT solving.

Figure 2: Generation of plans for Declarative Pro-
cesses using Alloy

4.1 A language and tool for relational models
Alloy is a declarative modeling language developed by the

MIT and is based on first-order logic and relational calculus
for expressing complex structural and behavioral constraints
[9]. It is associated to a tool, called Alloy Analyzer, a con-
straint solver that provides fully automatic simulation and
checking based on model-finding through SAT-solving [10].

The Alloy language provides a set of concepts allowing
to specify elements and constraints using the notions of sig-
natures, relations, facts and predicates. A signature (sig)
defines a set of idioms and relationships between them. An
idiom represents an indivisible and immutable entity. The sig-
natures are similar to type declarations in an object-oriented
language, and represent the basic entities. Facts (fact) are
statements that specify constraints about idioms and rela-
tionships. These statements must always hold, they are close
to the concept of invariants in other specification languages.
Predicates (pred), as opposed to facts, define constraints
which can evaluate to true or false.

Alloy provides two commands to run the Alloy Analyzer:
run and check. Command run instructs the analyzer to
search for an instance satisfying a given formula, and check

attempts to contradict a formula by searching for a counter-
example. Problems given to the Alloy Analyzer are solved
within a user-specified scope that bounds the size of the
domains making it finite and reducible to a boolean formula
in order to be checked by the on-the-shelf SAT solver.

4.2 Treating the planning problem
Planning problems are efficiently treated by reducing them

to satisfiability (SAT) problems [4, 1]. As described in the
precedent section, the Alloy Analyzer allows to find a sat-
isfying instance of a problem thanks to the run command.
Searching for a plan using Alloy is close to the concepts of
Constraint Logic Programming over Finite Domains (CLPFD)
[12] which allows to declare the conditions that a solution
must satisfy and let the solving engine finds variables bindings
which leads to an instance. In the case of Alloy, the solving
is done through the reduction of an Alloy specification into a
SAT problem in a Conjunctive Normal Form (CNF) before
presenting it to a SAT solver (MiniSat among others [3]).
Then, the SAT solver is able to retrieve a plan by extracting
the variables bindings which lead to a solution.

Figure 2 shows the workflow to generate plans for a given
declarative process. The planning problem is an Alloy speci-
fication composed of two modules. The first one corresponds
to the formal framework presented in Section 3, implemented
using the Alloy language. The second corresponds to the
instance of the planning problem. This instance is generated
from the process model, the current execution sequence and
the desired goals: actually, we separate the “nominal” con-

 open declarative //open the framework presented in Section 3
 // ---- (1) [Process]
 one sig a extends Activity {}
 one sig b extends Activity {}
 one sig c extends Activity {}
 fact constraints {
 atomic[Activity]
 existence[b, 1, integer/max]
 existence[c, 0, integer/max]

 precedence[b, a]
 }
 // ---- (2) [Goals]
 pred goals {
 existence[c,0,0]
 existence[b,1,1]
 }
 // ---- (3) [Trace]
 pred trace {
 setState[State0, none]
 setState[State1, a]
 traces[State1]
 }
 // ---- [Alloy command]
 run {goals and trace}
 for 0 but 3 Activity, 15 State

Listing 1: Instance of the planning problem
represented using the Alloy framework

straints of the declarative process (we will refer to this set by
Cn) from the additional constraints expressed by the users
(Cg), called here “goals”1. On this example, (1) the process
of Figure 1 is used, (2) the goals are defined such as “c” must
not be executed and “b” must be executed only one time
and (3) the execution sequence is initialized with no running
activity on the first state, and the execution of activity “a” on
the second state. Listing 1 shows this instance represented
using the Alloy framework. As visible on this listing, the
transformation to generate this instance is straightforward,
i.e. each process element corresponds to a new Alloy sig

(line 3 to 5); each constraint corresponds to a new call of
predicate inside a fact statement (line 6 to 11); the goals
is represented as an Alloy pred (line 13 to 16); the initial
sequence is specified through the call of predicates defined in
the framework to constrain the sequence (line 18 to 22). Then,
the run command (line 24) instructs the Alloy Analyzer to
search for a solution on which the goal predicate holds. All
the scope of the Alloy signatures (line 25) are straightfor-
wardly determined by the input process model to bounds the
size of the domains, e.g. 3 activities on the process imply a
scope of 3 for the Activity signature. The only exception
concerns the scope of the State signature, i.e. the maximum
length of the generated plan. In this case, we determine the
scope of this signature using a simple heuristic based on the
existence constraint cardinalities of each activities. Then, we
use incremental-scoping techniques on the State signature
to look for bigger plans if required. Then, these modules
are given as input to the Alloy Analyzer which returns the
satisfying instance, i.e. the plans for the given problem.

5. EVALUATION
This section presents our implementation and its evaluation

on a case study.

1In this context, the process constraints set corresponds to
C = Cn ∪ Cg

Figure 3: Prototype of the planning component in-
tegrated into Eclipse

5.1 Implementation
The prototype we developed is currently provided as an

Eclipse EMF plugin. The intent of this prototype is to assist
the modeler by automatically generating execution plans for
a given declarative process. In order to synthesis the execu-
tion plans, the prototype automatically generates the Alloy
specification (e.g. see Listing 1) representing the planning
problem. Then, the Alloy Analyzer is queried using the Al-
loy API and the result is mapped to the process view to
graphically animate the execution of the plan. The modeler
never manipulates the Alloy logic. Figure 3 shows a screen-
shot of the prototype. Label 1 shows graphically the process
instance based on the GMF tooling. Label 2 shows the plan-
ning component, enabling to set goals (through a predefined
template on which the user selects the elements), set the
initial sequence (by hand or from a current execution plan),
runs the generation, and navigates through an execution plan
by animating the process view.

5.2 Case study
To illustrate our approach on a case study, we use the

“Acme Travel Company” case from [23]. Acme Travel Service
is a fictitious travel agency that has decided to offer its cus-
tomers the benefit of planning and reserving travel arrange-
ments through a Web based application. Figure 4 shows this
process. This process contains 11 activities, 24 constraints
and is executed as follows. (1) Acme Travel agency receives
an itinerary from the customer (receive). (2) After checking
the itinerary, the system sends simultaneous requests to the
appropriate airline and hotel agencies to determine which
reservations to make. (3) If any of the reservation activi-
ties fails (failed hotel or failed airline), the itinerary
is canceled (compensate), and the customer is notified of
the problem (notify failure). (4) Acme Travel waits for
confirmations of the reservation requests (booked hotel and
booked airline). (5) When the customer pays the travel
(credit card), Acme Travel notifies the customer of the suc-
cessful completion (notify booked). It is worth noting that
this process allows for many execution alternatives. A fully
detailed description of each activity, the constraints, and why
the process is modeled that way is available in [23]. How-
ever, it is not needed to deeply understand the process to
comprehend the need and the use of our approach.

Figure 4: Acme Travel Company case study, taken
from [23]

Readers may notice that even if this process is not relatively
large, it might be hard to understand and to apprehend the
possible process execution without support. One way to
gain such understanding can be done through simulation, i.e.
execution of the process. Then, by starting from an empty
sequence σemtpy = 〈〉 and setting no specific goals such that:

Cg1 = ∅ (1)

the modeler can get an a priori experience with the model
by looking into the animation of various executions. For
instance, the modeler can directly pinpoint that each time, the
receive activity is always executed the first and is followed
by either hotel and airline. In the case where no plans
are found, it means that the process suffers from conflicting
constraints since no execution is allowed by the constraints
of the process. It is also possible to test only a subset of the
process constraints by generating only the desired constraint
inside the Alloy specification (see Listing 1, line 6 to 11).

The process can be verified against dead activities by speci-
fying a goal where the given activity is executed. For instance,
to verify that notify booked is not dead, the goals are spec-
ified such that notify booked is executed at least one time:

Cg2 = {existence(notify booked, 1,∞)} (2)

If no plans are found, it means that notify booked is dead.
In order to verify that the process is correct, the modeler

may want to check that no plans exist under some circum-
stances. For instance, to verify that when the successful com-
pletion is sent (notify booked), the customer can no longer
be notified of the failure of the booking (notify failure)
the goals are specified such that:

Cg3 = {existence(notify booked, 1, 1),
response(notify booked, notify failure)} (3)

Another example might be to ensure that every valid exe-
cution of this process, either the notify booked or notify

failure are executed. Then, the goals are expressed to find an

Current Sequence Goals Vars Clauses CNF Generation SAT Solving Satisfiable?

σemtpy Cg1 10k 29k 535ms 58ms yes
σemtpy Cg2 10k 29k 570ms 54ms yes
σemtpy Cg3 10k 29k 580ms 11ms no
σemtpy Cg4 10k 29k 597ms 13ms no
σemtpy Cg5 10k 29k 550ms 67ms yes
σruntime Cg6 8k 22k 450ms 33ms yes

Table 2: Metrics for the generation of plans on the
Acme Travel case study

execution on which both notify booked and notify fail-

ure are not executed:

Cg4 = {existence(notify booked, 0, 0),
existence(notify failure, 0, 0)} (4)

In both Cg3 and Cg4 goals, if the planning component finds
an execution, it means that the process is under-constrained
since the process allows for unwanted executions scenarios.

Another interesting use of the planning component is also
to ensure that some plans actually exist. For instance, to en-
sure that even if the booking of an hotel fail (failed hotel),
it is still possible in the future to get a successful notification
of a booking (booked hotel), the goals are expressed such
that:

Cg5 = {response(failed hotel, booked hotel)} (5)

In this case, if no plan is found, it means that the process
is over-constrained since a desired execution scenario is not
available.

During the execution, the planning component can also
give some support to the users. For instance, starting from an
execution sequence σruntime = {∅, receive, hotel, failedhotel,
compensation} and setting the goals such that notify booked

is reached:

Cg6 = {existence(notify booked, 1, 1)} (6)

can ensure that even if the system has the compensation

activity executed, it might still exist an execution on which
the booking is successfully done.

Table 2 summarizes the obtained results for the generation
of plans based on the Acme Travel case study. Column 1 and
2 represent respectively the current sequence and the goals
of the generation. Column 2 and 3 represent the number of
clauses and variables of the SAT problem generated from the
Alloy Analyzer. Usually, the complexity of a SAT problem
is measured by the number of clauses and variables. Column
4 and 5 represent the time to generate the CNF and to solve
the SAT problem. Here, the SAT solving time represents only
the generation of one plan. Multiple plans can be generated
without the need of re-generating the CNF. Finally, column
6 indicates if the given planning problem is satisfiable, i.e.
if at least one plan exists. All analysis were performed on
a MacBook Air 2011 with Intel Core i5 processor and 4GB
of RAM with Mountain Lion as OS. The results showed us
that plans can be generated quickly on a real case from the
literature.

It is worth noting that most of the goals defined in this case
study used the small set of constraints presented in this paper
for the sake of self-containedness. However, our approach
allows to define more complex goals such as the given data
is available before x time units and so on. Interested readers
can download the complete Alloy formalization with more
complex examples (with resources, time and data) as well as
this case study from our website2.
2http://pagesperso-systeme.lip6.fr/Yoann.Laurent/

http://pagesperso-systeme.lip6.fr/Yoann.Laurent/

6. CONCLUSIONS AND FUTURE WORK
This paper proposes an approach enabling the generation

of plans for declarative process models. The approach brings
to process modelers a valuable aid during both the modeling
and execution phases of the process lifecycle by the means
of foreseeing the future executions.

When compared with the other approaches, our work is
the first to use FOL with relational calculus to formalize the
declarative concepts, and is more expressive than the tradi-
tional LTL-based formalization w.r.t. the data, resources and
time dimension. Some constraints are not even expressible
in LTL. For instance, it is not possible to specify in LTL
that an activity must be executed as many times as another
activity since it is not possible to “count” how many times
the activity is executed, while our formalization can handle
this case easily. Moreover, our formalization is expressible
enough to cover declarative constraints from various sources
of the literature in a unified way [18, 23, 20, 28, 15].

Currently, the generation corresponds to one/multiple pos-
sible plans which satisfy the defined goals. Moolloy is an
extension of Alloy implementing a “guided improvement al-
gorithm” (GIA) to solve multi-objective optimization (MOO)
problems [11]. Moolloy works by repeatedly adjusting the
SAT problem to ask for better and better solutions until no
better solution exists, exploring the boundaries of the Pareto
Front. We are planning to extend our approach by relying on
Moolloy and by adding a set of objectives functions to be op-
timized during the generation. This way, it will be possible to
generate the optimal plans for the given goals. For instance,
to generate the fastest plan on which the given activity is
executed. Another interesting use of this extension might
be to allow the flexibility by deviation [17], i.e. generating
recovery plans on which the number of violated constraints
are minimized.

Acknowledgments
This work has been funded by the MERgE project (ITEA 2
Call 6 11011).

7. REFERENCES
[1] C. Castellini, E. Giunchiglia, and A. Tacchella. Sat-based

planning in complex domains: Concurrency, constraints and
nondeterminism. Artificial Intelligence, 147(1):85–117, 2003.

[2] F. Chesani, P. Mello, M. Montali, and P. Torroni.
Verification of choreographies during execution using the
reactive event calculus. In Web Services and Formal
Methods, pages 55–72. Springer, 2009.

[3] N. Eén and N. Sörensson. An extensible sat-solver. In
Theory and applications of satisfiability testing, pages
502–518. Springer, 2004.

[4] M. D. Ernst, T. D. Millstein, and D. S. Weld. Automatic
sat-compilation of planning problems. In IJCAI, 1997.

[5] D. Fahland et al. Declarative versus imperative process
modeling languages: The issue of understandability. In
Enterprise, Business-Process and Information Systems
Modeling. 2009.

[6] D. Fahland et al. Declarative versus imperative process
modeling languages: the issue of maintainability. In Business
Process Management Workshops, 2010.

[7] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the
application of theorem proving to problem solving. Artificial
intelligence, 2(3):189–208, 1972.

[8] T. R. G. Green and M. Petre. Usability analysis of visual
programming environments: a “cognitive dimensions”
framework. Visual Languages & Computing, 1996.

[9] D. Jackson. Automating first-order relational logic. In ACM
SIGSOFT Software Engineering Notes. ACM, 2000.

[10] D. Jackson. Software Abstractions: logic, language and
analysis. Mit Pr, 2011.

[11] D. Jackson, H.-C. Estler, and D. Rayside. The guided
improvement algorithm for exact, general-purpose,
many-objective combinatorial optimization. Technical report,
MIT-CSAIL-TR-2009-033, MIT Computer Science and
Artificial Intelligence Laboratory, 2009.

[12] J. Jaffar and J.-L. Lassez. Constraint logic programming. In
Proceedings of the 14th ACM SIGACT-SIGPLAN
symposium on Principles of programming languages, pages
111–119. ACM, 1987.

[13] R. Koymans. Specifying real-time properties with metric
temporal logic. Real-time systems, 2(4):255–299, 1990.

[14] R. Milner. Communicating and mobile systems: the pi
calculus. Cambridge university press, 1999.

[15] M. Montali et al. Towards data-aware constraints in declare.
In SAC. ACM, 2013.

[16] T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, 77(4):541–580, 1989.

[17] M. Pesic. Constraint-based workflow management systems:
shifting control to users. 2008.

[18] M. Pesic, H. Schonenberg, and W. M. van der Aalst. Declare:
Full support for loosely-structured processes. In EDOC,
2007.

[19] M. Pesic, M. Schonenberg, N. Sidorova, and W. M. van der
Aalst. Constraint-based workflow models: Change made easy.
In On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS. 2007.

[20] M. Pesic and W. M. van der Aalst. A declarative approach
for flexible business processes management. In Business
Process Management Workshops, pages 169–180. Springer,
2006.

[21] A. Rozinat, M. T. Wynn, W. M. van der Aalst, A. H. ter
Hofstede, and C. J. Fidge. Workflow simulation for
operational decision support. Data & Knowledge
Engineering, 68(9):834–850, 2009.

[22] H. Schonenberg, R. Mans, N. Russell, N. Mulyar, and
W. van der Aalst. Process flexibility: A survey of
contemporary approaches. In Advances in Enterprise
Engineering I, pages 16–30. Springer, 2008.

[23] W. M. Van Der Aalst and M. Pesic. DecSerFlow: Towards a
truly declarative service flow language. Springer, 2006.

[24] W. M. van Der Aalst, M. Pesic, and H. Schonenberg.
Declarative workflows: Balancing between flexibility and
support. Computer Science-Research and Development,
23(2):99–113, 2009.

[25] W. M. Van Der Aalst, A. H. Ter Hofstede, and M. Weske.
Business process management: A survey. Springer, 2003.

[26] W. M. van der Aalst, K. M. van Hee, A. H. ter Hofstede,
N. Sidorova, H. Verbeek, M. Voorhoeve, and M. T. Wynn.
Soundness of workflow nets: classification, decidability, and
analysis. Formal Aspects of Computing, 23(3):333–363, 2011.

[27] B. Weber, H. A. Reijers, S. Zugal, and W. Wild. The
declarative approach to business process execution: An
empirical test. In Advanced Information Systems
Engineering, pages 470–485. Springer, 2009.

[28] M. Westergaard and F. M. Maggi. Looking into the future.
In OTM. 2012.

[29] S. Zugal, J. Pinggera, and B. Weber. The impact of testcases
on the maintainability of declarative process models. In
Enterprise, Business-Process and Information Systems
Modeling. Springer, 2011.

	Introduction
	Achilles'heel of Declarative paradigm
	Planning value for Declarative Processes
	Contributions

	Related Work
	Formalizations of Declarative Processes
	Declarative Process and Trace
	Planning Problem

	Alloy for Declarative Processes
	A language and tool for relational models
	Treating the planning problem

	Evaluation
	Implementation
	Case study

	Conclusions and future work
	References

