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With the widespread of the Model-Driven Development (MDD) and surfing on the success of the Unified Modeling Language (UML), software development is shifting from being codecentric to model-centric. Models become the key artefacts in the software development process. The success of the project relies on the quality of these models. Early detection of errors by debugging and testing these models is mandatory in order to reduce development cost, ensuring quality and preventing rework at later stages. The fUML standard defines the precise semantics for executing a subset of UML models by defining a virtual machine. The models are then directly executed without transformation. However, the virtual machine is defined to execute the model as an atomic action and does not fulfil the requirements for debugging it. We highlight in this paper the limit of the current specification of fUML (v1.0) and propose an approach for extending the virtual machine with the key functionality that enables debugging of fUML models. A working UML debugger prototype has been implemented and the use and evaluation of the approach are made on a case study.

INTRODUCTION

One major advantage of executable models is that once defined, they can be simulated, debugged and validated in short incremental and iterative cycles. Thus, models will not be considered anymore as a rough and abstract representation of the expected system's structure and behavior, but as the system itself. This makes them a powerful asset in the development of complex and critical systems. In order to achieve such goal, modelers require not only precise and unambiguous languages for modeling both the structural and behavioral properties of the system but also the tooling support for executing, testing and debugging these models. In the current state of the art of modeling languages used in the industry, UML appears to be the de facto standard. However in the actual UML specification, the operational semantics remains unclear, imprecise and ambiguous. The semantics is explained in natural language and dispersed through the specification. Due to this fact, research and commercial tools aiming to execute models have to do some assumptions on the precise operational semantics. As a result, the same models may be executed differently from one tool into another.

To overcome this lack, the OMG released fUML 1.0 (Semantics of a Foundational Subset for Executable UML Models) [START_REF] Omg | Semantics of a foundational subset for executable uml models (FUML) version 1.0[END_REF], a new standard that precisely defines the execution semantics for a subset of UML 2.3 in a form of an Execution Model implemented in a virtual machine. However, in order to ensure the success of the development [START_REF] Humphrey | Managing the software process[END_REF], models need to be verified at early stages of the development lifecycle. One way to do this is to simulate models by testing and debugging them. Although the simulation does not provide any formal proofs, it can significantly increase the confidence in the model, provide system understanding and give an early direct experience with the system being designed [START_REF] Selic | The pragmatics of model-driven development[END_REF]. Moreover, Baker et al. [START_REF] Baker | Model-driven engineering in a large industrial context-Motorola case study[END_REF] show in their case study a reduction of 30%-70% in the time needed to correctly fix bugs using model simulation.

Debugging is a methodical process of finding and reducing the number of bugs or defects in a program thus making it behave as expected [START_REF] Shapiro | Algorithmic program debugging[END_REF]. State of the art for software debugging, testing, and verification in the case of code-centric development is well known in the community [START_REF] Hailpern | Software debugging, testing, and verification[END_REF]. In the case of model-centric development and without the additional step of transforming the model to code, only few works address it [START_REF] Riehle | The architecture of a UML virtual machine[END_REF][START_REF] Kirshin | A UML simulator based on a generic model execution engine[END_REF][START_REF] Dotan | Debugging and testing behavioral UML models[END_REF][START_REF] Crane | Towards a UML virtual machine: implementing an interpreter for UML 2 actions and activities[END_REF][START_REF] Fuentes | Execution and simulation of (profiled) UML models using Pópulo[END_REF]. However, they do not use the fUML standard for the execution semantics. Nowadays programming without debugging support seems to be inconceivable. Thus, since fUML is the standard for the execution of UML models, the idea of providing the fUML virtual machine with a debugger comes quite naturally. However, the implementation of the fUML virtual machine is defined to execute the model as an atomic action and does not allow any interaction with it. The only goal of the virtual machine is to execute models in an automatic way, i.e. given a value for the inputs parameters of a behavior, the execution returns values for their outputs. The execution is neither controllable nor observable in the current specification of fUML [START_REF] Mayerhofer | Testing and debugging UML models based on fUML[END_REF][START_REF] Ellner | A FUML-based distributed execution machine for enacting software process models[END_REF]. By controllable, we mean that it is not possible to pause and resume the execution. By observable, we mean that it is not possible to know what happens inside the execution (e.g., be aware when a sub-activity starts or when a variable is modified); monitoring of the execution is not available. Thus, it is not possible to build a debugger using the fUML virtual machine straightforwardly. In order to obtain a wider adoption of model execution in the industry, a tool based on a standard which provides correct debugging support is strongly needed.

In this paper we present a critical analysis on the newly defined fUML standard and we address its lacks in terms of controllability and observability, key issues for model execution and debug. An approach is proposed in order to extend the standard with the set of concepts and facilities required to debug models. The paper is organised as follows. Section 2 presents the fUML standard and a critical analysis of the current specification. In Section 3, we propose an extension of the fUML Execution Model enabling controllability and observability of the execution, and we detail the modifications needed in order to incorporate the extension in the Execution Model. Section 4 presents our implemented prototype allowing to test and debug models. The evaluation of the extension and the prototype is presented in Section 5. Finally, related work is addressed in Section 6 and Section 7 concludes by sketching some future perspectives of this work.

FUML

fUML is an OMG standard that precisely defines the execution semantics of a subset of UML 2.3. The standard defines a basic virtual machine (in the form of pseudo Javacode) enabling compliant fUML models (i.e., UML models using only elements comprised in the fUML subset) to be executed. It can be decomposed in three principle parts (i) the abstract syntax represented by a subset of UML, mainly composed by the Class Diagram and most of the Activity Diagram; (ii) the Execution Model which defines the execution semantics of the abstract syntax and (iii) the model library which defines primitive types and behaviors. In this section we present these three parts and then we highlight the current limitations of the current specification.

Abstract syntax

The abstract syntax of fUML is structured in the same way as UML but being a subset of the later, not all packages are included. For modeling the structure, Classes are included to deal with the basic modeling concepts and describe the classes of a system, their attributes, operations and relationships among each other. For modeling the behavior, Actions, Activities and CommonBehaviors are partially included. Indeed, some elements with a too high degree of abstraction are excluded from the specification. Thus, the Activity Diagram describes how the actions in the system are executed using control and data flow between the actions.

Execution model

The Execution Model is itself a model, written in fUML, that specifies how fUML models are executed. The execution semantics adopted by fUML is quite similar to Coloured Petri Nets [START_REF] Jensen | Coloured petri nets. Petri nets: central models and their properties[END_REF] and is based on the principle of offering To illustrate this, Figure 1 shows a simple activity diagram represented with one InitialNode, two Action nodes and an ActivityFinalNode. Each of these nodes are connected with a ControlFlow edge which represents that a node starts after the previous one is finished. The sequence diagram shows the corresponding calls between the nodes in the Execution Model. The diagram is a simplified version of what really happens during the execution and focuses on the interaction between elements. ActionActivation and ActivityEdgeInstance are the instantiation of the corresponding abstract syntax (see below for the explanation of the instantiation in the Execution Model using the visitor pattern). When the fUML virtual machine invokes this activity, it starts by inserting a token in each InitialNode and other nodes with no inputs ControlFlow. Then, the nodes with a token (i.e., the InitialNode in our example) fire (i.e., execute their own behavior) and sendOffer on each of their outputs ControlFlow. The ControlFlow is then able to call on its target node A to receiveOffer. When the node A receives an offer, if first checks if the prerequisites for its execution have been satisfied as determined by isReady, if yes, takes the offered tokens from inputs control flow and fire. At the end of the fire operation, the node directly sendOffer on its outputs ControlFlow. The execution of an activity is then an extended chain of sendOffer -receiveOfferfire-sendOffer calls between the activity constituents. Each abstract syntax element of an activity diagram has its own semantics. For example, a DecisionNode will offer a token only on one of its output edges determined during its fire execution. Although the example looks very simple, in order to execute, many actions have to be carried out.

The Execution Model contains a package called Loci (Figure 2), which contains the Locus, Executor, and Execution-Factory classes that model a fUML execution engine and its environment. The Executor provides the root abstraction for executing a fUML model. It provides the basic interface for evaluating value specifications and executing behaviors (e.g., Activity). Every execution takes place at a specific Locus. A Locus can be seen as an abstraction of a physical or virtual computer capable of executing fUML models. Objects and links created during or before an execution are associated to it. The Execution Model is based on the Visitor pattern [START_REF] Gamma | Design patterns: elements of reusable object-oriented software[END_REF]. Using this pattern, each abstract syntax metaclass has a corresponding visitor class in the Execution Model (named *Execution and *Activation). In this The ExecutionFactory maintains the set of primitive behaviors available to be called. In fUML, primitive behaviors are defined syntactically as instances of OpaqueBehavior. For each OpaqueBehavior instance representing a primitive behavior, the execution factory maintains a corresponding prototype instance of OpaqueBehaviorExecution. The Ex-ecutionFactory contains also some instances of Semantic-Strategy to deal with the semantic variation points of UML (e.g., event dispatch scheduling).

To configure the execution environment, it is necessary to instantiate a set of collaborating objects from classes within the Execution Model that provide the initial execution environment.

Limitations

The major limitation of the Execution Model comes from the fact that the execution is not controllable. The Executor only provides few operations to evaluate a value specification and to execute synchronously or asynchronously a behavior. Then, given a value for its input parameters, the execution returns values for its output behaviors. As explained in Section 2.2 and shown on Figure 1, the execution is computed directly through the chain of calls between the semantic elements. No interaction or insight about what happens is provided. The execution of a behavior can be seen as an atomic operation in the Execution Model since no interactions with the execution are provided.

Another limitation comes from the fact that the Execution Model is not observable. During the execution the only information available is some printing from each semantic elements of the Execution Model (e.g., inside the fire method of the ActionActivation, the printing corresponds to "fire node nodeName"). Obviously this printing is useful for debugging the implementation of the fUML Execution Model but is not suitable to observe the execution. It is not possible to set listeners on elements (e.g., be aware when a sub Activity starts), or on objects instantiated on the Locus (e.g., be aware when an attribute of an object is modified). More generally, monitoring the execution is not possible. We are only aware when behavior starts and when it finishes. These limitations prevent to link the execution to a prototyping user interface to understand the end-user use cases and to find interaction bottlenecks. fUML also lacks of some generic extension mechanisms for customizing the semantics of modeling concepts. For example, the use of UML profiles is not addressed in the standard.

Moreover, as highlighted in the specification, there are some semantics areas which are not explicitly constrained by the Execution Model: (i) the execution is agnostic about time, both discrete and continuous time can be used; (ii) the semantics of concurrency includes an implicit concept of concurrent threading, the execution tool only needs to respect the various creation, termination, and synchronization constraints of the model (i.e., a ForkNode in the model does not imply to run multiple threads); (iii) the semantics of interobject communications mechanisms assumes that all communications are perfectly reliable and deterministic. The result is that some execution tools can still be conformant to the semantics specified by the Execution Model for fUML and semantically vary in the above areas while executing the same model. This lack of constraints is an important problem of fUML since it breaks the interoperability of tools, the same model may not be executed in the same way on different tools.

The purpose of this work is not to address all of these limitations but to focus on the limitations which prevent to debug models using the fUML virtual machine.

FUML EXTENSION

This section presents our extension to fUML in order to control and to observe the Execution Model at runtime.

Tokens and Lifecycle Controller

Section 2.3 shows that the fUML execution is considered as an atomic action with no control over it. To bring controllability in the Execution Model, we propose to add to the Locus a new class Controller allowing to control the execution (Figure 3).

The key idea is to redirect the communication call from the semantic elements to the Controller. The communication corresponds to the methods which offer and consume objects and control tokens (e.g, receiveOffer, send-Offers...). Figure 4 shows the call of methods using a con- troller. When the action A finishes, instead of directly do sendOffer to their outputs edges, the node A sends this information to the controller. The controller is then able to transmit the information itself to the edge. The implementation of the controller on Figure 4 mimics the normal Execution Model and just transmits the information. Using a controller gives many benefits. By interfacing the controller with a graphical interface, it is possible to control the execution in a finer grain. For instance, blocking the execution on each receiveOffer method corresponds to setting a breakpoint on each node before its execution. The controller is then able to give insights about what happens during the execution of the behavior. The TokensController interface contains the methods which consume and offer tokens between the activity constituents.

By taking advantage of the TokensController, it is possible to add some lifecycle control to the execution by temporally blocking the transmission of tokens. The LifeCycle-Controller interface defines methods to start, stop, pause and resume the execution.

The Controller implements both TokensController and LifeCycleController and keeps a reference to the Executor to be able to run parts of the model without explicitly writing entry points (e.g, writing a "main" activity to test a sub-activity).

The Controller owns a Monitor which keeps records of all received Event during the execution. ActivityEvent and ActivityNodeEvent correspond to the entry/exit point of an activity and node. SignalEvent happens when signals are sent to the event pools (e.g, when a node SendSignalAction is executed). ExtensionalValueEvent corresponds to the execution of a node from the IntermediateActions of the Actions package (e.g, CreateObjectAction, ReadStruc-turalFeatureAction, WriteStructuralFeatureAction...) ; these actions create, modify, read and delete objects or links instantiated at the Locus (Figure 2). By using the Monitor, it is possible to observe the execution by listening to Event happening in the Execution Model.

The Java Virtual Machine proposes a Tool Interface (JVM TI) which provides both a way to inspect the state and to control the execution of running applications. It supports the full breadth of tools that need access to the JVM state. We argue that the fUML virtual machine should empower the use of both the Controller and Monitor concepts inside the Execution Model to bring such flexibility, controllability and observability during the execution. Thus, the Controller answers the lack of controllability while the Monitor handles the need of observability.

Debug Controller

In a debugger, setting breakpoints corresponds to an intentional stopping or pausing place in a program. More generally, putting a breakpoint on the model is a means of acquiring knowledge about the execution. During the interruption, the modeler can inspect the environment to find out whether the executed model is working as expected. A watchpoint corresponds to a specific breakpoint, such that the reading, writing, or modification of a specific variable triggers it. The DebugController which extends the Controller handles a list of Breakpoint. By using the Monitor and comparing the Event happening during the execution with the Breakpoint signature, the Controller can check if the Breakpoint holds and then pause the execution. Breakpoint and ConditionalBreakpoint are set on the nodes of an activity while Watchpoint are set on instantiated objects and links.

DebugController defines methods directly related to the need of a debugger. One important point to effectively debug is to be able to roll-back the execution. Since the execution formalism is based on the Coloured Petri Nets, tokens and their contents on the system represent the actual execution state. The DebugController saves information about the position and the contents of the tokens (at every change or under certain conditions in order to keep memory efficiency in the case of big models) in a TokensState. The DebugController is then able to roll-back the execution by swapping all the tokens with an old TokensState. The De-bugController proposes also to change the SemanticStrategy (the semantic variation points of UML) and the value of objects and links instantiated in the Locus dynamically during the execution. By rolling-back the execution and changing the semantic variation points or/and the value of objects and links, it is possible to re-execute a part of the model and to compare the obtained results.

Additionally, the DebugController defines methods to dynamically insert, move and delete tokens from nodes. Instead of following the normal execution defined by the workflow of the activity (i.e., tokens offered and consumed by the activity's constituents), these methods allow to directly jump at different locations in the activity by moving tokens.

Modification of the Execution Model

Section 3.1 and 3.2 present the extension of the fUML Execution Model. In order to incorporate this extension in the Execution Model, two minor modifications are needed : (i) using the Controller, we need to change in the semantic elements every call of method on which tokens transit (e.g, receiveOffer) to the equivalent method in the Controller (TokensController interface); (ii) concerning the monitoring of Event, in the same way that the Execution Model contains some printing in each semantic elements, we need to add some calls to the Monitor to notify which events are happening (e.g, the execution of a ReadStruc-turalFeatureAction node will trigger the occurrence of an ExtensionalValueEvent on the Monitor). The drawback of these modifications is that they require to modify many semantic elements, even if the modification is trivial.

Another approach is to use aspect-oriented programming (AOP) [START_REF] Kiczales | Aspect-oriented programming[END_REF], by setting an around advice on every call of methods on which tokens transit, it is possible to bypass the call and to redirect it to the Controller [START_REF] Hannemann | Design pattern implementation in java and aspectj[END_REF]. Moreover, it is possible to weave aspects before or after the execution of methods in order to trigger a specific Event to the Monitor. The major advantage of this approach is that it does not require to modify the current specification of fUML. The aspects are woven in the Execution Model at runtime.

Then, we propose the two solutions to modify the Execution Model in order to incorporate the controller. The AOP solution is clearly a better way since it does not require to modify the actual Execution Model but only extending it with aspects. It is worth noticing that our extension of fUML does not modify the normal semantics execution of fUML, i.e. with or without our extension, an fUML model will be executed the same way (see Section 5.1).

PROTOTYPE

The prototype we developed is currently provided as an Eclipse EMF plugin. It accepts UML models in the form of XMI files as input. It uses the fUML Reference Implementation [START_REF]Foundational UML reference implementation[END_REF] with the extension proposed in Section 3 and uses the Papyrus plugin [START_REF]Papyrus[END_REF] for the graphical representations of the model. We have chosen the AOP approach from Section 3.3 in order to extend the fUML Execution Model. The intent of this prototype is to assist UML modelers by simulating and debugging their models using the operational semantics of the fUML virtual machine. The models are directly interpreted without an intermediate transformation step.

Figure 5 shows a screenshot of the prototype executing a test of the Online Book Store (OBS), taken from [START_REF] Mellor | Executable UML: A foundation for model-driven architectures[END_REF]. The prototype follows the concepts of the Eclipse Java debugger and offers equivalent views for rich UML-debugging capabilities. A description of each view is provided below.

Model (label 1) It displays the model being executed us-

ing both the Eclipse UML2 tree editor plugin and the Papyrus plugin. Both plugins are extended to show information and the tokens present in the activity diagram. The node ready to be executed are highlighted on the diagram. By selecting nodes, it is possible to add breakpoints. It allows also to directly run an activity from the model without explicitly writing entry 

EVALUATION

This section presents the evaluation of our fUML extension by first, comparing our prototype with other debuggers from the literature and finally, by testing it with a case study.

The extension of the Execution Model

We empirically evaluated our extension on 30 fUML models from the fUML Reference Implementation [START_REF]Foundational UML reference implementation[END_REF]. The goal of these models is to test the implementation of fUML. The size of the models is varying, ranging from few nodes to 50 nodes. The purpose of this evaluation is twofold: (i) to verify that our extension does not break the semantic execution of fUML and (ii) to evaluate the additional workload added by our extension.

We run these models using both the fUML Reference Implementation and through our prototype without setting any breakpoints (on a MacBook Air 2011 with the Intel Core i5 processor and 4 GB of RAM). We obtained the same outputs from both executions assuring us that the semantic execution remains the same. Figure 6 shows the timing execution with and without our extension. We take the average timing of 100 executions on each model. Due to the CPU's scheduling and the use of small models, the timing execution of the same model can differ from one execution into another. It can be difficult to measure the difference using the extension. Thus, the measured timing execution remains close due to the fact that our extension only adds a lightweight workload by means of additional calls from and to the controller.

Debuggers requirements

Following the state-of-art of debugging features [START_REF] Rosenberg | How debuggers work: algorithms, data structures, and architecture[END_REF][START_REF] Papoylias | High-level debugging facilities and interfaces: Design and developement of a debug-oriented ide[END_REF] and by testing many of the most important language-debuggers available nowadays (i.e., debuggers for C, C#, Java ...), we synthesize the most important features that every debuggers should support:

Controlling controlling the execution of the program (i.e., step-by-step, pause, resume...). Breakpoints pausing the program at a specified place. Conditional Breakpoints breakpoints that are triggered when reached only if a particular condition is true. Watchpoints "data" breakpoints that are triggered when a variable is read or written. Visualization visualizing graphically or textually the current position in the program. However, debugging models and code is quite different. Debugging models happens at a higher level of abstraction and implies some conceptual differences. For example, instead of visualizing threads and operation call stack, the visualization corresponds to the activity diagram with tokens and offers positions. Variable corresponds to the objects and links instantiated in the Locus and so on. Moreover, UML is full of semantic variation points which explicitly identify the areas where the semantics are intentionally under specified to provide leeway for domain-specific refinements. The debuggers have to consider the choice of these semantic variation points. One particularity of the models over the code is that some aspects of a system can be modeled very precisely whereas others parts remain imprecise leading to incomplete models [START_REF] Kleppe | MDA explained: the model driven architecture: practice and promise[END_REF]. Though, models still need to be debugged at early stage to ensure quality.

Thus, the debuggers have to propose views adapted to models and support also some additional features related to the model world:

Incomplete models the ability to debug incomplete models. Table 1 shows these requirements handled by our prototype (column 1). Two requirements which imply deeper change of the architecture of the virtual machine remains open. As currently defined by the OMG, the Execution Model attempts to execute valid and syntactically verified models as inputs [START_REF] Omg | Semantics of a foundational subset for executable uml models (FUML) version 1.0[END_REF]. However, these assumptions are not always satisfied when debugging incomplete models, which results in errors during the instantiation (e.g., NullPoint-erException) in the virtual machine. Concerning the hot code replace feature (e.g., modifying the sequencing of actions of an activity at runtime), early experimentation reveals that it is possible, but still requires a heavy extension of the Execution Model. Due to space limitation, this highlevel feature is not presented here.

Case study

The use of our prototype has been evaluated on a simple model. This model has been chosen because, it is representative of a case in which the use of a debuggers is particularly useful.

Figure 7 shows the Update activity from a robotic system. This activity is in charge of updating the position of the robot and adapting the sensor accordingly. The activity starts by some re-initialization by calling ReInitialize, then starts in parallel using a ForkNode three sub-activities (CallBehaviorAction): (i) UpdateSensor updates the sensor for adapting the move of the robot; (ii) UpdatePosition updates the position of the robot on the map; (iii) LogInfo logs the current information. The JoinNode is present to synchronize the execution of UpdatePosition and LogInfo. When both calls are done, all the input flows of the JoinNode are offered, then the JoinNode can fire. The MergeNode can fire when one of its inputs is offered. Before the activity finishes, NotifyPart is called to notify the other parts of the systems that the position has been updated.

Using our prototype and executing this activity stepwise, the modeler realizes that sometimes it does not execute the activity as expected. By rolling back the execution and executing multiple times this activity, it happens that many unintended execution paths exist in the diagram. Table 2 shows some of the execution paths starting after the ForkNode to the execution of the ActivityFinalNode. Only the CallBehaviorAction are presented on the table. There are two issues : (i) NotifyPart may be fired 2 times (e.g., execution paths 3 and 6); (ii) UpdateSensor or UpdatePosition and LogInfo may be never fired (e.g., execution paths 1 and 

). This problem is known as a lack of synchronization, i.e. joining the concurrent fork path with a merge structure. A lack of synchronization at a merge structure results in unintentional multiple activations of nodes that follow the merge node. Moreover, a lack of knowledge from the modeler concerning the semantics of the ActivityFinalNode leads to the second issue. Indeed, when a ActivityFinalNode fires, the whole activity terminates even if some control tokens remain on the diagram. For example, the execution path 1 shows that the ActivityFinalNode has been fired before UpdatePosition and LogInfo receive their offer (receiveOffer ) from the ForkNode. It can be difficult for a naive modeler to understand why the activity does not work properly without the debugging capabilities.

The modeler corrects the problem by removing the MergeNode and changing the target of the output ControlFlow of UpdateSensor to the JoinNode. The JoinNode can then synchronize the execution of UpdateSensor, UpdatePosition and LogInfo before continuing to NotifyPart. The modeler also sets a breakpoint on the Update activity and re-starts the debugging to directly test this part of the system.

Using our prototype, the modelers can get a better understanding on how fUML is executing their models, and solve some conceptual and architectural issues in their models. Both novices and experienced modelers can benefit from the debugging functionality, helping novices to identify improper use of modeling constructs and experienced modelers to better understand the designs that other modelers create.

RELATED WORK

There are many research and commercial tools enabling the execution of UML models. The execution approach can be divided into two fields: the transformations of the models into executable code such as Executable UML introduced by Mellor et al. [START_REF] Mellor | Executable UML: A foundation for model-driven architectures[END_REF], and the direct interpretation. Due to space limitations, we only present the work based on the direct interpretation.

The first work was from Riehle et al. [START_REF] Riehle | The architecture of a UML virtual machine[END_REF] which present the architecture of a virtual machine for UML that interprets directly the model without transformation steps. Dotan et al. [START_REF] Kirshin | A UML simulator based on a generic model execution engine[END_REF][START_REF] Dotan | Debugging and testing behavioral UML models[END_REF] present a UML debugger based on their own generic model execution engine. The debugger proposes to execute the model stepwise, set breakpoints, inspect variables, and visualize the execution. Moreover, it supports the execution of incomplete models, i.e. when there is missing information regarding the next step, the debugger asks the user what do to. Crane et al. [START_REF] Crane | Towards a UML virtual machine: implementing an interpreter for UML 2 actions and activities[END_REF] propose an interpreter for UML 2 Actions and Activities. This work was done after the refinements of the activity package in the second version of UML, when the semantics changes to the Petri-Net one. The interpreter offers analysis capabilities, random execution, reachability properties, assertion and deadlock checking. Fuentes et al. [START_REF] Fuentes | Execution and simulation of (profiled) UML models using Pópulo[END_REF] present Populo, a UML model debugger compliant with the UML 2 standard for executing models. The particularity of Populo is that the UML action language can be customised to meet the needs of a specific profile.

However, these works are not based on the new fUML standard and have done some assumptions on the precise operational semantics which creates tool-interoperability and extensibility problems. Moreover, the semantics richness of these approaches are less complete than fUML, many simplifications have been done and the semantic variation points are never addressed. Some features such as the roll-back support and the configuration of the semantic variation points are only supported by our approach.

Mayerhofer [START_REF] Mayerhofer | Testing and debugging UML models based on fUML[END_REF] explains some limitations of fUML but does not provide any solution to it. They present their research direction that has given rise to the moliz project [3] which aims to implement a novel model execution environment based on fUML.

Recently, some commercial UML tools have implemented fUML in their own environment enabling execution and basic debugging capabilities (e.g., The Cameo Simulation Toolkit for the MagicDraw tool and AM|USE 2.0 by LieberLieber for the Enterprise Architect tool). They offer some nonstandard functionalities such as the support of state machine (W3C SCXML standard) and multiple action languages (e.g., Javascript, Ruby, Python...). These tools are compared to our prototype on Table 1.

Concerning the approach which extend the fUML stan-dard, Ellner et al. have also observed the lack of "human interaction" (i.e., controllability) while using fUML to enact software process models [START_REF] Ellner | A FUML-based distributed execution machine for enacting software process models[END_REF]. The authors propose some extensions to support distributed execution, suspending and resuming execution on different nodes and a request extension to interact with the fUML virtual machine. Benyahia et al. [START_REF] Benyahia | Extending the standard execution model of UML for real-time systems[END_REF] present a lightweight modification of fUML to cope with the need of real-time systems concerning the scheduling and concurrency within the Execution Model. They introduce a Scheduler class to dispatch actions and therefore break the sequential execution of fUML. Abdelhalim et al. [START_REF] Abdelhalim | Formal verification of tokeneer behaviours modelled in fuml using csp[END_REF] present an approach to represent an fUML models into the process algebraic specification language CSP (Communicating Sequential Processes) and use the FDR (Failures-Divergences Refinement) model-checker to check if the model is deadlock free. When a deadlock is found, a counter-example trace which led to the deadlock is generated. The verification of the models is done through automatic model-checking instead of simulation as we promote it in our approach.

CONCLUSIONS AND FUTURE WORK

This paper presented an approach which extends the fUML Execution Model with a controller to enable the implementation of a debugger that takes advantage of the fUML virtual machine. The approach covers the major features of code-based debuggers such as stepwise execution, setting of breakpoints/watchpoints, inspection and manipulation of values, trace-logs, roll-back, and interactive visualisation of the execution.

The developed prototype allows to directly simulate UML models to gain system understanding, detect errors, and check whether the system conforms to engineer expectation and user requirements. Moreover, it can significantly reduce development cost and time by ensuring quality and preventing rework at later stages.

It is worth noticing that our prototype is modeling-tool independent and the proposed extensions of fUML do not change the regular execution semantics.

The new controller is not only useful for debugging purposes, it also brings more flexibility, controllability and observability to the Execution Model raising the possibility of using the operational semantics of fUML to more areas (e.g, using fUML as an engine to execute processes and workflow). Moreover, due to the fact that generally software engineers lack of skills in formal techniques, we investigate the use of a Model Checker in our prototype to analyse automatically the behaviors of activities in order to detect deadlocks, livelocks and to calculate reachability coverage.
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 1 Figure 1: Regular call between semantic elements
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 2 Figure 2: Abstract of the Loci package
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 3 Figure 3: Outline of the fUML extension
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 4 Figure 4: Modified call between semantic elements
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 5 Figure 5: Prototype of the UML debugger using the fUML virtual machine
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 6 Figure 6: Timing execution comparison between fUML and fUML with our extension

  State-reading the ability to inspect variables of the running program. State-modifying the ability to modify the variables of the running program. Trace-log the ability to log what happens during the execution. Jumping the ability to continue the execution at a different location in the program. Reverse-execution the ability to roll back the execution to a previous program state. Hot code replace the ability to modify some parts of the code without restarting the debugging from the start.
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 7 Figure 7: Excerpt of the Update activity

Table 1 :

 1 Comparison of UML Debuggers using direct simulation

					Academic		Commercial
				Our prototype Dotan et al.	Populo	Cameo Simu-	AM|USE 2.0	Eclipse Java
							lation Toolkit	Debugger
					Generic features	
			Controlling	yes	yes	yes	yes	yes	yes
			Visualization	callstack,	callstack,	callstack, tex-	callstack,	graphical	callstack, tex-
				graphical	graphical	tual	graphical	tual
			Breakpoints	yes	yes	yes	yes	yes	yes
	Cond. Breakpoints yes N. Intended? Execution path			
	1	no	UpdateSensor →NotifyPart				
	2	yes	UpdateSensor →UpdatePosition→LogInfo→NotifyPart			
	3	no	UpdateSensor →LogInfo→UpdatePosition→NotifyPart→NotifyPart		
	4	no	UpdatePosition→LogInfo→NotifyPart				
	5	yes	UpdatePosition→UpdateSensor →LogInfo→NotifyPart			
	6	no	UpdatePosition→UpdateSensor →LogInfo→NotifyPart→NotifyPart		
	7	. . .	. . .				

Table 2 :

 2 Some execution paths of the Update activity
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