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MOURRE’S METHOD FOR A DISSIPATIVE FORM PERTURBATION

JULIEN ROYER

Abstract. We prove uniform resolvent estimates for an abstract operator given by a dissi-
pative perturbation of a self-adjoint operator in the sense of forms. For this we adapt the
commutator method of Mourre. We also obtain the limiting absorption principle and uni-
form estimates for the derivatives of the resolvent. This abstract work is motivated by the
Schrödinger and wave equations on a wave guide with dissipation at the boundary.

1. Introduction

The purpose of this paper is to prove some uniform resolvent estimates and the limiting ab-
sorption principle for a dissipative operator obtained by a form-perturbation of a self-adjoint
operator. For this we prove a suitable version of the commutators method of Mourre.

Given a self-adjoint operator H0 on a Hilbert space H, the purpose of the Mourre method
(see [Mou81]) is to prove uniform estimates for the weighted resolvent

〈A〉−δ
(H0 − z)−1 〈A〉−δ

(1.1)

when z is close to the real axis. Here A is a (self-adjoint) conjugate opearator and δ > 1
2 . The

main assumption on A concerns its commutator with H0:

1J (H0)[H0, iA]1J(H0) > α1J (H0), for some α > 0. (1.2)

Here J is an open interval of R and 1J is the characteristic function of J . With this (and other)
assumption(s), the operator (1.1) appears to be uniformly bounded for Re(z) in a compact sub-
set of J and Im(z) 6= 0. In addition to these resolvent estimates, the method gives the limiting
absorption principle: the operator (1.1) is not only uniformly bounded for z close to the real
axis, but for Re(z) ∈ J it has a limit when ± Im(z) ց 0.

The original motivation for this theory is to prove the absence of singular spectrum for H0 in
J . This is an important question in scattering theory.

Compared to previous commutators methods (see for instance [Put67, Lav69, Lav71, Lav73]),
we see that the assumption (1.2) on the commutator is spectrally localized with respect to H0.
This result proved to be very efficient for difficult problems such as the N -body problem (see
for instance [PSS81, DG97, HS00] and references therein).

There are so many generalisations of the original result that we cannot mention them all, so
we refer to [ABG91] for a general overview of the subject. See also [CFKS87].

In this paper we focus on dissipative operators. In [Roy10b], we generalized the result of
[Mou81] for a dissipative operator H = H0− iV , where V > 0 is relatively bounded with respect
to H0. In this case we cannot localize spectrally with respect to the non-selfadjoint operator
H , but it turned out that we can obtain a similar result using the spectral projections of the
self-adjoint part H0. It is even possible to use the dissipative part to weaken the assumption:

1J(H0)
(

[H0, iA] + βV
)

1J(H0) > α1J(H0), α > 0, β > 0. (1.3)

Notice that for a general maximal dissipative operator we only know that the spectrum is included
in the lower half-plane {Im(z) 6 0} and the estimates for the weighted resolvent (1.1) (with H0

replaced by H = H0 − iV ) are only available for Im(z) > 0. Then in [BR14] we adapted to this
setting the results of [JMP84, Jen85] about the derivatives of the resolvent. We also mention
[BG10] for a closely related context.

The present work is motivated by the dissipative wave guide. If we consider a Schrödinger
operator on a domain with dissipation at the boundary, we obtain a dissipative operatorH which
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cannot be written as H0 − iV for H0 and V > 0 as in [Roy10b]. However the quadratic form q
associated to H can be written as q = q0 − iqΘ where q0 is the quadratic form corresponding to
a self-adjoint operator and qΘ is a non-negative quadratic form relatively bounded with respect
to q0. This example will be discussed with more details in Section 3. Our main purpose in
this paper is to prove uniform estimates for the resolvent of this kind of operators, as well as
estimates for the derivatives of the resolvent and the limiting absorption principle. A closely
related result has been proved in [ABG] for self-adjoint operators. Moreover the Mourre method
has already been used for wave guides (in a self-ajdoint context) in [KT04].

Compared to the self-adjoint analog, the first motivation for proving a dissipative Mourre
theorem is not to obtain results on the absolutely continuous spectrum and the corresponding
absolutely continuous subspace. Indeed, they are a priori only defined for self-adjoint operators.
However, an absolutely continuous subspace corresponding to a maximal dissipative operator H
on H has been defined in [Dav78] as the closure in H of

{

ϕ ∈ H : ∃Cϕ > 0, ∀ψ ∈ H,
∫ +∞

0

∣

∣

〈

e−itHϕ, ψ
〉∣

∣

2
dt 6 Cϕ ‖ψ‖2H

}

.

This definition coincide with the usual one for a self-adjoint operator. Notice that there are
other generalizations for the notion of absolutely continuous subspace in the litterature (see for
instance [NF10, Rom04, Rom06, Ryz97a, Ryz97b, Ryz98]). We prove in this paper that the
uniform resolvent estimates given by the Mourre theory give results on the the absolutely con-
tinuous subspace in the sense of Davies. For this we will use the dissipative generalization of the
theory of relatively smooth operators in the sense of Kato.

This paper is organized as follows. In Section 2 we give precise definitions for the dissipative
operator H which we consider and the corresponding conjugate operator A. Then in Section
3 we describe the applications which motivated this abstract work: the Schrödinger operator
on a wave-guide or on a half-space with dissipation at the boundary, and then the Schrödinger
operator on Rd whose absorption index becomes singular for low frequencies. In Section 4 we
state and prove the main theorem of this paper about uniform estimates and the limiting ab-
sorption principle. Finally we discuss the resolvent estimates for the derivatives of the resolvent
in Section 5 and the absolutely continuous subspace in Section 6.

We close this introduction by some general notation. We set

C+ = {z ∈ C : Im(z) > 0} ,
and for I ⊂ R:

CI,+ = {z ∈ C : Re(z) ∈ I, Im(z) > 0} .
If H1 and H2 are Hilbert spaces, we denote by L(H1,H2) the space of bounded operators from
H1 to H2.

Acknowledgements: This work was motivated by discussions with David Krejčǐŕık, Petr
Siegl and Xue Ping Wang during a French-Czech BARRANDE Project (26473UL). I would
like to thank them warmly for their stimulating questions, their helpful remarks and their kind
hospitality in Prague/Řež and Nantes. This research is also partially supported by the French
ANR Project NOSEVOL (ANR 2011 BS01019 01).

2. Dissipative operators and associated conjugate operators

In this section we recall some basic facts about dissipative operators given by form perturba-
tions of self-adjoint operators, and we introduce the corresponding conjugate operators. Let H
be a complex Hilbert space.

Definition 2.1. We say that an operator T with domain D(T ) on the Hilbert space H is
dissipative (respectively accretive) if

∀ϕ ∈ D(T ), Im 〈Tϕ, ϕ〉H 6 0,
(

respectively Re 〈Tϕ, ϕ〉H > 0
)

.

Moreover T is said to be maximal dissipative (maximal accretive) if it has no other dissipative
(accretive) extension on H than itself.
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Notice that the conventions for accretive and dissipative operators may be different for other
authors. With our definition, an operator T is (maximal) dissipative if and only if iT is (max-
imal) accretive. Moreover we recall that a dissipative operator T is maximal dissipative if and
only if (T − z) has a bounded inverse on H for some (and hence any) z ∈ C with Im(z) > 0.

Let q0 be a quadratic form closed, densely defined, symmetric and bounded from below.
Let H0 (with domain D(H0)) be the corresponding selfadjoint operator (see [Kat80, Theorem
VI.2.6]). We denote by K the domain of the form q0 (or the form-domain of the operator H0).

We identify H with its dual, and denote by K∗ the dual of K. Let H̃0 ∈ L(K,K∗) be such that
〈

H̃0ϕ, ψ
〉

K∗,K
= q0(ϕ, ψ) for all ϕ, ψ ∈ K.

Let qΘ be another symmetric form on H, non-negative and q0-bounded: there exists CΘ > 0
such that for all ϕ ∈ K we have

|qΘ(ϕ, ϕ)| 6 CΘ

(

|q0(ϕ, ϕ)|+ ‖ϕ‖2
)

. (2.1)

We set q = q0 − iqΘ and denote by H̃ the corresponding operator in L(K,K∗).

Proposition 2.2. There exists a unique maximal dissipative operator H on H such that D(H) ⊂
D(q) = D(q0) and

∀ϕ ∈ D(H), 〈Hϕ,ϕ〉H = q(ϕ, ϕ).

Moreover, the domain of H is the set of u ∈ D(q) such that

∃f ∈ H, ∀φ ∈ D(q), q(u, φ) = 〈f, φ〉H .

In this case f is unique and we have Hu = f .

We recall from [Roy14] the following lemma:

Lemma 2.3. Let qR be a non-negative, densely defined, closed form on a Hilbert space H. Let
qI be a symmetric form relatively bounded with respect to qR. Then the form qR− iqI is sectorial
and closed.

Proof of Proposition 2.2. There exists γ > 0 such that q0 + γ is non-negative. According to
Lemma 2.3, the form qγ := q0 + γ − iqΘ is sectorial and closed. We denote by Hγ the maxi-
mal accretive operator associated to qγ by the representation theorem (see Theorem VI.2.1 in
[Kat80]). This operator is dissipative. Since it is maximal accretive, (−1+ i) belongs to its resol-
vent set, and hence it is also maximal dissipative. Then it remains to consider H = Hγ − γ. �

It is important to note that the form qΘ is not assumed to be closable, so it is not associated
to any operator on H. However it defines an operator Θ ∈ L(K,K∗) and we have

H̃ = H̃0 − iΘ in L(K,K∗).

Compared to the setting of [Roy10b], this equality is not assumed to have a sense in L(D(H0),H).
We will see in Paragraph 3 an example of operator of this form which cannot be written as
Hs.a. − iV for Hs.a. self-adjoint and V self-adjoint, non-negative and Hs.a.-bounded with rela-
tive bound less than 1. Our purpose in this paper is to recover the results of [Roy10b] in this case.

According to the Lax-Milgram Theorem the operators i(H̃ − z) and hence (H̃ − z) have
bounded inverses in L(K∗,K) for all z ∈ C+. Moreover we have in L(K∗,K) the resolvent
identities

(H̃ − z)−1 = (H̃0 − z)−1 + i(H̃0 − z)−1Θ(H̃ − z)−1

= (H̃0 − z)−1 + i(H̃ − z)−1Θ(H̃0 − z)−1.
(2.2)

Notice that for f ∈ H ⊂ K∗ we have

(H − z)−1f = (H̃ − z)f.

We now introduce the conjugate operator A for H . Before the definition we recall from [ABG]
(see Lemma 1.1.4) the following result:

Lemma 2.4. Let A be a self-adjoint operator on H. Assume that K is left invariant by e−itA

for all t ∈ R. Then the domain of the generator of the unitary group e−itA
∣

∣

K
is

{ϕ ∈ D(A) ∩ K : Aϕ ∈ K} .
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Given t ∈ R, we remark that under the assumption of Lemma 2.4 we can extend by duality
the operator e−itA to K∗, which is also left invariant.

Definition 2.5. Let A be a self-adjoint operator on H. We say that A is a conjugate operator
(in the sense of forms) to H on the interval J if the following conditions are satisfied:

(i) The form domain K is left invariant by e−itA for all t ∈ R. We denote by E the domain of
the generator of e−itA

∣

∣

K
.

(ii) The commutators B0 = [H̃0, iA] and B = [H̃, iA], a priori defined as operators in L(E , E∗),
extend to operators in L(K,K∗).

(iii) The commutator [B, iA], a priori defined as an operator in L(E , E∗), extends to an operator
in L(K,K∗).

(iv) There exist α > 0 and β > 0 such that

1J(H0)(B0 + βΘ)1J(H0) > α1J (H0). (2.3)

Remark 2.6. If H = H0− iV and A is a conjugate operator for H on J in the sense of Definition
2.3 in [Roy10b] then H can be seen as a perturbation of H0 in the sense of forms and A is a
conjugate operator for H on J in the sense of Definition 2.5.

When dealing with a family of operators indexed by a parameter λ, it may be important to
track the dependance in λ of all the quantities which appear in this definition. In this case we
will refer to the following refined version of Definition 2.5:

Definition 2.7. We say that A is a conjugate operator (in the sense of forms) to H on J and
with bounds (α, β,Υ) ∈]0, 1]×R+ ×R+ if all the assumptions of Definition 2.5 are satisfied (in
particular α and β are the constants which appears in (2.3)) and moreover

‖B‖ 6
√
αΥ, ‖B + βΘ‖ ‖B0‖ 6 αΥ and ‖[B,A]‖+ β ‖[Θ, A]‖ 6 αΥ,

where all the norms are in L(K,K∗).

These definitions include the assumptions we will need to prove a uniform estimate and the
limiting absorption principle for the resolvent ofH . However it is known that in order to estimate
the derivatives of the resolvent we have to control more commutators of H with the conjugate
operator A:

Definition 2.8. Let N ∈ N∗. We set B1 = B. We say that the selfadjoint operator A is a
conjugate operator forH on J up to orderN if it is a conjugate operator in the sense of Definition
2.5 and if for all n ∈ {1, . . . , N} the operator [Bn, iA] defined (inductively) in L(E , E∗) extends
to an operator in L(K,K∗), which we denote by Bn+1.

Again, for a family of operators it may be useful to control the size of these multiple commu-
tators:

Definition 2.9. We say that A is a conjugate operator for H on J with bounds (α, β,ΥN ) up to
order N if it is a conjugate operator for H on J with bounds (α, β,Υ) in the sense of Definition
2.7, if it is a conjugate operator up to order N in the sense of Definition 2.8, and if

Υ +
1

α

N+1
∑

n=2

‖Bn‖L(K,K∗) 6 ΥN .

3. The dissipative wave guide and other applications

Before going further, we give some applications to illustrate the definitions of Section 2 and
to motivate the upcoming abstract theorems.

We first recall that for the free laplacian −∆ on Rd an example of conjugate operator is given
by the generator of dilations

A = − i

2
(x · ∇+∇ · x) = −i(x · ∇)− id

2
. (3.1)

Indeed for all t ∈ R the dilation e−itA maps u to e−itAu : x 7→ e−
dt
2 u(e−tx). In particular

it leaves invariant the form domain H1(Rd). Moreover a straightforward computation gives
[−∆, iA] = −2∆, so A is conjugate to −∆ on any interval J ⋐ R∗

+ with bound α = 2 inf(J) > 0.
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The study of more general Schrödinger operators is usually inspired by this model case.

The first example that motivated this abstract work is the following: let Ω ⊂ Rd be a wave
guide of the form Ω = Rp × ω where p ∈ {1, . . . , d− 1} and ω is a smooth open bounded subset
of Rd−p. A general point in Ω is denoted by (x, y) with x ∈ Rp and y ∈ ω. Let a ∈ W 1,∞(∂Ω).
We consider on L2(Ω) the operator

Ha = −∆ (3.2)

with domain
D(Ha) =

{

u ∈ H2(Ω), ∂νu = iau on ∂Ω
}

. (3.3)

We could also consider a (dissipative) perturbation of the free laplacian in the interior of Ω. This
operator appears in the spectral analysis of the wave equation











∂2tw −∆w = 0 on R+ × Ω,

∂νw + a∂tw = 0 on R+ × ∂Ω,

w(0, ·) = w0, ∂tw(0, ·) = w1 on Ω,

(3.4)

or the Schrödinger equation










−i∂tu−∆u = 0 on R+ × Ω,

∂νu = iau on R+ × ∂Ω,

u(0, ·) = u0 on Ω.

(3.5)

In [Roy14] we have studied (3.5) in the particular case where dimω = 1 and a is greater than
a positive constant at least on one side of the boundary. In this situation it was possible to
compute almost explicitely some spectral properties of Ha. In particular we proved that σ(Ha)
is included in {z ∈ C : Im(z) < −γ} for some γ > 0 with a uniform estimate for the resolvent
on the real axis, which gives exponential decay for the solution of (3.5). When the absorption
index a is not that strong, for instance if it is compactly supported on ∂Ω, the essential spectrum
will stay included in the real axis. Then we need more general tools to prove uniform resolvent
estimates up to the real axis in this case.

We know from [Roy14] that the operator Ha is maximal dissipative. The corresponding
quadratic form is

qa : ϕ 7→
∫

Ω

|∇ϕ|2 − i

∫

∂Ω

a |ϕ| =: q0(ϕ) − iqΘ(ϕ). (3.6)

It is defined on K = H1(Ω). The self-adjoint part q0 is associated with the operator H0 (defined
as Ha with the Neumann boundary condition a = 0). However the imaginary part is not associ-
ated to any operator on L2(Ω). Since D(Ha) 6= D(H∗

a ) = D(H−a) there is no hope to write Ha

as Hs.a. − iV for some self-adjoint operator Hs.a. and some non-negative self-adjoint operator
V relatively bounded with respect to Hs.a. with relative bound less than 1 as is required in
[Roy10b, BR14].

We define H̃0 and H̃a in L(K,K∗) as in Section 2. Let Lω denote the Laplacian with Neumann
boundary condition on the compact ω. Lω is self-adjoint on L2(ω) with compact resolvent. We
denote by 0 = λ0 < λ1 6 λ2 6 . . . its eigenvalues and by (ϕn)n∈N

a corresponding sequence
of orthonormal eigenfunctions. The spectrum of H0 is given by

⋃

n∈N
λn + R+ = R+, and the

eigenvalues of Lω are the thresholds in the spectrum of H0. We denote by T the set of these
thresholds. Assume that u ∈ D(H0) and λ ∈ R are such that H0u = λu. Let

û : (ξ, y) ∈ R
p × ω 7→

∫

x∈Rp

e−i〈x,ξ〉u(x, y) dx

be the partial Fourier transform of u with respect to x. Then for almost all ξ ∈ Rp we have

(Lω + |ξ|2 − λ)û(ξ, ·) = 0.

Since Lω has a discrete set of eigenvalues, û(ξ, ·) vanishes for ξ outside a set of measure 0 in Rp.
This proves that u = 0, and hence H0 has no eigenvalue.

We denote by ∇x the gradient with respect to the first p variables on Ω. Then we consider
the generator Ax of dilations in the first p variables, defined by

(Axu)(x, y) = −ix · ∇xu(x, y)−
ip

2
.
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Then for u ∈ L2(Ω), t ∈ R and (x, y) ∈ R
p × ω we have

e−itAxu(x, y) = e−
tp
2 u
(

e−tx, y
)

. (3.7)

Proposition 3.1. Let J ⊂ R∗
+ \ T be a compact interval. Let N ∈ N∗. Assume that for γ ∈ Np

with |γ| 6 N we have

|∂γxa(x, y)| 6 cγ 〈x〉−|γ|
. (3.8)

Then A is conjugate to Ha on J up to order N .

Proof. • According to (3.7) the form domain K = H1(Ω) is left invariant by e−itAx for any
t ∈ R. Let ϕ, ψ ∈ S(Ω). If −∆x denotes the Laplacian in the first p directions we have

[−∆, iAx] = [−∆x, iAx] = −2∆x (on Ω) and [a, iAx] = −(x · ∇x)a (on ∂Ω),

so
〈

[H̃a, iAx]ϕ, ψ
〉

= 2 〈∇xϕ,∇xψ〉L2(Ω) + i

∫

∂Ω

(x · ∇xa)ϕψ.

With a = 0 we simply obtain
〈

[H̃0, iAx]ϕ, ψ
〉

= 2 〈∇xϕ,∇xψ〉L2(Ω) .

We similarly compute for any n ∈ {0, . . . , N}
〈

adniAx
(H̃a)ϕ, ψ

〉

= 2n 〈∇xϕ,∇xψ〉L2(Ω) − i

∫

∂Ω

(

(−x · ∇x)
na
)

ϕψ.

This implies in particular that the forms adiAx
(H̃0) and adniAx

(H̃a) for n ∈ {1, . . . , N} extend

to forms on H1(Ω). It remains to check the last assumption of Definition 2.5.
• There exist m ∈ N and ε > 0 such that J ⊂ [λm + ε, λm+1 − ε]. Let u ∈ L2(Ω). For almost
all x ∈ Rp we have u(x, ·) ∈ L2(ω) so we can find a sequence (un(x))n∈N in CN such that

u(x, ·) =
∑

n∈N

un(x)ϕn and in particular
∑

n∈N

|un(x)|2 = ‖u(x, ·)‖2L2(ω) .

This defines a sequence (un)n∈N
of functions in L2(Rp) with
∑

n∈N

‖un‖2L2(Rp) = ‖u‖2L2(Ω) .

With the same proof as for Proposition 4.3 in [Roy14] we can check that for z ∈ C \R+ we have

(H0 − z)−1u =
∑

n∈N

(−∆x + λn − z)−1un ⊗ ϕn.

Moreover if u ∈ D(H0) then un ∈ H2(Rp) for all n ∈ N and we have

H0u =
∑

n∈N

(−∆+ λn)un ⊗ ϕn.

Let n > m+ 1. We have

〈H0(un ⊗ ϕn), (un ⊗ ϕn)〉L2(Ω) = 〈(−∆+ λn)un, un〉L2(Rp) > λn ‖un‖2L2(Rp)

> λm+1 ‖un ⊗ ϕn‖2L2(Ω) .

In particular 1J(H0)(un ⊗ ϕn) = 0. For a bounded operator T we set Im(T ) = (T − T ∗)/(2i).
Since H0 and −∆x have no eigenvalues we can write

1J(H0)u =

m
∑

n=0

1J(H0)(un ⊗ ϕn)

=
1

π
lim
µ→0

m
∑

n=0

∫

J

Im
(

−∆x + λn − (τ + iµ)
)−1

un ⊗ ϕn dτ

=

m
∑

n=0

1J(−∆x + λn)(un)⊗ ϕn.
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This gives
〈

[H̃0, iAx]1J(H0)u,1J(H0)u
〉

L2(Ω)
= 〈−2∆x1J(H0)u,1J(H0)u〉L2(Ω)

=

m
∑

n=0

〈−2∆x1J(−∆x + λn)(un)⊗ ϕn,1J(−∆x + λn)(un)⊗ ϕn〉L2(Ω)

> 2ε
m
∑

n=0

‖1J(−∆x + λn)(un)⊗ ϕn‖2L2(Ω)

> 2ε ‖1J(H0)u‖2L2(Ω) .

This proves (2.3) with α = 2ε and concludes the proof of the proposition. �

We could similarly analyse the same problem on the half-space

Ω =
{

(x1, . . . , xd) ∈ R
d : xd > 0

}

. (3.9)

We also mention the Schrödinger operator on Rd with dissipation on the hyperplane Σ = Rd−1×
{0} given by the transmission condition

∂xd
u(x′, 0+)− ∂xd

u(x′, 0−) = −ia(x′)u(x′, 0) on Σ. (3.10)

Here we have denoted by x = (x′, xd) a general point in Rd, with x′ ∈ Rd−1 and xd ∈ R.
When d = 1 this corresponds to the second derivative with (dissipative) Dirac potential, usually
denoted by

u 7→ −u′′ − iaδ(x)u.

More precisely, given a ∈W 1,∞(Σ) we consider on L2(Rd) the operator Ha = −∆ with domain

D(Ha) =
{

u ∈ H1(Rd) ∩H2(Rd \ Σ) : u satisfies (3.10)
}

.

Given u ∈ D(Ha) we define Hau as the function f ∈ L2(Rd) which coincide with the distribution
−∆u on Rd \ Σ. The operator Ha is associated to the quadratic form

qa : ϕ 7→
∫

Rd

|∇ϕ|2 dx− i

∫

Σ

a(x′) |u(x′, 0)|2 dx′,

defined on D(qa) = H1(Ω).
In both cases, we can take the generator of dilations (3.1) as a conjugate operator on any

compact interval J ⊂ R∗
+ if for all k ∈ N the function (x′ · ∇′)ka is bounded on ∂Ω or Σ (we

have denoted by ∇′ the gradient in the first (d− 1) variables).

In the same spirit as the last example, we can also mention the dissipative quantum graphs
with some infinite edges and dissipation at the vertices, given by the condition

u1(0) = · · · = unν
(0)

nν
∑

j=1

u′(0) = −iaνu(0), (3.11)

where for a vertex ν the integer nν is the number of edges attached to ν and aν > 0. For
precise definitions we refer to [Ong], which deals with the limiting absorption principle for such
a quantum graph with self-adjoint boundary conditions at the vertices (in particular (3.11) with
aν = 0 for all vertices ν). For various non-selfadjoint conditions on quantum graphs we also
refer to [HKS14].

We finish this section with the example of the Schrödinger operator with dissipation by a
potential in low dimensions and for low frequencies. In this case the dissipative Mourre theory
in the sense of operators as given in [Roy10b, BR14] can be applied, but not uniformly.

We consider on Rd, d > 3 the Schrödinger operator

Hλ = −∆− i

λ2
a
(x

λ

)

,

where λ > 0 and a ∈ C∞(Rd,R+) is of very short range: for some ρ > 0 there exist constants
cα, α ∈ N

d such that

|∂γa(x)| 6 cγ 〈x〉−2−ρ−|γ|
.
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In order to obtain low frequency resolvent estimates for the Schrödinger operator −∆−ia we have
to prove uniform resolvent estimates for Hλ close to the spectral parameter 1 uniformly in λ > 0
(see [BR14] for the wave equation). Since a is bounded the multiplication by 1

λ2 a
(

x
λ

)

defines a

bounded operator on L2(Rd) so for any λ > 0 we can apply to Hλ the dissipative Mourre theory
for perturbations in the sense of operators. However this absorption index becomes singular
when λ is close to 0 and it is not clear that this method gives estimates which are uniform in λ.
According to Proposition 7.2 in [BR14] we have for u ∈ S

∥

∥

∥
a
(x

λ

)

u
∥

∥

∥

Hs
. λ2 ‖u‖Hs+2

whenever s and s + 2 belong to
]

− d
2 ,

d
2

[

. The same applies if we replace a by (x · ∇)ka for
some k ∈ N. This proves that the commutator between the dissipative part of Hλ and the
generator of dilations A defines an operator in L(H2(Rd), L2(Rd)) uniformly in λ > 0 if d > 5.
But not if d ∈ {3, 4}. However, for any d > 3 it defines a uniformly bounded operator in
L(H1(Rd), H−1(Rd)), so it is fruitful to see it as a perturbation of the free laplacian in the sense
of forms. This idea will be used (in a more general setting) in [KR].

4. Uniform resolvent estimate and limiting absorption principle

In this section we prove the uniform resolvent estimates and the limiting absorption principle
in the abstract setting:

Theorem 4.1. Assume that A is a conjugate operator to H on the interval J with bounds
(α, β,Υ), in the sense of Definition 2.7.

(i) Let I ⊂ J̊ be a compact interval and δ > 1
2 . Then there exists C > 0 (which only depends

on CΘ, I, J , δ, β and Υ) such that for all z ∈ CI,+ we have
∥

∥

∥
〈A〉−δ

(H − z)−1 〈A〉−δ
∥

∥

∥

L(H)
6
C

α
. (4.1)

(ii) Moreover for all λ ∈ J̊ the limit

〈A〉−δ (

H − (λ+ i0)
)−1 〈A〉−δ

= lim
µ→0+

〈A〉−δ (

H − (λ+ iµ)
)−1 〈A〉−δ

exists in L(H) and defines a continuous function of λ on J (it is Hölder-continuous of

index 2δ−1
2δ+1 with a constant of size α− 4δ

2δ+1 ).

Remark 4.2. Taking the adjoint we obtain the same estimate with (H − z)−1 replaced by
(H∗ − z)−1.

The rest of this section is devoted to the proof of Theorem 4.1. To simplify the notation, the
symbol “ . ” will be used to replace “ 6 C ” where C is a constant which depends on CΘ, I,
J , δ, β and Υ. The dependance in α ∈]0, 1], z ∈ CI,+ and in the parameter ε (which will be
introduced in the proof) will always be explicit.

Let φ ∈ C∞
0 (R, [0, 1]) be supported in J̊ and equal to 1 on a neighborhood of I (notice

that all the estimates below will also depend on the choice of φ). We set Φ = φ(H0) and
Φ⊥ = (1 − φ)(H0). We have

Φ ∈ L(K∗,K) and Φ⊥ ∈ L(H) ∩ L(K) ∩ L(K∗).

Now let

M0 = Φ(B0 + βΘ)Φ and M = Φ(B + βΘ)Φ.

The operators M0 and M are bounded on H, and M0 is the self-adjoint part of M . After
multiplication by Φ on both sides, assumption (2.3) reads

M0 > αΦ2. (4.2)

The proof of the following lemma is postponed to the end of the section:

Lemma 4.3. The operator [M,A], a priori defined as an operator in L(E , E∗), extends to an
operator in L(K∗,K) which we denote by [M,A]K. Moreover we have

‖[M,A]K‖L(K∗,K) . α.
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Let ε > 0. The operator H − iεM is maximal dissipative on H with domain D(H), so for

z ∈ C+ it has a bounded inverse (H − iεM − z)−1 in L(H,D(H)). As above for H̃ , the operator

(H̃ − iεM − z) ∈ L(K,K∗) has a bounded inverse

Gz(ε) := (H̃ − iεM − z)−1 ∈ L(K∗,K).

The Mourre method relies on the so-called quadratic estimates (see Proposition II.5 in [Mou81]).
Here we will use the following version:

Proposition 4.4. Let γ0 be a quadratic form closed, densely defined, symmetric and bounded
from below. Let P0 be the corresponding selfadjoint operator. Let Kγ denote the domain of the
form γ0. Let γI be a non-negative and γ0-bounded form on H. Let P be the maximal dissipative
operator associated to the form γ0 − iγI , and P̃ the corresponding operator in L(Kγ ,K∗

γ). Let γ
a non-negative form on Kγ which satisfies γ 6 γI . Then for z ∈ C+ and ϕ ∈ K∗

γ we have

γ
(

(P̃ − z)−1ϕ
)

6

∣

∣

∣

∣

〈

(P̃ − z)−1ϕ, ϕ
〉

Kγ ,K∗

γ

∣

∣

∣

∣

and

γ
(

(P̃ ∗ − z)−1ϕ
)

6

∣

∣

∣

∣

〈

(P̃ − z)−1ϕ, ϕ
〉

Kγ ,K∗

γ

∣

∣

∣

∣

.

If ϕ ∈ H we can replace P̃ by P in these estimates.

Proof. For z ∈ C+ and ϕ ∈ K∗
γ we have

γ
(

(P̃ − z)−1ϕ
)

6
1

2i

〈

(

(P̃ ∗ − z)− (P̃ − z)
)

(P̃ − z)−1ϕ, (P̃ − z)−1ϕ
〉

K∗

γ ,Kγ

6
1

2i

〈

(P̃ − z)−1ϕ, ϕ
〉

Kγ ,K∗

γ

− 1

2i

〈

ϕ, (P̃ − z)−1ϕ
〉

K∗

γ ,Kγ

6 Im
〈

(P̃ − z)−1ϕ, ϕ
〉

Kγ ,K∗

γ

.

The second estimate is proved similarly. �

Proposition 4.5. Let K0 stand either for K or H. Then there exists ε0 ∈]0, 1] (which depends
on CΘ, I, J , β and Υ) such that for Q ∈ L(K∗

0), z ∈ CI,+ and ε ∈]0, ε0] we have
∥

∥Φ⊥Gz(ε)Q
∥

∥

L(K∗

0
,K)

. ‖Q‖L(K∗

0
) + ‖Q∗Gz(ε)Q‖

1
2

L(K∗

0
,K0)

, (4.3)

‖ΦGz(ε)Q‖L(K∗

0
,K) .

1√
α
√
ε
‖Q∗Gz(ε)Q‖

1
2

L(K∗

0
,K0)

, (4.4)

‖Gz(ε)Q‖L(K∗

0
,K) . ‖Q‖L(K∗

0
) +

‖Q∗Gz(ε)Q‖
1
2

L(K∗

0
,K0)√

α
√
ε

, (4.5)

and for ϕ ∈ K∗
0 with ‖ϕ‖K∗

0
6 1:

qΘ
(

ΦGz(ε)Qϕ
)

+ qΘ
(

Φ⊥Gz(ε)Qϕ
)

. ‖Q‖2L(K∗

0
) + ‖Q∗Gz(ε)Q‖L(K∗

0
,K0)

. (4.6)

These estimates also hold if Gz(ε) is replaced by Gz(ε)
∗ on the left-hand sides.

Applied with Q = IdK∗ , (4.5) gives an estimate on Gz(ε) alone:

Corollary 4.6. For z ∈ CI,+ and ε ∈]0, ε0] we have

‖Gz(ε)‖L(K∗,K) + ‖Gz(ε)
∗‖L(K∗,K) .

1

αε
.

Proof of Proposition 4.5. • Let z ∈ CI,+. Since Φ + Φ⊥ = 1, (4.5) is a direct consequence of
(4.3) and (4.4). Let ϕ ∈ K∗

0 . According to (4.2) and Proposition 4.4 applied with Qϕ ∈ K∗ and
the form q̃ corresponding to αεΦ2 we have

‖ΦGz(ε)Qϕ‖2H =
1

αε

〈

αεΦ2Gz(ε)Qϕ,Gz(ε)Qϕ
〉

H

6
1

αε

∣

∣

∣
〈Gz(ε)Qϕ,Qϕ〉K,K∗

∣

∣

∣

6
1

αε
‖Q∗Gz(ε)Q‖L(K∗

0
,K0)

‖ϕ‖2K∗

0
.
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Since φ is compactly supported in J , there exists a constant c which only depends on J such
that

‖ΦGz(ε)Qϕ‖2K 6
c

αε
‖Q∗Gz(ε)Q‖L(K∗

0
,K0)

‖ϕ‖2K∗

0
.

The same holds with Gz(ε) replaced by Gz(ε)
∗, and (4.4) is proved.

• Since the quadratic form qΘ is non-negative we can apply the Cauchy-Schwarz inequality:
for ψ1, ψ2 ∈ K we have

qΘ(ψ1 + ψ2) 6 qΘ(ψ1) + 2
√

qΘ(ψ1)
√

qΘ(ψ2) + qΘ(ψ2) 6 2qΘ(ψ1) + 2qΘ(ψ2).

In particular

qΘ(ΦGz(ε)Qϕ) 6 2qΘ(Gz(ε)Qϕ) + 2qΘ(Φ
⊥Gz(ε)Qϕ).

According to Proposition 4.4 we have

qΘ
(

Gz(ε)Qϕ
)

6
∣

∣

∣
〈Q∗Gz(ε)Qϕ,ϕ〉K0,K∗

0

∣

∣

∣
6 ‖Q∗Gz(ε)Q‖L(K∗

0
,K0)

‖ϕ‖2K∗

0
. (4.7)

On the other hand, according to (2.1)

qΘ(Φ
⊥Gz(ε)Qϕ) 6 CΘ

∥

∥Φ⊥Gz(ε)Qϕ
∥

∥

2

K
. (4.8)

We obtain

qΘ(ΦGz(ε)Qϕ) 6 2 ‖Q∗Gz(ε)Q‖L(K∗

0
,K0)

‖ϕ‖2K0
+ 2CΘ

∥

∥Φ⊥Gz(ε)Qϕ
∥

∥

2

K
. (4.9)

Thus we have to prove (4.3) to prove (4.6). The proof of (4.6) relies itself on (4.9).
• According to the resolvent identity (as in (2.2)) we have in L(K∗

0 ,K)

Φ⊥Gz(ε)Q = Φ⊥(H̃0 − z)−1Q+ iΦ⊥(H̃0 − z)−1
(

Θ+ εΦBΦ+ εβΦΘΦ
)

Gz(ε)Q.

By functional calculus the operator Φ⊥(H̃0 − z)−1 belongs to L(K∗,K) uniformly in z ∈ CI,+.
Let ϕ ∈ K∗

0 and ψ ∈ K∗. According to the Cauchy-Schwarz inequality we have
〈

Φ⊥(H̃0 − z)−1ΘGz(ε)Qϕ,ψ
〉

K,K∗

= qΘ
(

Gz(ε)Qϕ,Φ
⊥(H̃0 − z)−1ψ

)

6 qΘ
(

Gz(ε)Qϕ
)

1
2 qΘ

(

Φ⊥(H̃0 − z)−1ψ
)

1
2 .

According to (2.1) we have

qΘ

(

Φ⊥(H̃0 − z)−1ψ
)

. ‖ψ‖2K∗ .

With (4.7) this proves that
∥

∥

∥
Φ⊥(H̃0 − z)−1ΘGz(ε)Q

∥

∥

∥

L(K∗

0
,K)

. ‖Q∗Gz(ε)Q‖
1
2

L(K∗

0
,K0)

.

Then we have

ε
∥

∥

∥
Φ⊥(H̃0 − z)−1ΦBΦGz(ε)Q

∥

∥

∥

L(K∗

0
,K)

.
√
αε ‖ΦGz(ε)Q‖L(K∗

0
,K)

.
√
ε ‖Q∗Gz(ε)Q‖

1
2

L(K∗

0
,K0)

.

On the other hand, according to the Cauchy-Schwarz inequality and (4.9) we have

εβ
∥

∥

∥
Φ⊥(H̃0 − z)−1ΦΘΦGz(ε)Qϕ

∥

∥

∥

K

6 εβqΘ
(

Φ⊥(H̃0 − z)−1Φϕ
)

1
2 qΘ

(

ΦGz(ε)Qϕ
)

1
2

. ε
(

‖Q∗Gz(ε)Q‖
1
2

L(K∗

0
,K0)

+
∥

∥Φ⊥Gz(ε)Q
∥

∥

L(K∗

0
,K)

)

‖ϕ‖2K∗

0
.

Finally we obtain
∥

∥Φ⊥Gz(ε)Q
∥

∥

L(K∗

0
,K)

.
(

‖Q‖L(K∗

0
) + ‖Q∗Gz(ε)Q‖

1
2

L(K∗

0
,K0)

+ ε
∥

∥Φ⊥Gz(ε)Q
∥

∥

L(K∗

0
,K)

)

.

This gives (4.3) when ε > 0 is small enough. Then (4.9) and (4.8) give (4.6). �

Lemma 4.7. On L(D(A),D(A)∗) we have

Gz(ε)BGz(ε) = iAGz(ε)− iGz(ε)A− εGz(ε)[M,A]KGz(ε).
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Proof. Let ϕ, ψ ∈ D(A). Since E is dense in K we can consider sequences (ϕn)n∈N
and (ψn)n∈N

in E such that ϕn → Gz(ε)ϕ and ψn → Gz(ε)
∗ψ in K. Since B ∈ L(K,K∗) we have

〈Bϕn, ψm〉 −−−−−→
n,m→∞

〈Gz(ε)BGz(ε)ϕ, ψ〉 .

On the other hand, since ϕn, ψm ∈ D(A) and Aϕn, Aψm ∈ K we can write

〈Bϕn, ψm〉 =
〈

[H̃, iA]ϕn, ψm

〉

=
〈

[H̃ − iεM − z, iA]ϕn, ψm

〉

− ε 〈[M,A]ϕn, ψm〉 .

According to Lemma 4.3 we have

〈[M,A]ϕn, ψm〉 −−−−−→
n,m→∞

〈Gz(ε)[M,A]KGz(ε)ϕ, ψ〉 .

And finally

lim
n,m→∞

〈

[H̃ − iεM − z, iA]ϕn, ψm

〉

= i lim
n→∞

lim
m→∞

〈

Aϕn, (H̃ − iεM − z)∗ψm

〉

K,K∗

− i lim
m→∞

lim
n→∞

〈

(H̃ − iεM − z)ϕn, Aψm

〉

K∗,K

= i lim
n→∞

〈Aϕn, ψ〉K,K∗ − i lim
m→∞

〈ϕ,Aψm〉K∗,K

= i lim
n→∞

〈Aϕn, ψ〉H − i lim
m→∞

〈ϕ,Aψm〉H
= i lim

n→∞
〈ϕn, Aψ〉H − i lim

m→∞
〈Aϕ,ψm〉H

= i 〈Gz(ε)ϕ,Aψ〉H − i 〈Aϕ,Gz(ε)
∗ψ〉H .

The lemma is proved. �

The strategy for the proof of Theorem 4.1 is standard and relies on the following abstract
result about ordinary differential equations (see Lemma 3.3 of [JMP84]):

Lemma 4.8. Let X be a Banach space, ε0 ∈]0, 1] and f ∈ C1(]0, ε0], X). Suppose there exist
γ1 ∈ [0, 1], γ2 ∈ [0, 1[, γ3 ∈ R, and c1, c2 > 0 such that

∀ε ∈]0, ε0[, ‖f ′(ε)‖ 6 c1ε
−γ2(1 + ‖f(ε)‖γ1) and ‖f(ε)‖ 6 c2ε

−γ3 .

Then f has a limit at 0 and there exists c > 0 which only depends on ε0, γ1, γ2, γ3, c1 and c2
such that

∀ε ∈]0, ε0[, ‖f(ε)‖ 6 c.

Now we can prove Theorem 4.1:

Proof of Theorem 4.1. • For ε ∈]0, 1] we set Q(ε) = 〈A〉−δ 〈εA〉δ−1
. According to the func-

tional calculus we have

‖Q(ε)‖L(H) 6 1 and ‖AQ(ε)‖L(H) + ‖Q(ε)A‖L(H) . εδ−1. (4.10)

Denoting by a prime the derivative with respect to ε we also have

‖Q′(ε)‖L(H) . εδ−1. (4.11)

• For z ∈ CI,+ we set
Fz(ε) = Q(ε)Gz(ε)Q(ε).

According to (4.10) and Proposition 4.5 applied with Q = Q(ε) we have for ε ∈]0, ε0] (ε0 being
given by Proposition 4.5)

‖Fz(ε)‖ 6 ‖Gz(ε)Q(ε)‖ . 1 +
‖Fz(ε)‖

1
2

√
α
√
ε
, (4.12)

and hence

‖Fz(ε)‖ .
1

αε
. (4.13)

• We now estimate the derivative of F :

F ′
z(ε) = Q′(ε)Gz(ε)Q(ε) +Q(ε)Gz(ε)Q

′(ε) + iQ(ε)G(ε)Φ(B + βΘ)ΦG(ε)Q(ε)

Proposition 4.5 and (4.11) yield

‖Q′(ε)Gz(ε)Q(ε) +Q(ε)Gz(ε)Q
′(ε)‖ . εδ−1

(

1 +
‖Fz(ε)‖

1
2

√
α
√
ε

)

(4.14)
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and

‖Q(ε)G(ε)ΦΘΦG(ε)Q(ε)‖ . 1 + ‖Fz(ε)‖L(H) . (4.15)

For the remaining term we write in L(K,K∗)

ΦBΦ = B − ΦBΦ⊥ − Φ⊥BΦ− Φ⊥BΦ⊥.

According to Proposition 4.5 we have

∥

∥Q(ε)G(ε)
(

ΦBΦ⊥ +Φ⊥BΦ + Φ⊥BΦ⊥
)

G(ε)Q(ε)
∥

∥ . 1 +
‖Fz(ε)‖√

ε
.

• According to Lemma 4.7 we have on L(H):

Q(ε)Gz(ε)BGz(ε)Q(ε) = iQ(ε)AGz(ε)Q(ε)− iQ(ε)Gz(ε)AQ(ε)

− εQ(ε)Gz(ε)[M,A]KGz(ε)Q(ε).

With (4.10), Proposition 4.5 and Lemma 4.3 we get

‖Q(ε)Gz(ε)BGz(ε)Q(ε)‖ . 1 + α− 1
2 εδ−

3
2 ‖Fz(ε)‖

1
2 + ‖Fz(ε)‖ .

Together with (4.14) and (4.15) this gives

‖αF ′
z(ε)‖ . εδ−1 + ε−

1
2 ‖αFz(ε)‖+ εδ−

3
2 ‖αFz(ε)‖

1
2 , (4.16)

and hence, according to Lemma 4.8, we finally obtain

‖Fz(ε)‖ .
1

α
, (4.17)

which gives the uniform resolvent estimates (4.1) when ε goes to 0.
• Now we prove the limiting absorption principle on I. Without loss of generality we can
assume that δ ∈

]

1
2 , 1
]

. We prove that there exists C > 0 such that for all z, z′ ∈ CI,+ we have
∥

∥

∥
〈A〉−δ (

(H − z)−1 − (H − z′)−1
)

〈A〉−δ
∥

∥

∥

L(H)
. α− 4δ

2δ+1 |z − z′|
2δ−1

2δ+1 . (4.18)

For any c0 > 0, (4.18) is a direct consequence of the uniform estimate (4.1) as long as |z − z′| >
c0α, so it is enough to prove (4.18) when |z − z′| 6 c0α for some well chosen c0 > 0. According
to (4.16) and (4.17) we have

‖F ′
z(ε)‖ . α−1εδ−

3
2 ,

and hence

‖Fz(ε)− Fz(0)‖ . α−1εδ−
1
2 .

Of course we have the same estimate for z′. Moreover, according to (4.12) we have for all
ε ∈]0, ε0]

∥

∥

∥

∥

∂

∂z
Fz(ε)

∥

∥

∥

∥

=
∥

∥Q(ε)Gz(ε)
2Q(ε)

∥

∥ 6 ‖Gz(ε)Q(ε)‖ .
1

α2ε
,

and hence

‖Fz(ε)− Fz′(ε)‖ .
|z − z′|
α2ε

.

Given z and z′ we take

ε =

( |z − z′|
α

)
2

2δ+1

.

If c0 was chosen small enough then ε ∈]0, ε0], and we obtain

‖Fz(0)− Fz′(0)‖ . α− 4δ
2δ+1 |z − z′|

2δ−1

2δ+1 ,

which is exactly (4.18). Now for all λ ∈ I the function

µ 7→ 〈A〉−δ (H − (λ + iµ)
)−1 〈A〉−δ

has a limit when µ goes to 0+. Taking the limit Im z, Im z′ → 0+ in (4.18) proves that this limit
is a Hölder-continuous function of index 2δ−1

2δ+1 . �

To conclude we have to give a proof of Lemma 4.3:
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Proof of Lemma 4.3. The proof is inspired by the proof of Lemma 1.2.1 in [ABG].
• For θ ∈ R we set

H̃θ = eiθAH̃0e
−iθA ∈ L(K,K∗).

We first prove that the map θ 7→ H̃θ is strongly C1 and that for all θ, τ ∈ R and ϕ ∈ K we have
in K∗

(

H̃τ − H̃θ

)

ϕ = −
∫ τ

θ

eisAB0e
−isAϕds. (4.19)

This gives in particular
∥

∥

∥
H̃τ − H̃θ

∥

∥

∥

L(K,K∗)
. |τ − θ| ‖B0‖L(K,K∗) . (4.20)

Let θ ∈ R and ϕ ∈ E . For ε ∈ R∗ we have

H̃θ+ε − H̃θ

ε
ϕ = ei(θ+ε)AH̃0

e−iεA − 1

ε
e−iθAϕ+ eiθA

eiεA − 1

ε
H̃0e

−iθAϕ. (4.21)

Since e−iθAϕ ∈ E we have

e−iεA − 1

ε
e−iθAϕ

K−−−→
ε→0

−iAe−iθAϕ,

and hence the first term in the right-hand side of (4.21) goes to −ieiθAH̃0Ae
−iθAϕ in K∗ when ε

goes to 0. Now let g = H̃0e
−iθAϕ ∈ K∗. Since D(A) is dense in K∗, we can consider a sequence

(gn)n∈N
∈ D(A)N such that gn → g in K∗. For all n ∈ N we have in H:

eiεA − 1

ε
gn − iAgn =

i

ε

∫ ε

0

(eiτA − 1)Agn dτ.

In E∗ we can let n go to infinity (we use the Lebesgue dominated convergence theorem for the
right-hand side). We obtain that the equality holds in E∗ when gn is replaced by g, and hence

the second term in the right-hand side of (4.21) goes to ieiθAAH̃0e
−iθAϕ in E∗. This proves that

the map θ 7→ H̃θϕ is differentiable with derivative −eiθA[H̃0, iA]e
−iθAϕ ∈ E∗, and hence (4.19)

holds in L(E , E∗). Since B0 = [H̃0, iA] extends to an operator in L(K,K∗), this is the case for
both terms in (4.19) and we have the equality in L(K,K∗).

• On L(K,K∗) we have [H̃0, e
iθA] = (H̃0 − H̃θ)e

iθA and hence for t ∈ R and θ ∈ R∗ we have in
the strong sense in L(K,K∗):

eitH0
eiθA − 1

iθ
− eiθA − 1

iθ
eitH0 =

1

iθ

∫ t

0

eisH0 [iH̃0, e
iθA]ei(t−s)H0 ds

=

∫ t

0

eisH0
H̃0 − H̃θ

θ
eiθAei(t−s)H0 ds.

The operator eiθA goes strongly to 1 in L(K) and eiθA−1
iθ

converges strongly to A in L(E ,K) and
L(K∗, E∗). Moreover

eisH0
H̃0 − H̃θ

θ
eiθAei(t−s)H0

is uniformly bounded in L(K,K∗) according to (4.20). Since H̃0−H̃θ

θ
→ B0 strongly in L(K,K∗)

when θ goes to 0 (see (4.19)) we can apply Lebesgue dominated convergence to obtain

[eitH0 , A] =

∫ t

0

eisH0B0e
i(t−s)H0 ds,

in the strong sense in L(E , E∗). But the right-hand side defines an operator in L(K,K∗), so the
operator on the left has an extension in L(K,K∗) and

∥

∥[eitH0 , A]
∥

∥

L(K,K∗)
. |t| ‖B0‖L(K,K∗) . (4.22)

• Let ψ : x 7→ φ(x)(x− i)2 and Ψ = ψ(H0). We have Φ = (H0− i)−1Ψ(H0− i)−1. On L(E , E∗)
we have

[Ψ, A] =
1√
2π

∫

R

[eitH0 , A]ψ̂(t) dt.
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The right-hand side extends to an operator in L(K,K∗). Then this is also the case for the
left-hand side, and moreover

‖[Ψ, A]‖L(K,K∗) . ‖B0‖L(K,K∗)

∫

R

∣

∣

∣
tψ̂(t)

∣

∣

∣
dt.

Then

[Φ, A] = [(H0 − i)−1, A]Ψ(H0 − i)−1 + (H0 − i)−1[Ψ, A](H0 − i)−1

+ (H0 − i)−1Ψ[(H0 − i)−1, A].

Since

[(H0 − i)−1, A] = i(H0 − i)−1B0(H0 − i)−1 ∈ L(K∗,K),

this proves that [Φ, A] ∈ L(K∗,K) and

‖[Φ, A]‖L(K∗,K) . ‖B0‖L(,K,K∗)

• Now it only remains to write

[M0, A] = [Φ, A](B + βΘ)Φ + Φ[B + βΘ, A]Φ + Φ(B + βΘ)[Φ, A]

to conclude the proof. �

5. Multiple commutator estimates

In this section we generalize the multiple resolvent estimates known for a self-adjoint operator
(see [JMP84, Jen85]) or for the perturbation by a dissipative operator (see [Roy10b, BR14]).

Let N > 2 be fixed for all this section. We will use the notation of Definition 2.9. Thus the
symbol “ . ” will stand for “ 6 C ” where C is a constant which depends on CΘ, I, J , δ, β and
ΥN .

For n ∈ {1, . . . , N} and ε ∈]0, 1] we set

Cn(ε) =

n
∑

j=1

(−iε)j
j!

Bj ∈ L(K,K∗). (5.1)

In order to prove multiple resolvent estimates, we first need some estimates for the inverse of
(

H̃ + Cn(ε) − z
)

. It is not clear that this operator has an inverse, since for n > 3 there is an
anti-dissipative term in Cn(ε), but it will be the case for ε small enough. The following result
generalizes Lemma 3.1 in [JMP84] (see also Lemma 3.1 in [Roy10b]) to our setting:

Proposition 5.1. Suppose A is a conjugate operator for H up to order N on J with bounds
(α, β,ΥN ).

(i) There exists εN > 0 such that for n ∈ {1, . . . , N}, z ∈ CI,+ and ε ∈]0, εN ] the operator
(

H̃ + Cn(ε)− z
)

has a bounded inverse in L(K∗,K), which we denote by Gn
z (ε).

(ii) For n ∈ N, z ∈ CI,+ and ε ∈]0, εN ] we have

‖Gn
z (ε)‖L(K∗,K) .

1

αε

and
∥

∥

∥
Gn

z (ε) 〈A〉
−1
∥

∥

∥

L(H,K)
.

1

α
√
ε
.

(iii) The function ε ∈]0, εN [ 7→ Gn
z (ε) is differentiable in L(K∗,K). Moreover in L(D(A),D(A)∗)

we have the equality

d

dε
Gn

z (ε) = [Gn
z (ε), A]− i

(−iε)n
n!

Gn
z (ε)Bn+1G

n
z (ε).

For the proof of Proposition 5.1 we need the following lemma, inspired by the standard
technique for factored perturbations (see [Kat66]):

Lemma 5.2. Let T ∈ L(K,K∗) and assume that T has an inverse T−1 ∈ L(K∗,K). Let P1 ∈
L(H,K∗) and P2 ∈ L(K,H) be such that

∥

∥P2T
−1P1

∥

∥

L(H)
< 1. Then T +P1P2 ∈ L(K,K∗) has a

bounded inverse given by T−1 − T−1P1Γ
−1P2T

−1 ∈ L(K∗,K), where Γ = 1+ P2T
−1P1 ∈ L(H).
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Proof of Lemma 5.2. The assumptions ensure that Γ is bounded on H with bounded inverse, so
the operator R = T−1 − T−1P1Γ

−1P2T
−1 is well-defined in L(K∗,K). We only have to check

that R is indeed an inverse for T + P1P2. On K∗ we have

(T + P1P2)R = 1 + P1P2T
−1 − P1Γ

−1P2T
−1 − P1P2T

−1P1Γ
−1P2T

−1

= 1 + P1

(

1− Γ−1 − P2T
−1P1Γ

−1
)

P2T
−1

= 1 + P1

(

1− (1 + P2T
−1P1)Γ

−1
)

P2T
−1

= 1.

Similarly we have on K:

R(T + P1P2) = 1 + T−1P1P2 − T−1P1Γ
−1P2 − T−1P1Γ

−1P2T
−1P1P2

= 1 + T−1P1

(

1− Γ−1 − Γ−1P2T
−1P1

)

P2

= 1. �

Proof of Proposition 5.1. We use the notation introduced in Section 4.
• Let ε0 > 0 be given by Proposition 4.5. The operator ΦΘΦ is bounded and self-adjoint on
H. It is also non-negative, so its square root

√
ΦΘΦ is well-defined as a bounded operator on H.

As in Proposition 4.5, we write K0 either for H or K. Then for Q ∈ L(K∗
0), z ∈ CI,+, ε ∈]0, ε0]

and ϕ ∈ K∗
0 we have according to Proposition 4.5:

〈ΘΦGz(ε)Qϕ,ΦGz(ε)Qϕ〉 .
(

‖Q‖2L(K∗

0
) + ‖Q∗Gz(ε)Q‖L(K∗

0
,K0)

)

‖ϕ‖2K∗

0
.

This proves that
∥

∥

∥

√
ΦΘΦGz(ε)Q

∥

∥

∥

L(K∗

0
,K0)

. ‖Q‖L(K∗

0
) + ‖Q∗Gz(ε)Q‖

1
2

L(K∗

0
,K0)

. (5.2)

Applied with Q =
√
ΦΘΦ ∈ L(H), this gives

sup
z∈CI,+

ε∈]0,ε0]

∥

∥

∥

√
ΦΘΦGz(ε)

√
ΦΘΦ

∥

∥

∥

L(H)
< +∞. (5.3)

• For z ∈ CI,+ and ε ∈]0, εΘ] (where εΘ ∈]0, ε0] is chosen small enough) we can apply Lemma

5.2 with T = (H̃ − iεM − z) ∈ L(K,K∗), P1 = iεβ
√
ΦΘΦ ∈ L(H) and P2 =

√
ΦΘΦ ∈ L(H). We

obtain that the operator (H̃ − iεΦBΦ− z) has a bounded inverse GΘ
z (ε) ∈ L(K∗,K), given by

GΘ
z (ε) = Gz(ε)− iεβGz(ε)

√
ΦΘΦΓΘ

z (ε)
−1

√
ΦΘΦGz(ε), (5.4)

where

ΓΘ
z (ε) = 1 + iεβ

√
ΦΘΦGz(ε)

√
ΦΘΦ ∈ L(H).

In particular ΓΘ
z (ε)

−1 is bounded in L(H) uniformly with respect to z ∈ CI,+ and ε ∈]0, εΘ].
Corollary 4.6 and estimate (5.2) applied with Q = IdK∗ give

∥

∥

∥

√
ΦΘΦGz(ε)

∥

∥

∥

L(K∗,H)
.

1√
α
√
ε
.

With the similar estimate for Gz(ε)
√
ΦΘΦ and (5.4) we obtain

∥

∥GΘ
z (ε)

∥

∥

L(K∗,K)
.

1

αε
. (5.5)

With Proposition 4.5 we can check similarly that

∥

∥GΘ
z (ε)Φ

⊥
∥

∥

L(K∗,K)
.

1√
α
√
ε

(5.6)

and
∥

∥

∥
GΘ

z (ε) 〈A〉−1
∥

∥

∥

L(H,K)
.

1

α
√
ε
. (5.7)

• Now we want to apply Lemma 5.2 with T = (H̃ − iεΦBΦ − z), P1 = iεΦ⊥B 〈H0〉−
1
2 and

P2 = 〈H0〉
1
2 Φ. According to (5.6) we have

ε
∥

∥

∥
〈H0〉

1
2 ΦGΘ

z (ε)Φ
⊥B 〈H0〉−

1
2

∥

∥

∥

L(H)
. ε

∥

∥ΦGΘ
z (ε)Φ

⊥
∥

∥

L(K∗,K)
‖B‖L(K,K∗) .

√
ε.
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So if ε⊥ ∈]0, εΘ] is chosen small enough we can apply Lemma 5.2 for ε ∈]0, ε⊥]: for all z ∈ CI,+

and ε ∈]0, ε⊥] the operator (H̃ − z − iεBΦ) has a bounded inverse G⊥
z (ε) ∈ L(K∗,K) given by

G⊥
z (ε) = GΘ

z (ε)− iεGΘ
z (ε)Φ

⊥B 〈H0〉−
1
2 Γ⊥

z (ε)
−1 〈H0〉

1
2 ΦGΘ

z (ε),

where
Γ⊥
z (ε) = 1 + iε 〈H0〉

1
2 ΦGΘ

z (ε)Φ
⊥B 〈H0〉−

1
2 .

Then, as above we use (5.5), (5.6) and (5.7) to prove

∥

∥G⊥
z (ε)

∥

∥

L(K∗,K)
.

1

αε
, (5.8)

∥

∥G⊥
z (ε)Φ

⊥
∥

∥

L(K∗,K)
.

1√
α
√
ε

(5.9)

and
∥

∥

∥
G⊥

z (ε) 〈A〉−1
∥

∥

∥

L(H,K)
.

1

α
√
ε
. (5.10)

• In order to prove the existence ofG1
z(ε), it remains to apply Lemma 5.2 with T = (H̃ − iεBΦ− z),

P1 = iεB 〈H0〉−
1
2 and P2 = 〈H0〉

1
2 Φ⊥. We have

ε
∥

∥

∥
〈H0〉

1
2 Φ⊥GΘ

z (ε)B 〈H0〉−
1
2

∥

∥

∥

L(H)
. ε

∥

∥Φ⊥GΘ
z (ε)

∥

∥

L(K∗,K)
‖B‖L(K,K∗) .

√
ε.

So if ε1 ∈]0, ε⊥] is chosen small enough we can apply Lemma 5.2, which proves that for z ∈ CI,+

and ε ∈]0, ε1] the operator (H̃ − iεB − z) has a bounded inverse G1
z(ε) ∈ L(K∗,K) given by

G1
z(ε) = G⊥

z (ε)− iεG⊥
z (ε)B 〈H0〉−

1
2 Γ1

z(ε)
−1 〈H0〉

1
2 Φ⊥G⊥

z (ε),

where
Γ1
z(ε) = 1 + iε 〈H0〉

1
2 Φ⊥GΘ

z (ε)B 〈H0〉−
1
2 .

Moreover we have
∥

∥G1
z(ε)

∥

∥

L(K∗,K)
.

1

αε
(5.11)

and
∥

∥

∥
G1

z(ε) 〈A〉
−1
∥

∥

∥

L(H,K)
.

1

α
√
ε
. (5.12)

• For n ∈ {2, . . . , N} we have

∥

∥

∥
〈H0〉

1
2 G1

z(ε)(Cn(ε)− C1(ε)) 〈H0〉−
1
2

∥

∥

∥

L(H)
6

n
∑

j=2

εj
∥

∥G1
z(ε)

∥

∥

L(K∗,K)
‖Bj‖L(K,K∗)

. ε2 × 1

αε
× α . ε.

Thus for ε ∈]0, εN ], εN chosen small enough, we can apply Lemma 5.2 with T = H̃ +C1(ε)− z,

P1 =
(

Cn(ε) − C1(ε)
)

〈H0〉−
1
2 and P2 = 〈H0〉

1
2 . This proves that the operator H̃ + Cn(ε) − z

has a bounded inverse in L(K∗,K), given by

Gn
z (ε) = G1

z(ε)−G1
z(ε)

(

Cn(ε)− C1(ε)
)

〈H0〉−
1
2

(

1 +G1
z(ε)(Cn(ε)− C1(ε))

)−1 〈H0〉
1
2 G1

z(ε).

This proves the first statement, and the estimates are proved as above.
• Let ε ∈]0, εN [. For ε̃ ∈

]

ε
2 , εN [ we have

Gn
z (ε̃)−Gn

z (ε) = −Gn
z (ε̃)

(

Cn(ε̃)− Cn(ε)
)

Gn
z (ε).

Since Cn is a continuous function in L(K,K∗) and Gn
z is uniformly bounded in L(K∗,K) (by

a constant which depends on α) on
]

ε
2 , εN

[

, the map Gn
z is continuous in L(K∗,K). Then we

divide this equality by ε̃− ε et let ε̃ go to ε. We obtain that Gn
z is differentiable and

d

dε
Gn

z (ε) = −Gn
z (ε)C

′
n(ε)G

n
z (ε).

The derivative C′
n(ε) is well-defined in L(K,K∗). In the sense of forms on E we can check that

C′
n(ε) = [H̃ + Cn(ε)− z, A]− (−iε)n

n!
[Bn, A].

But the right-hand side extends to an operator in L(K,K∗), and the last statement of the
proposition follows. �
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The following two results generalize Theorems 3.2 and 3.5 in [Jen85]:

Theorem 5.3. Suppose A is a conjugate operator for H up to order N on J with bounds
(α, β,ΥN ). Let δ1, δ2 > 0 be such that δ1 + δ2 < N − 1. Let I be a compact subinterval of J̊ .
Then there exists c > 0 which only depends on CΘ, J , I, δ1, δ2, β and ΥN such that for all
z ∈ CI,+ we have

∥

∥

∥
〈A〉δ1 1R−

(A)(H − z)−1
1R+

(A) 〈A〉δ2
∥

∥

∥
6
c

α
.

Moreover for Re(z) ∈ J̊ fixed this operator has a limit when Im(z) ց 0. This limit defines in
L(H) a Hölder-continuous function of index N−1−δ1−δ2

N+1 with respect to Re(z).

Proof. Let εN be given by Proposition 5.1. For z ∈ CI,+ and ε ∈]0, εN ] we set

FN
z (ε) = 〈A〉δ1 eεA1R−

(A)GN
z (ε)1R+

(A)e−εA 〈A〉δ2 .
According to Proposition 5.1, the functional calculus and the fact that ‖[BN , A]‖L(K,K∗) . α we

have
∥

∥

∥

∥

d

dε
FN
z (ε)

∥

∥

∥

∥

=
εN

N !

∥

∥

∥
〈A〉δ1 eεA1R−

(A)GN
z (ε)[BN , A]G

N
z (ε)1R+

(A)e−εA 〈A〉δ2
∥

∥

∥

. ε−δ1 × α−1εN−2 × ε−δ2 =
εN−δ1−δ2−2

α
.

Since N − δ1 − δ2 − 2 > −1, this proves that FN
z (ε) is uniformly bounded (we do not have to

use Lemma 4.8 here). Now let z, z′ ∈ CI,+ and ε ∈]0, ε0]. The previous estimates give
∥

∥FN
z (ε)− FN

z (0)
∥

∥ 6
c

α
εN−1−δ1−δ2 and

∥

∥FN
z (ε)− FN

z′ (ε)
∥

∥ 6
c

α2
ε−(δ1+δ2+2) |z − z′| .

We get the second statement as we did for Theorem 4.1, taking ε = α− 1
N+1 |z − z′|

1
N+1 . �

Theorem 5.4. Suppose A is a conjugate operator for H up to order N on J with bounds
(α, β,ΥN ). Let δ ∈

]

1
2 , N

[

. Then there exists c > 0 which only depends on CΘ, J , I, δ1, δ2, β
and ΥN such that for all z ∈ CI,+ we have

∥

∥

∥
〈A〉−δ

(H − z)−1
1R+

(A) 〈A〉δ−1
∥

∥

∥

L(H)
6
c

α
,

and for Re(z) ∈ J̊ fixed this operator has a limit when Im(z) ց 0. This limit defines in L(H)
a Hölder-continuous function with respect to Re(z). Moreover we have similar results for the
operator

〈A〉δ−1
1R−

(A)(H − z)−1 〈A〉−δ
.

Proof. We follow the proof given in [Jen85]. It relies itself on the results of [Mou83]. We also
refer to [Roy10a] for a proof in the dissipative case (perturbation by a dissipative operator). The
case of a dissipative perturbation in the sense of forms does not rise new difficulties, so we omit
the details. �

Now that we have Theorems 4.1, 5.3 and 5.4 we can follow the idea developped in [BR14,
Sec. 5]. The purpose is not only to prove uniform estimates for the powers of the resolvent, but
also to allow inserted factors. This is motivated by the wave equation. Indeed, the derivatives
of the corresponding resolvent are not its powers in this case (see Example 5.7 below).

Let n ∈ {1, . . . , N}. We consider Φ0 ∈ L(K,H), Φ1, . . . ,Φn−1 ∈ L(K,K∗) and Φn ∈ L(H,K∗).
We assume (inductively) on m ∈ {1, . . . , N} that the operator

admiA(Φ0) := [adm−1
iA (Φ0), iA]

(with ad0iA(Φ0) = Φ0), at least defined as an operator in L(E , E∗), can be extended to an
operator in L(K,H). We assume similarly that the commutators admiA(Φj) for m ∈ {1, . . . , N}
and j ∈ {1, . . . , n−1} extend to operators in L(K,K∗) and finally that the commutators admiA(Φn)
for m ∈ {1, . . . , N} extend to operators in L(H,K∗). Then for j ∈ {1, . . . , n− 1} we set

‖Φj‖CN (A,K,K∗) =

N
∑

m=0

‖admiA(Φj)‖L(K,K∗) .
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We similarly define ‖Φ0‖CN (A,K,H) and ‖Φn‖CN (A,H,K∗), and then

‖(Φ0, . . . ,Φn)‖Cn
N
= ‖Φ0‖CN (A,K,H) ‖Φn‖CN (A,H,K∗)

n−1
∏

j=1

‖Φj‖CN (A,K,K∗) .

For z ∈ C+ we set

Rn(z) = Φ0(H − z)−1Φ1(H − z)−1 . . .Φn−1(H − z)−1Φn. (5.13)

The statement is the following:

Theorem 5.5. Suppose that the self-adjoint operator A is conjugate to the maximal dissipative
operator H on J up to order N with bounds (α, β,ΥN ). Let I ⊂ J̊ be a compact interval. Let
δ ∈

]

n− 1
2 , N

[

and δ1, δ2 > 0 such that δ1 + δ2 < N − n. Then there exists c > 0 such that
∥

∥

∥
〈A〉−δ Rn(z) 〈Aλ〉−δ

∥

∥

∥
6

c

αn
‖(Φ0, . . . ,Φn)‖Cn

N
,

∥

∥

∥
〈A〉δ−n

1R−
(A)Rn(z) 〈A〉−δ

∥

∥

∥
6

c

αn
‖(Φ0, . . . ,Φn)‖Cn

N
,

∥

∥

∥
〈A〉−δ Rn(z)1R+

(A) 〈A〉δ−n
∥

∥

∥
6

c

αn
‖(Φ0, . . . ,Φn)‖Cn

N

and
∥

∥

∥
〈A〉δ1 1R−

(A)Rn(z)1R+
(A) 〈A〉δ2

∥

∥

∥
6

c

αn
‖(Φ0, . . . ,Φn)‖Cn

N
.

Proof. We can follow the proof of the analogous Theorem 5.14 in [BR14]. We only briefly recall
the strategy. With the identity

(H − z)−1 = (H − i)−1 + (z − i)(H − i)−2 + (z − i)2(H − i)−1(H − z)−1(H − i)−1,

we see that we can assume without loss of generality that the operators Φj and their commutators
with A are in L(H). Then the idea is to start from the estimates for a single resolvent (see
Theorems 4.1, 5.3 and 5.4), to prove analog estimates with (H − z)−1 replaced by an operator
of the form Φj(H − z)−1Φk (for this we use the commutation properties between Φj and A),
and finally we use Lemma 5.4 in [BR14] to obtain the multiple resolvent estimates with inserted
factors. We omit the details and refer to the proof of Theorem 5.14 in [BR14]. �

Remark 5.6. With the same idea we could even prove uniform estimates for an operator of the
form

R(z) = Φ0(H1 − z)−1Φ1(H2 − z)−1 . . .Φn−1(Hn − z)−1Φn,

where H1, . . . , Hn are different maximal dissipative operators of the form dicussed in Section 2
with uniform constant CΘ in (2.1) and with the same form domain K, under the assumption that
A is conjugated to Hk on J with bounds (αk, β,ΥN ) for all k ∈ {1, . . . , n}. Then the quotient
αn is replaced by α1 . . . αn in the estimates of the theorem.

Example 5.7. We consider the wave equation (3.4) on the half-space (3.9). Assume that w0 = 0
on ∂Ω. Let w be the solution of (3.4). For µ > 0 we set wµ(t) = 1R+

(t)e−tµw(t). Then the
inverse Fourier transform of wµ,

w̌µ(τ) =

∫

R

eitτwµ(t) dt =

∫ +∞

0

eit(τ+iµ)w(t) dt,

is solution of the problem
{

(−∆− z2)w̌µ(τ) = −izw0 + w1 on Ω,

∂νw̌µ(τ) = izaw̌µ(τ) on ∂Ω,

where z = τ + iµ. In other words, we have

w̌µ(τ) = R(z)(−izw0 + w1) where R(z) = (Haz − z2)−1.

In order to study the properties of w̌µ(τ) and hence those of w(t) we have to prove uniform
resolvent estimates for the derivative of R(z) when Im(z) ց 0 (see for instance Theorem 1.2 in
[BR14] for the wave equation on Rd). We can check that for z ∈ C+ we have

R′(z) = R(z)(iΘ+ 2z)R(z),
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where Θ ∈ L(H1(Ω), H1(Ω)) is the operator corresponding to the imaginary part qΘ of qa (see
(3.6)). Following Proposition 5.9 in [BR14] we can check that for n ∈ N∗ the derivative R(n)(z)
is a linear combination of terms of the form

zkR(z)Θj1R(z)Θj2R(z) . . .ΘjmR(z),

where m ∈ {0, . . . , n} (there are m + 1 factors R(z)), k ∈ N, j1, . . . , jm ∈ {0, 1}, Θ1 = Θ,
Θ0 = Id and n = 2m− k − (j1 + · · ·+ jm). The difference is that Θ is not a bounded operator
on L2. However, we have checked the commutation properties between Θ and A in the proof of
Proposition 3.1, so with Theorem 5.5 we can prove the following result:

Proposition 5.8. Let n ∈ N and assume that (3.8) holds for N > n. Let δ > n+ 1
2 and let I

be a compact subset of R∗
+. Then there exists C > 0 such that for all z ∈ CI,+ we have

∥

∥

∥
〈x〉−δ

R(n)(z) 〈x〉−δ
∥

∥

∥

L(L2)
6 C.

6. Absolutely continuous spectrum

In this section we discuss the properties of the absolutely continuous subspace for a dissipative
operator. We recall from [Dav78] the following definition:

Definition 6.1. Let H be a maximal dissipative operator on a Hilbert space H. The absolutely
continuous subspace Hac(H) of H is the closure in H of

H∗
ac(H) :=

{

ϕ ∈ H : ∃Cϕ > 0, ∀ψ ∈ H,
∫ +∞

0

∣

∣

〈

e−itHϕ, ψ
〉

H

∣

∣

2
dt 6 Cϕ ‖ψ‖2H

}

.

For a self-adjoint operator this definition coincide with the usual definition involving the spec-
tral measure (see for instance Proposition 1.7, Theorem 1.3 and Corollary 1.4 in [Per83]).

In the self-adjoint case, the uniform resolvent estimates and the L2(R+,H) norm of the
solution of the time-dependant problem are linked by the theory of relatively smooth operators
in the sense of Kato (see [Kat66] and [RS79, §XIII.7]). It is less known that this link remains
valid for dissipative operators.

In order to extend the self-adjoint theory of relative smoothness for a dissipative operator
H , we use a self-ajdoint dilation of H . For the general theory of self-adjoint dilations we refer
to [NF10]. Here we only recall that a maximal dissipative operator H on a Hilbert space H
always has a self-adjoint dilation. This means that there exists a self-adjoint operator Ĥ on
some Hilbert space Ĥ (which contains H as a subspace) such that on L(H) we have

∀z ∈ C+, PH(Ĥ − z)−1IH = (H − z)−1,

∀z ∈ C+, PH(Ĥ − z)−1IH = (H∗ − z)−1,

∀t > 0, PHe
−itĤIH = e−itH ,

∀t > 0, PHe
itĤIH = eitH

∗

,

where PH ∈ L(Ĥ,H) denotes the orthogonal projection of Ĥ on H and IH ∈ L(H, Ĥ) is the

embedding of H in Ĥ. An explicit example of (minimal) self-adjoint dilation for the dissipative
Schrödinger operator on Rd is given in [Pav77].

Proposition 6.2. Let Q be a closed operator on H. Assume that there exists C > 0 such that
for all z ∈ C+ and ϕ ∈ D(Q∗) we have

〈(

(H − z)−1 − (H∗ − z)−1
)

Q∗ϕ,Q∗ϕ
〉

H
6 C ‖ϕ‖2H .

Then for ψ ∈ H we have e−itHψ ∈ D(Q) for almost all t > 0 and
∫ +∞

0

∥

∥Qe−itHψ
∥

∥

2

H
dt 6 C ‖ψ‖2H .

We also have eitH
∗

ψ ∈ D(Q) for almost all t > 0 and
∫ +∞

0

∥

∥

∥
QeitH

∗

ψ
∥

∥

∥

2

H
dt 6 C ‖ψ‖2H .
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Proof. Let Ĥ be a self-adjoint dilation ofH on a Hilbert space Ĥ which containsH as a subspace.
We can write Ĥ = H⊕H⊥. We extend Q as an operator Q̂ on Ĥ by 0 on H⊥. Then Q̂ is a closed

operator on Ĥ with domain D(Q̂) = D(Q) ⊕ H⊥. Then for all z ∈ C+ and ϕ̂ = (ϕ, ϕ⊥), ψ̂ =

(ψ, ψ⊥) ∈ D(Q̂) we have
〈

(

(Ĥ − z)−1 − (Ĥ − z)−1
)

Q̂∗ϕ̂, Q̂∗ψ̂
〉

Ĥ
=
〈(

(H − z)−1 − (H∗ − z)−1
)

Q∗ϕ,Q∗ψ
〉

H

6 C ‖ϕ‖H ‖ψ‖H 6 C ‖ϕ̂‖Ĥ
∥

∥

∥
ψ̂
∥

∥

∥

Ĥ
.

Let ζ̂ ∈ Ĥ. According to Theorem XIII.25 in [RS79] we have e−itĤ ζ̂ ∈ D(Q̂) for almost all t ∈ R

and
∫

R

∥

∥

∥
Q̂e−itĤ ζ̂

∥

∥

∥

2

Ĥ
dt 6 C‖ζ̂‖2

Ĥ
.

Now let ϕ ∈ H and ϕ̂ = (ϕ, 0) ∈ Ĥ. We have e−itHϕ = PHe
−itĤ ϕ̂ ∈ PHD(Q̂) = D(Q) for

almost all t > 0 and moreover
∫ +∞

0

∥

∥Qe−itHϕ
∥

∥

2

H
dt =

∫ +∞

0

∥

∥

∥
Q̂e−itĤ ϕ̂

∥

∥

∥

2

Ĥ
dt 6 C‖ϕ̂‖2

Ĥ
= C ‖ϕ‖2H .

We conclude similarly for the integral of
∥

∥QeitH
∗

ϕ
∥

∥

2

H
. �

Corollary 6.3. Under the assumptions of Proposition 6.2 we have Ran(Q∗) ⊂ H∗
ac(H).

Proof. Let ϕ ∈ Ran(Q∗) and ζ ∈ H be such that ϕ = Q∗ζ. Then for ψ ∈ H we have
∫ +∞

0

∣

∣

〈

e−itHϕ, ψ
〉

H

∣

∣

2
dt 6

∫ +∞

0

‖ζ‖2H
∥

∥

∥
QeitH

∗

ψ
∥

∥

∥

2

H
dt 6 C ‖ζ‖2H ‖ψ‖2H . �

Theorem 4.1 gives an estimate as in Proposition 6.2 with Q = 〈A〉−δ but only for z ∈ CI,+ for
some interval I. In order to obtain an estimate for all z ∈ C+ we have to localize spectrally. For
this we are going to use a function of the self-adjoint part H0 of H . We first prove the following
lemma:

Lemma 6.4. Let N ∈ N∗. Similarly to Definition 2.8, assume inductively that the commu-
tators B0

n := adniA(H̃0), at least defined as operators in L(E , E∗), extend to bounded opera-
tors on L(K,K∗) for n = 1, . . . , N . Then for all δ ∈ [−N,N ] and χ ∈ C∞

0 (R) the operator

〈A〉−δ χ(H0) 〈A〉δ extends to a bounded operator in L(K∗,K).

Proof. We consider an almost analytic extension χ̃ of χ (see [DS99, Dav95]):

χ̃(x+ iy) = ψ(y)

m
∑

k=0

χ(k)(x)
(iy)k

k!

where m > N + 1 and ψ ∈ C∞
0 (R, [0, 1]) is supported on [−2, 2] and equal to 1 on [−1, 1]. We

have

∂χ̃

∂ζ
(x+ iy) =

iψ′(y)

2

m
∑

k=0

χ(k)(x)
(iy)k

k!
+
ψ(y)

2
χ(m+1)(x)

(iy)m

m!
,

and in particular for ζ ∈ C
∣

∣

∣

∣

∂χ̃

∂ζ
(ζ)

∣

∣

∣

∣

. |Im ζ|m 1{Re(ζ)∈supp(χ),|Im(ζ)|62}(ζ). (6.1)

Thus we can write the Helffer-Sjöstrand formula for χ(H0):

χ(H0) = − 1

π

∫

ζ=x+iy∈C

∂χ̃

∂ζ
(ζ)(H̃0 − ζ)−1 dx dy.

Then we can check by induction on n ∈ {1, . . . , N} that the commutator adniA(χ(H0)) can be
written as a sum of terms of the form

± 1

π

∫

C

∂χ̃

∂ζ
(ζ)(H̃0 − ζ)−1B0

n1
(H̃0 − ζ)−1B0

n2
. . . (H̃0 − ζ)−1B0

np
(H̃0 − ζ)−1 dx dy
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where p ∈ {1, . . . , n} and n1, . . . , np ∈ N
∗ are such that n1 + · · ·+ np = n. For ζ ∈ supp(χ̃) and

Im(ζ) 6= 0 we have
∥

∥

∥
(H̃0 − ζ)−1

∥

∥

∥

L(K∗,K)
.

1

Im(ζ)

so with (6.1) we see that adniA(χ(H0)) extend to an operator in L(K∗,K) for n ∈ {0, . . . , N}.
Thus 〈A〉−δ

χ(H0) 〈A〉δ extends to a bounded operator for δ ∈ {−N, . . . , N}, and we conclude
by interpolation. �

Now we can prove the main result of this section:

Theorem 6.5. Assume that A is a conjugate operator to H on the open interval J , and let

δ > 1
2 . Then Ran

(

1J(H0) 〈A〉−δ ) ⊂ Hac(H) .

Proof. Let I and I ′ be compact intervals such that I ⊂ I̊ ′ ⊂ I ′ ⊂ J . Let χ ∈ C∞
0 (R) be

supported in I̊ and equal to 1 on a neighborhood of I. According to Lemma 6.4 and Theorem
4.1 (and Remark 4.2) the operator

〈A〉−δ χ(H0)(H − z)−1χ(H0) 〈A〉−δ

and its adjoint are bounded in L(H) uniformly in z ∈ CI′,+. Then for z ∈ CR\I′,+ and ϕ, ψ ∈ H
we have by the resolvent identity (see (2.2)):

∣

∣

∣

〈

〈A〉−δ
χ(H0)(H − z)−1χ(H0) 〈A〉−δ

ϕ, ψ
〉

H

∣

∣

∣

6
∣

∣

∣

〈

〈A〉−δ
χ(H0)(H0 − z)−1χ(H0) 〈A〉−δ

ϕ, ψ
〉

H

∣

∣

∣

+qΘ
(

(H − z)−1χ(H0) 〈A〉−δ ϕ, (H0 − z)−1χ(H0) 〈A〉−δ ψ
)

. ‖ϕ‖ ‖ψ‖+ qΘ
(

(H − z)−1χ(H0) 〈A〉−δ
ϕ
)

1
2 qΘ

(

(H0 − z)−1χ(H0) 〈A〉−δ
ψ
)

1
2

According to Proposition 4.4 and (2.1) we have
∥

∥

∥
〈A〉−δ

χ(H0)(H − z)−1χ(H0) 〈A〉−δ
∥

∥

∥
. 1 +

∥

∥

∥
〈A〉−δ

χ(H0)(H − z)−1χ(H0) 〈A〉−δ
∥

∥

∥

1
2

,

and hence
∥

∥

∥
〈A〉−δ

χ(H0)(H − z)−1χ(H0) 〈A〉−δ
∥

∥

∥
. 1.

Since we have the same estimate for (H∗−z)−1 instead of (H−z)−1, we conclude with Corollary

6.3 that Ran(χ(H0) 〈A〉−δ
) ⊂ H∗

ac(H). Since Hac(Ha) is closed in H by definition, the result
follows. �

We go back to the Schrödinger operator on the dissipative wave guide discussed in Section
3, see (3.2)-(3.3). In [Roy14] we have proved that under a strong assumption on the absorption
index then the norm of the solution of the Schrödinger equation (3.5) decays exponentially, which
implies in particular that Hac(Ha) = L2(Ω). In general we cannot expect such a fast decay but
the result concerning the L2

t

(

R+, L
2(Ω)

)

norm remains valid:

Proposition 6.6. With the notation of Section 3 we have Hac(Ha) = L2(Ω).

Proof. We recall that T is the (discrete) set of thresholds. Let δ > 1
2 . If J ⋐ R\T then according

to Theorem 6.5 we have Ran
(

1J(H0) 〈Ax〉−δ ) ⊂ Hac(Ha). SinceH0 has no eigenvalue, the union

of these sets for all suitable J is dense in L2(Ω). Since Hac(Ha) is closed in L2(Ω), the result
follows. �
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[ABG91] W. Amrein, A. Boutet de Monvel, and V. Georgescu. C0-groups, Commutator Methods and Spectral

theory of N-body Hamiltonians, volume 135 of Progress in mathematics. Birkhäuser Verlag, 1991.
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