
HAL Id: hal-01088140
https://hal.science/hal-01088140

Submitted on 1 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Trace-Based Decision Making in Interactive Application:
Case of Tamagotchi systems

Hoang Nam Ho, Mourad Rabah, Samuel Nowakowski, Pascal Estraillier

To cite this version:
Hoang Nam Ho, Mourad Rabah, Samuel Nowakowski, Pascal Estraillier. Trace-Based Decision Making
in Interactive Application: Case of Tamagotchi systems. IEEE International Conference on Control,
Decision and Information Technologies, Nov 2014, Metz, France. pp.123-127. �hal-01088140�

https://hal.science/hal-01088140
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr

Accepted in IEEE International Conference on Control, Decision and Information Technologies, Metz, November 3-5 2014

Trace-Based Decision Making in Interactive

Application: Case of Tamagotchi systems

Hoang Nam HO
1
, Mourad RABAH

1
, Samuel NOWAKOWSKI

2
, Pascal ESTRAILLIER

1

(1) L3i Laboratory – University of La Rochelle – La Rochelle – France

(2) University of Lorraine – LORIA, UMR 7503 – Nancy - France

{hoang_nam.ho, mourad.rabah, pascal.estraillier}@univ-lr.fr, samuel.nowakowski@loria.fr

Abstract— We present our exploratory work for situation

preselecting in interactive applications, assuming that the

application is an Interactive Adaptive System based on a

sequence of contextualized “situations”. Each situation confines

activities and interactions related to a common context, resources

and system actors. When one situation is completed, the system

has to determine which is the best following one. We introduce in

this paper a new preselecting method that identifies possible next

situations among all available situations. We propose a strategy

using Naïve Bayes based on the analysis of the sets of available

traces (the past of users). Combining all obtained results, we get a

set of situations, called set of alternatives that can be used in any

decision algorithm. We demonstrate our approach on a case

study based on Tamagotchi game.

Keywords— interactive adaptive system, preselection, situations,

traces, Bayesian probability, Multi-Criteria Decision Making.

I. INTRODUCTION

Our work considers adaptation in Interactive Adaptive
System (IAS) [1]. This kind of systems can adapt their
execution according to users behaviours. To control
application’s scenario structure and unfolding, we confine the
interactions in IASs using contextualized blocks called
“situations” [2]. A “situation” is one component of the system
where actors interact using local resources in a specific context
to achieve one or more common objectives. The computation
of the application consists in choosing, related to one given
situation, the most appropriate following one. This choice is
based on a Multi-Criteria Decision Making [3]. The criteria are
defined to take into account both local and global objectives of
the application. Thus, to choose the next situation to execute, a
decision process has been introduced in our previous work [4].
The process starts by identifying the list of the possible
situations for the next decision. This shortlisting is not
computed by the decision algorithms [3], [5]. In our situation-
based context, if we apply these methods to perform directly
the decision algorithm on all the available situations, some
situations do not need the decision because they are obviously
not compatible at a given moment. If we still perform the
decision technique on it, computation time will be too high
because of the complexity of the decision algorithm. To deal
with this problem, we propose to reduce the number of
situations that the decision method will analyse. We identify
among all the available situations, those that can be executed
according to the current state. The current state is a set of
properties that contribute to the execution of the application.
Then, our problem is: among all available situations, how to

preselect a set of possible situations for decision making in
IASs.

Concerning our problem, there are some existing
techniques that can be used. In [6], [7] authors calculate the
distance to determine which item can be recommended for the
user. The weaker the similarity of the current state and the
previous states gets, the larger the distance is. However,
Distance approach drawback is the computing time. In this
kind of approaches, we must consider all the data when we
want to compute the distance between the new data and the
available data. It does not support a model that allows us to
avoid to re-compute just some distances with the new data. In
another approach [8], authors use the Linear Logic to identify
all possible situations; Linear Logic is based on the inputs of
the current situation (called pre-condition). This method is very
intuitive because it performs only the verification of the logic
between the pre-conditions (that are part of situation’s
structure) and the current state of the system. This method is
not flexible when we do not have access to the situation’s
structure. Moreover, the Linear Logic does not provide a
quantified comparison value (as a distance in the Distance
approach above). This indicator is necessary to classify the
possible situations likelihood. Naïve Bayes is another approach
used for recommendation [9], [10]. This method can overcome
the mentioned drawbacks by constructing a learning model.
The Naïve Bayes aims to compute the executable probability
for each situation; this executable probability is then used to
classify the available situations. In our context, and knowing its
strengths, we decided to choose the Naïve Bayes to perform the
preselection computations in an interactive application
structured with “situations”.

In this paper, we consider an interactive application with
many interactions between the actors of the system. These
actions can generate information, we call traces [11]. Traces
contain many valuable information about the users’ past habits
and skills; if we use traces, they can help us to deal with the
problem more easily, as in [12]. In the present paper, we
propose a strategy to use traces for alternatives preselecting.

IEEE Page 1 01/12/y The paper is organized as follows:
the section II defines the trace-based that we use; the section III
presents a model for situations preselection in situation-based
IASs. The case study based on Tamagotchi game is presented
in section IV to validate our approach and compare it to others
approaches mentioned above. Finally section V concludes the
paper with perspectives for further works.

Accepted in IEEE International Conference on Control, Decision and Information Technologies, Metz, November 3-5 2014

II. TRACE-BASED SYSTEM IN INTERACTIVE APPLICATION

There are several works dealing with the Trace-Based
System (TBS) [13]. Each one defines a TBS that corresponds
to its particular context. In general, all of them are based on the
following steps:

• define the set of sensors, which provide the set of
traces during the execution of the application;

• collect the primary traces that are the raw traces
provided by the defined set of sensors;

• transform the collected traces into modeled ones [14]
by formatting and/or filtering according to a given
model.

In our context, we consider an interactive application where
the user interacts with the application. The execution process is
structured as one sequence of situations. At the end of each
situation, the system must choose another situation to run
according to the current state. In our trace-based system, we
define one sensor that labels timestamps, and records what
situation is chosen to run every time the decision is made. Our
TBS tracks important properties during the execution, and then
save them as traces composed of two objects: i) the current
state of the application (all of the recorded properties) and ii)
the completed situation (situation’s identifier). Then we
transform these two objects into the following format: the state
is a set of properties represented by a vector and the executed
situation is transformed into a character string, as shown
hereby:

trace = pro
1
, pro

2
,..., pro

m
, situation_name

We now have a simple TBS that supports the data for our
proposed preselecting strategy in the next section.

III. TRACE-BASED PRESELECTING STRATEGY IN

INTERACTIVE APPLICATION

Fig. 1 describes our trace-based preselecting strategy during the

execution of the application.

Fig. 1. Process of Trace-Based Preselecting Strategy in Interactive

Application

 The collected traces are analyzed to predict what are the
possible situations according to the current state. Data mining
techniques are some of the most efficient methods to solve our
prediction problem. Among several existing techniques, Naïve
Bayes [15], [16], Neural Network [17], k-Nearest Neighbors
[18], Support Vector Machine [19], we decide to use Naïve
Bayes. Our choice is motivated by:

• We consider the traces as the primary data for
computations. One trace contains heterogeneous
information that may be numeric or not. Not all the
above techniques can process both numeric and not
numeric values, while Naïve Bayes does. For
instance, the Neural Network or Support Vector
Machine cannot compute with the not numeric data.
In fact, the Naïve Bayes is suitable when we add any
information type to enlarge the traces.

• Computation time and complexity to analyze the data
with Naïve Bayes are less than with others
approaches. The Neural Network and the Support
Vector Machine require many parameters and the
performance of these methods depends strictly on the
choice of these parameters. K-Nearest Neighbors is
simple and understandable, but it cannot create a
training model as other methods.

• Naïve Bayes can create the model faster than others
and we do not have to re-estimate the whole model
when adding new data.

We will use the Naïve Bayes to preselect a set of situations.
We need to predict all the possible situations that can be
candidates for next execution step according to the current
state. This state (state) represents the attributes and properties
of the observed system at the end on the current situation
execution. For each situation, we compute the probability of its
executable ability. We obtain a set of probabilities related to all
the situations. A possible candidate situation is the one that has
a probability above a defined threshold h. If a situation is
candidate, we add it to the set of possible situations. The
detailed process is presented in the following algorithm.
Alternative(sit_i) is the preselection status of sit_i.

Input: the current state (state), set of n situations

for each i = 1 to n

 Compute P(sit_i/state)

 if (P(sit_i/state) >= h)

 Alternative(sit_i) = true

 else Alternative(sit_i) = false

Output: set of possibilities

The Naïve Bayes is based on the Bayes theorem. Given a
hypothesis x and the object D, if we define P(x/D) to be the
posteriori probability that the object D belongs to x, this
probability is calculated as:

P x /D() =
P D / x()×P x()

P D()

 (1)

where P(x/D) is the posterior probability of x given D, P(x)
is the prior probability of x, P(D) is the prior probability of the
object D and P(D/x) is the likelihood which is the probability
of D given x.

The main challenge is to obtain a prediction model M that

contains all the means µ
k

i and all the standard deviations σ
k

i of

the property k for the situation i (sit_i). We apply that to the n

Accepted in IEEE International Conference on Control, Decision and Information Technologies, Metz, November 3-5 2014

situations and we will use it to calculate the likelihood of each
situation. All the properties that we consider in our context are
numeric values and respect the normal (Gauss) distribution, so
the likelihood probability is computed as:

likelihood prok / sit _ i() =
1

2πσ k

i
e

− prok−µk
i()
2

2× σ k

i()
2

 (2)

Using all the likelihoods of each property, we compute the
posterior probability of a situation i with:

posterior sit _ i / state() = prior sit _ i()* likelihood prok / sit _ i()
k=1

m

∏
 (3)

Then, we obtain a set of posteriori probabilities and we
compute the probability for each situation with:

P sit _ i() =
posterior sit _ i()

posterior sit _ i()
i=1

n

∑

 (4)

This model uses the current state to predict if the
considered situation is executable. When we have the updated
state vector at the end of the current situation, we use it to
predict the execution’s ability of all the available situations by
computing for each situation its candidate probability. If it
exceeds the defined threshold h, the situation is considered as a
possible situation and all the possible situations constitute the
input set of alternatives for the decision algorithm.

IV. CASE STUDY AND DISCUSSION

We need to define an interactive application to demonstrate
our approach. The chosen application must be suited to
situation-based structuring: the system’s execution can be
divided into independent sequences performed in a given fixed
context. These sequences will correspond to the different
system’s situations. During the execution, the state of the
system will change according to each particular context. The
system’s execution is hence situations linking all along the
execution. To perform the next execution step, the system
and/or the user has to choose the next situation to execute in
the set of current candidates among all the available situations.
The Tamagotchi game suits well to the hypothesis above.

The game describes the life of a virtual pet, named
Tamagotchi. The user that plays Tamagotchi should perform
various actions that aim to keep the pet alive. We consider his
life from the beginning: Tamagotchi was originally an egg and
the user must take care of it since its hatching. This game can
be structured using situations. The user must successively
execute these situations to play the game. When the user comes
to the end of a situation, he will obtain an output state of the
system and he has to decide among all possible situations the
one to execute at the next time. The purpose of this case study
is not to offer a completed game, but to have a prototype that
will allow us to validate our proposition.

 We have identified eight situations that are: feeding,
cleaning, playing, treating, sleeping, socializing, educating and
death. We do not describe in detail all these situations; their
names are explicit enough. Once one situation is completed, we
must choose the one among 8 situations to continue the game.

Then, we define the state of the system using the 6
Tamagotchi’s properties: satiety (sat), tiredness (tir), sadness
(sad), care (care), friendship (fri) and politeness (pol). If the
user wants to play this game, he has to choose, at each step,
among the possible situations, which is the suitable one
according to the current state of the system.

The TBS in our case study is built, as mentioned in the
section II, in three steps:

• Defining sensors: we define two sensors: one to
measure the changes in the 6 properties above; the
other is responsible for the executed situation.

• Collecting primary traces: we collect the information
by the defined sensors.

• Transforming: we extract the updated value of each
property, we combine the 6 properties into a vector
and we add the chosen situation name at the end of the
record.

TABLE I. RECORD'S FORMAT IN TBS

 Table I gives a sample of traces that we have in the TBS.
Each trace has 6 defined properties and the final element is the
executed situation, for example: playing, sleeping, death…
Actually, we are working on the Tamagotchi prototype so we
do not have complete real data for the game execution.
Therefore, we have created a base of traces

1
 to test our method.

Statistically, we have created 10020 traces that contain 2273
feeding situations, 233 cleaning situations, 891 playing
situations, 2304 treating situations, 2269 sleeping situations,
1380 socializing situations, 534 educating situations and 136
death situations. We collected the opinion of many users about
the game experience in order to correctly simulate what
situation is chosen to execute in a specific system’s state
(combination of the 6 properties’ values). We used this
information to build a database for our prediction model.

 To define the prediction model we started with a training
phase. We carried out all the records from the TBS and applied
the approach presented in the previous section. Then we have
evaluated the performances of the obtained predicting model
by using the Weka software [20]. In the Table II, we
summarized the correct rate and the needed time to compute

1

“Tamagotchi Traces”: https://app.box.com/s/5feoqqmsu39stbmq3l0g

Accepted in IEEE International Conference on Control, Decision and Information Technologies, Metz, November 3-5 2014

the prediction model using the 4 methods mentioned in Section
III above.

TABLE II. COMPARISON OF THE PERFORMANCE OF THE 4 METHODS:
NAIVE BAYES, KNN, NEURAL NETWORK, SVM

Methods Correct Rate Time for building model

(time unit)

Naïve Bayes 83.61% 1 unit

kNN 76.88% Do not need model

Neural Network 84.03% 14 units

SVM 84.92% 6 units

 We can see that the performance of kNN technique is the
lowest. And there is no great difference between the three other
methods while the computation time for of SVM and Neural
Network is longer than for the Naïve Bayes.

 We then illustrate how to identify appropriate situation
using the obtained prediction model when we have a new state
vector. For example, if the observed state vector during the
execution of the application is: state = (sat = 0.03, tir = 0.26,
sad = 0.04, care = 0.09, fri = 2, pol = -0.7). We want to check
what are the situations that can be executed according to this
observed state vector. We derive in detail a calculation of the

likelihood of the feeding situation with µsat

feeding
= −0.45 and

σ sat

feeding
= 0.22 that are respectively the mean and the standard

deviation of the satiety property.

The likelihood of the property sat = 0.03 is:

likelihood sat = 0.03 / feeding() =
1

2π ×0.22
e

− 0.03+0.45()
2

2×0.05
2

≈ 0.19

Then the likelihood of all properties are computed:

likelihood tir = 0.26 / feeding()

likelihood sad = 0.04 / feeding()

likelihood care = 0.09 / feeding()

likelihood fri = 2 / feeding()

likelihood pol = −0.7 / feeding()

Finally, the prior probability of feeding situation is computed
with prior (feeding) = 2273/10020.

posteriori feeding / state() = prior feeding()*

likelihood sat = 0.03 / feeding()* likelihood tir = 0.26 / feeding()*

likelihood sad = 0.04 / feeding()* likelihood care = 0.09 / feeding()*

likelihood fri = 2 / feeding()* likelihood pol = −0.7 / feeding() ≈ 0.0012

After computing the likelihood of all situations, we apply (3) to
calculate the probability of each situation by defining the
threshold h = 15% and obtain the set of alternatives (Table III).

TABLE III. RESULT OF SITUATION PRESELECTING IN TAMAGOTCHI

Situation Probability Result

feeding 21.662% alternative

cleaning 0.0003% non-alternative

playing 11.128% non-alternative

treating 20.3% alternative

sleeping 2.338% non-alternative

socializing 16.863% alternative

educating 27.127% alternative

death 0.579% non-alternative

TABLE IV. THE RESULT OF THE PRESELECTING OF (I) OUR APPROACH VS (II) THE LINEAR LOGIC APPROACH AND (III) THE DISTANCE APPROACH

Situations

State 1

sat = 0.03 , tir =0.26

sad = 0.04, care = 0.09

fri = 2, pol = -0.7

State 2

sat =-0.1,tir = 0.01

sad=0.7,care=-0.1

fri=4, pol=0.1

State 3

sat =0.7, tir = -0.2

sad=-0.5, care= 0.2

fri=3, pol=0.3

State 4

sat =-0.1,tir = 0.3

sad=-0.2, care=0.5

fri=1, pol=0.3

State 5

sat = 0.4, tir = 0.1

sad= 0.5, care= 0.45

fri=4, pol=0.2

State 6

sat =-0.5, tir = 1

sad= 0.5, care= -0.1

fri=1, pol=0.9

(i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii) (i) (ii) (iii)

Feeding X X X X X X X X X X X

 Cleaning

X X X X X X X X

 Playing

X X X X X X X X X

 Treating X X X X

 Sleeping

 X X X X X X X

 Socializing X X X X X X X X X X X

 Educating X X X X

 Death

 We have also evaluated the performance of (i) our approach
compared to two existing approaches: (ii) Linear Logic and (iii)
Distance approach mentioned in Section I. Table IV
summarizes and compares the results of the preselection ability
on these approaches. We tested the preselection ability on 6
system’s possible states. We see that our method can filter the
situations that are alternative for the decision. For each state,
we indicate the preselection performance for each approach (an
“X” is associated with the situation when the situation is
preselected as alternative). Similarities between the three
approaches point out that our approach identifies the results as
well as the two others, but we can see that our approach is

more precise and decrease the number of alternatives for the
decision phase. For example, our approach computes the
probability of the execution’s ability for each situation; the
Distance approach computes a distance index is, whereas, the
Linear Logic approach does not return a quantified index for
each preselected situation as two others. Besides, the Linear
Logic needs to verify the current state with the pre-conditions
(in the situation’s structure). It depends strictly on the states
transition. While the Distance method and our approach do not
need to consider the predefined structure of the situation; we
observe only the current state to compute. However, if we use
Distance method, we must verify that the distance cannot

Accepted in IEEE International Conference on Control, Decision and Information Technologies, Metz, November 3-5 2014

exceed a predefined threshold. But it is also an inconvenient for
this method: we cannot preselect any situation if we define a
too small distance threshold (for example in the Table IV for
the state 6, the Distance approach has no results). Our method
must define also the threshold h but the performance of the
Distance approach is lower than Naïve Bayes according to the
Table III.

 Although our predicting model is based on simulated data,
the results are very promising. It encourages us to complete the
Tamagotchi prototype in order to build a real prediction model
on real data. We also wonder if we can improve the alternative
preselection by combining these three methods. For instance, a
suggestion could be to use first the Linear Logic to get a set of
executable situations and then to apply our approach to reduce
this set. If we combine two methods, we can reduce effectively
the number of situations for the decision technique. Besides,
our approach has some limitations. It is efficient only if we
have enough trace records. During the initial executions, we do
not have enough information to compute the prediction model.
In this case, users must decide by themselves. Another key
issue of our method is the setting of the threshold h. The
number of alternatives depends strictly on this value.

V. CONCLUSION

In this paper, we have presented a strategy for situations

preselection in situation-based interactive systems. Our

approach is based on the analysis of the generated traces

during the execution process. We have created a Trace Based

System adapted to our context. Then we applied a Naïve

Bayes technique in order to analyze these traces. Our aim is to

build a prediction model that helps us to identify what

situation can be executed according to the current state. Our

approach doesn’t modify the structure of the situations. We

only use past states of the system, recorded as system traces.

The main contribution of this paper is the preselection of

alternatives for the decision algorithm. We applied it on a

Tamagotchi game case study to illustrate our approach and

compare it to other existing approaches.

Our future work focuses on new strategies to choose the

best situation using the Multi-Criteria Decision Making

techniques among the identified alternatives. The defined

algorithms will be integrated in a Situation Decision Tool, a

situation engine for all interactive applications based on

situations.

REFERENCES

[1] P. Brun and M. Beaudouin-Lafon, “A taxonomy and evaluation of

formalisms for the specification of interactive systems,” in Proceedings
of the HCI’95 conference on People and computers, 1995, pp. 197–212.

[2] F. Trillaud, P. T. Pham, M. Rabah, P. Estraillier, and J. Malki,

“Situation-Based Scenarios for E-learning,” in Proceedings of IADIS e-
learning 2012, 2012, pp. 121–128.

[3] M. Köksalan, J. Wallenius, and S. Zionts, Multiple Criteria Decision

Making: From Early History to the 21st Century. World Scientific, 2011.

[4] H. N. Ho, M. Rabah, S. Nowakowski, and P. Estraillier, “Trace-Based

Weighting Approach for Multiple Criteria Decision Making,” Journal of
Software., vol. 9, no. 8, pp. 2180–2187, 2014.

[5] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.

Prentice Hall, 2010.

[6] R. Burke, “Hybrid Web Recommender Systems”, in The Adaptive Web:
Methods and Strategies of Web Personalization, LNCS: 4321, P.

Brusilovsky, A. Kobsa, and W. Nejdl, Eds. Berlin, Heidelberg: Springer-
Verlag , 2007, pp. 377–408.

[7] W. Cheetham, “Global Grade Selector: A Recommender System for

Supporting the Sale of Plastic Resin,” in Proceedings of the 5th
International Conference on Case-based Reasoning: Research and

Development, 2003, pp. 96–106.

[8] K. Dang, P. Pham, R. Champagnat, and M. Rabah, “Linear Logic
Validation and Hierarchical Modeling for Interactive Storytelling

Control,” in LNCS: 8253, 10th Advances in Computer Entertainment
(ACE 2013), Boekelo, The Netherlands, November 2013, pp. 524–527.

[9] K. Miyahara and M. Pazzani, “Improvement of Collaborative Filtering

with the Simple Bayesian Classifier,” Information Processing Society of
Japan Journal, vol. 43, no. 11, 2002.

[10] K. Wang and Y. Tan, “A New Collaborative Filtering Recommendation
Approach Based on Naive Bayesian Method,” in Proceedings of the

Second International Conference on Advances in Swarm Intelligence -
Volume Part II, 2011, pp. 218–227.

[11] J. Laflaquière, L. S. Settouti, Y. Prié, and A. Mille, “Trace-Based

Framework for Experience Management and Engineering,” in
Proceedings of 10th International Conference, KES 2006, 2006, pp.

1171–1178.

[12] R. Doumat, E. Egyed-Zsigmond, and J.-M. Pinon, “User Trace-Based
Recommendation System for a Digital Archive.,” in LNCS: 6176,

ICCBR, 2010, pp. 360–374.

[13] L. S Settouti, Y. Prié, D. Cram, P-A. Champin and A. Mille, “A Trace-
Based Framework for supporting Digital Object Memories,” in

Proceedings of 1
st
 International Workshop on Digital Object Memories

(DOMe'09) in the 5
th
 International Conference on Intelligent

Environments (IE 09) Barcelone , Spain, 2009.

[14] D. Clauzel, K. Sehaba, and Y. Prié, “Enhancing synchronous
collaboration by using interactive visualisation of modelled traces,”

Simulation Modelling Practice and Theory, vol. 19, no. 1, pp. 84–97,
2011.

[15] P. Domingos and M. Pazzani, “On the optimality of the simple Bayesian

classifier under zero-one loss,” Machine Learning, vol. 29, no. 2–3, pp.
103–130, 1997.

[16] D. J.Hand and K. Yu, “Idiot’s Bayes - not so stupid after all?,”
International Statistical Review, vol. 69, no. 3, 2001.

[17] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to data mining.

Wesley: Pearson Addison, 2006.

[18] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G. J.
McLachlan, A. Ng, B. Liu, P. S. Yu, Z.-H. Zhou, M. Steinbach, D. J.

Hand, and D. Steinberg, “Top 10 Algorithms in Data Mining,”
Knowledge and Information System, vol. 14, no. 1, pp. 1–37, 2007.

[19] V. Vapnik, “The Nature of Statistical Learning Theory,” Springer-

Verlag, New York, 2000.

[20] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The WEKA Data Mining Software: An Update,” SIGKDD

Exploration, vol. 11, no. 1, pp. 10–18, 2009.

