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Various genome evolutionary models have been proposed these last decades to predict the evolution of a DNA sequence over time, essentially described using a mutation matrix. By essence, all of these models relate the evolution of DNA sequences to the computation of the successive powers of the mutation matrix. To make this computation possible, hypotheses are assumed for the matrix, such as symmetry and time-reversibility, which are not compatible with mutation rates that have been recently obtained experimentally on genes ura3 and can1 of the Yeast Saccharomyces cerevisiae. In this work, authors investigate systematically the possibility to relax either the symmetry or the time-reversibility hypothesis of the mutation matrix, by investigating all the possible matrices of size 2 ˆ2 and 3 ˆ3. As an application example, the experimental study on the Yeast Saccharomyces cerevisiae has been used in order to deduce a simple mutation matrix, and to compute the future evolution of the rate purine/pyrimidine for ura3 on the one hand, and of the particular behavior of cytosines and thymines compared to purines on the other hand.

Introduction

Due to mutations or recombination, some variations occur in the frequency of each codon, and these codons are thus not uniformly distributed into a given genome. Since the late '60s, various genome evolutionary models have been proposed to predict the evolution of a DNA sequence as generations pass. Mathematical models allow the prediction of such an evolution, in such a way that statistical values observed in current genomes can be at least partially recovered from hypotheses on past DNA sequences. Moreover, it can be attractive to study the genetic patterns (blocs of more than one nucleotide: dinucleotides, trinucleotides...) that appear and disappear depending on mutation parameters.

A first model for genomes evolution has been proposed in 1969 by Thomas Jukes and Charles Cantor [START_REF] Jukes | Evolution of protein molecules[END_REF]. This first model is very simple, as it supposes that each nucleotide has the probability m to mutate to any other nucleotide, as described in the following mutation matrix,

¨˚m m m m ˚m m m m ˚m m m m ˚‹ ‹ ' .
In that matrix, the nucleotides are ordered as pA, C, G, T q, so that for instance the coefficient in row 3, column 2 represents the probability that the nucleotide G mutates into a C during the next time interval, i.e., P pG Ñ Cq. As diagonal elements can be deduced by the fact that the sum of each row must be equal to 1, they are omitted here. This first attempt has been followed up by Motoo Kimura [START_REF] Kimura | A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[END_REF], who has reasonably considered that transitions (A ÐÑ G and T ÐÑ C) should not have the same mutation rate than transversions (A ÐÑ T , A ÐÑ C, T ÐÑ G, and C ÐÑ G), this model being refined by Kimura in 1981, with three constant parameters to make a distinction between natural A ÐÑ T , C ÐÑ G and unnatural transversions, leading to:

¨˚c a b c ˚b a a b ˚c b a c ˚‹ ‹ ' .
Joseph Felsenstein [START_REF] Felsenstein | A view of population genetics[END_REF] has then supposed that the nucleotides frequency depends on the kind of nucleotide A,C,T,G. Such a supposition leads to a mutation matrix of the form:

¨˚πC πG πT πA ˚πG πT πA πC ˚πT πA πC πG ˚‹ ‹ '
with πA, πC , πG, and πT denoting the frequency of occurance of each nucleotide, respectively. Masami Hasegawa, Hirohisa Kishino, and Taka-Aki Yano [START_REF] Hasegawa | Dating of the human-ape splitting by a molecular clock of mitochondrial dna[END_REF] have generalized the models of [START_REF] Kimura | A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[END_REF] and [START_REF] Felsenstein | A view of population genetics[END_REF], introducing in 1985 the following mutation matrix: These efforts have been continued by Tamura, who proposed in [START_REF] Tamura | Estimation of the number of nucleotide substitutions when there are strong transitiontransversion and g+c-content biases[END_REF][START_REF] Tamura | Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees[END_REF] a simple method to estimate the number of nucleotide substitutions per site between two DNA sequences, by extending the model of [START_REF] Kimura | A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[END_REF]. The idea is to consider a two-parameter method, for the case where a GC bias exists. Let us denote by πGC the frequency of this dinucleotide motif. Tamura supposes that πG " πC " πGC 2 and πA " πT " 1 ´πGC 2 , which leads to the following rate matrix:

¨˚απC
Mutation ura3 can1 T Ñ C 4 4 T Ñ A 14 9 T Ñ G 5 5 C Ñ T 16 20 C Ñ A 40 21 C Ñ G 11 9 A Ñ T 8 4 A Ñ C 6 5 A Ñ G 0 1 G Ñ T 28 20 G Ñ C 9 12 G Ñ A
¨˚κp1 ´πGC q{2 p1 ´πGC q{2 p1 ´πGC q{2 κπGC {2 ˚πGC {2 πGC {2 p1 ´πGC q{2 p1 ´πGC q{2 ˚κp1 ´πGC q{2 πGC {2 πGC {2 κπGC {2 ˚‹ ‹ ' .
All these models are special cases of the GTR model [START_REF] Yang | Estimating the pattern of nucleotide substitution[END_REF], in which the mutation matrix has the form (using obvious notations): ¨˚fAC πC fAGπG fAT πT fAC πA ˚fCGπG fCT πT fAGπA fCGπC ˚πT fAT πA fCT πC πG ˚‹ ‹ ' .

Non-reversible and non-symmetric models have, for their part, been considered in practical inferences since at least a decade for phylogenetic studies, see for instance [START_REF] Klosterman | XRate: a fast prototyping, training and annotation tool for phylo-grammars[END_REF][START_REF] Boussau | Efficient likelihood computations with nonreversible models of evolution[END_REF][START_REF] Yap | Rooting a phylogenetic tree with nonreversible substitution models[END_REF]. As they are more regarded for their interest in practical inference investigations than on the theoretical side, they will not be developed in this article. Due to mathematical complexity, matrices theoretically investigated to model evolution of DNA sequences are thus limited either by the hypotheses of symmetry and time-reversibility or by the desire to reduce the number of parameters under consideration. These hypotheses allow their authors to solve theoretically the DNA evolution problem, for instance by computing directly the successive powers of their mutation matrix. However, one can wonder whether such restrictions on the mutation rates are realistic. Focusing on this question, we used in [START_REF] Bahi | Predicting the evolution of gene ura3 in the yeast saccharomyces cerevisiae[END_REF] a recent research work of Lang and Murray [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF], in which the per-base-pair mutation rates of the Yeast Saccharomyces cerevisiae have been experimentally measured (see Table 1), allowing us to calculate concrete mutation matrices for genes ura3 and can1. We deduced in [START_REF] Bahi | Predicting the evolution of gene ura3 in the yeast saccharomyces cerevisiae[END_REF] that none of the existing genomes evolution models can fit such mutation matrices, implying the fact that some hypotheses must be relaxed, even if this relaxation implies less ambitious models: current models do not match with what really occurs in concrete genomes, at least in the case of this yeast. Having these considerations in mind, the data obtained by Lang and Murray have been used in [START_REF] Bahi | Predicting the evolution of gene ura3 in the yeast saccharomyces cerevisiae[END_REF] in order to predict the evolution of the rates or purines and pyrimidines in the particular case of ura3. Mathematical investigations and numerical simulations have been proposed, focusing on this particular gene and its associated matrix of size 2ˆ2 (purines vs. pyrimidines), and of size 3ˆ3 (cytosines and thymines compared to purines). Instead of focusing on two particular matrices, this extension of [START_REF] Bahi | Predicting the evolution of gene ura3 in the yeast saccharomyces cerevisiae[END_REF] investigates systematically all the possible mutation matrices of sizes 2 ˆ2 and 3 ˆ3. Thus, the study is finalized in this article, by investigating all the possible cases, and discussing about their mathematical and biological relevance.

The remainder of this research work is organized as follows. First of all the case of mutation matrices of size 2 ˆ2 is recalled in Section 2 and applied to the ura3 gene taking into account purines and pyrimidines mutations. A simulation is then performed to compare this non reversible model to the classical symmetric Cantor model. The next sections deal with all the possible 6-parameters models of size 3 ˆ3. In Section 3, a complete theoretical study is led encompassing all the particular situations, whereas in Section 4 an illustrative example focusing on the evolution of the purines, cytosines, and thymines triplet is given for ura3. We finally conclude this work in Section 5.

General Model of Size ˆ2

In this section, a first general genome evolution model focusing on purines versus pyrimidines is proposed, to illustrate the method and as a pattern for further investigations. This model is applied to the case of the yeast Saccharomyces cerevisiae.

A convergence result

Let R and Y denote respectively the occurrence frequency of purines and pyrimidines in a sequence of nucleotides, and M " ˆa b c d ˙the associated mutation matrix, with a " P pR Ñ Rq, b " P pR Ñ Y q, c " P pY Ñ Rq, and

d " P pY Ñ Y q satisfying # a `b " 1, c `d " 1, (2.1) 
and thus M " ˆa 1 ´a c 1 ´c ˙. The initial probability is denoted by P0 " pR0 Y0q, where R0 and Y0 denote respectively the initial frequency of purines and pyrimidines. So the occurrence probability at generation n is Pn " P0M n , where Pn " pRpnq Y pnqq is a probability vector such that Rpnq (resp. Y pnq) is the rate of purines (resp. pyrimidines) after n generations. The following theorem states the time asymptotic behavior of the probabilit Pn.

We recall the following result was proved in [START_REF] Bahi | Predicting the evolution of gene ura3 in the yeast saccharomyces cerevisiae[END_REF]: thm 2.1. Consider a DNA sequence under evolution, whose mutation matrix is M " ˆa 1 ´a c 1 ´c ẇith a " P pR Ñ Rq and c " P pY Ñ Rq.

• If a " 1, c " 0, then the frequencies of purines and pyrimidines do not change as the generation pass.

• If a " 0, c " 1, then these frequencies oscillate at each generation between pR0 Y0q (even generations) and pY0 R0q (odd generations).

• Else the value Pn " pRpnq Y pnqq of purines and pyrimidines frequencies at generation n is convergent to the following limit:

lim nÑ8 Pn " 1 c `1 ´a `c 1 ´a ˘.
rem 2.1. Note that the case a ‰ 1 ´c, resp. a ‰ c, translates the non symmetry property, resp. the time reversibility property.

Numerical Application

For numerical application, we will consider mutations rates in the ura3 gene of the Yeast Saccharomyces cerevisiae, as obtained by Gregory I. Lang and Andrew W.Murray [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF] and summed up in Table 1. 

2 ˆ2. So c " P pY Ñ Rq " m ˆ1 ´743 14362 ˙« 2.897 ˆ10 ´7.
As a consequence the purine/pyrimidine mutation matrix that corresponds to the values of where m " 3.0552 ˆ10 ´7 as mentionned previously.

Using the value of m for the ura3 gene leads to 1 ´a " 2.83391 ˆ10 ´7 and c " 2.89714 ˆ10 ´7, which can be used in Theorem 2.1 to conclude that the rate of pyrimidines is convergent to 49.45% whereas the rate of purines converge to 50.55%. Numerical simulations using data published in [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF] are given in Figure 2, leading to a similar conclusion.

A First Genomes Evolution Model of size ˆhaving 6 Parameters without Time-reversibility hypothesis

In order to investigate the evolution of the frequencies of cytosines and thymines in the gene ura3, a model of size 3 ˆ3 compatible with real mutation rates of the yeast Saccharomyces cerevisiae is now presented.

Formalization

Let us consider a line of yeasts where a given gene is sequenced at each generation, in order to clarify explanations. The n´th generation is obtained at time n, and the frequences of purines, cytosines, and thymines at time n are respectively denoted by PRpnq, PC pnq, and PT pnq.

Let a be the probability that a purine is changed into a cytosine between two generations, that is: a " P pR Ñ Cq. Similarly, denote by b, c, d, e, f the respective probabilities: P pR Ñ T q, P pC Ñ Rq, P pC Ñ T q, P pT Ñ Rq, and P pT Ñ Cq. Contrary to existing approaches, P pR Ñ Cq is not supposed to be equal to P pC Ñ Rq, and the same statement holds for the other probabilities. For the sake of simplicity, we will suppose in all that follows that a, b, c, d, e, f are not time dependent.

Let

M " ¨1 ´a ´b a b c 1 ´c ´d d e f 1 ´e ´f '
be the mutation matrix associated to the probabilities mentioned above, and Pn the vector of occurrence, at time n, of each of the three kind of nucleotides. In other words, Pn " pPRpnq PC pnq PT pnqq. Under that hypothesis, Pn is a probability vector: @n P N,

• PRpnq, PC pnq, PT pnq P r0, 1s,

• PRpnq `PC pnq `PT pnq " 1,

Let P0 " pPRp0q PC p0q PT p0qq P r0, 1s 3 be the initial probability vector. We have obviously:

PRpn `1q " PRpnqP pR Ñ Rq `PC pnqP pC Ñ Rq `PT pnqP pT Ñ Rq, with similar equalities for PC pn `1q and PT pn `1q so that

Pn " Pn´1M " P0M n . ( 3.1) 
In all that follows we wonder if, given the parameters a, b, c, d, e, f as in [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF], one can determine the frequency of occurrence of any of the three kind of nucleotides when n is sufficiently large, in other words if the limit of Pn is accessible by computations.

Resolution

This section, that is a preliminary of the convergence study, is devoted to the determination of the powers of matrix M in the general case and some particular situations

Determination of M n in the general case

The characteristic polynomial of M is equal to χM pxq " x 3 `ps ´3qx 2 `pp ´2s `3qx ´1 `s ´p " px ´1q `x2 `ps ´2qx `p1 ´s `pq ˘,

where

s " a `b `c `d `e `f,
p " ad `ae `af `bc `bd `bf `ce `cf `de, detpM q " 1 ´s `p.

The discriminant of the polynomial of degree 2 in the factorization of χM is equal to ∆ " ps 2q 2 ´4p1 ´s ´pq " s 2 ´4p. Let x1 and x2 the two roots (potentially complex or equal) of χM , given by x1 " ´s `2 ´as 2 ´4p 2 and x2 " ´s `2 `as 2 ´4p 2 .

(3.2)

Let n P N, n ě 2. As χM is a polynomial of degree 3, a division algorithm of X n by χM pXq leads to the existence and uniqueness of two polynomials Qn and Rn, such that

X n " QnpXqχ2pXq `RnpXq, (3.3) 
where the degree of Rn is lower than or equal to the degree of χM , i.e., RnpXq " anX 2 `bnX `cn with an, bn, cn P R for every n P N. By evaluating (3.3) in the three roots of χM , we find the system

$ & % 1 " an `bn `cn x n 1 " anx 2 1 `bnx1 `cn x n 2 " anx 2 2 `bnx2 `cn
This system is equivalent to

$ & % cn `bn `an " 1 bnpx1 ´1q `anpx 2 1 ´1q " x n 1 ´1 bnpx2 ´1q `anpx 2 2 ´1q " x n 2 ´1
If we suppose that x1 ‰ 1, x2 ‰ 1, and x1 ‰ x2, then standard algebraic computations give

$ ' ' ' ' ' ' ' & ' ' ' ' ' ' ' % an " 1 x2 ´x1 " x n 2 ´1 x2 ´1 ´xn 1 ´1 x1 ´1 ȷ , bn " x1 `1 x1 ´x2 x n 2 ´1 x2 ´1 `x2 `1 x2 ´x1 x n 1 ´1 x1 ´1 ,
cn " 1 ´an ´bn.

Using for i " 1, 2 and n P N the following notation,

Xipnq " x n i ´1 xi ´1 , ( 3.4) 
and since x2 ´x1 " ? ∆, the system above can be rewritten as (3.5)

By evaluating (3.3) in M and due to the theorem of Cayley-Hamilton, we finally have for every integer n ě 1,

M n " anM 2 `bnM `cnI3, (3.6) 
where I3 is the identity matrix of size 3, an, bn, and cn are given by (3.5), and M 2 is given by

M 2 "
¨a2 `2ab `ac ´2a ´a2 ´ab ´ac ´ab `ad ´b2 `b2 `be ´2b `1 ´ad `2a `bf ´be ´bf `2b ´ac ´bc ´c2 ac `c2 `2cd ´2c bc ´cd ´d2 ´cd `2c `de `d2 `df ´2d `1 ´de ´df `2d ´ae ´be `cf

ae ´cf ´df be `df `e2 `2ef ´e2 ´ef `2e ´ef ´f 2 `2f ´2e `f 2 ´2f `1 ‹ ‹ ‹ ‹ ‹ ‹ ' .

Determination of M n in particular situations

Formulations of (3.5) only hold for x1 ‰ x2, x1 ‰ 1, and x2 ‰ 1. We now investigate these latter cases.

Preliminaries Let us firstly remark that, as the mutation matrix M is stochastic, we have necessarily 0 ď a `b ď 1, 0 ď c `d ď 1, and 0 ď e `f ď 1. These inequalities imply that s P r0, 3s. Consequently from the definition of p one can check that p " ad `ape `f q `bpc `dq `bf `cpe `f q `de ď ad `a `b `bf `c `de ď s, as each parameter is in r0, 1s. To sum up, Note that, as we deal with a stochastic process, the module of the eigenvalues of M are smaller than 1, so |x1| ď 1 and |x2| ď 1.

0 ď p ď s ď 3. ( 3 
Suppose that x 1 " 1 Then ´s " a s 2 ´4p ðñ s " p " 0. So a " b " c " d " e " f " 0, and the mutation matrix is equal to the identity of size 3. Conversely, if a " b " c " d " e " f " 0, then x1 " 1.

In that situation, the system does not evolve.

Suppose that x 2 " 1 (and x 1 ‰ 1) Then s " a s 2 ´4p ðñ p " 0. In that situation, x1 " 1 ´s and 1 is root of multiplicity 2 of χ2, whereas x1 " 1 ´s is its third root. As the case x1 " 1 has already been regarded, we can consider that s ‰ 0. Using (3.3), These facts lead to the following system:

$ & % 1 " an `bn `cn, n " 2an `bn, p1 ´sq n " p1 ´sq 2 an `p1 ´sqbn `cn.

Standard computations then give the following formula:

$ ' ' ' ' & ' ' ' ' % an " ´1 `sn `p1 ´sq n s 2 ,
bn " p3 ´sq `ps 2 ´2sqn `ps ´3qp1 ´sq n s , cn " ps ´1qp2s ´1q ´sps ´1q 2 n ´ps 2 ´3s `1qp1 ´sq n s 2 .

(3.9)

Case x 1 " x 2 ‰ 1 (∆ " 0) Then (3.8) implies that x1 " 1´s{2 P " ´1 2 , 1 ˘.
From a differentiation of (3.3) one deduces that x1 satisfies the following system for every n P N

˚, $ & % 1 " an `bn `cn x n 1 " anx 2 1 `bnx1 `cn nx n´1 1 " 2anx1 `bn Standard algebraic computations give, since x1 ‰ 1, $ ' ' ' ' ' ' & ' ' ' ' ' ' % an " n x n´1 1 x1 ´1 ´X1pnq x1 ´1
bn " X1pnq ´anpx1 `1q

cn " 1 ´an ´bn

(3. 10 
)
where X1pnq is defined in (3.4).

Convergence study

Convergence study in the general case

We suppose in this section that x1 ‰ x2, x1 ‰ 1, and x2 ‰ 1. So formulations of (3.5) hold for an, bn, and cn. We split the study convergence in several sub-cases, that are the objects of Theorems 

Convergence study in particular situations

The case where x1 " 1 has already been discussed, it implies that a " b " c " d " e " f " 0, and so the system does not evolve. The other particular situations are invastigated in the two following theorems.

thm 3.4. Suppose that x2 " 1 and x1 ‰ 1 (or equivalently p " 0). Then the system is well formulated if and only if M 2 `sps ´2qM ´ps ´1q 2 I3 ‰ 0. In that situation, we have:

• either s Ps0, 2r, and so pPRpnq PC pnq PT pnqq ÝÑ pPRp0q PC p0q PT p0qq ˆ1 s 2 r´M 2 `sp3 śqM `ps ´1qp2s ´1qI3s.

• or s " 2, and so pPRp2nq PC p2nq PT p2nqq ÝÑ pPRp0q PC p0q PT p0qq whereas pPRp2n `1q PC p2n `1q PT p2n `1qq pPRp0q PC p0q PT p0qq ˆp´2M 2 `4M `2I3q.

Proof. Using (3.9), we can deduce that M n is equal to: anM 2 `bnM `cnI3 " n s rM 2 `sps ´2qM ´ps ´1q 2 I3s `1 s 2 p1 ´sq n rM 2 `sps ´3qM ´ps 2 ´3s `1qI3s `1 s 2 r´M 2 `sp3 ´sqM `ps ´1qp2s ´1qI3s.

Several cases can be deduced from this equality. 

Application in Concrete Genomes Prediction

We consider another time the numerical values for mutations published in [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF]. Gene ura3 of the Yeast Saccharomyces cerevisiae has a mutation rate of 3.80 ˆ10 ´10 /bp/generation [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF]. As this gene is constituted by 804 nucleotides, we can deduce that its global mutation rate per generation is equal to m " 3.80 ˆ10 ´10 ˆ804 " 3.0552 ˆ10 ´7. Let us compute the values of a, b, c, d, e, and f . The first line of the mutation matrix is constituted by 1 ´a ´b " P pR Ñ Rq, a " P pR Ñ T q, and b " P pR Ñ Cq. P pR Ñ Rq takes into account the fact that a purine can either be preserved (no mutation, probability 1 ´m), or mutate into another purine (A Ñ G, G Ñ A). As the generations pass, authors of [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF] 

Conclusion

In this document, a formulation of the non symmetric discrete model of size 2 ˆ2 has been proposed, which studies a DNA evolution taking into account purines and pyrimidines mutation rates. A simulation has been performed, to compare the proposal to the well known Jukes and Cantor model. Then all non-symmetrical models of size 3x3 that have 6 parameters have been studied theoretically. They have been tested with numerical simulations, to make a distinction between cytosines and thymines in the former proposal. These two models still remain generic, and can be adapted to a large panel of applications, replacing either the couple (purines, pyrimidines) or the tuple (purines, cytosines, thymines) by any categories of interest.

Remark that the ura3 gene is not the unique example of a DNA sequence of interest such that none of the existing nucleotides evolution models cannot be applied due to a complex mutation matrix. For instance, a second gene called can1 has been studied too by the authors of [START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF]. Similarly to gene ura3, usual models cannot be used to predict the evolution of can1, whereas a study following a same canvas than what has been proposed in this research work can be realized.

In future work, biological consequences of the results produces by these models will be systematically investigated. Then, the most general non symmetric model of size 4 will be regarded in some particular cases taken from biological case studies, and the possibility of mutations non uniformly distributed will then be regarded. Finally, this 4 ˆ4 general case will be investigated using Perron-Frobenius based approaches instead of using methods directly inspired by linear algebra, in order to obtain the most global results on mutation matrices.
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Table 1 :

 1 Summary of sequenced ura3 and can1 mutations[START_REF] Lang | Estimating the per-base-pair mutation rate in the yeast saccharomyces cerevisiae[END_REF] 

		26	40
	Transitions	46	65
	Transversions	121	85

  They have measured phenotypic mutation rates, indicating that the per-base pair mutation rate at ura3 is m " 3.0552 ˆ10 ´7/generation for the whole gene.For the majority of Yeasts they studied, ura3 is constituted by 804 bp: 133 cytosines, 211 Using these values in the historical model of Jukes and Cantor[START_REF] Jukes | Evolution of protein molecules[END_REF], we obtain the evolution depicted in Figure1.2.1 allows us to compute the limit of the rates of purines and pyrimidines:

			0.58				Nucleotides Evolution Rates
								Purine
			0.56				Pyrimidine
			0.54			
			0.52			
		Rate	0.50			
	thymines, 246 adenines, and 214 guanines. So R0 " 1 2 3 4 5 Time (1 unit = 400000000 generations) 246 `214 804 6 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 Rate Nucleotides Evolution Rates 0 1 2 3 4 5 6 Time (1 unit = 1 mutation) 0.42 0.44 0.46 0.428. 0 0.48	« 0.572, and Y0 " 7 8 9 Purine Pyrimidine 7 8 9	133 `211 804	«
	Figure 1: Prediction of purine/pyrimidine evolution of ura3 gene in symmetric Cantor
	model.						
	Computation of probability a. P pR	Ñ	Rq	"	p1	´mq
	`P pA Ñ Gq	PApnq PApnq `PGpnq	`P pG Ñ Aq	PGpnq PApnq `PGpnq	. The use of Table 1 and the
	hypothesis that the base frequencies have already reached their steady states implies that
	a " p1 ´mq `ˆm	0 46 `121	˙ˆ246 804 246 804 `214 804	`ˆm	26 46 `121	˙ˆ214 804 246 804 `214 804	. We thus obtain that
	a " 1	´17814m 19205	« 0.999999716.
	Computation of probability c. Similarly, P pY Ñ Y q " p1 ´mq `P pC Ñ T q Cq PT PC `PT " p1´mq`m 16 46 `121 ˆ133 133 `211 `m 4 46 `121 ˆ211 133 `211 PC `PT PC " 1´m`m `P pT Ñ 743 14362 .

Theorem

Table 1

 1 

	is:	M " m	¨1391 19205 13619	17814 19205 743	‹ ‹ ' .	(2.2)
			14362	14362		

  The case |x1| ‰ 1 and |x2| " 1 necessarilly implies that x2 " 1, which is in contradiction with the assumptions made in preamble of Section 3.3.1. Proof. Suppose that |x1| " |x2|, but x1, x2 P CzR. Then x1 and x2 are complex and conjugate, of the form x1 " e ´iθ , x2 " e iθ , with θ ı 0rπs. So x1 ´x2 " ? ∆ " e ´iθ ´eiθ " ´2i sinpθq, and

	and finally, rem 3.1. thm 3.3. If |x1| " |x2|, but x1, x2 P CzR, then pPRpnq PC pnq PT pnqq " pPRp0q PC p0q PT p0qq 2 sin `nθ 2 ˘sin ´pn´2qθ 2 sinpθq ¯cos `θ 2 bn " sin `θ 2 ˘.	panM
	2 `bnM `cnI3q, where As cn " 1 ´an ´bn, we have:
	• an "	´sin `nθ 2 ˘sin ´pn´1qθ 2 `θ 2 ˘sinpθq cn " 1 sin , ´sin `nθ 2 ˘sin ´pn´3qθ 2 sin `θ 2 ˘. sinpθq
	• bn "	2 sin `nθ 2 ˘sin ´pn´2qθ 2 sin `θ 2	sinpθq ˘, ¯cos `θ 2
	• cn " 1	2 ˘sin ´pn´3qθ 2 ´sin `nθ sin `θ 2 ˘. sinpθq
	with e ´iθ " x1.				
	• PRpnq ÝÑ • PC pnq ÝÑ	ce `cf `de an p ´bf `df ae `af `bf p ´bf `df 2i sinpθq an " "	X2pnq ´X1pnq ? ∆ e ´inθ ´1 e ´iθ ´1 ´einθ ´1 X1pnq ´X2pnq " 2i sinpθq e iθ ´1
	• PT pnq ÝÑ	ad `bc `bd p ´bf `df	"	e ´in θ 2 e ´i θ 2	e ´in θ 2 ´ein θ 2 e ´i θ 2 ´ei θ 2	2 ´ein θ e i θ 2	e in θ 2 ´e´in θ 2 e i θ 2 ´e´i θ 2
	Proof. If |x1| ă 1 and |x2| ă 1 then Xipnq ÝÑ an ÝÑ 1 ? " e ´i pn´1qθ 2 ´2i sin `nθ 1 1 ´xi for i " 1, 2 and so ˙. 2 2i sin `θ 2 ˘´e i pn´1qθ 2i sin `nθ 2 2 " 2i sin `θ 2 ∆ ˆ1 1 ´x2 ´1 1 ´x1 Denote by a8 this limit. We have sin `nθ 2 sin `θ 2 ˘´e ´i pn´1qθ 2 2 ´ei pn´1qθ ¯.
	Finally, and finally		a8 "	?	x2 ´x1 ∆p1 ´x2qp1 ´x1q an " ´sin `nθ " p1 ´x2qp1 ´x1q 1 2 ˘sin ´pn´1qθ 2 `θ 2 ˘sinpθq	" sin 1 s `?∆ 2 s ´?∆ 2 .	,
	a8 " Similarly, bn " X1pnq ´anpx1 `1q satisfies Similarly, ? ∆bn " px2 `1qX1pnq ´px1 `1qX2pnq 4 s 2 ´∆ " 1 . p
	bn ÝÑ ´2i sinpθqbn " `eiθ `1˘e ´i pn´1qθ 1 1 ´x1 The following computations 2 sin `nθ ´x1 2 sin `1 p `θ 2 ˘´`e ´iθ `1˘e i pn´1qθ . 2	sin " sin `nθ 2 `θ 2
						1 1 ´x1 sin `nθ " 2 `θ 2 ˘"e 2 s `?∆ sin ´i pn´3qθ " 2	2ps ´?∆q s 2 ´∆ " `e´i pn´1qθ 2 ´ei pn´3qθ s ´?∆ 2p , 2	2 ´ei pn´1qθ	ı
			bn		"	x1 sin `nθ 2 sinpθqsin p `1 `θ 2 ˘´sin ´pn´3qθ " ´s `4 ´?∆ 2p 2 ¯`sin ´pn´1qθ , 2	¯¯.

3.1-3.5. thm 3.1. Suppose that |x1| ă 1 and |x2| ă 1. Then the frequencies PRpnq, PC pnq, and PT pnq of occurrence at time n of purines, cytosines, and thymines in the considered gene, converge to the following values:

•

  If s Ps0, 2r, then M n is bounded if and only if M 2 `sps´2qM ´ps´1q 2 I3 " 0. In that condition, If s " 2, then another time M n is bounded if and only if M 2 `sps ´2qM ´ps ´1q 2 I3 " 0. In that condition,M 2n ÝÑ I3, whereas M 2n`1 ÝÑ ´2M 2 `4M `2I3. • Finally, if s ą 2, then as s " a `b `c `d `e `fand a, b, c, d, e, f P r0, 1s, we have necessarily at least three coefficients in a, b, c, d, e, f that are non zero. So at least one product in abc, abd, abe, abf, acd, ace, acf, ade, adf, aef, bcd, bce, bcf, bde, bdf, bef, cde, cdf, cef, def is strictly positive. This is impossible, as p " ad `ae `af `bc `bd `bf `ce `cf `de is equal to 0.Using these values in (3.6), we can determine the limit of M n , which is a8M 2 `b8M `c8I3, where I3 is the identity matrix of size 3. All computations done, we find

					s 2
				b8 "	´2x1 p1 ´x1q 2 " 4	s	´2 s 2
				c8 "	2x1 p1 ´x1q 2 `1 " ˆ1 ´1	´2 s	˙2
				M n ÝÑ	s 2 4	M31 M32 M33 M21 M22 M23 ¨M11 M12 M13	'
	with M11 "	s 2 4	´p `ce
	M n ÝÑ	1 s 2 r´M 2 `sp3 ´sqM `ps ´1qp2s ´1qI3s.
	• thm 3.5. Suppose that x1 " x2 ‰ 1 (or equivalently s 2 " 4p). Then the probabilities PRpnq, PC pnq,
	and PT pnq of occurrence at time n of a purine, cytosine, and thymine on the considered nucleotide,
	converge to the following values:
	• PRpnq ÝÑ	4 s 2 pce `cf `deq,

`cf `de, M12 " ae `af `bf , M13 " ad `bc `bd, M21 " ce `cf `de,

M22 "

s 2 4 ´p `ae `af `bf , M23 " ad `bd `bc, M31 " ce `de `cf , M32 " ae `af `bf , and

M33 " s 2

4

´p `ad `bc `bd. However, since x1 " x2, we have ∆ " s 2 ´4p " 0 and so

M n ÝÑ 4 s 2

¨ce `cf `de ae `af `bf ad `bc `bd ce `cf `de ae `af `bf ad `bc `bd ce `cf `de ae `af `bf ad `bc `bd ',

  have counted 0 mutations of kind A Ñ G, and 26 mutations of kind G Ñ A. Similarly, there were 28 mutations G Ñ T and 8: A Ñ T , so 36: R Ñ T . Finally, 6: A Ñ C and 9: G Ñ C lead to 15: R Ñ C mutations. The total of mutations to consider when evaluating the first line As x1 « 0.9999685 P r0, 1s and x2 « 0.9999686 P r0, 1s, we have, due to Theorem 3.1: So PRpnq ÝÑ 0.549, PC pnq ÝÑ 0.292, and PT pnq ÝÑ 0.159. Simulations corresponding to this example are given in Fig. 3.

						et al.; BJMCS, 5(4), 439-455, 2015; Article no.BJMCS.2015.031
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	p1 ´mq , and f " « 8.134 ˆ10 ´7, and p " `m 26 77 4m 23 , e " 51m 67 16m . 67 205m , d " 77 207488m 2 , a " 36m 77 « , 118657 ą 0, x1 " 1 19m 23 In that situation, s " a `b `c `d `e `f " and b " 15m 77 . A similar reasoning leads to c " 1.632 ˆ10 ´13 . So ∆ " s 2 ´4p " 854221m 2 9136589 ´m 2 ˆ205 77 `c 854221 9136589 ˙, and x2 "
	1	´m 2 ˙. • PRpnq ÝÑ ˆ205 77 ´c 854221 9136589 ce `cf `de p ´bf `df	
		• PC pnq ÝÑ	ae `af `bf p ´bf `df	
		• PT pnq ÝÑ	ad `bc `bd p ´bf `df	
	Using the data of [12], we find that PRp0q " PT p0q " 211 804 « 0.263.	460 804	« 0.572, PC p0q "	133 804	« 0.165, and

Figure 3: Prediction of evolution concerning the purine, thymine, and cytosine rates in ura3. Non-symmetric Model of size 3 ˆ3.

is so equal to 77. All these considerations lead to the fact that 1 ´a ´b "

Using the latter values in (3.6), we can determine the limit of M n , which is a8M 2 `b8M `c8I3. All computations done, we find the following limit for M n , 1 p ´bf `df ¨ce `cf `de ae `af `bf ad `bc `bd ce `cf `de ae `af `bf ad `bc `bd ce `cf `de ae `af `bf ad `bc `bd '.

Using (3.1), we can thus finally determine the limit of Pn " P0M n " pPRp0q PC p0q PT p0qqM n . thm 3.2. Suppose that |x1| " 1, x1 ‰ 1, and |x2| ‰ 1. Then the evolutionary model is not convergent. More precisely, we have:

• PRp2nq " pa 2 `2ab `ac ´2a `b2 `be ´2b `1qPRp0q `p´a 2 ´ab ´ac ´ad `2a `bf qPC p0q p´ab `ad ´b2 ´be ´bf `2bqPT p0q,

• PRp2n `1q " p1 ´a ´bqPRp0q `aPC p0q `bPT p0q,

• PC p2nq " p´ac ´bc ´c2 ´cd `2c `deqPRp0q `pac `c2 `2cd ´2c `d2 `df ´2d `1qPC p0q pbc ´cd ´d2 ´de ´df `2dqPT p0q,

• PC p2n `1q " cPRp0q `p1 ´c ´dqPC p0q `dPT p0q,

• PT p2nq " p´ae ´be `cf ´e2 ´ef `2eqPRp0q `pae ´cf ´df ´ef ´f 2 `2f qPC p0q `pbe df `e2 `2ef ´2e `f 2 ´2f `1qPT p0q,

• PT p2n `1q " ePRp0q `f PC p0q `p1 ´e ´f qPT p0q, Proof. Suppose that |x1| " 1 and |x2| ‰ 1. Then x1, x2 P R, and so x1 " 1 or x1 " ´1. The first case has yet been regarded.

If x1 " ´1, then ´s `2 ´?∆ " ´2 (due to (3.2)). So s " 4 ´?∆, and so s 2 ´4p " 4 ´4s `s2 . Consequently, p " s ´1. But x1x2 " 1 ´s `p, so x1x2 " 0, which leads to x2 " 0. Using (3.5), we can thus conclude that an " 1 ´p´1q n ´1 ´2 " 1 `p´1q n 2 . So a2n " 1 and a2n`1 " 0. Similarly, b2n " 0 and b2n`1 " 1, and finally cn " 0, @n P N. These values for an, bn, and cn lead to the following values for M n :

• PC pnq ÝÑ 4 s 2 pae `af `bf q,

• PT pnq ÝÑ 4 s 2 pad `bc `bdq.

Proof. In that case ∆ " 0, meaning that (3. 
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