
HAL Id: hal-01088034
https://hal.science/hal-01088034

Submitted on 3 Dec 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contextualised security operation deployment through
MDS@run.time architecture

Wendpanga Francis Ouedraogo, Frédérique Biennier, Philippe Merle

To cite this version:
Wendpanga Francis Ouedraogo, Frédérique Biennier, Philippe Merle. Contextualised security opera-
tion deployment through MDS@run.time architecture. ISC 2014 - Intelligent Service Clouds Workshop
at the 12th International Conference on Services Oriented Computing 2014, Nov 2014, Paris, France.
pp.201-212. �hal-01088034�

https://hal.science/hal-01088034
https://hal.archives-ouvertes.fr


Contextualised security operation deployment
through MDS@run.time architecture

Wendpanga Francis Ouedraogo1, Frédérique Biennier1, and Philippe Merle2

1 Université de Lyon, CNRS INSA-Lyon, LIRIS UMR 5205, 20 avenue Albert
Einstein, 69621 Villeurbanne Cedex, France

{wendpanga-francis.ouedraogo,frederique.biennier}@liris.cnrsf.fr
2 Inria Lille - Nord Europe, Parc Scientifique de la Haute Borne, 40 avenue Halley,

59650 Villeneuve d’Ascq, France
philippe.merle@inria.fr

Abstract. The fast development of Cloud-based services and appli-
cations have a significant impact on Service Oriented Computing as
it provides an efficient support to share data and processes. The de-
perimeterised vision involved by these Intelligent Service Clouds lead to
new security challenges: providing a consistent protection depending on
the business environment conditions and on the deployment platform
specific threats and vulnerabilities. To fit this context aware protection
deployment challenge, we propose a MDS@run.time architecture, cou-
pling Model Driven Security (MDS) and Models@run.time approaches.
By this way, security policies (that can be generated via a MDS pro-
cess) are interpreted at runtime by a security mediator depending on
the context. This proposition is illustrated thanks to a proof of concept
prototype plugged on top of the FraSCAti middleware.

1 Introduction

The fast development of Cloud-based services and applications provides an effi-
cient support to share data and processes, leading to deperimeterised Informa-
tion Systems. The flexibility and agility provided by these so-called Intelligent
Service Clouds enables new styles of inter-enterprises Collaborative Business,
taking advantage of service reusability to create new collaborative workflows
and of the Cloud plasticity allowing to use different access devices. This de-
perimeterised and evolving vision of Information Systems leads to enforce the
call for protection mechanisms to mitigate potential vulnerabilities or threats
related to any potential business (i.e. the specification of the organizations and
workflow in which the service may be involved) or deployment context (namely
access device, interconnection network or deployment platform configuration in-
formation). To avoid a systematic and costly over-protection deployment, we
propose a context-aware security architecture to select at runtime the security
policy rules that fit the current business and technical execution context. To
this end, we couple the MDS [6] and Models@run.time approaches to set a
MDS@run.time architecture. In brief, security policies (defining the different



2 Wendpanga Francis Ouedraogo, Frédérique Biennier, and Philippe Merle

protection services depending on environmental conditions) are seen as an ab-
stract Models@run.time specification used to select, compose and orchestrate
security services depending on the current execution context. This architecture
plugged on hosting middleware allows outsourcing security concerns from the
business services. The service invocation is captured and processed to compose
and orchestrate the convenient security services depending on the execution con-
text. We call this process Security Mediation as it is built in a similar perspective
of the classical outsourced mediation components. A proof of concept prototype
plugged on FraSCAti is used to evaluate the ”execution cost” of the dynamic
security deployment. We first present the context and a motivating example be-
fore defining the way MDS is extended in a MDS@run.time vision (Section 2).
The related architecture and its implementation plugged on the FraSCAti mid-
dleware is detailed in Section 3 and its performance are evaluated in Section 4.
We lastly confront our proposal with related work (Section 5).

2 Context and motivating example

The openess and deperimeterized information system organization involved by
intelligent service clouds takes advantage of service reusing abilities to support
new business processes. A dynamic supply chain organisation can be seen as a
motivating example of such service ecosystem. In this use case a food product
tracking process (see Fig. 1) relies on a dynamic workflow interconnecting the
business services of the different partners, sharing products production, storage
and transport information. Such collaborative workflow combines services and
personal workflows from both companies, challenging new security features such
as partner authentication, access control on the product storage information, non
repudiation features. While setting on the fly collaborative organisations, taking
advantage of the dynamic service selection provided by the service ecosystem,
each partner can compose shared services to create ad-hoc workflows. This in-
volves that a business service can be invoked on the fly by different own partner
workflows. To provide end to end consistent protection of a given service, one has
to take context into account related to the business workflow in which the service
takes part and to the end to end execution platform configuration (namely the
hosting platform, the access devices and the interconnetion network). Thus, the
consistent security services must be composed and orchestrated depending on
the execution context. For example, a secured transport is required while access-
ing logistics information via the unsecured Internet network whereas it is useless
while using the safer logistics company LAN, authentication / access control
must integrate new partners. Differents methods (EBIOS, MEHARI, OCTAVE,
SNA)3 can be used to identify perceived security risks/system vulnerabilities.
Based on the ISO/IEC 27002, the OASIS Service Reference Model4 defines dif-
ferent security requirements (confidentiality and privacy management, integrity,

3 https://www.enisa.europa.eu/activities/risk-management/current-risk/

risk-management-inventory/rm-isms
4 http://docs.oasis-open.org/soa-rm/v1.0/soa-rm.html



Contextualised security operation deployment through MDS@run.time 3

Fig. 1. This collaborative business process is organized in different lanes associated
to the different supply chain participants. Services such as Track shipping are tagged
depending on their patrimonial value. Global information on the collaborative environ-
ment is also attached to the different lanes. Restricted access control features can also
be defined while defining the collaboration agreement between partners.

authentication, authorization, availability and non repudiation) that require the
deployment of security means from the network layer, which is rather focused
on the availability requirement and protection against deny of service attacks,
and transport layer, which has to provide secured confidential channels between
transmitters and receivers, to the application layer, which manages most of the
security requirements such as authentication, authorization, non repudiation,
confidentiality and privacy. Different standards such as WS-Security, SAML,
XACML, BSLA, etc. have been developped to support and implement these se-
curity requirements. Such protection means can either be deployed directly in
the service operation or ”attached” to the service interface specification.

Based on the way the OASIS service reference model organizes the different
security services, we have proposed in previous work [8] an XML extension to
define these security services and protection requirements in the service security
policy using exiting standards such as SAML, XACML.

Focusing on the service attached to the logistic application form, a security
policy can be set to define the different protection means to be deployed (see
Fig. 2). This service includes an operation named TrackShipping, which is con-
sidered as a resource (Line 2 in Fig. 2). Its protection requires an authentication
(lines 2-9) using a simple login/password process (Line 4) refering to a check-
ing file defined in Line 5. Besides authentication, according to the user network
domain (public at Line 14) or company B private network at Line 19) access
control rules have to be performed (lines 10-22). If a public network is used,
ACL (Line 12), should be applied to this resource. Fig. 3 describes the contents



4 Wendpanga Francis Ouedraogo, Frédérique Biennier, and Philippe Merle

Fig. 2. Security policies associated to the Logistic resource.

of the authorization file allowing only user1 and user2 of the company A to
access the resource whereas any user of B can access it freely from the B’s local
network.

Fig. 3. AccessControlList.xml authorization file.

As these business services can be invoked dynamically by ad-hoc collabora-
tive workflows,or via different devices such as smartphone or classical computing
environment, protection services must be deployed according to the execution
context paying attention on both organisational (i.e. which partner, trusted or
not, invokes the service) and technical (which kind of cloud hosts the collabo-
rative workflow, which kind of transport service is provided, etc.) environment.
The protection requirements are defined globally in the security policies attached
to the different business services (for example see Fig. 4, Line 3). These security
policies are seen as security models at runtime that will be used at runtime by
the security mediator to select, compose and orchestrate the security services
depending on the execution context.

In our example, the tracking service and the related information must be pro-
tected in the new opened context as it can be accede by partners, with differnt
access devices (smartphone for executive members, or PC) . This confidential-
ity requirement impacts both application layer, which is in charge of the access
control, i.e., authentication and authorization management, and transport layer
(see Fig. 2). The systematic composition of the authentication and authoriza-
tion services may be costly. Table 1 shows a comparison of service execution



Contextualised security operation deployment through MDS@run.time 5

Fig. 4. Link policy file with the TrackShipping operation of the Logistic service.

time with/without authentication and authorization, testing conditions and en-
vironment are detailed in Section 4.

Table 1. Service execution time.

Executed components Execution time (ms)

1-100 101-201

Business service 71 58
Business service + Authentication 82 68
Business service + Authentication + Authorization 85 70

To avoid this costly over protection or risky under protection depending
on the runtime environment vulnerability, we propose to turn these security
policies as Models@run.time so that they can be analysed to select, compose
and orchestrate the most convenient security services depending on the exact
runtime environment. This requires a new architecture to outsource the security
management as a new high-level service that can be plugged on the hosting
middleware. In next sections, we present this new architecture and a proof of
concept based on the FraSCAti middleware.

3 MDS@run.time with FraSCAti

Our architecture is plugged on the traditional service/middleware/hosting plat-
form architecture (see Fig. 5(a)). In order to avoid under or over protection
depending on the runtime context, we propose to outsource the security man-
agement thanks to our MDS@run.time architecture (see Fig. 5(b)) which consists
in:

– A middleware specific Interceptor component plugged on the middleware
intercepts each service/middleware interaction (Step 1) and routes this in-
teraction to the MDS@run.time component (Step 2).

– The MDS@run.time component is the core component to achieve the dynamic
security deployment. It consists in three sub components:



6 Wendpanga Francis Ouedraogo, Frédérique Biennier, and Philippe Merle

• The policy manager parses the service description, extracts and loads
the associated policy files before launching the context acquisition pro-
cess.

• The context manager collects information associated to the execution
context (steps 3 and 4). It transfers the results to the security mediator.

• The security mediator parses the security policy to get the protection
level associated to each security service. Depending on the execution con-
text, it selects and composes security services to implement the required
protection. Then it orchestrates the security service invocations (steps 5
and 6) and if succeeded, it routes back the business service/middleware
interaction to the middleware (steps 7 and 8).

– The Security as a Service component gathers implementation of various
security services (authentication, authorization, integrity controls, etc.).

(a) Multi-layer architecture. (b) Multi-layer architecture with MDS@run.time.

Fig. 5. MDS@run.time architecture.

FraSCAti5 [11] is an open source middleware framework to build, program, de-
ploy, and execute adaptable service-oriented business applications. FraSCAti is
based on the OASIS Service Component Architecture (SCA) standard6. FraS-
CAti applications can be deployed in different clouds (Amazon EC2, Amazon
Elastic BeanTalk, Google App Engine, CloudBees, etc.)[9][10]. The adaptability
at design time is based on the fact that the FraSCAti platform was designed
as a plugin-based architecture to adapt it to different execution environments
and to select on demand the required application functionalities composing a
FraSCAti instance [1]. The adaptability at execution time is based on the FraS-
CAti reflective features, which encompass introspection and reconfiguration of

5 http://frascati.ow2.org
6 http://www.oasis-opencsa.org/sca



Contextualised security operation deployment through MDS@run.time 7

applications at runtime [12]. For dealing with web services and REST, FraSCAti
embeds Apache CXF7, a well-known open source services framework.

To ensure the BP security deployed on cloud infrastructures, we propose a
MDS@run.time framework based on SCA components, which can be plugged to
the FraSCAti platform. Our prototype takes advantage of Aspect Oriented Pro-
gramming (AOP) features and of the SCA model, both provided by FraSCAti,
to deploy the three Interceptor, MDS@run.time and Security as a Service

components shown in Fig. 6.

Fig. 6. MDS@run.time with FraSCAti.

3.1 FraSCAti Intent for MDS@run.time

SCA provides the notion of intent, which is an abstraction for designating a non-
functional property such as security, transaction, logging, etc. With FraSCAti,
SCA intents are implemented as SCA components, then both business and non-
functional concerns are designed then implemented in the same framework aka
SCA.

The Intent component is responsible for detecting and intercepting business
services invoked by clients. This component uses AOP techniques provided by
FraSCAti to perform actions before, during and after each business service in-
vocation. These techniques use the Apache CXF interception mechanism. The
Intent component creates a Request object, which plays the intermediary role
between the FraSCAti middleware and security services. This object provides a
bidirectional interface that allows the Intent component to formalize the inter-
action messages received from Apache CXF and also to specify orders towards
Apache CXF. The Request object ensures a total independence between our
MDS@run.time components and the underlying service-oriented middleware, al-
lowing on one hand the security services to be able to deploy and run on any

7 http://cxf.apache.org



8 Wendpanga Francis Ouedraogo, Frédérique Biennier, and Philippe Merle

other middleware and on another hand to deploy on a specific platform just the
required security services.

3.2 Composite MDS@run.time

The MDS@run.time composite8 is invoked by the Intent component of the
Interceptor composite. It includes:

– The Mediator component is responsible for analyzing called service requests
intercepted by the Intent component and encapsulated into a Request ob-
ject. It also identifies the security policy rules associated to business services
invoked by clients. Thus, through the Request object, the Mediator receives
information of the services involved in the interaction. This information is
used to get policies associated to resources (the business services functional-
ity implemented by the service operation). These policies are then analyzed
and orchestrated by the Mediator to call the required security services.

– The PolicyManager component manages the policies. It receives from the
Mediator the resource or service reference requested and the link to the
policy file. It returns to the Mediator the list of security policies to apply.

– The ContextManager component analyses security policies associated to ser-
vices and identifies the different policies to be applied according to the user
context, the execution environment and security policies associated to the
client and service provider. It also provides to the Mediator component in-
formation such as policies and policy rules related to the execution context.
These policy rules are used by the Mediator component to call the technical
security services.

3.3 Composite SecaaS

The Security as a Service (SecaaS) composite is invoked by the Mediator

component. It includes various security services, which allow protecting resources
and business services according to a security as a service approach. This com-
posite contains the following components:

– The SecaaS component is the composite entry point. It receives from the
Mediator component the security policies to be applied. It is responsible for
analyzing these policies, to identify the type of security services (authenti-
cation, authorization, etc.) to call.

– The Authentication component is used to prove the user identity (of hu-
man or other service). This component receives from the SecaaS component
the policy rule to apply, extracts information about the security pattern and
invokes the security mechanism to be applied. It can be a weak authentica-
tion mechanism such as login/password or strong authentication such as One
Time Password (OTP) or two factors authentication. This Authentication

8 An SCA composite is an SCA component containing a set of SCA components.



Contextualised security operation deployment through MDS@run.time 9

component includes subcomponents such as SSORegistry (Single Sign On
Registry) component used to store information about authentication of ses-
sions and to allow to retrieve user information without restarting authenti-
cation.

– The Authorization component allows managing access to resources and ser-
vices, and allows grant or deny the user access to them. As the Authentication
component, it receives the security policy rule and invokes the authorization
mechanism to be applied. This mechanism can be based on an authorization
by role (RBAC) implemented by the XACML authorization protocol or a
simple Access Control List (ACL).

– The Encryption component provides data and messages encryption/decryp-
tion mechanisms and secure communication protocols (SSL).

– The Integrity component ensures the integrity of exchanged data and mes-
sages by using message signatures or hash functions.

– The NonRepudiation component is responsible for recording user actions
(authentication, access to data or service, data modification/destruction,
etc.). This information can then be used for auditing and monitoring.

– The Availability component is responsible for the services’ availability
providing access to the service or a clone (redundant service) if the original
target service is unavailable. This component also provides backup mecha-
nism to restore system data and services after disaster.

The Encryption, Integrity and NonRepudiation components can use secu-
rity protocols such as WS-Security XML Encryption and XML Signature, which
provide encryption and signing exchanged message mechanisms.

4 Evaluation

Our performance evaluation is based on the use case presented in Fig. 1, fo-
cusing on the TrackShipping operation. This operation is implemented thanks
to a service associated to a security policy including authentication (see Fig. 2,
lines 2-8) by login/password (Line 4) and access control (lines 9-16) using ACL
(Line 11) combined with a used network constraint (Line 13). As far as the
collaborative service is concerned, the business service is encapsulated in an Lo-
gisticService, which is associated to the convenient security policy and refers to
the MDS@run.time composite (Fig. 7, Line 6). By this way, the business service
can be intercepted and MDS@run.time is invoked before invoking the business
service itself.

To evaluate the impact of our MDS@run.time with FraSCAti prototype on
the service execution time, we set a test environment using FraSCAti version 1.6
with Oracle Java Virtual Machine 1.7.0 51 on Microsoft Windows 7 Professional
(32 bit) using a 2,54GHz processor Intel(R) Core(TM)2 Duo CPU with 4Go
of memory. We set different types of measures: A first execution invokes the
business service without invoking our security architecture (measure 1 used to set
a reference time), the time between the intent invocation and the MDS@run.time



10 Wendpanga Francis Ouedraogo, Frédérique Biennier, and Philippe Merle

Fig. 7. Link the Logistic component with MDS@run.time.

invocation measures the cost for the service interception. Then, the time required
to get the policy file and parsed it is expressed by the mediation measure. Lastly
execution times related to the authentication process and to the authorization
process are given. We manage a test loop to compute an average time for the
first request to evaluate the setup time and on 200 client requests, so that extra
factor impacts can be smoothed, such as bootstrapping effects, Just-In-Time
compilation, etc.

Table 2. Mean execution time of MDS@run.time components.

No Component Average execution time (ms) Average execution time/
time (ms) Total execution time

1-100 101-201 1-100 101-201

1 FraSCAti + Apache CXF
+ Business service

63 53 74% 75%

2 FraSCAti Interceptor 1 1 2% 2%
3 MDS@run.time 7 4 8% 6%
4 Authentication 11 10 13% 14%
5 Authorization 3 2 4% 3%

Total 85 70 100% 100%

The main result is that the interception and mediation process represents
only 8% (101-201 requests) of the total execution. This overhead could certainly
reduced within an industrial implementation of MDS@run.time. However this
demonstrates that our MDS@run.time approach, i.e. interpretation of security
policies at runtime, introduces a small overhead compared to over protecting
services.

5 Related work

Different strategies can be used to provide a consistent protection on distributed
information systems, paying attention on both organisational and infrastructure
related risks.



Contextualised security operation deployment through MDS@run.time 11

On one hand, Security by Design approaches integrate protection require-
ments while designing the information system. To this end, different frameworks
have been defined to manage security annotations on UML diagrams (such as
the multi-purpose UMLSec or the rather access control oriented Secure UML
domain specific languages) or BPMN diagrams [13]. Taking advantage of such
high-level specification, MDS [6] adapts the Model Driven Engineering (MDE)
approach to the security field. Several studies have focused on the use of the MDS
approach to secure BP and led to frameworks definition like OpenPMF [5], and
SECTET [2]. Nevertheless, none of them support the full transformation pro-
cess. While BPSec is focused on the requirement engineering part (it includes
CIM and PIM models), SECTET and Open PMF provide PIM, PSM and code
generation features. Moreover, the generation process is achieved according to
a static environment vision (perimetrised information system and well-known
deployment platform). This does not fit the dynamic service ecosystem context.

On the other hand, the security stack defined in the OASIS Service reference
model defines the way protection requirements should be implemented in a multi-
layer architecture (application/Middleware-Transport/network) to improve the
global protection consistency while deploying security features associated to a
standardized security policy. Nevertheless, this coarse-grain model does not inte-
grate any platform dependent risks / protection models (such as works achieved
for cloud based infrastructure by the Cloud Security Alliance (CSA)9, Intrusion
Detection System [7], vulnerabilities checking [3], etc.) nor any governance
loop so that the execution context can be taken into account while deploying
the required protection. This can lead to either over or under protection. To
overcome this limit, our MDS@run.time approach takes advantage of the OASIS
security model and of the MDS approach to generate security policies depending
on the collaborative BP organisational context so that services can be secured
on demand. Moreover, it provides a fully oursourced security environment that
can be plugged on any service-oriented middleware. Thanks to the execution
platform information, collected by the Mediator component, security services
are selected, composed and orchestrated in a transparent and consistent way,
avoiding the costly over protection and the risky under protection.

6 Conclusion

Securing collaborative business processes deployed on cloud systems requires
paying attention on both organisational and platform-related vulnerabilities.
Taking advantage of the intrinsic flexibility provided by the association of se-
curity policies to services, we propose to use them as Models@run.time to se-
lect, compose and orchestrate security services depending on the required pro-
tection and on the execution context. To this end, a MDS@run.time compo-
nent is plugged on the middleware, intercepting service invocation and captur-
ing context information. The experiment reported in this paper shows how our
MDS@run.time architecture can be plugged on the FraSCAti middleware and

9 http://www.cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf



12 Wendpanga Francis Ouedraogo, Frédérique Biennier, and Philippe Merle

evaluate its performance level. Further works will focus on the integration of
more detailed platform models and on vulnerability monitoring loops so that
our coarse-grained vision of the execution context will be refined to increase the
protection efficiency.

References

1. Acher, M., Cleve, A., Collet, P., Merle, P., Duchien, L., Lahire, P.: Reverse Engi-
neering Architectural Feature Models. In: Springer (ed.) 5th European Conference
of Software Architecture (ECSA). In Computer Science, vol. 6983, pp. 220–235.
Springer, Essen, Allemagne (Sep 2011), http://hal.inria.fr/inria-00614984

2. Alam, M., Hafner, M., Breu, R.: Constraint based role based access control in the
SECTET-framework A model-driven approach. Journal of Computer Security pp.
223–260 (2008)

3. Avgerinos, T., Cha, S.K., Rebert, A., Schwartz, E.J., Woo, M., Brumley, D.:
Automatic Exploit Generation. Commun. ACM 57(2), 74–84 (Feb 2014), http:

//doi.acm.org/10.1145/2560217.2560219
4. Blair, G., Bencomo, N., France, R.B.: Models@run.time. Computer 42(10), 22–27

(2009)
5. Lang, U.: OpenPMF SCaaS: Authorization as a Service for Cloud & SOA Appli-

cations. In: Cloud Computing Technology and Science (CloudCom), 2010 IEEE
Second International Conference on. pp. 634–643 (Nov 2010)

6. Lcio, L., Zhang, Q., Nguyen, P.H., Amrani, M., Klein, J., Vangheluwe, H.,
Traon, Y.L.: Chapter 3 - Advances in Model-Driven Security. In: Memon, A.
(ed.) Advances in Computers, vol. 93, pp. 103 – 152. Elsevier (2014), http:

//www.sciencedirect.com/science/article/pii/B9780128001622000038
7. Modi, C., Patel, D., Borisanya, B., Patel, A., Rajarajan, M.: A Novel Framework for

Intrusion Detection in Cloud. In: Proceedings of the Fifth International Conference
on Security of Information and Networks. pp. 67–74. SIN ’12, ACM, New York,
NY, USA (2012), http://doi.acm.org/10.1145/2388576.2388585

8. Ouedraogo, W.F., Biennier, F., Ghodous, P.: Adaptive Security Policy Model to
Deploy Business Process in Cloud Infrastructure. In: 2nd International Conference
on Cloud Computing and Services Science (CLOSER 2012). pp. 287–290 (2012)

9. Paraiso, F., Haderer, N., Merle, P., Rouvoy, R., Seinturier, L.: A Federated Multi-
Cloud PaaS Infrastructure. In: 5th International Conference on Cloud Computing
(CLOUD’12). pp. 392–399. IEEE (2012)

10. Paraiso, F., Merle, P., Seinturier, L.: soCloud: A service-oriented component-based
PaaS for managing portability, provisioning, elasticity and high availability across
multiple clouds. Special Issue on Cloud Computing, Computing Journal, Springer
(To appear 2014)

11. Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.B.: Re-
configurable SCA applications with the FraSCAti Platform. In: IEEE International
Conference on Services Computing (SCC’09). pp. 268–275. IEEE (2009)

12. Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schiavoni, V., Stefani, J.B.: A
component-based middleware platform for reconfigurable service-oriented architec-
tures. Software: Practice and Experience 42(5), 559–583 (2012)

13. Wolter, C., Menzel, M., Schaad, A., Miseldine, P., Meinel, C.: Model-driven busi-
ness process security requirement specification. Journal of Systems Architecture
(JSA) pp. 211–223 (2009)


