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Robustness analyzes the impact of small perturbations in the semantics of a model. This allows

to model hardware imprecision and therefore it has been applied to determine implementability of

timed automata. In a recent paper, we extend this problem to a specification theory for real-timed

systems based on timed input/output automata, that are interpreted as two-player games. We propose

a construction that allows to synthesize an implementation of a specification that is robust under a

given timed perturbation, and we study the impact of these perturbations when composing different

specifications.

To complete this work we present a technique that evaluates the greatest admissible perturbation.

It consists in an iterative process that extracts a spoiling strategy when a game is lost, and through a

parametric analysis refines the admissible values for the perturbation. We demonstrate this approach

with a prototype implementation.

1 Introduction

Component-based design is a software development paradigm well established in the software engineer-

ing industry. In component-based design, larger systems are built from smaller modules that depend

on each other in well delimited ways described by interfaces. The use of explicit interfaces encourages

creation of robust and reusable components. Specification theories provide a language for specifying

component interfaces together with operators for combining them, such as parallel composition, along

with algorithms for verification based on refinement checking.

For real-time systems, timed automata [5] are the classical specification language. Designs specified

as timed automata are traditionally validated using model-checking against correctness properties ex-

pressed in a suitable timed temporal logic [17]. Mature modeling and model-checking tools exist, such

as Uppaal [9], that implement this technique and have been applied to numerous industrial applications.

In [15], the authors proposed a specification theory for real time systems, based on an input/output

extension of timed automata model to specify both models and properties. It uses refinement checking

instead of model-checking to support compositionality of designs and proofs from ground up. The

set of state transitions of the timed systems is partitioned between inputs, representing actions of the

environment, and outputs that represent the behaviour of the component. The theory is equipped with

a game-based semantic. The two players, Input and Output, compete in order to achieve a winning

objective—for instance safety or reachability.

The theory of [15] is equipped with a compatibility check and a consistency check that allows to

decide whether a specification can indeed be implemented. Unfortunately, this check does not take

limitations and imprecision of the physical world into account. This is best explained with an example.

Consider the specification of a coffee machine in Fig. 1. This machine first ask for the choice of a drink,

then awaits a coin, and after receiving the payment it delivers the coffee. If the payment does not arrive
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Figure 1: Non robust specifi-

cation of a coffee machine

within 6 time units, the machine aborts the drink selection and returns

to the initial state, awaiting a new choice of a beverage. Already in this

simple example it is quite hard to see, that implementing a component

satisfying this specification is not quite possible due to a subtle mistake.

Observe that the two first steps of the machine are controlled by the en-

vironment, and not the system itself. Thus any implementation has to be

able to accept the following behaviour: first choice? and then the coin?

arriving precisely 6 time units after the choice. However then we arrive

at the state (Serving,y = 6) which requires that the coffee (cof!) must be

delivered immediately, in zero time. No physical system would permit

this, so we say that this state is not robustly consistent.

The above example can be fixed easily by adding another reset to

clock y, when the coin? message is received. It is probably the intended

behaviour of the specification that the serving should take 6 time units

from the insertion of the coin, and not from the choice of the drink. Finding such errors in specifica-

tions is even harder in larger designs as non-robust timing can emerge in the compositions of multiple

specifications, as a result of combing behaviours that themselves are robust.

The timing precision errors in specifications are not handled in any way in idealized interface theories

such as [15, 4]. These and similar issues have let to a definition of the so called timing robustness problem

that checks if a model can admit some timing perturbations while preserving a desired property. The

robustness problem has been studied in various works for timed automata and it has been linked to the

implementability problem [25]. In [20], we extend the specification theory of [15] to support robustness

analysis. We check robust consistency and robust compatibility under the assumption of a given small

perturbation. However, we were not able to decide if any perturbation can be admitted, neither determine

the maximum amount. That is the goal of this paper, to address the parametric problems for robust

consistency and robust compatibility. Our contributions include:

• We present a technique that evaluates the greatest admissible perturbation for the robustness prob-

lems. We apply a counterexample abstraction refinement-like technique, that analyzes parametri-

cally the results of lost timed games in order to refine the value of the perturbation.

• We introduce a prototype tool that implements this technique and some other functionalities from

the theory of [20].

• We demonstrate the performances compared to a simple binary search technique for finding an

optimal precision value.

Related works The robust semantics for timed automata with clock drifts has been introduced by

Puri [22]. The problem has been linked to the implementation problem in [25], which introduced the

first semantics that modeled the hardware on which the automaton is executed. In this work, the authors

proposed a robust semantics of Timed Automata called AASAP semantics (for “Almost As Soon As

Possible”), that enlarges the guards of an automaton by a delay ∆. This work has been extended in [24]

that proposes another robust semantics with both clock drifts and guard enlargement. Extending [22] they

solve the robust safety problem, defined as the existence of a non-null value for the imprecision. They

show that in terms of robust safety the semantics with clock drifts is just as expressive as the semantics

with delay perturbation.

Robust timed games have been studied in [13]. In [20], we adapt their technique to check robust

consistency and robust compatibility.
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Robustness is defined in [24] as the existence of a positive value for the imprecision of a timed

automata. They prove that this problem is decidable, but they do not synthesize the value. A bound

on the value is computed in [10]. Finally a quantitative analysis is performed in [19] that computes the

greatest admissible value for the perturbation, but the method is restricted to timed automata without

nested loops. We propose an approximation technique that evaluates this value in the context of timed

specifications, with no major restrictions on syntax of the specifications.

Organization of the paper: We introduce in Section 2 basic definitions for timed systems and timed

games. In Section 3 we recall the theory of robust timed specifications describe in [20] and [15]. The

main contribution of this paper comes in Section 4, with a counterexample refinement technique to

measure the imprecision allowed by the specifications. We present in Section 5 a tool that implements

this technique, and we demonstrate its performances in Section 6.

2 Preliminaries

We use N for the set of all non-negative integers, R for the set of all real numbers, and R≥0 (resp. R>0)

for the non-negative (resp. strictly positive) subset of R. Rational numbers are denoted by Q, and their

subsets are denoted analogously.

In the framework of [15], specifications and their implementations are semantically represented by

Timed I/O Transition Systems (TIOTS) that are nothing more than timed transition systems with input

and output modalities on transitions. Input represents the behaviours of the environment in which a

specification is used, while output represents behaviours of the component itself.

Definition 1 A Timed I/O Transition System is a tuple S = (StS,s0,Σ
S,→S), where StS is an infinite set

of states, s0 ∈ StS is the initial state, Σ
S = Σ

S
i ⊕Σ

S
o is a finite set of actions partitioned into inputs Σ

S
i and

outputs Σ
S
o, and→S: StS× (ΣS∪R≥0)×StS is a transition relation. We write s

a
−→Ss′ when (s,a,s′) ∈→S

and use i?, o! and d to range over inputs, outputs and R≥0, respectively.

In what follows, we assume that any TIOTS satisfies the following conditions:

• time determinism: whenever s
d
−→Ss′ and s

d
−→Ss′′ then s′ = s′′

• time reflexivity: s
0
−→Ss for all s ∈ StS

• time additivity: for all s,s′′ ∈ StS and all d1,d2 ∈ R≥0 we have s
d1+d2−−−→Ss′′ iff s

d1−→Ss′ and s′
d2−→Ss′′

for an s′ ∈ StS

A run ρ of a TIOTS S from its state s1 is a sequence s1
a1−→Ss2

a2−→S . . .
an−→Ssn+1 such that for all 1≤ i≤ n,

si
ai−→Ssi+1 with ai ∈ Σ

S ∪R≥0. We write Runs(s1,S) for the set of runs of S starting in s1 and Runs(S)
for Runs(s0,S). We write States(ρ) for the set of states reached in ρ , and if ρ is finite last(ρ) is the last

state occurring in ρ .

A TIOTS S is deterministic iff ∀a∈ Σ
S∪R≥0, whenever s

a
−→Ss′ and s

a
−→Ss′′, then s′ = s′′. It is input-

enabled iff each of its states s ∈ StS is input-enabled: ∀i?∈ Σ
S
i .∃s

′∈ StS.s
i?
−→Ss′. It is output urgent iff

∀s,s′,s′′∈ StS if s
o!
−→Ss′ and s

d
−→Ss′′ then d = 0. Finally, S verifies the independent progress condition iff

either (∀d≥0.s
d
−→S) or (∃d∈ R≥0.∃o!∈ Σ

S
o.s

d
−→Ss′ and s′

o!
−→S).

TIOTS are syntactically represented by Timed I/O Automata (TIOA). Let Clk be a finite set of clocks.

A clock valuation over Clk is a mapping Clk 7→ R≥0 (thus RClk
≥0 ). Given a valuation u and d ∈ R≥0, we
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write u+d for the valuation in which for each clock x∈ Clk we have (u+d)(x) = u(x)+d. For λ ⊆ Clk,

we write u[λ ] for a valuation agreeing with u on clocks in Clk\λ , and mapping to 0 the clocks in λ .

Let Φ(Clk) denote all clock constraints ϕ generated by the grammar ϕ ::= x≺ k | x− y≺ k | ϕ ∧ϕ ,

where k ∈Q, x,y∈Clk and≺∈ {<,≤,>,≥}. For ϕ ∈Φ(Clk) and u∈RClk
≥0 , we write u |= ϕ if u satisfies

ϕ . Let JϕK denote the set of valuations {u ∈ RClk
≥0 | u |= ϕ}. A subset Z ⊆ RClk

≥0 is a zone if Z = JϕK for

some ϕ ∈Φ(Clk).

Definition 2 A Timed I/O Automaton is a tuple A= (Loc,q0,Clk,E,Act, Inv), where Loc is a finite set of

locations, q0 ∈ Loc is the initial location, Clk is a finite set of clocks, E ⊆ Loc×Act×Φ(Clk)×2Clk×Loc

is a set of edges, Act = Acti⊕Acto is a finite set of actions, partitioned into inputs (Acti) and outputs

(Acto), Inv : Loc 7→Φ(Clk) is a set of location invariants.

We assume all TIOA include a universal location, denoted lu, that accepts every input and can produce

every output at any time.

The semantics of a TIOA A = (Loc,q0,Clk,E,Act, Inv) is a TIOTS JAKsem = (Loc×RClk
≥0 ,(q0,0),

Act,→), where 0 is a constant function mapping all clocks to zero, and→ is the largest transition relation

generated by the following rules:

• Each edge (q,a,ϕ,λ ,q′) ∈ E gives rise to (q,u)
a
−→(q′,u′) for each clock valuation u ∈ RClk

≥0 such

that u |= ϕ and u′ = u[λ 7→ 0] and u′ |= Inv(q′).

• Each location q∈ Loc with a valuation u∈RClk
≥0 gives rise to a transition (q,u)

d
−→(q,u+d) for each

delay d ∈ R≥0 such that u+d |= Inv(q).

Let X be a set of states in JAKsem and let a ∈ Act. The a-successors and a-predecessors of X are defined

respectively by:

Posta(X) = {(q′,u′) | ∃(q,u) ∈ X .(q,u)
a
−→(q′,u′)}

Preda(X) = {(q,u) | ∃(q′,u′) ∈ X .(q,u)
a
−→(q′,u′)}

The timed successors and timed predecessors of X are respectively defined by:

Xր= {(q,u+d) | (q,u) ∈ X , d ∈ R≥0}
Xւ= {(q,u−d) | (q,u) ∈ X , d ∈ R≥0}

Additionally, we defined the safe timed predecessors of X w.r.t states Y , that are the timed predecessors

of X that avoids the states of Y along the path:

Predt(X ,Y )= {(q,u) | ∃d ∈R≥0.(q,u)
d
−→(q,u+d) and (q,u+d)∈Xand ∀d′ ∈ [0,d].(q,u+d′) 6∈Y}

Symbolic Abstractions Since TIOTSs are infinite size they cannot be directly manipulated by com-

putations. Usually symbolic representations, such as region graphs [5] or zone graphs, are used as data

structures that finitely represent semantics of TIOAs. We denote by X = (q,Z) a symbolic state, where

q ∈ Loc and Z ⊆ RClk
≥0 is a zone. The zone graph is GA = (ZA,X0,−→), where ZA is the set of reach-

able zones. The initial state is defined by X0 = {(q0,0)}ր ∩JInv(q0)K. For a ∈ Act, (q,Z)
a
−→Z(q′,Z′) if

(q,a,ϕ,λ ,q′) ∈ E and Z′ = ((Z∩ JϕK)[λ ])ր∩JInv(q′)K.

Example Figure 2 presents three small examples of TIOAs, that specifies the behaviour of a university

composed by a coffee machine (Fig. 2a), a researcher (Fig. 2b) and an administration (Fig. 2c).
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Figure 2: Timed specifications with timed I/O automata

Timed Games TIOAs are interpreted as two-player real-time games between the output player (the

component) and the input player (the environment). The input plays with actions in Acti and the output

plays with actions in Acto. A strategy for a player is a function that defines her move at a certain time

(either delaying or playing a controllable action). A strategy is called memoryless if the next move

depends solely on the current state. We only consider memoryless strategies, as these suffice for safety

games [1]. For simplicity, we only define strategies for the output player (i.e. output is the verifier).

Definitions for the input player are obtained symmetrically.

Definition 3 A memoryless strategy fo for the output player on the TIOA A is a partial function StJAKsem 7→
Acto∪{delay}, such that

• Whenever fo(s) ∈ Acto then s
fo(s)
−−→s′ for some s′.

• Whenever fo(s) = delay then s
d
−→s′′ for some d > 0 and state s′′, and fo(s

′′) = delay.

The game proceeds as a concurrent game between the two player, each proposing its own strategy. The

restricted behaviour of the game defines the outcome of the strategies.

Definition 4 Let A be a TIOA, fo and fi be two strategies over A for the output and input player, respec-

tively, and s be a state of JAKsem. Outcome(s, fo, fi) is the subset of Runs(s,JAKsem) defined inductively

by:

• s ∈ Outcome(s, fo, fi),

• if ρ ∈Outcome(s, fo, fi), then ρ ′ = ρ
a
−→s′ ∈Outcome(s, fo, fi) if ρ ′ ∈ Runs(s,JAKsem) and one the

following conditions hold:

1. a ∈ Acto and fo(last(ρ)) = a,

2. a ∈ Acti and fi(last(ρ)) = a,

3. a ∈ R≥0 and ∀d ∈ [0,a[∃s′′. last(ρ)
d
−→s′′ and ∀k ∈ {o, i} fk(s

′′) = delay.

• ρ ∈ Outcome(s, fo, fi) if ρ infinite and all its finite prefixes are in Outcome(s, fo, fi).

A winning condition for a player in the TIOA A is a subset of Runs(JAKsem). In safety games the

winning condition is to avoid a set Bad of “bad” states. Formally, the winning condition is Wo(Bad) =
{ρ ∈ Runs(JAKsem) | States(ρ)∩Bad = /0}. A strategy fo for output is a winning strategy from state s
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if and only if, for all strategy fi of input, Outcomeo(s, fo, fi) ⊆Wo(Bad). On the contrary, a strategy fi

for input is a spoiling strategy of fo if and only if Outcome(s, fo, fi) 6⊆ Wo(Bad). A state s is winning

for output if there exists a winning strategy from s. The game (A,Wo(Bad)) is winning if and only if

the initial state is winning. Solving this game is decidable [21, 12, 15]. We only consider safety games

in this paper, and without lost of generality we assume these “bad” states correspond to a set of entirely

“bad” locations.

Symbolic Timed Games: It is proved in [1] that timed games can be solved using region strategies,

where the players only need to remember the sequence of regions, instead of the sequence of states used

in Definition 3. Consequently timed games can be solved through symbolic computations performed on

the symbolic graph (either the region graph or the zone graph) using for instance the algorithm presented

in [12]. To represent these strategies we defined symbolic strategies which apply on symbolic states:

Definition 5 A symbolic strategy Fo for the output player on the symbolic graph GA = (ZA,X0,−→), is

a function Z 7→ Acto∪{delay}, where Z is a partition of the reachable states that refines ZA, such that

whenever Fo((q,Z)) ∈ Acto then ∀u ∈ Z.(q,u)
Fo((q,Z))
−−−−−→(q′,u′) for some (q′,u′).

We remark that a symbolic strategy Fo corresponds to the set of strategies fo such that whenever Fo((q,Z))=
a, then ∃u ∈ Z. fo((q,u)) = a. For (q,u) ∈ JAKsem, if ∃Z.u ∈ Z and F((q,Z)) ∈ Act∪{delay}, we define

by extension F((q,u)) = F((q,Z)). For a symbolic state X we define the timed successors of X restricted

by F by:

XրF= {(q,u+d) | (q,u) ∈ X , d ∈ R≥0, ∀d
′ ∈ [0,d].

F((q,u+d′)) = F((q,u+d))∨F((q,u+d′)) = {delay}}

3 Robust Timed Specifications

We summarize in this section the theory of robust timed specifications presented in [20]. It extends the

theory of timed specifications based on TIOA presented in [15].

3.1 Basics of the Timed Specification Theory

In [15] specifications and implementations are both represented by TIOAs satisfying additional condi-

tions:

Definition 6 A specification S is a TIOA whose semantics JSKsem is deterministic and input-enabled.

Definition 7 An implementation I is a specification whose semantics JIKsem additionally verifies the out-

put urgency and the independent progress conditions.

In specification theories, a refinement relation plays a central role. It allows to compare specifications,

and to relate implementations to specifications. In [15], as well as in [2, 3, 11], refinement is defined in

the style of alternating (timed) simulation. Formally, given two specifications S and T, we say that S

refines T, written S≤T, if and only if JSKsem is simulated by JTKsem.

Definition 8 An implementation I satisfies a specification S, denoted I sat S, if and only if I ≤ S
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A specification S is consistent if and only if there exists at least one implementation that satisfies S.

A complete specification theory includes several operators to compose specifications. The parallel

composition of two specifications S and T (denoted S ‖ T) is defined by the product of the two TIOAs

where components synchronize on common inputs/outputs. Additional operators include conjunction

and quotient. Their definition can be found in [15].

The parallel composition may introduce some incompatible states in the product, i.e. states in which

the two components cannot work together. With the input-enableness hypothesis no “model-related”

errors can occurs when computing the product. However specific incompatible states can be introduced

in the models, by using for instance the universal location lu to specify an unpredictable behaviour of

the component. A compatible environment for the two components allows to avoid these error states.

We follow the optimistic approach of [2], i.e. two specifications can be composed if there exists at least

one environment in which they can work together. Formally, given a set und of undesirable states, we

say that a specification S is useful if there exists an environment E such that JS ‖ EKsem∩und = /0. Two

specifications S and T are compatible if and only if their product S ‖ T is useful.

3.2 Strategies in Timed Games as Operators on Timed Specifications

The specification theory provides a game-based methodology in which winning strategies are used to

synthesize implementations and compatible environments. Therefore, it determines consistency and

usefulness of specifications,

In the consistency game the output player tries to verify a safety condition, i.e. avoid a set of immedi-

ate inconsistent sates errS ⊆ StJSKsem . Those are the sates that violate the independent progress condition:

errS=
{

s
∣∣(∃d.s 6 d−→) and ∀d∀o!∀s′.s

d
−→s′ implies s′ 6

o!
−→

}

If output has a winning strategy fo in the timed game (S,Wo(errS)), then one can synthesize from fo an

implementation I of S.

On the contrary in the usefulness game the input player tries to avoid the set of incompatible states. If

there exists a winning strategy fi in the game (S,Wo(undS)), it provides a compatible environment for S.

This allows to prove usefulness of specifications and therefore compatibility between two specifications.

3.3 Robust Implementations

An essential requirement for an implementation is to be realizable on a physical hardware, but this re-

quires admitting small imprecisions characteristic for physical components (computer hardware, sensors

and actuators). The requirement of realizability has already been linked to the robustness problem in

[25] in the context of model checking. In specification theories the small deficiencies of hardware can

be reflected in a strengthened satisfaction relation, which introduces small perturbations to the timing of

implementation actions, before they are checked against the requirements of a specification—ensuring

that the implementation satisfies the specification even if its behaviour is perturbed.

We first formalize the concept of perturbation. Let ϕ ∈Φ(Clk) be a guard over the set of clocks Clk,

let x ∈ Clk and k ∈Q. The enlarged guard ⌈ϕ⌉∆ is constructed according to the following rules:

• Any term x≺ k of ϕ with ≺∈{<,≤} is replaced by x≺ k+∆

• Any term x≻ k of ϕ with ≻∈{>,≥} is replaced by x≻ k−∆

Similarly, the restricted guard ⌊ϕ⌋∆ is using the two following rules:

• Any term x≺ k of ϕ with ≺∈{<,≤} is replaced by x≺ k−∆
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• Any term x≻ k of ϕ with ≻∈{>,≥} is replaced by x≻ k+∆.

Notice that for a for a clock valuation u and a guard ϕ , we have that u |= ϕ implies u |= ⌈ϕ⌉∆, and

u |= ⌊ϕ⌋∆ implies u |= ϕ , and ⌊⌈ϕ⌉∆⌋∆ = ⌈⌊ϕ⌋∆⌉∆ = ϕ .

We lift the perturbation to implementation TIOAs. Given a jitter ∆, the perturbation means a ∆-

enlargement of invariants and of output edge guards. Guards on the input edges are restricted by ∆:

Definition 9 For an implementation I=(Loc,q0,Clk,E,Act, Inv) and ∆∈Q>0, the ∆-perturbation of I is

the TIOA I∆ = (Loc,q0,Clk,E ′,Act, Inv′), such that:

• Every edge (q,o!,ϕ,λ ,q′)∈E is replaced by (q,o!,⌈ϕ⌉∆,λ ,q
′) ∈ E ′,

• Every edge (q, i?,ϕ,λ ,q′)∈E is replaced by (q, i?,⌊ϕ⌋∆,λ ,q
′) ∈ E ′,

• ∀q ∈ Loc. Inv′(q) = ⌈Inv(q)⌉∆,

• ∀q ∈ Loc.∀i?∈Acti there exists and edge (q, i?,ϕu, /0, lu)∈E ′ with ϕu = ¬(
∨

(q,i?,ϕ,λ ,q′)∈E⌊ϕ⌋∆).

I∆ is not necessarily action deterministic, as output guards are enlarged. However it is input-enabled,

since by construction (last case in previous definition), any input not accepted after restricting input

guards is redirected to the universal location lu. Also I0 equals I.

In a similar manner, for a specification S we define ⌈S⌉o
∆

the TIOA where all output edges and

invariants have been enlarged.

Definition 10 An implementation I robustly satisfies a specification S for a given delay ∆∈Q≥0, denoted

I sat∆ S, if and only if I∆ ≤ S

A specification is ∆-robust consistent if and only if it admits at least one ∆-robust implementation. A

specification is ∆-robust useful is there exists an environment E, such that ⌈E⌉o
∆
‖ S avoids the errors states

undS. As previously two specifications S and T are ∆-robust compatible if and only if their composition

is ∆-robust useful. The next property shows that robustness is monotonic for different values of the delay:

Property 1 (Monotonicity) Given two delays 0<∆1≤∆2 and an implementation I: I≤ I∆1
≤ I∆2

There-

fore, if a specification S is ∆2-robust consistent, then S is also ∆1-robust consistent. Moreover if S is

∆2-robust useful, then S is ∆1-robust useful.

3.4 Robust Timed Games for Timed Specifications

Robust timed games add a robustness objective to safety games. They can be used to verify robust

consistency and robust compatibility, as it was done in the non-robust cases. We have presented in [20] a

notion of robust strategies for timed games, and we show how to synthesize robust implementations and

robust environments from these strategies. We finally give a construction of a robust game automaton,

whose original idea comes from [13], that transforms the original game. It is shown that finding strategies

in this automaton, using classical timed games algorithms, permits to synthesize robust strategies in the

original game. In this paper we always use with this construction to solve robust timed games. Therefore

we only recall its definition below:

Definition 11 Let (A,Wo(Bad)) be a timed game, where A = (Loc,q0,Clk,E,Act, Inv) and Bad ∈ Loc,

and let ∆ ∈ Q>0. The robust game automaton A∆

rob = (L̃oc,q0,Clk∪ {y}, Ẽ,Act∪ {rob}, Ĩnv) uses an

additional clock y, and additional input action rob ∈ Acti, and is constructed according to the following

rules:
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• Loc⊆ L̃oc, and for each location q ∈ Loc and each edge e = (q,o!,ϕ,λ ,q′) ∈ E, two locations qα
e

and q
β
e are added in L̃oc. The invariant of q is unchanged; the invariants of qα

e and q
β
e are y≤ ∆.

• Each edge e′ = (q, i?,ϕ,λ ,q′) ∈ E gives rise to the following edges in Ẽ:

(q, i?,ϕ,λ ,q′), (qα
e , i?,ϕ,λ ,q

′) and (q
β
e , i?,ϕ,λ ,q

′).

• Each edge e = (q,o!,ϕ,λ ,q′) ∈ E gives rise to the following edges in Ẽ:

(q,o!,ϕ,{y},qα
e ), (q

α
e ,o!,{y = ∆},{y},q

β
e ), (qα

e , rob,ϕ,λ ,q′), (q
β
e , rob,ϕ,λ ,q′),

(qα
e , rob,¬ϕ, /0,Bad) and (qα

e , rob,¬ϕ, /0,Bad) 1

The construction is demonstrated in Fig. 3. The ideas behind the construction are that whenever output

want to fire a transition (q,o!,ϕo,λo,q1) in the original automaton from a state (q,u) after elapsing d

time units, this takes several steps in the robust automaton:

1. Output proposes to play action o! at time d with the following sequence of transitions:

(q,u)
d−∆
−−→(q,u+d−∆)

o!
−→(qα

,u+d−∆)
∆
−→(qα

,u+d)
o!
−→(qβ

,u+d)

Note that this forbid output to play any action with a reaction time smaller than ∆, and consequently

this forbids Zeno strategies.

2. Input can perturb this move with d′ ≤ ∆, by choosing either a smaller delay:

(qα
,u+d−∆)

d′

−→(qα
,u+d−∆+d′)

rob
−→(q1,u+d−∆+d′)

or a greater delay:

(qβ
,u+d)

d′

−→(qβ
,u+d +d′)

rob
−→(q1,u+d +d′)

3. At any time in locations q,qα and qβ , the original input edge (q, i?,ϕi,λi,q1) is still available.

4. Output is implicitly forbidden to play a move that could not be perturbed since input will immedi-

ately win if the guard ϕo is exceeded.

In [20], we prove that this construction is a sound technique to solve robust timed games and check

robust consistency and robust compatibility.

4 Counter Strategy Refinement For Parametric Robustness

In previous section we have recalled our notions of robustness for a fixed delay. In [20] we additionally

study the properties of these perturbations with respect to the different operators in the specification

theory. In this paper we now consider the parametric problems, i.e. determining the existence of a non-

null delay. More precisely due to the monotonicity properties we would like to evaluate the greatest

possible value of the perturbation. The robustness problems that we consider in this section are the

parametric extension of previously defined problems:

• Robust Consistency: Given a specification S, determine the greatest value of ∆ such that S is

∆-robust consistent.

• Robust Usefulness: Given a specification S, determine the greatest value of ∆ such that S is ∆-

robust useful.

1Technically, since in a TIOA transitions guards must be convex, the last two transitions may be split into several copies,

one for each convex guard in ¬ϕ .



10 Counterexample Refinement for Robust Timed Specifications

q

Inv(q)

q1

q2

o!

ϕo,λo

i? ϕi,λi

(a) TIOA A

q

Inv(q)

qα

y≤ ∆

qβ

y≤ ∆

q1

q2

Bad

o!

ϕo,y := 0

i?

ϕi,λi

o!

y = ∆,y := 0

rob,ϕo,λo

rob,¬ϕo

i?

ϕi,λi

rob

ϕo,λo

rob,¬ϕo

i?

ϕi,λi

(b) Robust game automaton A
∆

rob

Figure 3: Construction of the robust game automaton A∆

rob from an original automaton A.

4.1 Parametric Timed Games

When we consider ∆ as a free parameter, the robust game automaton construction of Section 3 defines

a Parametric Timed I/O Automata, in a similar manner as Parametric Timed Automata are defined in

[6, 18]. We denote by Φ∆(Clk) the set of parametric guards with parameter ∆ over a set of clocks Clk.

Parametric guards in Φ∆(Clk) are generated by the following grammar ϕ ::= x ≺ l | x−y ≺ l | ϕ∧ϕ ,

where x,y∈Clk, ≺∈ {<,≤,>,≥} and l = a+b∗∆ is a linear expression such that a,b ∈Q.

Definition 12 A Parametric TIOA with parameter ∆, is a TIOA A such that guards and invariants are

replaced by parametric guards.

For a given value δ ∈Q≥0, we define the non-parametric game Aδ obtained by replacing each occurrence

of the parameter ∆ in the parametric guards of A by the value δ .

A parametric symbolic state X is a set of triple (q,u,δ ), where δ is a value of the parameter ∆ and

(q,u) is a state in JAδ Ksem. Operations on symbolic states can be extended to parametric symbolic states,

such that XրP, XւP,PPosta(X), PPreda(X) and PPredt(X ,Y ) stands for the extensions of previously

defined non-parametric operations. Formally:

XրP={(q,u+d,δ ) | (q,u,δ ) ∈ X , d ∈ R≥0}

XւP={(q,u−d,δ ) | (q,u,δ ) ∈ X , d ∈ R≥0}

PPosta(X) ={(q′,u′,δ ) | ∃(q,u,δ ) ∈ X .(q,u)
a
−→Aδ (q′,u′)}

PPreda(X) ={(q,u,δ ) | ∃(q′,u′,δ ) ∈ X .(q,u)
a
−→Aδ (q′,u′)}

PPredt(X ,Y ) ={(q,u,δ ) | ∃d ∈ R≥0.(q,u)
d
−→Aδ (q,u+d)

and (q,u+d) ∈ X and ∀d′ ∈ [0,d].(q,u+d′,δ ) 6∈ Y}

4.2 Parametric Robustness Evaluation

Solving the robustness problems for any value of ∆ would in general require to solve a parametric timed

game. This problem is undecidable as it has been shown that parametric model-checking problem is
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undecidable [6]. In this paper, we propose to compute an approximation of the maximum delay per-

turbation. Due to the monotonicity of the robustness problems (Property 1), we can apply an iterative

evaluation procedure that searches for the maximum value until it belongs within a given precision inter-

val. This basic procedure is describe in Algorithm 1 for the parametric game (A∆

rob,W
o(Bad)) for output

(again it applies symmetrically to input).

Algorithm 1: Evaluation of parametric robustness

Input: (A∆

rob,W
o(Bad)): parametric robust timed game,

∆max: initial maximum value,

ε: precision

Output: ∆good: maximum admissible value of ∆

begin1

∆good← 02

∆bad← ∆max3

while ∆bad−∆good > ε do4

(∆good,∆bad)← RefineValues(A∆

rob,∆good,∆bad)5

end6

return ∆good7

end8

The algorithm assumes that the game (A0
rob,W

o(Bad)) is won, whereas the game (A∆max

rob ,Wo(Bad)) is

lost. It verifies two invariants: ∆good stores the maximum value known to be correct for the robust game;

∆bad stores the minimum value known to be incorrect with precision ε . At the heart of the algorithm the

procedure RefineValues plays the game for a chosen value, and update the variables ∆good and ∆bad

according to the result. Termination is ensure if each iteration reduces the length of the interval by some

fixed minimum amount.

Different algorithms can be used to implement RefineValues. A basic method is binary search. In

that case RefineValues chooses the middle point ∆mid of the interval [∆good,∆bad], and plays the game

(A∆mid

rob ,Wo(Bad)). According to the results, it updates either ∆good or ∆bad. This algorithm has several

drawbacks. First, the number of games it needs to solve heavily depends on the precision parameter.

Second, depending on the initial maximum value a high proportion of the games played may be winning,

and in that case the complete symbolic graph of the model must be explored.

4.3 Counter Strategy Refinement

We propose an alternative method that follows the principle of counterexample-guided abstraction re-

finement [14]. In our settings, counterexamples are spoiling strategies computed when the game is lost.

We analyse these strategies in order to refine the value of ∆. Using this technique only the last game is

winning. The different steps are:

1. Play the game (A∆bad

rob ,Wo(Bad)).

2. If the game is won, return the values (∆bad,∆bad).

3. Else extract a counter strategy Fi for the input player.

4. Replay Fi on the parametric game using Algorithm 2; it returns a value ∆min.

5. If ∆min is only an infimum and ∆bad−∆min > ε , return the values (∆good,∆min).
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6. Else return the values (∆good,∆min− ε).

The goal of Algorithm 2 is to replay the spoiling strategy Fi on the parametric game and compute

the maximum value of ∆ such that this strategy becomes infeasible. It takes as inputs the parametric

game automaton A∆

rob, the symbolic graph (Z∆bad

A
,X0,−→) computed for the game (A∆bad

rob ,Wo(Bad)), and

the spoiling strategy Fi. It returns the infimum of the values ∆bad such that Fi is a spoiling strategy in the

game (A∆bad

rob ,Wo(Bad)).
The algorithm is similar to the timed game algorithm proposed in [12] and implemented in the tool

TIGA [8]. However only the backward analysis is applied on parametric symbolic states, starting from

the ”bad” locations. Additionally the algorithm only explores the states that belongs to the outcome of

Fi. Since Fi is a spoiling strategy in a safety game, its outcome contains a set of finite runs that eventually

reach the ”bad” locations. This ensures that a backward exploration restricted to this set of finite runs

will terminate. Formally, we define the outcome of symbolic spoiling strategy Fi for input. Outcome(Fi)
is the subset of runs in the symbolic graph defined inductively by:

• (q0,S0ր
Fi) ∈ Outcome(Fi),

• if ρ ∈Outcome(Fi) and last(ρ) = (q,Z), then ρ ′ = ρ−→(q′,Z′)∈Outcome(Fi) if ∃(q,a,ϕ,λ ,q′)∈
E and one of the following condition holds:

1. either a ∈ Acti and ∃Z′′.Fi(Z
′′) = a and Z′ = Posta(Z∩Z′′)րFi ,

2. or a ∈ Acto and ∃Z′′.Fi(Z
′′) = delay and Z′ = Posta(Z∩Z′′)րFi ,

The backward exploration ends when the set of winning states PWin[X0] contains the initial state. Then,

the projection (PWin[X0]∩ 0)|∆ computes the set of all the valuations of ∆ such that the strategy Fi is

winning. The algorithm returns the infimum of these valuations.

5 Implementation

The specification theory described in [15] is implemented in the tool ECDAR [16]. In order to experiment

the methods proposed in this paper, we have built a prototype in Python that reimplements the main

functionalities of ECDAR and support the analysis of the robustness of timed specifications [23]. Inside

this tool, the theory presented in Section 3 is implemented as a set of model transformations:

1. Computation of I∆, the ∆-perturbation of an implementation I for some ∆ ∈Q≥0.

2. Computation of the robust game automaton A∆

rob.

3. In order to add rational perturbations on the models I∆ and A∆

rob the tool scales all the constants in

the TIOA.

4. Finally we transform the TIOA of a specification into a specific consistency game automaton (resp.

usefulness game automaton), such that all non ∆-robust consistent (resp. non ∆-robust useful)

states are observed by a single location.

By combining these transformations we can check in the tool the three problems: ∆-robust satisfaction, ∆-

consistency and ∆-usefulness. The algorithms used are respectively the alternating simulation algorithm

presented in [12] and the on-the-fly timed games algorithm presented in [11].

To solve the parametric robustness problems we have implemented the heuristic presented in Sec-

tion 4 that approximates the maximum solution through a counter strategy refinement. We have also

implemented a binary search heuristic in order to compare the performances of the two approaches. In

Algorithm 2, operations on parametric symbolic states are handled with the Parma Polyhedra Library
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Algorithm 2: Counter strategy refinement

Input: (A∆

rob,W
o(Bad)): parametric robust timed game,

(Z∆new

A
,X0,−→): symbolic graph computed for the game (A∆new

rob ,Wo(Bad))

Fi: spoiling strategy for input in the game (A∆new

rob ,Wo(Bad))

Output: Infimum of ∆bad values such that Fi is a spoiling strategy in (A∆bad

rob ,Wo(Bad))
begin1

/* Initialisation */

Waiting← /02

for X = (q,Z) ∈ ZA do3

if q ∈ Bad then4

PWin[X ]← JInv(q)K5

Waiting←Waiting∪{Y | ∃ρ.ρ−→Y−→X ∈ Outcome(Fi)}6

else7

PWin[X ]← /08

end9

end10

/* Backward exploration */

while (Waiting 6= /0)∧0 6∈ PWin[X0]) do11

X = (q,Z)← pop(Waiting)12

PBad∗←¬JInv(q)K∪ (
⋃

X
a∈Acti−−−→Y PPreda(Win[Y ]))13

PGood∗←
⋃

X
a∈Acto−−−−→Y PPreda(JInv(Y )K \PWin[Y ])14

PWin[X ]← PPredt(PBad∗,PGood∗ \PBad∗)15

Waiting←Waiting∪{Y | ∃ρ.ρ−→Y−→X ∈ Outcome(Fi)}16

end17

return Minimize((PWin[X0]∩0)|∆)18

end19

[7]. We shall remark that using polyhedra increases the complexity of computations compared to Differ-

ence Bound Matrices (DBMs), but this is necessary due to the form of the parametric constraints that are

beyond the scope of classical DBMs. This not so much a problem in our approach as parametric anal-

ysis is limited to spoiling strategies whose size is kept as small as possible. Nevertheless an interesting

improvement can be to use Parametric DBMs as presented in [18].

6 Experiments

We evaluate the performances of the tool to solve the parametric robustness problems on two academic

examples. We compare in these experiments the Counter strategy Refinement (CR) approach with the

Binary Search (BS) method. We presents benchmarks results for different values of the initial parameters

∆max and ε .
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∆max = 8 ∆max = 6 ∆max = 8 ∆max = 6

Game size ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

Model loc. trans. CR BS CR BS CR BS CR BS

M 9 21 119ms 314ms 119ms 262ms 119ms 438ms 119ms 437ms

R 11 27 188ms 303ms 188ms 299ms 188ms 419ms 188ms 523ms

A 9 22 133ms 316ms 133ms 287ms 133ms 441ms 133ms 483ms

M ‖ A 41 158 10.1s 10.1s 10.1s 9.6s 10.4s 17.5s 10.4s 17.6s

R ‖ A 48 201 14.1s 12.1s 12.5s 11s 14.1s 19.6s 12.5s 19.4s

M ‖ R 44 152 10s 15.5s 9.81s 15.8s 10.3s 22.9s 9.78s 29.2s

M ‖ R ‖ A 180 803 54.4s 56.3s 54.6s 112s 55s 58.8s 55.7s 216s

Table 1: Robust consistency of the university specifications

∆max = 8 ∆max = 6 ∆max = 8 ∆max = 6

Game size ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

Model loc. trans. CR BS CR BS CR BS CR BS

M ‖ R 21 90 2.64s 4.34s 1.72s 4.02s 2.64s 5.5s 1.72s 5.45s

M ‖ R ‖ A 75 399 48s 65s 42.7s 74.2s 48.2s 78.1s 42.9s 120s

Table 2: Robust compatibility between the university specifications

6.1 Specification of a university

The toy examples featured in this paper are extracted from [15]. They describe the overall specification

of a university, composed by three specifications: the coffee machine (M) of Fif. 2a, the researcher

(R) of Fig. 2b, and the administration (A) of Fif. 2c. We study the robust consistency and the robust

compatibility of these specifications and their parallel composition. The results are presented in Tables 1

and 2. The column game size displays the size of the robust game automaton used in the analysis in

terms of locations (loc.) and transitions (trans.). The next columns display the time spent to compute

the maximum perturbation with different initial conditions. The analysis of these results first shows that

the Counter strategy Refinement method is almost independent from the two initial parameters ∆max and

ε . This is not the case for Binary Search: the precision ε influences the number of games that must be

solved, and the choice of ∆max change the proportion of games that are winning. Comparing the results of

the two methods shows that for most of the cases, especially the more complex one, the Counter strategy

Refinement approach is more efficient.

6.2 Specification of a Milner Scheduler

The second experiment studies a real-time version of Milner’s scheduler previously introduced in [16].

The model consists in a ring of N nodes. Each nodes receives a start signal from the previous node to

perform some work and in the mean time forward the token to the next node within a given time interval.

We check the robust consistency of this model for different values of N and different initial parameters.

The results are displayed in Table 3. Like in previous experiment the results show that the Counter

strategy Refinement method is independent form the initial conditions and in general more efficient than

Binary Search.
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∆max = 30 ∆max = 31 ∆max = 30 ∆max = 31

Game size ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1

Model loc. trans. CR BS CR BS CR BS CR BS

1 Node 13 35 0.97s 0.68s 1.09s 0.72s 0.97s 1.03s 1.09s 1.09s

2 Nodes 81 344 10.7s 10.3s 11.2s 12.6s 10.5s 15.8s 11.1s 19.4s

3 Nodes 449 2640 1m58 2m25 2m06 2m26 1m57 3m39 2m05 3m45

4 Nodes 2305 17152 17m38 24m12 17m38 27m46 17m41 37m57 17m37 41m50

Table 3: Robust consistency of Milner’s scheduler nodes

6.3 Interpretation

The performances of the Binary Search method depends on the number of games that are solved and on

the outcome of these games. Games that are winning (or games that are losing but with a value of ∆ close

to the optimum value) are harder to solve, since in these cases the (almost) complete symbolic state space

must be explored. Reducing the precision parameter ε implies that more games must be solved close to

the optimum value, and therefore it increases the time of analysis. Moreover, changing, even slightly, the

initial maximum value ∆max may change the number of games, but most important the outcome of these

games, and therefore the proportion of winning games. For instance in the last experiment, the expected

result is 7.5. With an initial value of 30 the bisections performed by the Binary Search method arbitrarily

imply that only 1 game is winning out of 9 (for ε = 0.1). With 31 this proportion is 6 out of 9, which

increases the complexity of the analysis.

With the Counter strategy Refinement approach proposed in this paper only losing games are played

until one is winning. The choice of ∆max modifies the number of games that are solved, but in general

the first games for large values of ∆ are easily solved. Consequently, the choice of ∆max shows in the

experiments almost no impact on the performances. With the parametric approach the parameter ε is

only used when the value ∆min computed by the refinement process is the minimum of the bad values. In

that case the next iteration plays the game with the value ∆min− ε . The experiments shows this has no

impact on the performances.

7 Conclusion

We have studied the parametric robustness problems for timed specifications. This works is based on the

theory of timed specifications of [15]. It extends the theory of robust specifications of [20], which was

limited to fix values for the delays. More precisely, we evaluate through approximation techniques the

maximum imprecision allowed by specifications. To this end, we propose a counterexample refinement

approach that analyses spoiling strategies in timed games.

This technique has been implemented in a prototype tool and its performances have been evaluated

during two experiments. The results show that our counterexample refinement technique offers in most

cases better and more robust (w.r.t initial conditions) performances than the binary search technique.

In a future version of our tool, we would like to apply the counterexample refinement approach to

the alternating simulation game, in order to solve the parametric satisfaction problem for an existing

implementation. We will also try to improve the performances; in particular for analysing parametric

symbolic states. An interesting approach could be to replace polyhedra by parametric DBMs.
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