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Introduction

For long, software engineers have practiced component-oriented software construction, building systems from modules that only depend on each other in well specified ways. Foundational research follows up by developing trustworthy rigorous methods for component-oriented design. In concurrency theory this includes compositional design (specification theories, stepwise-refinement) and compositional model checking. Akin to algebraic specifications, specification theories provide a language for specifying component interfaces together with operators for combining them, such as parallel (structural) composition and conjunction (logical composition).

Specification theories integrate prior results to provide a uniform design method. In [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], we have proposed the first complete specification theory for timed systems. We build on an input/output extension of the classical timed automata model-inputs are used to represent behaviors of the environment and outputs represent the behavior of the component. The theory is equipped with a game-based semantic, which is used to define all the good operations for such specification theory, including satisfaction (can a specification be implemented), refinement (how to compare specifications), logical composition (computing the intersection of two sets of implementations), structural composition (building large components from smaller ones), and quotient (synthesizing a component in a large design).

The theory in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF] is equipped with a consistency check that allows to decide whether a specification can indeed be implemented. Unfortunately, this check does not take imprecision of the physical world into account, that is consistency can be used to synthesize an implementation that may be not robust with respect to variations of the environment. In practice, one would want to guarantee that a perturbation of the implementation still matches the requirements of the specification. Providing a solution to this problem in the setting of timed I/O specifications is our objective in this paper.

Our contributions include:

-We propose a notion of implementation of a specification that is robust with respect to a given perturbation in the delay before an action. Such perturbation is fixed in advance, which is a reasonable assumption as sensitivity with respect to perturbation of the environment is generally given in the description of the component that is provided by the manufacturer. The concept of robust implementation is lifted to a robust satisfaction operation that takes variations of timed behaviors into account when checking whether the implementation matches the requirement of the specification. -We propose a consistency check for robust satisfaction. This new check relies on an extension of the classical timed I/O game to the robust setting. In [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF], Chatterjee et al.

showed that problems on robust timed games can be reduced to classical problems on an extended timed game. We modify the original construction of [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF] to take the duality of inputs and outputs into account. Then, we show how our new game can be used to decide consistency in a robust setting as well as to synthesize a robust implementation from a given specification. -Finally, classical compositional design operators are lifted to the robust setting.

One of the nice features of our approach is that this does not require to modify the definitions of the operators themselves and that all the good properties of a specification theory (including independent implementability) are maintained.

To the best of our knowledge, this paper presents the first complete theory for robust timed specification. While the presentation is restricted to the theory of [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], we believe that the approach works for any timed specifications. Our experience with industrial projects shows that such realistic design theories are of clear interest [START_REF]The COMBEST Consortium: Combest[END_REF][START_REF]The SPEEDS Consortium: Speeds[END_REF][START_REF] Badouel | Contract theories for embedded systems : A white paper[END_REF].

State of The Art. None of the existing specification theories for timed systems allows for the treatment of robustness.

Various works have considered robustness for timed automata using logical formulas as specifications (and neglecting compositional design operators). The robust semantics for timed automata with clock drifts has been introduced by Puri [START_REF] Puri | Dynamical properties of timed automata[END_REF]. The problem has been linked to the implementation problem in [START_REF] Wulf | Almost ASAP semantics: from timed models to timed implementations[END_REF], which introduced the first semantics that modeled the hardware on which the automaton is executed. In this work, the authors proposed a robust semantics of Timed Automata called AASAP semantics (for "Almost As Soon As Possible"), that enlarges the guards of an automaton by a delay ∆. This work has been extended in [START_REF] Wulf | Robust safety of timed automata[END_REF] that proposes another robust semantics with both clock drifts and guard enlargement. Extending [START_REF] Puri | Dynamical properties of timed automata[END_REF] they solve the robust safety problem, defined as the existence of a non-null value for the delays. They show that in terms of robust safety the semantics with clock drifts is just as expressive as the semantics with delay perturbation. We extend the work of [START_REF] Wulf | Almost ASAP semantics: from timed models to timed implementations[END_REF][START_REF] Wulf | Robust safety of timed automata[END_REF] by considering compositional design operators, stepwise-refinement, and reasoning about open systems (only closed system composition were considered so far).

We solve games for consistency and compatibility using a robust controller synthesis approach largely inspired by Chatterjee et al. [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF], who provide synthesis techniques for robust strategies in games with parity objectives. Driven by the fact that consistency and compatibility are safety games, we restrict ourselves to safety objectives, but we extend [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF] by allowing negative perturbation of delays.

We proceed by introducing the background on Timed Specifications (Section 2). In Section 3 we introduce methods for solving robust time games that arise in our specification theory. These methods are used in Sections 4-5 to reason about consistency, conjunction, parallel composition and synthesis of specifications and robust implementations of real time components.

Background on Timed I/O Specifications

We now recall the definition of Timed I/O specifications [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]. We use Z (respectively N) for the set of all integer numbers (resp. non-negative integers), R for the set of all real numbers, and R ≥0 (resp. R >0 ) for the non-negative (resp. strictly positive) subset of R. Rational numbers are denoted by Q, and their subsets are denoted analogously. For x ∈ R ≥0 , let x denote the integer part of x and x denote its fractional part.

In the framework of [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], specifications and their implementations are semantically represented by Timed I/O Transition Systems (TIOTS) that are nothing more than timed transition systems with input and output modalities on transitions. Later we shall see that input represents the behaviors of the environment in which a specification is used, while output represents behaviours of the component itself. In what follows, we assume that any TIOTS satisfies the following conditions:

time determinism: whenever s A run ρ of a TIOTS S from its state s 1 is a sequence

s 1 a1 -→ S s 2 a2 -→ S . . . an --→ S s n+1 such that for all 1 ≤ i ≤ n s i ai -→ S s i+1 .
We write Runs(s 1 , S) for the set of runs of S starting in s 1 and Runs(S) for Runs(s 0 , S). We write States(ρ) for the set of states reached in ρ, and if ρ is finite last(ρ) is the last state occurring in ρ.

A TIOTS S is deterministic iff ∀a ∈ Σ S ∪ R ≥0 , whenever s a -→ S s and s a -→ S s , then s = s . It is input-enabled iff each of its states s ∈ St S is input-enabled: ∀i? ∈ Σ S i . ∃s ∈ St S . s i? -→ S s . We say that S is output urgent iff ∀s, s , s ∈ St S if s o! -→ S s and s d -→ S s then d = 0. Finally, S verifies the independent progress condition iff either (∀d ≥ 0.s d -→ S ) or (∃d ∈ R ≥0 .∃o! ∈ Σ S o .s d -→ S s and s o! -→ S )
. TIOTS are syntactically represented by Timed I/O Automata (TIOA). Let X be a finite set of clocks. A clock valuation over X is a mapping X → R ≥0 (thus R X ≥0 ). Given a valuation u and d ∈ R ≥0 , we write u+d for the valuation in which for each clock x ∈ X we have (u+d)(x) = u(x)+d. For Y ⊆ X, we write u[Y → 0] for a valuation agreeing with u on clocks in X \ Y , and giving 0 for clocks in Y . Let C(X) denote all clock constraints ϕ generated by the grammar ψ ::

= x ≺ k | x -y ≺ k | ψ ∧ ψ, where k ∈ Q, x, y ∈ X and ≺ ∈ {<, ≤, >, ≥}. For ϕ ∈ C(X) and u ∈ R X ≥0 , we write u |= ϕ if u satisfies ϕ. Let ϕ denote the set of valuations {u ∈ R X ≥0 | u |= ϕ}. A subset Z ⊆ R X ≥0 is a zone if Z = ϕ for some ϕ ∈ C(X). Definition 2. A Timed I/O Automaton is a tuple A = (Loc, q 0 , Clk, E, Act, Inv), where Loc is a finite set of locations, q 0 ∈ Loc is the initial location, Clk is a finite set of clocks, E ⊆ Loc × Act × C(Clk) × 2 Clk × Loc is a set of edges, Act = Act i ⊕ Act o is a finite set of actions, partitioned into inputs (Act i ) and outputs (Act o ), Inv : Loc → C(Clk) is a set of location invariants.
Without loss of generality we assume that invariants of a location are always included in the guards of the edges that are incident with the location. We also assume that guards are satisfiable (for any guard ϕ the set ϕ is non-empty).

A universal location, denoted l u , in a TIOA accepts every input and can produce every output at any time. Location l u models an unpredictable behavior of a component.

The semantics of a TIOA A = (Loc, q 0 , Clk, E, Act, Inv) is a TIOTS A sem = (Loc × R Clk ≥0 , (q 0 , 0), Act, →), where 0 is a constant function mapping all clocks to zero, and → is the largest transition relation generated by the following rules:

-Each edge (q, a, ϕ, λ, q ) ∈ E gives rise to (q, u) a -→(q , u ) for each clock valuation u ∈ R Clk ≥0 such that u |= ϕ and u = u[λ → 0] and u |= Inv(q ). -Each location q ∈ Loc with a valuation u ∈ R Clk ≥0 gives rise to a transition (q, u)

d -→(q, u + d) for each delay d ∈ R ≥0 such that u + d |= Inv(q).
Since TIOTSs are infinite size they cannot be directly manipulated by computations. Usually symbolic representations, such as region graphs [START_REF] Alur | A theory of timed automata[END_REF] or zone graphs, are used as data structures that finitely represent semantics of TIOAs. Let M be the greatest (in absolute value) integer constant that appears in the guards of a TIOA 4 . A clock region is an equivalence class of the relation ∼ on clock valuations such that u ∼ v iff the following conditions hold:

-∀x ∈ Clk, either u(x) = v(x) , or u(x) > M and v(x) > M , -∀x, y ∈ Clk, ∀c ∈ [-M, M ], u(x) -u(y) ≤ c iff v(x) -v(y) ≤ c, -∀x ∈ Clk if u(x) ≤ M then u(x) = 0 iff v(x) = 0,
We write r for the direct time successor of the region r, if such exists. The region graph of a TIOA

A is G = (R A , - → G ), where R A = {(q, r) | ∃(q, u) ∈ St A sem . u ∈ r} is the set of regions, and - → G ⊆ R A × (Act ∪ {τ }) × R A , such that (q, r) τ -→ G (q, r ) iff r |= Inv(q),
and (q, r) a -→ G (q , r ) iff (q, u) a -→(q , u ) for some u ∈ r and u ∈ r . Basics of the Timed Specification Theory. In [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], timed specifications and implementations are both represented by TIOAs satisfying additional conditions: Definition 3. A specification S is a TIOA whose semantics S sem is deterministic and input-enabled. An implementation I is a specification whose semantics I sem additionally verifies the output urgency and the independent progress conditions.

Example 1. Figure 1a presents a specification of a researcher. It accepts either coffee (coff) or tea in order to produce publications (pub). If tea is served after a too long period the researcher falls into an error state represented by a universal state l u . An individual researcher is an implementation of this specification. One example is presented in Figure 1b.

In specification theories, a refinement relation plays a central role. It allows to compare specifications, and to relate implementations to specifications. In [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], as well as in [START_REF] De Alfaro | Interface automata[END_REF][START_REF] De Alfaro | Interface-based design[END_REF][START_REF] Bulychev | Efficient on-the-fly algorithm for checking alternating timed simulation[END_REF], refinement is defined in the style of alternating (timed) simulation: Definition 4 (Refinement). An alternating timed simulation between TIOTS S = (St S , s 0 , Σ S , → S ) and

T = (St T , t 0 , Σ T , → T ) is a relation R ⊆ St S × St T such that (s 0 , t 0 ) ∈ R and for every (s, t) ∈ R -If t i? -→ T t for some t ∈ St T , then s i? -→ S s and (s , t ) ∈ R for some s ∈ St S -If s o! -→ S s for some s ∈ St S , then t o! -→ T t and (s , t ) ∈ R for some t ∈ St T -If s d -→ S s for d ∈ R ≥0 , then t d -→ T t and (s , t ) ∈ R for some t ∈ St T
We write S ≤ T if there exists an alternating simulation between S and T . For two TIOAs S and T , we say that S refines T , written S ≤ T , iff S sem ≤ T sem .

Definition 5 (Satisfaction). An implementation I satisfies a specification S, denoted I sat S, iff I sem ≤ S sem . We write S mod for the set of all implementations of S, so S mod = {I | I sat S and I is an implementation}.

The reader might find it surprising that in a robust specification theory we refrain from adjusting the refinement to account for imprecision of implementations when comparing specifications. Our basic assumption is that specifications are precise mathematical objects that are not susceptible to imprecision of execution. In contrary, implementations can behave imprecisely when executed, so in Section 3 we will introduce an extension of Def. 5 that takes this into account. It is a fortunate property of Def. 4 that we do not need to modify it in order to reason about robust implementations (Property 3 in Sect. 3).

In [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], we have reduced refinement checking to finding winning strategies in timed games. In the reminder of this section, we recall the definition of such games and show how they can be used to check consistency. Timed games also underly other operations such as conjunction, composition, and quotient [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], which will be illustrated in Sect. 4-5.

Timed Games for Timed I/O Specifications. TIOAs are interpreted as two-player real-time games between the output player (the component) and the input player (the environment). The input plays with actions in Act i and the output plays with actions in Act o . A strategy for a player is a function that defines her move at a certain time (either delaying or playing a controllable action). A strategy is called memoryless if the next move depends solely on the current state. We only consider memoryless strategies, as these suffice for safety games. For simplicity, we only define winning strategies for the output player (i.e. output is the verifier). Definitions for the input player are obtained symmetrically. Definition 6. A memoryless strategy f for the output player on the TIOA A is a function

St A sem → Act o ∪ {delay}, such that whenever f (s) ∈ Act o then s f (s)
--→s for some s , and whenever f (s) = delay then s d -→s for some d > 0 and state s .

The restricted behavior of the TIOA when one player applies a specific strategy is defined as the outcome of the strategy.

Definition 7.

Let A be a TIOA, f a strategy over A for the output player, and s a state of A sem . The outcome Outcome o (s, f ) of f from s is the subset of Runs(s, A sem ) defined inductively by:

-s ∈ Outcome o (s, f ), -if ρ ∈ Outcome o (s, f ) then ρ = ρ a -→s ∈ Outcome o (s, f ) if ρ ∈ Runs(s, A sem )
and one the following conditions hold:

1. a ∈ Act i , 2. a ∈ Act o and f (last(ρ)) = a, 3. a ∈ R ≥0 and ∀d ∈ [0, a[.∃s .last(ρ) d -→s and f (s ) = delay. -ρ ∈ Outcome o (s, f ) if ρ infinite
and all its finite prefixes are in Outcome o (s, f ).

A winning condition for a player in the TIOA A is a subset of Runs( A sem ). In safety games the winning condition is to avoid a set Bad of "bad" states (without lost of generality we assume these "bad" states correspond to a set of entirely "bad" locations). Formally, the winning condition is

WS o (Bad) = {ρ ∈ Runs( A sem ) | States(ρ)∩Bad = ∅}. A strategy f for output is winning from state s if Outcome o (s, f ) ⊆ WS o (Bad).
A state s is winning if there exists a winning strategy from s. The game (A, WS o (Bad)) is winning if the initial state is winning. Solving this game is decidable [START_REF] Maler | On the synthesis of discrete controllers for timed systems (an extended abstract)[END_REF][START_REF] Cassez | Efficient on-the-fly algorithms for the analysis of timed games[END_REF][START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF].

Strategies can also be defined symbolically, using the region graph introduced in the previous section. For a region (q, r), if f (q, r) = delay then (q, r)

τ -→ G (q, r ), and if f (q, r) ∈ Act o then ∃(q , r ).(q, r) a -→ G (q , r ). An outcome of f is then a run in the region graph, such that if ρ ∈ Outcome o ((q, r), f ) then ρ = ρ a -→(q , r ) ∈ Outcome o ((q, r), f ) if last(ρ) a -→ G (q , r
), and either a ∈ Act i , or a ∈ Act o and f (last(ρ)) = a, or a = τ and f (last(ρ)) = delay.

Maximum Strategies in Timed Games as Operators on Timed Specifications. We sketch how timed games can be used to establish consistency of a timed specifications.

An immediate error occurs in a state of a specification if the specification disallows progress of time and output transitions in a given state-such a specification will break if the environment does not send an input. For a specification S we define the set of immediate error states err S ⊆ St S sem as:

err S = s (∃d. s d -→) and ∀d ∀o! ∀s . s d -→s implies s o! -→
It follows that no immediate error states can occur in implementations, since they verify independent progress. In [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF] we show that S is consistent iff there exists a winning strategy for output in the safety game (S, WS o (err S )). Moreover, the maximum consistent part of S corresponds to the maximum wining strategy for output in this game.

Conjunction of two specifications is found as a maximal strategy for output in a safety game on the product state space to avoid immediate errors. Similarly, optimistic parallel composition of two specifications is computed as a maximum strategy for input in a safety game over the product state space; and a quotient of two specifications is found as a maximum strategy for output in another safety game. Optimistic composition means that two specifications are compatible if there exists at least one environment, in which they can avoid error states. Details can be found in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF].

Robust Timed I/O Specifications

We now define a robust extension of our specification theory. An essential requirement for an implementation is to be realizable on a physical hardware, but this requires admitting small imprecisions characteristic for physical components (computer hardware, sensors and actuators). The requirement of realizability has already been linked to the robustness problem in [START_REF] Wulf | Almost ASAP semantics: from timed models to timed implementations[END_REF] in the context of model checking. In specification theories the small deficiencies of hardware can be reflected in a strengthened satisfaction relation, which introduces small perturbations to the timing of implementation actions, before they are checked against the requirements of a specification-ensuring that the implementation satisfies the specification even if its behavior is perturbed.

We first formalize the concept of perturbation. Let ϕ ∈ C(X) be a guard over the set of clocks X. The enlarged guard ϕ ∆ is constructed according to the following rules:

-Any term x i ≺ n i of ϕ with ≺ ∈ {<, ≤} is replaced by x i ≺ n i +∆ -Any term x i n i of ϕ with ∈ {>, ≥} is replaced by x i n i -∆
Similarly, the restricted guard ϕ ∆ is using the two following rules:

-Any term x i ≺ n i of ϕ with ≺ ∈ {<, ≤} is replaced by x i ≺ n i -∆ -Any term x i n i of ϕ with ∈ {>, ≥} is replaced by x i n i +∆.
Notice that for a for a clock valuation u and a guard ϕ, we have that u |= ϕ implies u |= ϕ ∆ , and u |= ϕ ∆ implies u |= ϕ, and ϕ ∆ ∆ = ϕ ∆ ∆ = ϕ. Perturbed Implementation and Robust Timed I/O Specifications. We lift the perturbation to implementation TIOAs. Given a jitter ∆, the perturbation means a ∆-enlargement of invariants and of output edge guards. Guards on the input edges are restricted by ∆:

Definition 8. For an implementation I = (Loc, q 0 , Clk, E, Act, Inv) and ∆ ∈ Q >0 , the ∆-perturbation of I is the TIOA I ∆ = (Loc ∪ {l u }, q 0 , Clk, E , Act, Inv ), such that:

-Every edge (q, o!, ϕ, λ, q ) ∈ E is replaced by (q, o!, ϕ ∆ , λ, q ) ∈ E , -Every edge (q, i?, ϕ, λ, q ) ∈ E is replaced by (q, i?, ϕ ∆ , λ, q ) ∈ E , -Every invariant Inv(q) is replaced by Inv (q) = Inv(q) ∆ , -∀q ∈ Loc. ∀i? ∈ Act i . (q, i?, ϕ u , ∅, l u ) ∈ E with ϕ u = ¬ (q,i?,ϕ,λ,q )∈E ϕ ∆ .

I ∆ is not necessarily action deterministic, as output guards are enlarged. However it is input-enabled, since by construction (the last case above), any input not accepted after restricting input guards is redirected to the universal location l u . Also I 0 equals I.

In essence, we weaken the constraints on output edges, and strengthen the constraints on input edges. This is consistent with the game semantics of specifications: perturbation makes the game harder to win for the verifier. Since the gaps created by strengthening input guards are closed by edges to the universal location, the implementation becomes less predictable. If an input arrives close to the deadline, the environment cannot be certain if it will be handled precisely as specified. Enlargement of output guards has a similar effect. The environment of the specification has to be ready that outputs will arrive slightly after the deadlines.

Such considerations are out of place in classical robustness theories for model checking, but are crucial when moving to models, where input and output transitions are distinguished. For example, in [START_REF] Wulf | Almost ASAP semantics: from timed models to timed implementations[END_REF] the authors propose a robust semantics for timed automata. Their maximal progress assumption is equivalent to the output urgency condition of our implementations. However, in [START_REF] Wulf | Almost ASAP semantics: from timed models to timed implementations[END_REF] both input and output guards are increased, which is suitable for the one-player setting, but incompatible with the contravariant nature of two-player games. Such enlargement would not be monotonic with respect to the alternating refinement (Def. 4), while the perturbation of Def. 8 is monotonic.

We are now ready to define our notion of robust satisfaction: Definition 9. An implementation I robustly satisfies a specification S given a delay ∆ ∈ Q ≥0 , denoted I sat ∆ S, iff I ∆ ≤ S. We write S ∆ mod for the set of all ∆-robust implementations of S, such that S ∆ mod = {I | I sat ∆ S ∧ I is an implementation}.

Property 1. Let I be an implementation and 0 ≤ ∆ 1 < ∆ 2 . Then I ≤ I ∆1 ≤ I ∆2 .

In addition, we obtain the following by transitivity of the refinement:

Property 2.
Let S be a specification and

∆ 1 ≤ ∆ 2 , then S ∆2 mod ⊆ S ∆1 mod ⊆ S mod .
Property 3. Let S and T be specifications and 0 ≤ ∆, then S ≤ T =⇒ S ∆ mod ⊆ T ∆ mod .

We now turn to the problem of deciding whether a specification is robustly consistent:

Definition 10. Let S be a specification and ∆ ∈ Q >0 , then S is ∆-robust consistent if there exists an implementation I such that I sat ∆ S.

Like in the non-robust case, deciding consistency and performing operations on specifications are reducible to solving games. But now, we will need to make the games aware of the robustness conditions. In the rest of this section, we propose a definition for such games. Then, in Sections 4 and 5, we show how they can be used to perform classical operations on specifications.

Example 2. Figure 2 presents the ∆-perturbation of the researcher implementation presented in Fig. 1b. One can check that this implementation robustly satisfies the specification of Fig. 1a for any ∆ ∈ ]0, 1].

Robust Timed Games for Timed I/O Specifications. We first define robust strategies that guarantee winning even if subject to bounded timing perturbations. We then propose a technique for finding such strategies. We start with the construction of syntactic outcome that represents game outcomes as TIOAs. We rely on the region graph construction in the definition of syntactic outcome, but any stable partitioning of the state-space could serve this purpose, and would be more efficient in practice. Definition 11. Let A = (Loc, q 0 , Clk, E, Act, Inv) be a TIOA and f a strategy over A for output. The TIOA A f = (R A , (q 0 , r 0 ), Clk ∪ {z}, E, Act ∪ {τ }, Inv) is built by decorating the region graph G = (R A , -→ G ) of A, using the original clocks of A and an additional clock z to impose output urgency. For each region (q, r), the incident edges and the invariant are defined as follows:

-Inv(q, r) = Inv(q) ∧ (r ∨ r ); -If (q, r) τ -→ G (q, r ) then ((q, r), τ, r , {z}, (q, r )) ∈ E; -For each edge (q, i?, ϕ, λ, q ) ∈ E, if (q, r) i?

-→ G (q , r ) then ((q, r), i?, ϕ, λ ∪ {z}, (q , r )) ∈ E; -If f (q, r) = o!, then Inv(q, r) = r ∧ {z = 0}, and for each edge (q, o!, ϕ, λ, q

) ∈ E, if (q, r) o! -→ G (q , r ), then ((q, r), o!, ϕ, λ ∪ {z}, (q , r )) ∈ E.
This construction captures the semantic outcome of the game in the following sense:

Proposition 1. Let (A, W ) be a timed safety game and f be a strategy for output. Then a run ρ in the region graph G of A is in Outcome o ((q, r), f ) iff ρ is an untimed run of A f starting from region (q, r).

In a robust timed game we seek strategies that remain winning after perturbation by a delay ∆. The perturbation is defined on the syntactic outcome of the strategy, by enlarging the guards for the actions of the verifier. We write A o ∆ (resp. A i ∆ ) for the TIOA where the guards of the output (resp. input) player and the invariants have been enlarged by ∆.

Definition 12. For a timed game (A, W ), a strategy f for output is ∆-robust winning if it is winning when the moves of output are perturbed, i.e. Runs(

A f o ∆ sem ) ⊆ W . 5
As proposed in [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF], robust timed games for a bounded delay can be reduced to classical timed games by a syntactic transformation of the game automaton. Here, we propose a modified version of the construction that respects the duality between inputs and outputs: Definition 13. Let A = (Loc, q 0 , Clk, E, Act, Inv) be TIOA and a ∆ ∈ Q >0 , the robust game automaton A ∆ rob = ( Loc, q 0 , Clk ∪ {y}, E, Act, Inv) uses an additional clock y and is constructed according to the following rules:

-Loc ⊆ Loc, and for each location q ∈ Loc and each edge e = (q, o!, ϕ, λ, q ) ∈ E, two locations q α e and q β e are added in Loc. The invariant of q is unchanged; the invariants of q α e and q β e are y ≤ ∆. -For each action o! ∈ Act o , an additional action o? is added in Act i .

-Each edge e = (q, i?, ϕ, λ, q ) ∈ E gives rise to the following edges in E:

(q, i?, ϕ, λ ∪ {y}, q ), (q α e , i?, ϕ, λ ∪ {y}, q ) and (q β e , i?, ϕ, λ ∪ {y}, q ). -Each edge e = (q, o!, ϕ, λ, q ) ∈ E gives rise to the following edges in E:

(q, o!, ϕ 2∆ , {y}, q α e ), (q α e , o!, {y = ∆}, {y}, q β e ), (q α e , o?, {y ≤ ∆}, λ ∪ {y}, q ) and (q β e , o?, {y ≤ ∆}, λ ∪ {y}, q ), where ϕ 2∆ is constructed from ϕ by restricting upper bound constraints by 2∆.

The construction is demonstrated in Fig 3 . The output player can propose a move in the time interval ϕ ∆ (which is done in two steps: first playing o! in the time interval ϕ 2∆ and then a second firing after ∆ time units), but the input player can perturb this move by choosing a smaller or greater delay to perform the action.

The construction shall serve as a tool for deciding robust consistency, synthesizing a robust implementation, and other operations of the specification theory with robustness.

Theorem 1. For a timed safety game (A, W ), if f is a winning strategy for output in the robust game (A ∆ rob , W ), then the following strategy f is a ∆-robust winning strategy for output in the game (A, W ):

∀(q, r) ∈ R A , f (q, r) = o! if ∃e.f (q α e , r) = o!, where r is a region of R A ∆
rob , and r its projection on R A 6 , otherwise f (q, r) = delay.

5 Technically, we assume that runs in Runs( A f o ∆ sem ) abstract τ transitions 6 To this end the region graph of A must be computed with ∆ as the lowest constant. Our method and our notion of robust strategy guarantees non-zenoness for the synthesized strategies. Indeed by allowing the opponent to perturb the verifier by ∆ or -∆ we impose that the verifier only performs non-null delay actions. Later, in the context of timed specifications, this ensures realizability of implementations. Also non-Zeno environements are used as witnesses of compatibility in optimistic composition, which could have happened in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], which ignored Zeno-problems altogether.

Robust Consistency and Conjunction

We now provide a method to decide the ∆-robust consistency of a specification and synthesize robust implementations by solving a robust timed safety game, in which the output player must avoid a set of immediate error states. From there, the computation of a robust strategy gives a method to synthesize a robust implementation of the specification.

Intuitively a specification is ∆-robust with respect to input i?, if between enabling of any two i? edges at least 2∆ time passes, during which the reaction to i? is unspecified. So, if the two transitions triggers ∆-too-late and ∆-too-early (respectively), there is no risk that the reaction is resolved non-deterministically in the specification.

In our input-enabled setup, lack of reaction is modeled using transitions to the universal (unpredictable) state. Formally, we say that ∆-robust specifications should admit ∆-latency of inputs. A state (q, u) verifies the ∆-latency condition for inputs, iff for each edge e = (q, i?, ϕ, c, q ), where q = l u and e is enabled in (q, u) we have: ∀d ∈ [0, 2∆]. ∀e = (q, i?, ϕ, c, q ). if e = e and (q, u) d -→(q, u + d) and e is enabled in (q, u + d) then q = l u For a specification S, the safety objective for the robust consistency game is to avoid the set of states of error states err S ∆ such that (q, u) ∈ err S ∆ iff (q, u) violates independent progress or ∆-latency for inputs, so:

-Violates independent progress: (∃d ∈ R ≥0 .(q, u) d ) and (∀d∀o!.(q, u)

d -→(q, u + d) ⇒ (q, u + d) o! ),
-Violates ∆-latency of inputs: ∃e = (q, i?, ϕ, c, q ), q = l u , enabled in (q, u), such that ∃d ∈ [0, 2∆].(q, u) d -→(q, u+d) and ∃e = (q, i?, ϕ, c, q ) enabled in (q, u+d), with e = e and q = l u .

Observe that err S ⊆ err S ∆ , because the error condition with robustness is weaker than in the classical case (cf. page 7).

The robust safety game (S, WS o (err S ∆ )) can be solved with the method presented in the previous section, and a winning strategy f for the game can be synthesized. Let S f be the syntactic outcome of f in S. We build from a robust implementation I f by applying the following transformation to S f :

-When we apply a ∆-perturbation on I f , a state ((q, r), u) can be reached even if u ∈ r ∨ r . However due to the region partitioning, the inputs available in S f might not be firable from r ∨ r . Then, in order to check the robust satisfaction relation between (I f ) ∆ and S, we add additional input edges to I f : for each location (q, r) in S f , for each edge e = ((q, r), i?, ϕ, λ ∪ {z}, (q * , r * )) (with q * = l u ), and for each location (q , r ) linked to (q, r) by a sequence of τ transitions, we add an edge e = ((q , r ), i?, ϕ, λ ∪ {z}, (q * , r * )). -To support restriction of input guards in (I f ) ∆ , we replaced in I f all guards ϕ of edges e = ((q, r), i?, ϕ, λ ∪ {z}, (q , r )) with q = l u by their elargement ϕ ∆ . Guards on edges to the l u location are adjusted in order to maintain action determinism and input-enableness.

Note that this construction adds many input edges to the implementation, out of which many are never enabled. This simplifies the construction and the proof of correctness.

In practice, to efficiently synthesize implementations, coarser abstractions like zones should be used, that do not include τ transitions and thus avoid multiplying input edges.

Theorem 2. For a specification S and a robust winning strategy f in the ∆-robust consistency game, we have that I f is a ∆-robust implementation of S, i.e. I f sat ∆ S.

Conjunction. A conjunction of two specifications captures the intersection of their implementation sets. The following conjunction operator has been proposed in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]: Definition 14. Let S = (Loc S , q S 0 , Clk S , E S , Act, Inv S ) and T = (Loc T , q T 0 , Clk T , E T , Act, Inv T ) be specifications that share the same alphabet of actions Act. We define their conjunction, denoted S ∧T , as the TIOA (Loc, q 0 , Clk, E,Act, Inv) where Loc = Loc S ×Loc T , q 0 = (q S 0 , q T 0 ), Clk = Clk S Clk T , Inv((q s , q t )) = Inv(q s )∧Inv(q t ), and the set of edges is defined by the following rule: if (q s , a, ϕ s , c s , q s ) ∈ E S and (q t , a, ϕ t , c t , q t ) ∈ E T then ((q s , q t ), a, ϕ s ∧ϕ t , c s ∪ c t , (q s , q t )) ∈ E.

It turns out that this operator is robust, in the sense of precisely characterizing also the intersection of the sets of robust implementations. So not only conjunction is the greatest lower bound with respect to implementation semantics, but also with respect to the robust implementation semantics. More precisely:

Theorem 3. For specifications S, T and ∆ ∈ Q >0 : S ∧T ∆ mod = S ∆ mod ∩ T ∆ mod
The theorem is a direct extension for robust implemenations of Theorem 6 in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]. We remark that due to the monotonicity of the refinement (Property 1), we can use two different delays ∆ 1 and ∆ 2 , such that S ∆1 mod ∩ T ∆2 mod ⊇ S ∧T max(∆1,∆2) mod

. So requirements with different precision can be conjoined, by considering the smaller jitter.

Robustness of the operator in Def. 14 is very fortunate. Thanks to this large parts of implementation of theory of [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF] can be reused. We have experimented on small examples asking simple robust consistency questions by applying constructions manually and using non-robust version of ECDAR [START_REF] David | ECDAR: An environment for compositional design and analysis of real time systems[END_REF], obtaining promising results.

Robust Compatibility, Composition and Quotient

We lift the composition and quotient operators [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF] to the robust setting. Composition is used to build systems from smaller units, while quotient is used to synthesize specifications of missing components in a larger design, for example for controller synthesis.

Parallel Composition. Two specifications S, T can be composed only iff Act

S o ∩ Act T o = ∅.
Parallel composition is obtained by a product, where the inputs of one specification synchronize with the outputs of the other: Definition 15 (Parallel Composition). Let S = (Loc S , q S 0 , Clk S , E S , Act S , Inv S ) and T = (Loc T , q T 0 , Clk T , E T , Act T , Inv T ) be two composable specifications. We define their parallel product, denoted S T , as the TIOA (Loc, q 0 , Clk, E, Act, Inv) where Loc = Loc S × Loc T , q 0 = (q S 0 , q T 0 ), Clk = Clk S Clk T , Inv(q s , q t ) = Inv(q s ) ∧ Inv(q t ), and the set of edges is defined by the three following rules:

if (q s , a, ϕ s , c s , q s ) ∈ E S with a ∈ Act S \Act T then each q t ∈ Loc T gives rise to an edge ((q s , q t ), a, ϕ s , c s , (q s , q t )) ∈ E; if (q t , a, ϕ t , c t , q t ) ∈ E T with a ∈ Act T \Act S then each q s ∈ Loc S gives rise to an edge ((q s , q t ), a, ϕ t , c t , (q s , q t )) ∈ E; if (q s , a, ϕ s , c s , q s ) ∈ E S and (q t , a, ϕ t , c t , q t ) ∈ E T with a ∈ Act S ∩ Act T then this gives rise to an edge ((q s , q t ), a, ϕ s ∧ ϕ t , c s ∪ c t , (q s , q t )) ∈ E.

Robustness distributes over parallel composition in the following fashion:

Lemma 1. For any implementations I, J and a delay ∆ ∈ Q >0 :

(I J ) ∆ ≤ I ∆ J ∆
We model incompatibility by introducing a predicate describing undesirable states denoted by the set und. For example, a communication failure in the input-enabled setting can be modeled, by redirecting an input edge to an undesirable location. In general any reachability objective, for example given by a temporal logics property, can serve as the set of undesirable behaviors und. It is important that such behaviors are avoided during the composition. For doing so, we propose to follow the optimistic approach to composition introduced in [START_REF] De Alfaro | Interface automata[END_REF] that is two specifications can be composed if there exists at least one environment in which they can work together. In the robustness setting we consider imprecise environments by applying a ∆-perturbation to their outputs. Then, in what follows, we say that a specification is ∆-robust useful if there exists an imprecise environment E that avoids the undesirable states, whatever the specification does. Definition 16. A specification S is ∆-robust useful if there exists an environment E such that no undesirable states are reached in E o ∆ S sem .

To check robust usefulness we solve the robust game (S, WS i (und)), and determine if the input player has a robust strategy f that avoids the undesirable states. Let S f be the syntactic outcome of f in S. We build from S f a robust environment E f by permuting the input and output players, such that each input in S f becomes an output, and conversely. Theorem 4. If there exists a robust winning strategy f in the ∆-robust usefulness game for a specification S, then S is ∆-robust useful in the environment E f . Finally, two specifications are compatible if their composition is useful. Definition 17. Two composable specifications S and T are ∆-robust compatible iff S T is ∆-robust useful.

It is important that the robust theory does not modify the definition of the operations themself. This means that all the important properties of composition introduced in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF] remain valid. This is illustrated with the independent implementability property in Theorem 5, which follows from Lemma 1 and Thm. 10 in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF].

Theorem 5. Let S and T be composable specifications and let I and J be ∆-robust implementations of S and T (resp.), i.e. I sat ∆ S and J sat ∆ S, then I J sat ∆ S T . Moreover if S and T are ∆-compatible then I and J are also ∆-compatible.

Due to the monotonicity of perturbations with respect to the refinement, two different delays can be used to implement specifications S and T . For two implementations I sat ∆1 S and J sat ∆2 T of the parallel components, their composition satisfies the composition of specifications with the smaller of the two precisions: I J sat min(∆1,∆2) S T .

Quotient. Quotient is a dual operator to composition, such that for a large specification T and a small one S, T S is the specification of the components that composed with S will refine T . In other words, T S specifies the component that still needs to be implemented after having an implementation of S, in order to build an implementation of T . One possible application is when T is a system specification, and S is the plant, then a robust controller for a safety objective can be achieved by finding a ∆-consistent implementation of the quotient T S.

To apply quotienting, we require that Act S ⊆ Act T and Act S o ⊆ Act T o . The construction of a quotient requires the use of a universal location l u , as well as an inconsistent location l ∅ that forbids any outputs and forbids elapsing of time.

Definition 18 (Quotient). Let T = (Loc T , q T 0 , Clk T , E T , Act T , Inv T ) and S = (Loc S , q S 0 , Clk S , E S , Act S , Inv S ) with Act S ⊆ Act T and Act S o ⊆ Act T o . Their quotient, denoted T S, is the TIOA (Loc, q 0 , Clk, E, Act, Inv) where Loc = Loc T × Loc S ∪ {l u , l ∅ },

q 0 = (q T 0 , q S 0 ), Clk = Clk T Clk S {x new }, Act = Act i Act o with Act i = Act T i ∪ Act S
o ∪{i new } and Act T o \Act S o , Inv(q t , q s ) = Inv(l u ) = true and Inv(l ∅ ) = {x new ≤ 0}, and the set E of edges is defined by the following rules:

-∀q t ∈ Loc T .∀q s ∈ Loc S .∀a ∈ Act.∃((q t , q s ), a, ¬Inv S (q s ), {x new }, l u ) ∈ E, -∀q t ∈ Loc T .∀q s ∈ Loc S .∃((q t , q s ), i new , ¬Inv(q t ) ∧ Inv(q s ), {x new }, l ∅ ) ∈ E, if (q t , a, ϕ t , c t , q t ) ∈ E T and (q s , a, ϕ s , c s , q s ) ∈ E S , then ∃((q t , q s ), a, ϕ T ∧ ϕ S , c t ∪ c s , (q t , q s )) ∈ E, -∀(q s , a, ϕ s , c s , q s ) ∈ E S with a ∈ Act S o , ∃((q t , q s ), a, ϕ S ∧ ¬G T , {x new }, l ∅ ) ∈ E, where G T = {ϕ t | (q t , a, ϕ t , c t , q t )}, -∀(q t , a, ϕ t , c t , q t ) ∈ E T with a ∈ Act S , ∃((q t , q s ), a, ϕ T , c t , (q t , q s )) ∈ E, -∀(q t , a, ϕ t , c t , q t ) ∈ E T with a ∈ Act S o , ∃((q t , q s ), a, ¬G T , {}, l u ) ∈ E, where

G T = {ϕ s | (q s , a, ϕ s , c s , q s )}, -∀a ∈ Act i .∃(l ∅ , a, x new = 0, ∅, l ∅ ) ∈ E, -∀a ∈ Act.∃(l u , a, true, ∅, l u ) ∈ E.
As stated in Thm. 12 of [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF], the quotient gives a maximal (the weakest) specification for a missing component. This theorem can be generalized to specifications that are locally consistent (see [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]), and used to argue for completeness of the quotient construction in the robust case. It turns out that this very operator is also maximal for the specification of a robust missing component, in the following sense: Theorem 6. Let S and T be two specifications such that the quotient T S is defined and let J be an implementation, then

S J ∆ ≤ T iff J sat ∆ T S

Concluding Remarks

We have presented a compositional framework for reasoning about robustness of timed I/O specifications. Our theory builds on the results presented in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF] combined together with a new robust timed game for robust specification theories. We extend the construction of [START_REF] Chatterjee | Timed parity games: Complexity and robustness[END_REF] to the setting of specification theories, to solve robust games by reducing them to problems on classical timed games. This construction can easily be implemented in tools such as ECDAR. Our approach can be used to synthesize an implementation that is robust with respect to a given specification, and to combine or compare specifications in a robust manner. Our approach can potentially be applied to lift any game-based timed specification theory to a robust setting.

In the future, we will consider the parametric extension of our theory, that is to synthesize the value of the perturbation for which consistency holds. The emptiness problem that decides if there exists a robust delay has already been studied in the case of 1-player games in different works [START_REF] Puri | Dynamical properties of timed automata[END_REF][START_REF] Wulf | Robust safety of timed automata[END_REF][START_REF] Bouyer | Robust model-checking of linear-time properties in timed automata[END_REF][START_REF] Bouyer | Robust analysis of timed automata via channel machines[END_REF]. A quantitative analysis of this problem has only been studied in [START_REF] Jaubert | Quantitative robustness analysis of flat timed automata[END_REF].

A Proofs

Given a function f on a domain D and a subset C of D, we denote by f |C the restriction of f to C. We write [u] for the region containing the clock valuation u.

A.1 Proof of Section 3

Proof (Property 1). First let remark that for any clock valuation u and guard ϕ, if u |= ϕ ∆1 then u |= ϕ ∆2 , and on the contrary if u |= ϕ ∆2 then u |= ϕ ∆1 . We now check the refinement between I ∆1 sem and I ∆2 sem . Let s 1 = (q 1 , u 1 ) ∈ I ∆1 sem and s 2 = (q 2 , u 2 ) ∈ I ∆2 sem , we define the relation R such that s 1 Rs 2 iff q 1 = q 2 and u 1 = u 2 , and we prove by coinduction that R is an alternating timed simulation:

1. if (q, u) d -→ 1 (q, u + d) for some d ∈ R ≥0 , then (q, u) d -→ 2 (q, u + d), since u + d |= Inv(q) ∆1 ⇒ u + d |= Inv(q) ∆2 ; 2. if (q, u) o! -→ 1 (q , u ), then (q, u) o! -→ 2 (q , u ), since u |= ϕ ∆1 ⇒ u |= ϕ ∆2
(where ϕ is the guard of the edge that fires o!) and we assumed the invariant of q is included in the guard; 3. if (q, u)

i? -→ 2 (q , u ) then (q, u) i? -→ 1 (q , u ), since u |= ϕ ∆2 ⇒ u |= ϕ ∆1
(where ϕ is the guard of the edge that fires i?) and we assumed the invariant of q is included in the guard.

Proof (Proposition 1). Let ρ be an untimed run of A f (i.e. a run of A f where delay transitions are hidden). Then, trivially ρ is a run of G since A f is a subgraph of G. Let denote by ρ i be the prefixe of length i of ρ with last(ρ i ) = (q i , r i ). We assume that ρ i is an outcome of f and that (q i , r i ) a -→(q i+1 , r i+1 ). If a ∈ Act o it means by construction that f (q i , r i ) = o!. If a = τ is means also by construction that f (q i , r i ) = delay. Otherwise a ∈ Act i . This proves that ρ i+1 is an outcome of f , and by induction on i also ρ. Now let ρ ∈ Outcome o ((q, r), f ) and let assume that ρ i is an untimed run of A f and ρ i+1 = ρ i a -→ G (q i+1 , r i+1 ). If a ∈ Act i , then since a is firable from (q i , r i ) in the region graph it means that a there is an edge in A f such that a is firable from (q i , r i ). If a ∈ Act o , then f (q i , r i ) = a and thus there is an edge in A f such that a is firable from (q i , r i ). Otherwise a = τ , and thus f (q i , r i ) = delay, and since the delay action τ is possible in G, the action is also possible in A f . By induction we can then prove that ρ is an untimed run of A f . Proof (Theorem 1). We consider the automaton A f . We must prove that any run ρ of A f o ∆ can be mapped to a run ρ of A, and that no Bad locations are reached in ρ. We use an induction on the length of the run. We assume that for a run ρ i of length i in Runs( A f o ∆ sem ), there exists a run ρ i in Runs( A sem ), such that if last( ρ i ) = ((q i , r i ), u i ), then last(ρ i ) = (q i , u i ), where u i = u i|Clk (the projection of u i on the clocks of A such that clock z is removed).

Let ρ i+1 = ρ i a -→((q i+1 , r i+1 ), u i+1 ). We prove the induction at level i+1 depending on the action a:

1. if a ∈ Act i , then there exists an edge e = ((q i , r i ), a, ϕ, λ ∪ {z}, (q i+1 , r i+1 )) in A(f ). By construction, there also exists an edge e = (q i , a, ϕ, λ, q i+1 ) in A. Since e is firable, u i |= ϕ, and consequently u i |= ϕ, which proves that e i is also firable. So ρ i+1 = ρ i a -→(q i+1 , u i+1 ) is a run of A, and u i+1 = u i+1|Clk since the same clocks λ are reset.

2. if a ∈ Act o , then similarly there exists e = ((q i , r i ), a, ϕ, λ ∪ {z}, (q i+1 , r i+1 )) in A f and by construction, e = (q i , a, ϕ, λ, q i+1 ) in A. Additionally, u i |= ϕ ∆ since e is firable, and u i |= r i ∩ {z = 0} ∆ that is the enlarged invariant of (q i , r i ). By construction also f (q i , r i ) = a, which implies that f (q α i , r i ) = a. Since

u i |= r i ∆ , ∃δ ∈ [-∆, ∆].u i + δ |= r i . Let u i = (u i1 , u i2 , .
. . , u in ), then u i + δ = (u i1 +δ, u i2 +δ, . . . , u in +δ), and so u iδ = (u i1 +δ, u i2 +δ, . . . , u in +δ, ∆) ∈ r i . In A ∆ rob now, this implies that u iδ -∆ |= ϕ 2∆ , and consequently it proves that u i |= ϕ. So e is firable and ρ i+1 = ρ i a -→(q i+1 , u i+1 ) is a run of A, and u i+1 = u i+1|Clk .

3. if a ∈ R ≥0 , either in ((q i , r i ), u i ) output has the strategy to wait infinitely, which implies that Inv(q i ) is unbounded, and this is sufficient to prove that ρ i+1 ∈ Runs( A sem ). Or output has a strategy that eventutally performs an action. This implies the following sequence of edges in A f :

(q i , r i ) τ -→(q i , r i1 ) τ -→(q i , r i2 ) . . . (q i , r in ) o!
-→(q i , r i ). We consider that a is the maximum delay firable from ρ i , thus

ρ i+1 = ρ i a1 -→((q i , r i1 ), u i + a 1 ) τ -→((q i , r i2 ), u i + a 1 ) a2 -→((q i , r i2 ), u i + a 1 + a 2 ) τ -→ . . . ((q i , r in ), u i +a) o! -→((q i , r i ), u i ), such that a = n j=1 a j . Then u i +a |= r in ∆
, and as previously we can prove that u i + a |= ϕ, and since we assume that ϕ contains the location invariant, we prove that ρ i+1 ∈ Runs( A sem ).

We prove now that all the states in A f o ∆ are safe, by mapping the runs of A f with the ones of A ∆ rob . We use another induction on the length on the run. Let assume that ρ i ∈ Runs( A f o ∆ sem ) is mapped to a run ρ i ∈ Runs( A ∆ rob sem ), such that if last( ρ i ) = ((q i , r i ), u i ), then last( ρ i ) = (q i , u i ), and u i|Clk = u i|Clk , and (q i , u i ) is a winning state.

Then, either in ((q i , r i ), u i ) the strategy f allows to delay infinitely, and consequently the strategy f allows to delay infinitely in A ∆ rob without reaching an unsafe state. For any delay d ∈ R ≥0 , all the inputs firable from a state ((q i , r i ), u i + d) are also firable in (q i , u i + d) since the guard are the same, and the state (q i+1 , u i+1 ) reached is also winning and is equivalent to ((q i+1 , r i+1 ), u i+1 ), which proves the induction hypothesis Otherwise output has a strategy that eventutally performs an action o! after a delay a. Thus let

ρ i+1 = ρ i a -→((q i , r i ), u i + a) o!
-→((q i+1 , r i+1 ), u i+1 ) (abtracting τ transitions). This implies that the following edges exists in A ∆ rob : (q i , o!, ϕ 2∆ , λ ∪ {y}, q α i ), (q i , o!, {y = ∆}, {y}, q β i ), (q α i , o?, {y ≤ ∆}, {y}, q i+1 ) and (q β i , o?, {y ≤ ∆}, {y}, q i+1 ). Since o! is firable in ((q i , r i ), u i + a), this means that f (q i , r i ) = o! and u i + a ∈ r i ∆ . Then by construction of f , f (q α i , r i ) = o!, and there exists

b ∈ R ≥0 s.t. (q i , u i ) b - →(q i , u i + b) (abstracting transitions o!), and u i + b ∈ r i . Addi- tionally, ∀γ ∈ [-∆, ∆].(q i , u i ) b+γ --→(q i , u i + b + γ) o?
-→. This is in particular the case for b + γ = a since a ∈ r i ∆ . To finish, the previous argument is used to demonstrate that the input transitions firable from ((q i , r i ), u i ) after some delay are also firable from (q i , u i ), and they are winning since (q i , u i ) is winning.

A.2 Proofs of Section 4

Proof (Theorem 2). We first check that by construction I f is an implementation TIOA. It verifies the output urgency condition, since the clock z is reset at each firing, and when an output is fired the invariant of the location is z = 0. It verifies the independent progress condition since I f is the outcome of the strategy f that avoids the inconsistent states in S. Finally, all the states in I f verify the ∆-latency condition, which permits to increase guards on input edges without adding non-determinism in I f .

We check now that I f sat ∆ S with the following relation R = {(((q, r), u), (q, v))

∈ (I f ) ∆ sem × S sem | v = u |Clk }. Note that (I f ) ∆ sem is included into S f o ∆ sem
since in the input-enablened setting the additional inputs only replace inputs to the l u location, and we remind that the runs of S f o ∆ sem are included in the runs of S sem since f is a robust winning strategy. Finally we admit that S can accept τ transitions in any states as output transitions.

Let consider (((q, r), u), (q, v)) ∈ R:

1. If ((q, r), u) d -→ (I f ) ∆ ((q, r), u + d) for some d ∈ R ≥0 , then since the runs of S f o ∆
are included into the one of S, it is also the case that (q, v) d -→ S (q, v + d) and the relation is trivially preserved. 2. If ((q, r), u) o! -→ (I f ) ∆ ((q , r ), u ) for some o! ∈ Act o , then there exists and edge ((q, r), o!, ϕ, λ ∪ {z}, (q , r )) in I f and also in S f . It also means that there exists a similar edge (q, o!, ϕ, λ, q ) in S that is firable in between the two regions r and r . Then since the runs of S f o ∆ are included into the one of S, (q, v) o! -→ S (q , v ), and since the same reset of clocks is applied v = u |Clk . 3. If ((q, r), u) τ -→ (I f ) ∆ ((q, r ), u) then by assumption (q, v) τ -→ S (q, v). 4. If (q, v) i?

-→ S (q , v ) for some i? ∈ Act i , then there exists and edge e = (q, i?, ϕ, λ, q ) such that v |= ϕ. Thus there also exists an edge (q, [v]) i?

-→ G (q , [v ]) in the region graph of S. If u ∈ r then this edge also exists in I f . Otherwise u ∈ r ∨ r ∆ . This means that there exists a sequence of τ transitions in I f between r and [v], and by construction the edge i? is copied in each location along this sequence, including (q, r). Since v |= ϕ it implies that u |= ϕ ∆ ∆ which proves that it is firable. Thus ((q, r), u) i?

-→ I ∆ ((q , [v ]), u ) and v = u |Clk since the same reset of clocks is applied.

A.3 Proofs of Section 5

A definition of the parallel composition for two TIOTS is given in [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]. We recall the following theorem that relates the two definitions of the parallel composition on TIOTS and TIOA: Theorem 7 ( [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]). For two specifications TIOA S and T composable, we have S sem | T sem = S T sem Proof (Lemma 1). In the following, we denote (Loc k , q k 0 , Clk k , E k , Act k , Inv k ), with k ∈ {I, J, I J}, the TIOAs corresponding to I, J , or I J , respectively, and (St k , (q k 0 , 0), Act k , → k ), with k ∈ {I, J, I J}, their semantics, and with k ∈ {I ∆ , J ∆ , [I J] ∆ }, their perturbed semantics. We prove the refinement (I J ) ∆ sem ≤ I ∆ sem | J ∆ sem by witnessing the following relation: R = {(((q i , q j ), u ij ), (( q i , u i ), ( q j , u

j )) ∈ St [I J] ∆ × (St I ∆ × St J ∆ ) | ((q i = q i ∧ u i = u ij|Clk I ) ∨ q i = l u ) ∧ ((q j = q j ∧ u j = u ij|Clk J ) ∨ q j = l u )}
We prove by coinduction that R is a timed alternating relation. Let (((q i , q j ), u ij ), (( q i , u i ), ( q j , u j )) ∈ R.

1. if ((q i , q j ), u ij ) d -→ [I J] ∆ ((q i , q j ), u ij + d) for some d ∈ R ≥0 ,
then by definition u ij |= Inv(q i , q j ) ∆ . By construction of the parallel product Inv(q i , q j ) ∆ = Inv(q i ) ∧ Inv(q j ) ∆ = Inv(q i ) ∆ ∧ Inv(q j ) ∆ . Then, we can deduce that u i + d |= Inv(q i ) ∆ and u j +d |= Inv(q j ) ∆ . This implies that (q i , u i ) d -→ I ∆ (q i , u i +d) and (q j , u j ) d -→ J ∆ (q j , u j + d). Besides, by definition of the universal state, for any valuation u of a TIOA is always true that (l u , u)

d -→(l u , u + d).
Consequently, by definition of the composition I ∆ sem | J ∆ sem , (( q i , u i ), ( q j , u j )) d -→ I ∆ |J ∆ (( q i , u i + d), ( q j , u j + d)), and the relation R is trivially preserved in the next states. 2. if ((q i , q j ), u ij ) o! -→ [I|J] ∆ ((q i , q j ), u ij ), then ∃e ∈ E I J .e = ((q i , q j ), o!, ϕ, c, (q i , q j )) such that u ij |= ϕ ∆ and u ij |= Inv(q i , q j ) ∆ , (a) and if o ∈ Act I o \Act J i (or conversely, if o ∈ Act J o \Act I i ; this case is similar, so we will not consider it), then ∃e i ∈ E I .e i = (q i , o!, ϕ i , c i , q i ), and q j = q j , ϕ = ϕ i , c = c i , and u ij|Clk J = u j . Consequently, u i |= ϕ i ∆ and u i = u ij|Clk I |= Inv(q i ) ∆ , which proves that (q i , u i ) o! -→ I ∆ (q i , u i ). Besides, by definition of the universal state, (l u , u i ) o! -→ I ∆ (l u , u i ). Consequently, by definition of the composition I ∆ sem | J ∆ sem , (( q i , u i ), ( q j , u j )) o! -→ I ∆ |J ∆ (( q i , u i ), ( q j , u j )). Moreover, either q i = q i and then q i = q i , or q i = l u = q i , which proves that the relation R is preserved. (b) If o ∈ Act I o ∩ Act J i (the reverse case o ∈ Act J o ∩ Act I i is similar), then ∃e i ∈ E I .e i = (q i , o?, ϕ i , c i , q i ) and ∃e j ∈ E J .e j = (q j , o!, ϕ j , c j , q j ) and ϕ = ϕ i ∧ ϕ j , c = c i ∪ c j . On the side of I, since u ij |= ϕ ∆ and u ij |= Inv(q i , q j ) ∆ , we get that u i |= ϕ i ∆ and u i = u ij|Clk I |= Inv(q i ) ∆ , which implies that (q i , u i ) o! -→ I ∆ (q i , u i ). On the side of J , we also get that u j |= ϕ j ∆ and u j |= Inv(q j ) ∆ . If moreover u j |= ϕ j ∆ , then as previously it implies that (q j , u j ) o? -→ J ∆ (q j , u j ). Otherwise, a reductio ab absurdum argument allows us to prove that there exists no other edges e j = (q j , o?, ϕ j , c j , q j ) ∈ E J such that u j |= ϕ j ∆ (since u j |= ϕ j ∆ it implies that ∃ε ∈ [-∆, ∆].u j + ε |= ϕ j , but in the same time it would be the case that u j + ε |= ϕ j . This is absurd since J, as an implementation is supposed to be deterministic). By construction of J ∆ sem however, input-enableness is preserved by linking the unexpected input to a universal location l u . So (q j , u j ) o? -→ J ∆ (univ, u j ).

To conclude, we get by definition of I ∆ sem | J ∆ sem that (( q i , u i ), ( q j , u j )) o! -→ I ∆ |J ∆ (( q i , u i ), ( q j , u j )), and as previously, by construction we check that the relation is preserved.

3. finally, if (( q i , u i ), ( q j , u j )) i?

-→ I ∆ |J ∆ (( q i , u i ), ( q j , u j )), for i ∈ Act I i ∩ Act J i (the cases i ∈ Act I i \Act J i or i ∈ Act J i \Act I i can be proved similarly by considering that only one component reacts, while the other stay in the same state), then from the definition of the composition:

-( q i , u i ) i?

-→ I ( q i , u i ), and -( q j , u j ) i? -→ J ( q j , u j ). Besides, due to input-enableness, ((q i , q j ), u ij ) i?

-→ [I J] ∆ ((q i , q j ), u ij + d), which implies that:

-(q i , u i ) i?

-→ I (q i , u i ), with u i = u ij|Clk I , and -(q j , u j ) i? -→ J (q j , u j ), with u j = u ij|Clk J . If q i = l u then q i = l u , and in this case the relation R is always preserved (and similarly for q j ). Otherwise q i = q i and u i = u i (and similarly for q j ). In this latter case, since I ∆ sem is deterministic, it implies that q i = q i and u i = u i , which also proves the induction for relation R.

Proof (Theorem 4). The theorem directly follows from the definition of the robust strategy. S f i ∆ sem ⊆ S sem which implies that E f o ∆ synchronizes with every action of S when computing the composition. Thus, only the states belonging to S f i ∆ sem can be reached in the composition, and by definition they are not undesirable.

Finally, the theorem 5 can be proved with the lemma 1 and the following theorem from [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]: Theorem 8 ( [START_REF] David | Timed I/O automata: a complete specification theory for real-time systems[END_REF]). Refinement is a pre-congruence with respect to parallel composition; for any specifications TIOTS S 1 ,S 2 and T such that S 1 ≤ S 2 and S 1 composable with T , we have S 2 composable with T and S 1 | T ≤ S 2 | T . Moreover if S 2 compatible with T , then S 1 compatible with T .

Proof (Theorem 5). The first part of the theorem can be directly deduced:

due to lemma 1, (I J ) ∆ sem ≤ I ∆ sem | J ∆ sem ; then due theorem 8, I ∆ sem | J ∆ sem ≤ S sem | T sem ; finally due theorem 7, S sem | T sem = S T sem ; all together this proves (I J ) ∆ sem ≤ S T sem , that is to say I J sat ∆ S T .

We prove now the second part of the theorem. Since S and T are ∆-compatible, there exists an environement E such that E o ∆ (S T ) avoids reaching any undesirable states. From theorems 8 and 7 we get that I J ≤ S T . Again with theorem 8 we get that (I J )

E o ∆ ≤ (S T ) E o ∆ .
Consequently, since no undesirable states are reached in (S T )

E o ∆ this is also the case in (I J ) E o ∆ , which proves that I J is ∆-useful and so I and J are ∆-compatible.

Definition 1 .

 1 A Timed I/O Transition System is a tuple S = (St S , s 0 , Σ S , → S ), where St S is an infinite set of states, s 0 ∈ St S is the initial state, Σ S = Σ S i ⊕ Σ S o is a finite set of actions partitioned into inputs Σ S i and outputs Σ S o , and → S : St S ×(Σ S ∪ R ≥0 )×St S is a transition relation. We write s a -→ S s when (s, a, s ) ∈→ S and use i?, o! and d to range over inputs, outputs and R ≥0 , respectively.

d-→

  S s and s d -→ S s then s = s time reflexivity: s 0 -→ S s for all s ∈ St S time additivity: for all s, s ∈ St S and all d 1 , d 2 ∈ R ≥0 we have s d1+d2 ----→ S s iff s d1 -→ S s and s d2 -→ S s for an s ∈ St S

Fig. 1 :

 1 Fig.1: TIOAs of a specification and an implementation for a researcher.

Fig. 2 :

 2 Fig. 2: ∆-perturbation of the researcher implementation.

Fig. 3 :

 3 Fig. 3: Construction of the robust game automation A ∆ rob from an original automaton A.

The region graph of an automaton with rational constants can be built by multiplying all constants of the automaton to work only with integers.