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SMALL QUOTIENTS IN EUCLIDEAN ALGORITHMS

EDA CESARATTO AND BRIGITTE VALLÉE

Abstract. Numbers whose continued fraction expansion contains only small
digits have been extensively studied. In the real case, the Hausdorff dimension
σM of reals with digits in their continued fraction expansion bounded by M
was considered, and estimates of σM for M → ∞ were provided by Hensley
[12]. In the rational case, first studies by Cusick, Hensley and Vallée [4, 9, 19]
considered the case of a fixed bound M when the denominator N tends to ∞.
Later, Hensley [11] dealt with the case of a bound M which may depend on the
denominator N , and obtained a precise estimate on the cardinality of rational
numbers of denominator less than N whose digits (in the continued fraction ex-
pansion) are less than M(N), provided the bound M(N) is large enough with
respect to N . This paper improves this last result of Hensley, towards four
directions. First, it considers various continued fraction expansions; second, it
deals with various probability settings (and not only the uniform probability);
third, it studies the case of all possible sequences M(N), with the only re-
striction that M(N) is at least equal to a given constant M0; fourth, it refines
the estimates due to Hensley, in the cases that are studied by Hensley. This
paper also generalizes previous estimates due to Hensley [12] about the Haus-
dorff dimension σM to the case of other continued fraction expansions. The
method used in the paper combines technics from analytic combinatorics and
dynamical systems and it is an instance of the Dynamical Analysis paradigm
introduced by Vallée [20], and refined by Baladi and Vallée [2].

1. Introduction

This paper aims to estimate the probability that the continued fraction expansion
of a rational number only contains “small” quotients. Every x ∈]0, 1] admits a finite
or infinite (CF )-continued fraction expansion of the form

(1.1) x =
1

m1 +
1

m2 +
1

. . . +
1

mn + . . .

.

Ordinary continued fraction expansions can be viewed as trajectories of a one-
dimensional dynamical system, the Gauss map T : [0, 1] → [0, 1],

(1.2) T (x) :=
1
x
−

⌊
1
x

⌋
, for x 6= 0, T (0) = 0 .

Here, bxc is the integer part of x. For an irrational x, the trajectory T (x) =
(x, T (x), T 2(x), . . . , Tn(x), . . .) never meets 0 and is encoded by the infinite sequence
of digits (m1(x),m2(x),m3(x), . . . ,mn(x), . . .), defined by

mi(x) := m(T i−1(x)) with m(x) :=
⌊

1
x

⌋
.

For a rational number x = u/v, the trajectory T (x) reaches 0 in a finite number
of steps p(x), and describes the execution of the Euclid’s algorithm on the pair
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2 EDA CESARATTO AND BRIGITTE VALLÉE

(u, v), the number p(x) being equal to the number of iterations of the algorithm.
The digits coincide with the quotients obtained during the execution of the Euclid’s
algorithm on the input pair (u, v). For an irrational number x, we let p(x) := +∞.

Here, we wish to study the distribution of the function D : [0, 1] → [0, +∞] defined
as

D(x) := sup{mi(x) : 1 ≤ i ≤ p(x)},
and for an “integer” M ≤ ∞, we wish to study the probability of the event [D < M ].
We focus on the case when x is rational and aim to relate the distribution of D
with the denominator of the rational x.

Previous results. There are in fact three possible studies, depending we are in-
terested in the real case (with a fixed bound M possible infinite) or in the rational
case. The last case gives rise to two possibilities: the bound M may be fixed or it
may depend on the denominator of the rational.

Real Case. It is well-known that reals with small digits in the standard continued
fraction expansion are badly approximable. This fact has promoted the study of
the variable D. The Hausdorff dimension of the set RM := {x ∈ [0, 1]; D(x) < M}
of real numbers whose digits are less than M is denoted by σM . The asymptotics
of σM when M goes to infinite has been studied by Hensley in [12], and he proves
the following:

Theorem A. [Hensley] The Hausdorff dimension of the set RM := {x ∈
[0, 1]; D(x) < M} of real numbers whose digits in their continued fraction ex-
pansion are less than M satisfies

σM < 1, 2(σM − 1) = − 2
ζ(2)

1
M

− 4
ζ(2)2

log M

M2
+ O

(
1

M2

)
(M →∞).

Rational Case – Fixed M . The set O[M ] of rationals u/v ∈ [0, 1] whose all digits
are less than some fixed M has been studied by Cusick [4], Hensley [9] and Vallée
[19]. These authors consider the set of rationals

(1.3) ΩN := {x =
u

v
∈]0, 1]; 0 < v ≤ N, gcd(u, v) = 1}

endowed with the uniform probability PN , together with the subset

O[M ]
N := ΩN ∩ O[M ] := {x ∈ ΩN : D(x) < M},

and they prove the following:

Theorem B. [Cusick, Hensley, Vallée] For each fixed M ≥ 2, the probability of

the set O[M ]
N satisfy

PN (O[M ]
N ) = CMN2(σM−1)[1 + εM (N)], εM (N) →N→∞ 0.

Here, σM is the Hausdorff dimension of RM , and CM is a positive sequence which
satisfy C(M) = 1 + O(log M/M).
Remark. The sequence εM (N) depends on M on a way which is not elucidated
until now. This entails that the result cannot be extended in a direct way to the
case where M depends on N . The present paper aims to deal with this case.

Rational Case – Bound M(N) which depends on the denominator of rationals.
Hensley [11] is the first author to consider the case when M(N) may depend on
the denominator of the rational N . He studies the set O[M(N)]

N of ΩN formed with
rationals x for which D(x) is less than M(N), i.e.

O[M(N)]
N := {x ∈ ΩN : D(x) < M(N)},
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and obtains the following result:

Theorem C. [Hensley] For any integer N , denote by n := log N . Consider a
sequence M(N) > 2 which satisfies

(1.4) M(N) = a(n)n with a(n) ≥ 4/ log n.

Then, as N →∞,

PN (O[a log N ]
N ) = exp

(
− 12

a(n)π2

) [
1 + exp

(
24

a(n)π2

)(
1 +

1
a2(n)

)
O

(
log n

n

)]
.

Our results. The paper provides a generalization and an improvement of these
last three results (Theorems A, B, C). We consider a class of Continued Fraction
Expansions, a class of probabilistic models, we deal with the all possible sequences
M(N) with M(N) ≥ M0 [and not only the sequences which satisfy (1.4)], and we
improve the remainder term obtained by Hensley for any sequence satisfying (1.4).

A class of continued fractions. The standard continued fraction has several variants
adapted to different applications, for example the computation of the Jacobi sym-
bol. In this paper, we consider, together with the standard continued fraction, two
variants: the centered and the odd continued fractions. The Euclidean algorithms
corresponding to these variants and to the standard one are fast in the sense ex-
plained in [21]. This is due to the fact that these three continued fractions systems
share the same framework: There exist an interval I which contains 0, and a map
T : I → I of the form

T (x) :=
∣∣∣∣
1
x
−A

(
1
x

)∣∣∣∣ , x 6= 0, T (0) = 0.

We have already seen that the standard continued fraction is defined by the interval
I := [0, 1] and the map A(x) := bxc which is the integer part of x. The centered
continued fraction is defined by the interval I := [0, 1/2] and the map A(x) := bxe
which is the nearest integer to x. The odd continued fraction is defined by the
interval I := [0, 1] and the map A(x) := bxeO which is the nearest odd integer to
x. Each system produces, on the real x ∈ I, a sequence of digits mi(x) defined by
the relation

(1.5) mi(x) := m(T i−1(x)) with m(x) := A

(
1
x

)
.

When restricted to rational numbers x = u/v ∈ I, the trajectory T (x) reaches 0
after a finite number of steps p(x), and describes the execution of the corresponding
variant of the Euclid algorithm on the pair (u, v), the number p(x) being equal to
the number of iterations of the algorithm. Each of them is related to a particular
type of integer divisions. The centered division, of the form v = mu + εr produces
a quotient m ≥ 2 and a remainder r such that 0 ≤ r ≤ u/2. The odd division,
also of the form v = mu + εr, produces an odd quotient m and a remainder r with
0 ≤ r ≤ u. In the three cases (standard, centered, odd), the divisions are defined
by pairs q = (m, ε), which are called the partial quotients.
It is natural to study the function D : I → [1, +∞] related to each continued
fraction variant and defined as

D(x) := sup{mi(x) : 1 ≤ i ≤ p(x)},
and, for an “integer” M ≤ ∞, to describe the probability of the event [D < M ].
We first obtain a generalisation of Theorem A, and prove that the same asymptotic
expansion holds for each variant.
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A class of probabilistic models. We deal with the subset

ΩN := {x = u/v ∈ I; gcd(u, v) = 1, v ≤ N},
endowed with the probability PN,f associated to some strictly positive density f of
class C1 on the interval I, as

PN,f (x0) :=
f(x0)∑

x∈ΩN
f(x)

,

and we recover, when f ≡ 1 the case of the uniform probability.
The uniform model f ≡ 1 is not always the most natural. It may be interesting and
useful to study what it happens in the “middle” of an execution of the Euclidean
Algorithm. Since the density evolves with the execution of the algorithm, this leads
to consider non-uniform densities, even if one starts with a uniform density. Such a
situation occurs when one studies the Divide and Conquer version of the Euclidean
algorithm (the Knuth-Schönage algorithm).

The condition on the sequence M(N): the integer M0 and the exponent α. We
consider a large class of possible sequences N 7→ M(N), whereas Hensley only deals
with sequences which satisfy Condition (1.4). In fact, our result is valid as soon as
M is at most equal to some integer M0. What is this integer M0?
Our result strongly depends on the width 2γ of a vertical strip of the form Sγ :=
{s; |<s − 1| ≤ γ} where some crucial property – the US Property– holds. The US
Property (US is a shorthand name for “Uniformity on Strips” ) means that there
exists a vertical strip Sγ where a certain Dirichlet series has an only pôle and a
polynomial growth for =s → ∞. The existence of such a vertical strip is precisely
stated in Theorem D, Section 2. And the integer M0 (which depends on the width
γ) is related to the behaviour of two sequences with respect to the vertical strip
Sγ : first, the sequence σM , already mentioned, which is the central object of our
study ; second, another sequence of functions M 7→ rM (s), defined in (3.6). More
precisely, in our Theorem 1, the integer M0 = M0(γ) satisfies1 the following: For
any M ≥ M0, the two conditions are fulfilled:

(i) the real σM belongs to the real interval ]1− γ, 1 + γ[
(ii) the sequence rM (s) is strictly less than 1 on [1− γ, 1 + γ].

Then, the exponent α of the remainder term is just the minimal distance α :=
σM0 − (1− γ).
Conjecture. Previous results of Dolgopyat [5] and Baladi-Vallée [2] have shown
the existence of such a US–strip, but the maximal possible width is not known, even
it is thought to be at most 1/2. Suppose that the maximal width can be chosen
to be equal to any γ < 1/2. The Hausdorff dimension σ3, which is the smallest
possible σM satisfies σ3 ≈ 0.53128. On the other hand, other results due to Mayer
show that r∞(s) is strictly less than 1 on ]1/2, 1]. Then, if the sequence M 7→ rM

is increasing, it is perhaps possible to choose M0 = 3. If it is the case, our result
would take into account all possible sequences N 7→ M(N).

Our main result is as follows:

Theorem 1. For each of the three continued fraction expansions (standard, cen-
tered, odd), there are an integer M0 = M0 ≥ 3, and a real α, with 0 < α < 1/2 so
that, for any N ≥ 1, M ≥ M0, the probability that a rational with a denominator
at most N has all its digits less than M , satisfies, for any density f in C1(I),

PN,f (O[M ]
N ) = CM (f) N2(σM−1)

[
1 + O(N−α)

]
, with CM (f) = 1+O

(
log M

M

)
.

1we prove that such an integer M0 exists.
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Here, σM and CM (1) = CM are the constants of Theorem B, the constants in the
O–terms only depend on the density f , and the following asymptotic expansion
holds for σM ,

2(σM − 1) = − 2
ζ(2)

1
M

− 4
ζ(2)2

log M

M2
+ O

(
1

M2

)
(M →∞).

This result exhibits a threshold phenomenon (already obtained by Hensley) depend-
ing on the relative order of σM − 1 (of order O(1/M)) with respect to n := log N :

(a) If M/n → +∞, then, almost everywhere, any rational of ΩN has all its
CFE–digits less than M .

(b) If M/n → 0, then, almost everywhere, any rational of ΩN has at least one
of its CFE–digits greater than M .

More precisely, there are several cases of interest, according to the behaviour of the
sequence M(N). As previously, we let n = log N .
(i) If M(N) = an, for some constant a, then

PN,f (O[a log N ]
N ) = exp

(
− 12

aπ2

)[
1 + O

(
log n

n

)]
.

In this case, we obtain the same estimates as Hensley, in a more general framework.
(ii) If M(N) = a(n)n, for a sequence a(n) →∞, then the probability of the subset
tends to 1, and more precisely

PN,f (O[a(n) log N ]
N ) = exp

(
− 12

a(n)π2

)[
1 +

1
a2(n)n

O (log n + log a(n))
]

.

A natural instance is provided by the case M(N) = nb, with b > 1, where the two
remainders may be compared:[

1 + O

(
log n

nb

)]
(this paper)

[
1 + O

(
log n

n

)]
(Hensley).

(iii) Finally, if M(N) = a(n)n, with a(n) → 0 and M(N) → ∞, then the proba-
bility of the subset tends to 0. For instance, if M(N) = nb with 1/2 < b < 1, one
has

PN,f (O[a(n) log N ]
N ) = exp

(
−12

π2
n1−b

) [
1 + O

(
log n

n2b−1

)]
.

Remark that Hensley cannot deal with this case.
(iv) Our framework also applies to the case of a constant sequence M provided that
M is large enough, M ≥ M0.

Motivations and methods. We use methods which are more direct than those
used by Hensley. Hensley uses generating functions (even if he does not use ex-
plicitly the name), in particular generating functions for rationals whose all digits
are less than M . He studies their continuants, and uses a quasi-multiplicativity
property for continuants, which allows him to relate the generating functions of
interest to powers of the Riemann zeta function. He then uses the Perron Formula
for extracting coefficients from these Dirichlet series. The quasi-multiplicativity of
continuants (which is not an exact multiplicativity property) creates an additional
error term in his estimates.
Like Hensley, we deal with generating functions of Dirichlet type, from which we
extract coefficients via the Perron Formula. However, we directly use an exact al-
ternative expression for our generating functions, by means of the transfer operator
of the underlying dynamical system, and we apply the dynamical analysis paradigm
to this problem.
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The dynamical analysis methodology was introduced by Vallée around 1995 with
the aim of studying the average-complexity of a whole class of Euclidean Algo-
rithms. First used in the average-case analysis (e.g. [20]), it was later extended
by Baladi and Vallée [2] to the distributional analysis. The Dynamical Analysis
method proceeds in three main steps: First, each discrete algorithm is extended
into a continuous process, which can be defined in terms of the corresponding dy-
namical system. Then the transfer operator associated to the dynamical system
Hs explains how the distribution evolves, but only in the continuous world. The
executions of the Euclidean algorithms are now described by particular trajectories
(i.e. trajectories of “rational” points), and a transfer “from continuous to discrete”
must be finally performed, by means of Dirichlet Series.

For estimating the probability of the subset O[M ]
N , we first use a generating Dirichlet

series, which is proven to be exactly related with the (restricted) transfer operator
HM,s of the dynamical system “constrained” by M [see for instance Proposition
1]. This relation is not new and has been already applied in previous works (see
for instance [19]), where it constitutes a crucial step for the analysis. Then, for
instance in [19], the extraction of coefficients was made with plain Tauberian The-
orems (which do not provide explicit remainder terms) and only needs few (easy)
properties of the quasi-inverse (Id−HM,s)−1 of the (plain) operator near s = σM ,
which entails the results cited in Theorem B.

Here, we wish to obtain remainder terms (uniform with respect to M), and we
enter inside the framework of Distributional Dynamical Analysis. Such an analysis
is classically based on a precise knowledge of the quasi–inverse (Id −Hs)−1 when
parameter s belongs to a vertical strip on the left of <s = 1. A crucial point is the
US Property (Uniformity on Strips) for the quasi-inverse (Id−Hs)−1 of the (plain)
transfer operator [there exists a vertical strip where the quasi-inverse has an only
pôle and a polynomial growth for =s → ∞]. Thus, we need to extend this type
of the results to the quasi-inverse (Id −HM,s)−1 of the restricted operator, with
estimates uniform to respect to M . We mainly use perturbation theory (since the
operator HM,s is a small perturbation of Hs, when M → ∞), and estimate the
speed of convergence of the spectral objects of HM,s to those of Hs by extending to
our present framework methods due to Cesaratto and Vallée [3] and Hensley [12].

Plan of the paper. Section 2 describes the main objects –dynamical systems,
(restricted) transfer operators, Dirichlet series– and the central relation between
these objects. The US Property for the operator (Id −HM,s)−1 is stated. Then
Section 3 is devoted to the proof of this property when s is “near the real axis”,
whereas Section 4 considers the case when s is “far from” the real axis. Finally,
our main Theorem is proved in Section 5.

Remarks about notations. In this paper, the notation AM (x) << BM (x) means: A
is less than B up to absolute multiplicative constants. This means that there exists
some absolute constant k such that for every x of interest, AM (x) ≤ kBM (x). It is
synonymous with A(x) = O(B(x)) with an absolute O-term.

2. Dynamical Methods

This section describes the three Euclidean dynamical systems, and their main
geometric properties. Then, it introduces the two main tools of the paper; first,
the transfer operators, with their constrained and unconstrained versions; second,
the generating functions (of Dirichlet type). Finally, it exhibits the fundamental
relation between these two objects, which is the base of the whole analysis.
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2.1. Geometric properties of the three Euclidean Dynamical Systems.
Each of the three dynamical systems, whose graphs are represented in Figure 1
possess the same three main properties:

(i) They are related to piecewise complete maps of the interval
(ii) They belong to the so–called Good Class, which gathers expanding maps,

with bounded distorsion. The notion of Good Class will be made more
precise in Property 2.

(iii) They satisfy the UNI Property: Their branches are not “too often too
close”.

CFE Standard Centered 0dd

Intervals I = [0, 1] I = [0, 1/2] I = [0, 1]

Set Q m ≥ 1, ε = +1 m ≥ 2, ε = ±1 m ≥ 1 odd, ε = ±1

of pairs (m, ε) if m = 2 then ε = +1 if m = 1 then ε = +1

Final set m ≥ 2 ε = +1 ε = +1

Graph of

T (x) = | 1
x
−A(

1

x
)|

Function A(y) Integer part of y Nearest integer to y Nearest odd integer to y

i.e. m s.t. y −m ∈ [−1/2, +1/2[ i.e. m odd s.t. y −m ∈ [−1, +1[

Contraction ratio ρ = 1/φ2 ρ = 1/(
√

2 + 1)2 ρ = 1/φ2

Invariant density f1
1

log 2

1

1 + x

1

log φ
[

1

φ + x
+

1

φ2 − x
]

1

3 log φ
[

1

φ− 1 + x
+

1

φ2 − x
]

Entropy
π2

6 log 2

π2

6 log φ

π2

9 log φ

Figure 1. The three Euclidean systems (φ = (1 +
√

5)/2).

Property 1. [Piecewise complete maps of the interval] For each of the three
systems, the map T : I → I is piecewise complete, i.e., there exist a (finite or
countable) set Q and a partition {Iq}q∈Q (modulo a countable set) of the interval
I into open subintervals Iq such that the restriction of T to Iq extends to a bijective
mapping of class C2 from the closure of Iq to I.

For each Euclidean dynamical system, the set Q is the set of all possible quotients
q = (m, ε) and it is described in Figure 1. The set H = {h[q]} of branches of
the inverse function T−1 is then naturally indexed by the set Q. Each inverse
branch relative to q = (m, ε) is a linear fractional transformation (LFT) of the form
h[m,ε] = 1/(m + εx). The set of the inverse branches of the iterate T k is Hk; its
elements are of the form h[q1] ◦ h[q2] ◦ · · · ◦ h[qk] where k is called the depth of the
branch. Setting H0 = {Id}, the set H? := ∪k≥0Hk is the semi-group generated by
H. Each interval h(I) for h of depth k is called a fundamental interval of depth k.
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It gathers all the reals x which have the same continued fraction expansion (CFE)
of depth k.

Any Euclidean algorithm, whose execution on the input (u, v) involves the partial
quotients (m1, ε1), (m2, ε2), . . . , (mp, εp), builds a CFE of the rational u/v as

u/v = h[m1,ε1] ◦ h[m2,ε2] ◦ . . . ◦ h[mp,εp](0).

The last step uses a particular set of digits, the final set described in Figure 1. Let
F be the set of inverse branches related to the final set. The previous decomposition
is unique and defines a bijection between the set Q ∩ I and the set H? ×F .

The three Euclidean systems (I, T ) corresponding to the Standard, Centered and
Odd algorithms are instances of fractional systems in Schweiger’s sense, that are
extensively studied in [18]. The three systems also belong to a subclass of piecewise
complete mappings, the Good Class. Systems that belong to this Class enjoy “nice”
ergodic properties such as chaotic behavior of trajectories. For a more precise
discussion about the behavior of Euclidean algorithms and dynamical properties of
the corresponding map T see [22].

Property 2. [Good Class] Each Euclidean dynamical system belongs to the good
class, which gathers the dynamical systems satisfying the following:

(i) T is piecewise uniformly expanding, i.e., there are C and ρ̂ < 1 so that
|h′(x)| ≤ Cρ̂n for every inverse branch h of Tn, all n and all x ∈ I. The
infimum of such ρ is called the contraction ratio, and satisfies

(2.1) ρ = lim sup
n→∞

(max{|h′(x)|;h ∈ Hn, x ∈ I})1/n
.

(ii) There is K̂ > 0, called the distortion constant, so that every inverse branch

h of T satisfies |h′′(x)| ≤ K̂|h′(x)| for all x ∈ I.
(iii) There is σ0 < 1 such that

∑
h∈H sup |h′|σ < ∞ for all real σ > σ0.

For each of the three Euclidean systems, the estimate |h′[m,ε]| = Θ(m−2) entails
the equality σ0 = 1/2. We will see that the abscissa σ0 is a lower bound for the
sequence (σM )M≥3.

Finally, each system satisfies the UNI Condition, as Baladi and Vallée already
proved it. If ∆(h, k) denotes the “distance” between two inverse branches h and k
of same depth, defined as

(2.2) ∆(h, k) = inf
x∈I

|Ψ′h,k(x)| with Ψh,k(x) = log
∣∣∣∣
h′(x)
k′(x)

∣∣∣∣ ,

the UNI Condition expresses that the inverse branches are not “too often too close”.
It uses the “ball” of center h and radius η > 0, formed with the fundamental
intervals related to inverse branches whose distance to h is less than η,

(2.3) for h in Hn, J(h, η) :=
⋃

k∈Hn,∆(h,k)≤η

k(I)

and is stated as follows:

Property 3. [Condition UNI] Each Euclidean dynamical system, with contraction
ratio ρ, fulfills the UNI Condition: Each inverse branch of T extends to a C3 function
and
(a) For any a (0 < a < 1) we have |J(h, ρan)| << ρan , ∀n , ∀h ∈ Hn .
(b) Q := sup{|Ψ′′h,k(x)|; n ≥ 1 , h, k ∈ Hn, x ∈ I} < ∞.
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2.2. Transfer operators. If I is endowed with an initial probability density g0

with respect to Lebesgue measure, T acts on it and transforms it into a new density
g1. The operator H such that g1 = H[g0] is called the density transformer, or the
Perron-Frobenius operator (acting now on L1 functions, soon we shall restrict its
domain). An application of the change of variable formula gives

H[f ](x) :=
∑

h∈H
|h′(x)| f ◦ h(x) .

To generate Dirichlet Series it is useful to deal with a more general operator, the
transfer operators Hs,Fs which depend on a complex parameter s:

Hs[f ](x) :=
∑

h∈H
|h′(x)|s · f ◦ h(x) Fs[f ](x) :=

∑

h∈F
|h′(x)|s · f ◦ h(x)

where H and F are the sets of inverse branches defined in Property 1 (Note that
H1 = H.) If σ := <s > 1/2, then Hs,Fs, act boundedly on the Banach space
C1(I) of C1 functions on I endowed with the norm

‖f‖1,1 = ‖f‖0 + ‖f ′‖0, with ‖f‖0 := sup |f |.

2.3. Constrained continued fractions. Here, we are not interested in con-
straints on the εi, and we only study constraints on the digits mi(x) defined in
(1.5). The set RM of reals of the interval I for which all the digits mi are less than
M , is associated to the “constrained” dynamical system TM : RM → RM , where
TM is the restriction of T to RM . The set RM is a classical instance of a “fractal
set” and its Hausdorff dimension denoted by σM has been largely studied (see [10],
[12], [19]).

For any M ≥ 3, the sets HM := {hm,ε : m < M}, FM := HM ∩ F gather the
inverse branches associated to digits less than M . The restricted transfer operators,
defined as
(2.4)
HM,s[f ](x) :=

∑

h∈HM

|h′(x)|s · f ◦ h(x) FM,s[f ](x) :=
∑

h∈FM

|h′(x)|s · f ◦ h(x),

are well-adapted to deal with continued fractions whose digits are less than M .
We recover the case of the unconstrained operator when M = ∞, and we often let
H∞,s := Hs, F∞,s := Fs.

For any complex s with <s > 1/2, the operator HM,s,FM,s act boundedly on the
Banach space of C1(I) endowed with the norm ‖.‖1,1.

2.4. Dirichlet Series and transfer to the discrete setting. We wish to analyze
the distribution of D := max{mi(x) : 1 ≤ i ≤ p(x)}: for any fixed integer M , we
consider the subsets

Ω := I ∩Q, O[M ] := {x ∈ Ω : D(x) < M},
and, for any pair N, M of integers, the subsets

ΩN := {x =
u

v
∈ I∩Q : gcd(u, v) = 1, v ≤ N}, O[M ]

N := {x ∈ ΩN : D(x) < M}.

Remark the equality O[∞]
N = ΩN . The probability of O[M ]

N can be expressed as

(2.5) PN,f (O[M ]
N ) =

φM (N)
φ∞(N)

with φM (N) :=
∑

x∈O[M]
N

f(x)



10 EDA CESARATTO AND BRIGITTE VALLÉE

In order to study φM for M ≤ ∞, we introduce the probability Dirichlet series:

FM (s) :=
∑
(u,v)

u/v∈O[M]

1
vs

f(
u

v
) =

∑

v≥1

1
vs

cM (v) with cM (v) :=
∑

u
u
v
∈O[M]

f(
u

v
).

The following (easy) proposition relates the Dirichlet series FM (s) to the operator
HM,s. This will be a central tool of the paper.

Proposition 1. For any M ≤ ∞, there is an alternative expression of the Dirichlet
series FM (s) as a function of the quasi-inverse of the transfer operator HM,s,

(2.6) FM (2s) = FM,s ◦ (Id −HM,s)−1[f ](0).

Moreover, for any density of class C1 on I, and s near 1, one has

F∞(2s) ∼s→1
ζ(2s− 1)

ζ(2s)
.

Proof. Any rational decomposes as a unique way as a continued fraction of the form

x = h(0), with h = h[m1,ε1] ◦ h[m2,ε2] ◦ . . . ◦ h[mp,εp].

Here, the digit mi is less than M if and only h[mi,εi] belongs to HM , and the last
h[mp,εp] belongs to FM . Since all elements ofH are linear fractional transformations,
with determinant equal to ±1, the relations

1
v2

= |h′(0)| and f(x) = f(h(0))

provide the desired expressions for the Dirichlet series in terms of transfer operators.
Finally, using Euler-Mac-Larin formula (which compares finite sums and integrals)
leads to the equality

F∞(2s) =
∑

(u,v)∈Ω

1
v2s

f
(u

v

)
=

1
ζ(2s)

∑

v≥1

1
v2s−1

∑
u

u/v∈I

1
v
f

(u

v

)

=
ζ(2s− 1)

ζ(2s)

∫

I
f(t)dt + R(s),

where R(s) is analytic for <s > 1/2, whereas the first term has a pôle at s = 1.
This proves that, near s = 1, F∞(2s) behaves as a quotient of the Riemann ζ
functions. ¤

2.5. Dynamical analysis. We wish to study the asymptotics of the sum φM (N)
of the first N coefficients of the Dirichlet series FM (s) [see Equation (2.5)], when
N tends to ∞. In a general setting, the asymptotics of coefficients is related to
the position and the nature of the dominant singularity of the function FM (s).
This explains the importance of Proposition 1, which shows that the singularities
of FM (s) are related to values s for which the transfer operator HM,s has a spectral
value equal to 1. This is why we first study the operators HM,s and their spectral
properties. This will provide precise information on the singularities of FM (s).
Then, we need to transfer this knowledge on coefficients of this Dirichlet series. To
achieve this, we rely on convenient “extractors” which express the coefficients of the
series as a function of the series itself. The Perron Formula of order two (see e.g.
[7]) is valid for a Dirichlet series F (s) =

∑
n≥1 ann−s and a vertical line <s = L

inside the convergence domain of F ,

(2.7) ψ(T ) :=
∑

n≤T

an(T − n) =
1

2πi

∫ L+i∞

L−i∞
F (s)

T 2s+1

s(2s + 1)
ds.
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It is next natural to modify the integration contour <s = L into a contour which
contains the singularities of F (s).

Works of Dolgopyat [5], made precise by Baladi-Vallée [2] related the behaviour
of the quasi-inverse (Id −Hs)

−1 of the unrestricted operator on vertical strips
[summarized by the US (Uniformity on Strips) Property] to the geometry of the
Dynamical System [summarized by the UNI (Uniform non Integrability) Condition].
We now state the US Property.
Theorem D. [US property for the (unrestricted) transfer operator Hs relative to
each Euclidean dynamical system.] For any 0 < ξ < 1/10, there exist a γ > 0, t0 >
0, C > 0 for which the following holds, for any f ∈ C1(I),
(i) In the vertical strip S := {s = σ + it, |σ−1| ≤ γ}, the quasi-inverse (Id −Hs)−1

is a meromorphic function with a unique pôle. This pôle is simple and located at
s = 1.

(ii) In the domain S ′ := {s = σ + it, |σ− 1| ≤ γ, |t| > t0}, the quasi-inverse satisfies

sup
x∈I

∣∣∣(Id −Hs)
−1 [f ](x)

∣∣∣ ≤ C|t|ξ · ||f ||1,1.

What is known about the width γ? From works of Mayer [16], Efrat [6], the
quasi-inverse (Id −Hs)−1 of the plain operator Hs relative to the standard Euclid
algorithm (when acting on a nice functional space F of analytic functions) has a
unique pôle located at s = 1 in the half-plane <s > 1/2. The other singularities
of the quasi-inverse are located on the line <s = 1/2 or at values s for which the
Riemann zeta function satisfies ζ(2s) = 0. Then, for any γ < 1/2, the vertical strip
Sγ := {s, |<s − 1| ≤ γ} contains only one pôle of the quasi-inverse (Id −Hs)−1,
located at s = 1: this is closely related to Property (i) of Theorem D. But this does
not mean that the US-strip can be chosen as Sγ , for two main reasons : first, we
do not know if the quasi-inverse (even if it acts on F) has a polynomial growth on
Sγ when |=s| tends to ∞. Moreover, the quasi-inverse (Id −Hs)−1 (when it acts
on C1) may possess many other singularities than when it acts on F .

To extract coefficients of FM (s), we need a US property for the quasi-inverse of the
constrained transfer operator. Furthermore, since later M will depend on N , we
need this property to be uniform with respect to M . We will obtain the central
result, which shows that Theorem D extends to all the restricted operators,

Theorem 2 (Property US for the restricted operator.). Let (I, T ) be one of the
three Euclidean systems of interest. Denote by HM,s the associated constrained
transfer operator. For any 0 < ξ < 1/10, there exists γ > 0, C > 0, t0 > 0 and an

integer M0, for which, for any f ∈ C1(I), the following holds:

(i) For any M ≥ M0, the quasi-inverse (Id − HM,s)−1[f ](0) is a meromorphic
function in S := {s; |<s− 1| ≤ γ} and has a unique pôle on S. This pôle is simple
and located at s = σM .

(ii) In the domain S ′ := {s = σ + it, |σ − 1| ≤ γ, |t| > t0}, and for any M , the
quasi-inverse satisfies

sup
x∈I

∣∣∣(Id −HM,s)
−1 [f ](x)

∣∣∣ ≤ C |t|ξ · ||f ||1,1.

There are three main regions in a vertical strip to deal with. First, in the next
Section, we consider the behaviour near the real axis, and we prove Theorem 3
and Theorem 4. Then, in Section 4, we focus on the behaviour far from the real
axis, and we prove Theorem 5. It remains an intermediary region which will be
considered in Lemma 5. With these three results at hand, we obtain the proof of
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Property US for the quasi–inverse of the restricted operator (Theorem 2). We then
return to our main Theorem 1 in Section 5.

3. Near the real axis.

The spectral properties of the operators HM,s in a neighborhood of the real axis
are well-known and summarized in the next proposition. But they are not sufficient
for our purpose, where we need spectral properties to be “uniform” on M : We have
to prove the existence of a neighborhood of s = 1, the same neighborhood for all
integers M , where all the quasi-inverses (Id −HM,s)−1 are meromorphic, with an
only possible pôle for each of them. This is obtained in Theorem 3. We also obtain
in Theorem 4 the extension of Theorem A to the other two Euclidean dynamical
systems.

3.1. Classical spectral properties. First we recall the definition of quasi-
compact operators for bounded operators. Let L be a bounded operator on a
Banach space: Denote by SpL the spectrum of L, by R(L) its spectral radius,
and by R(e)(L) its essential spectral radius, i.e., the smallest r ≥ 0 such that any
λ ∈ Sp(L) with modulus |λ| > r is an isolated eigenvalue of finite multiplicity. An
operator L is quasi-compact if R(e)(L) < R(L) holds.

Proposition 2. [Spectral properties for the operator HM,s.] For a fixed M , let
HM,s be the (constrained) transfer operators associated to a dynamical system with
contraction radius ρ and abscissa de convergence σ0 (quantities defined in Property
2). Let Σ0 be the interval ]σ0,∞[.

(i) [Quasi-compactness.] Let ρ < ρ̂ < 1. If σ := <s ∈ Σ0, then HM,s acts
boundedly on C1(I). The spectral radius RM (s) of HM,s and its essential

spectral R(e)
M (s) satisfy

RM (s) ≤ RM (σ), R(e)
M (s) ≤ ρ̂ · RM (σ);

in particular HM,s is quasi-compact for real s.
(ii) [Unique dominant eigenvalue.] For real σ ∈ Σ0, HM,σ has a unique eigen-

value λM (σ) of maximal modulus, which is real and simple, the dominant
eigenvalue. The associated eigenfunction fM,σ is strictly positive, and the
associated eigenvector νM,σ of the adjoint operator H∗

M,σ is a Radon mea-

sure. With the normalization conditions, νM,σ[1] = 1, νM,σ[fM,σ] = 1, the
measure νM,σ is defined in a unique way. In particular, ν∞,1 is Lebesgue
measure, with λ∞(1) = 1.

(iii) [Spectral gap.] For real parameters σ ∈ Σ0, there is a spectral gap, i.e.,
the subdominant spectral radius rM (σ) defined by

rM (σ) := sup{|λ|; λ ∈ Sp(HM,σ), λ 6= λM (σ)},
satisfies rM (σ) < λM (σ).

(iv) [Analyticity in compact sets.] The operator HM,s depends analytically on

s for <s ∈ Σ0. Thus, λM (σ)±1, f±1
M,σ, f ′M,σ, depend analytically on σ ∈ Σ0.

Sketches. Proofs of these properties can be found in [1] for the usual transfer opera-
tor. In [19] the author considers the constrained operator in the standard continued
fraction context acting on the space of analytic functions. The spectrum of con-
strained operators in the continued fraction context acting on different Banach
spaces is also studied in [8]. All these proofs are easily extended to the constrained
transfer operator associated to dynamical systems of the good class.

We give here sketches of proof for Assertions (i) and (iv), since their arguments will
be central in other proofs of this paper. In particular, many operators of interest in
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this paper can be written as a sum of operators Rh of the form Rh : f 7→ rh · f ◦ h,
the sum being taken over a subset of H?. In most cases functions rh equal |h′|s or
|h′(x)|s log |h′(x)|. Remark that

(3.1) ||rh·f◦h||0 ≤ ||rh||0·||f ||0 ||(rh·f◦h)′||0 ≤ ||r′h||0||f ||0+||rh||0||h′||0||f ′||0,
so that

(3.2) ||Rh||1,1 ≤ ||rh||0 · [1 + ||h′||0] + ||r′h||0.

Assertion (i). It is based on the existence of a Lasota-Yorke bound, which is uniform
with respect to M . With Hennion’s Theorem, this kind of bound entails the relation
R(e)(HM,s) ≤ ρ̂ · R(HM,s).

[Lasota-Yorke bounds] For every compact subset L of Σ0, there exists C > 0 so
that for all s with <s ∈ L, and all f ∈ C1(I), for all M ≤ ∞, for all n ≥ 1

(3.3) ||Hn
M,s[f ]||1 ≤ C ||Hn

M,σ||1
(
|s| ||f ||0 + ρ̂n ||f ||1

)

and ||Hn
M,σ||1 is uniformly bounded for M ≥ 3.

We now prove this bound: The quantity Hn
M,s[f ] can be written as a sum over

h ∈ Hn
M of functions rh · f ◦ h with rh := |h′|s. The bounded distorsion property

entails

|r′h| ≤ |s||h′′|||h′|s−1| ≤ |s|K̂||h′|s| = |s|K|h′|σ, (σ := <s).

and, with the definition of contraction ratio, one has |h′| ≤ Ĉρn. Finally, with
(3.1), we obtain the bound (3.3).

Assertion (iv). Consider the operator GM,s,z := HM,s −HM,z − (s− z)H′
M,s, with

(3.4) H′
M,s[f ] :=

∑

h∈HM

|h′|s log |h′| · f ◦ h.

The operator H′
M,s can be written as a sum over HM of terms rh · f ◦ h, with

rh = |h′|s log |h′|. With the distorsion property, the estimate |h′[m,ε](x)| = Θ(m−2),
together with (3.1), this entails

(3.5) ||H′
M,s||1,1 ≤ Cζ ′(2σ), (σ := <s).

In the same vein, the operator GM,s,z can be written as a sum over HM of terms
rh · f ◦ h, where the functions rh defined as

rh = |h′|s − |h′|z − (s− z)|h′|s log |h′|
satisfy, with σ := min(<s,<z),

|rh| ≤ |s− z|2| log |h′|2|h′|σ, |r′h| ≤
|h′′|
|h′| |z||rh|,

and, with the distorsion property, the estimate |h′[m,ε](x)| = Θ(m−2), together with
(3.2), this entails

||GM,s,z[f ]||0 ≤ C |s− z|2 ζ ′′(2σ) ||f ||0,
|| (GM,s,z[f ])′ ||0 ≤ C |s− z|2 (K|z|ζ ′′(2σ)||f ||0 + ζ ′′(2σ + 1)||f ||1)

where the constant C may depend on the system. These two relations prove that
s 7→ HM,s is analytic, with a derivative equal to H′

M,s defined in (3.4), whose norm
||H′

M,s||1,1 admits via (3.5) an upper bound independent of M . ¤
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This proposition together with analytic perturbation theory [13] entail the following
spectral decomposition for each HM,s, on a neighborhood of the real axis, that a
priori depends on M : For each M ≤ ∞, there exists UM so that for all s ∈ UM ,
one has

(3.6) HM,s = λM (s)PM,s + NM,s

where PM,s is the projector for the dominant eigenvalue λM (s), the two operators
satisfy NM,s ◦ PM,s = PM,s ◦NM,s = 0 and the dominant spectral radius rM (s)
satisfies rM (s) ≤ θM |λM (s)| for some θM < 1. Therefore,

(3.7) Hn
M,s[f ](x) = λn

M (s)PM,s[f ](x) + Nn
M,s[f ](x) ∀n ≥ 1 .

Moreover, all the cited objects –except the subdominant spectral radius rM (s)– are
analytic functions of s. The subdominant spectral radius rM (s) is a continuous
function of s.
As we already said, we need this spectral decomposition to hold on a common
neighborhood of the real axis, in order to obtain in the sequel bounds “uniform”
with respect to M . This is achieved in the next section. We first prove a per-
turbation result, from which we deduce the uniform spectral decomposition, the
convergence of the dominant spectral objects of HM,s to those of the Hs and a
variety of uniform bounds.

3.2. Uniform spectral decomposition of HM,s around s = 1. The next result
of Continuous Perturbation Theory (a simplified version of Theorem 3.16 from
Chapter IV of the book of Kato [13]) is well suited to obtain an uniform spectral
decomposition.

Theorem E. [Kato] Let X a Banach space and T a bounded operator on X.
Suppose that T has a simple eigenvalue doubly separated from the rest of the
spectrum by two curves Γ− and Γ+. This means that T has a a simple eigenvalue
outside Γ+, no element of the spectrum between Γ− and Γ+, and the rest of the
spectrum inside Γ−. Then, there exists δ > 0 (which depends on T and Γ±) with
the following property: any bounded operator S which satisfies ‖S−T‖ ≤ δ has a
simple eigenvalue doubly separated from the rest of the spectrum by Γ+and Γ−.

The following result proves that the hypotheses needed to apply Kato’s Theorem
are fulfilled.

Lemma 1. Let (I, T ) be any of three Euclidean dynamical systems of the good
class. There exists C > 0, such that the following holds:

(a) for any s with σ := <s > 1/2, one has

(3.8) ‖HM,s −Hs‖1,1 ≤ C
1

M2σ−1
, ‖H′

M,s −H′
s‖1,1 ≤ C

log M

M2σ−1
.

(b) for any (s, z) with σ := min(<s,<z) > 1/2, for any M , one has

(3.9) ‖HM,s −HM,z‖1,1 ≤ Cζ ′(2σ)|s− z|.

Proof. The first operator HM,s−Hs is written as a sum of operators Rh of the form
Rh : f 7→ rh ·f ◦h, with rh = |h′s|, the sum being taken over H\HM . Together with
(3.1), and the bounded distorsion property, the estimates |h′[m,ε](x)| = Θ(m−2),
entail the bounds

∑

h∈H\HM

||rh||0 ≤ C

M2σ−1
,

∑

h∈H\HM

||rh · |h′|||0 ≤ C

M2σ+1
,
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∑

h∈H\HM

||r′h||0 ≤ KC|s| 1
M2σ−1

,

which prove the first inequality.

The second operator H′
M,s −H′

s is written as a sum of operators Rh of the form
Rh : f 7→ rh · f ◦ h, with rh = |h′s| log |h′|, the sum being taken over H \ HM .
Together with (3.1), the estimates |h′[m,ε](x)| = Θ(m−2) entail the bounds

∑

h∈H\HM

||rh||0 ≤ C
log M

M2σ−1
,

∑

h∈H\HM

||rh · |h′|||0 ≤ C

M2σ+1
,

∑

h∈H\HM

||r′h||0 ≤ KC|s| log M

M2σ−1
,

which prove the second inequality.

The third inequality is just a consequence of the analyticity of s 7→ HM,s [assertion
(iv) of Proposition 2] together with the bound (3.5). ¤

3.3. The first result: Near the real axis. With this Lemma, together with
Kato’s Theorem, we now prove the first important result of this paper, which con-
stitutes the first step for proving the part (ii) of the US Property for the constrained
transfer operator (Theorem 2).

Theorem 3. Denote by HM,s the constrained operator relative to one of the three
Euclidean dynamical systems. The following holds:

(i) For any γ < 1/2, there exists t1 > 0, such that, in the rectangle V(1)
γ :=

[1−γ, 1+γ]×[−t1,+t1], and for all M ≥ 3, the quasi-inverses (Id −HM,s)
−1

admit the spectral decomposition

(Id −HM,s)
−1 =

λM (s)
1− λM (s)

PM,s + (Id −NM,s)
−1

.

(ii) For any γ < 1/2, there exists a real t2 > 0 (with t2 < t1) and an integer
M2 ≥ 3, such that, for any integer M ≥ M2, the functions λM (s)−1 possess

a unique zero in the rectangle V(2)
γ := [1 − γ, 1 + γ] × [−t2, +t2], real and

simple, located at s = σM . The integer M2 is chosen as

M2 = M2(γ) := min{M ; σM > 1− γ},
so that α := min{σM − (1− γ); M ≥ M2} is strictly positive.

(iii) Define the real γ0 as the supremum of reals γ < 1/2 for which the subdom-
inant spectral radius r(s) of the plain operator Hs is strictly less than 1 on
the interval [1− γ, 1 + γ]. Then, for any γ < γ0, there exists a real t3 > 0
(with t3 < t1), and an integer M3 ≥ 3 such that, for any integer M ≥ M3,

for any s in the rectangle V(3)
γ = [1−γ, 1+γ]× [−t3,+t3], the quasi-inverses

(Id −NM,s)
−1

are analytic on V(3)
γ .

(iv) For any γ < γ0, there exists a real t4 > 0 and an integer M0 ≥ 3, such that,

for any integer M ≥ M0, the quasi-inverses FM,s (Id −HM,s)
−1

are mero-

morphic in the rectangle V(4)
γ = [1−γ, 1+γ]×[−t4,+t4], with a unique pôle

at s = σM . The residue of the function s 7→ FM (s) := (Id −HM,s)
−1 [f ](0)

at s = σM is equal to

Ress=σM
FM (s) =

1
2λ′M (σM )

FM,σM
◦PM,σM

[f ](0).



16 EDA CESARATTO AND BRIGITTE VALLÉE

In particular, for any density of class C1 on I,

(3.10) Ress=1F∞(s) =
1

2λ′∞(1)
F∞,1[f∞,1](0) =

1
2ζ(2)

.

Furthermore, there exist a real t0 ≤ t4 and a constant C, such that, for any
M ≥ M0, on the left line of the rectangle Vγ := [1− γ, 1 + γ]× [−t0, +t0],
(i.e., for any s of the form s = 1−γ+it, with |t| ≤ t0), one has |FM (s)| ≤ C.

Proof. Assertion (i) Consider γ < 1/2 and two real constants θ−, θ+ with

sup{ r∞(s)
λ∞(s)

, s ∈ [1− γ, 1 + γ]} < θ− < θ+ < 1.

Consider any s of the real interval [1−γ, 1+γ], and apply Kato’s Theorem, with the
operator Hs and the two circles Γ±s of center 0 and radius θ±λ∞(s). This entails the
existence of some δs. Then, Lemma 1 proves the existence of two strictly positive
reals as, t(s), together with an integer M(s), for which one has, for M ≥ M(s),

‖HM,z −Hs‖1,1 ≤ δs for z ∈ [s− as, s + as]× [−t(s), +t(s)].

By Theorem E and Proposition 2, the following spectral decomposition is valid for
all z ∈ [s− as, s + as]× [−t(s),+t(s)] and M ≥ M(s),

(3.11) HM,z[f ](x) = λM (z)PM,z[f ](x) + NM,z[f ](x).

Here, PM,z is the projector associated to the dominant eigenvalue λM (z), the op-
erators NM,z, PM,z satisfy NM,z ◦PM,z = PM,z ◦NM,z = 0 and the subdominant
spectral radius rM (z) satisfies

rM (z) < θ−λ∞(s) < θ+λ∞(s) < |λM (z)|, rM (z)
|λM (z)| <

θ−
θ+

.

The intervals ]s − as, s + as[ form an open covering of the compact [1 − γ, 1 + γ].
Then, there exists a finite sub–covering of [1−γ, 1+γ] associated to a finite family of
points si. With t′1 := min{t(si)}, M1 := max{M(si)}, this proves that the spectral
decomposition (3.11) holds for each operator HM,s on the rectangle Vγ := [1 −
γ, 1+γ]× [−t′1, +t′1], for any M ≥ M1. Moreover, the dominant eigenvalue and the
subdominant spectral radius satisfy

rM (z)
|λM (z)| <

θ−
θ+

< 1.

Then, on the rectangle [1− γ, 1 + γ]× [−t′1, +t′1], and for any M ≥ M1, the quasi-
inverse of each operator decomposes as

(3.12) (Id −HM,s)
−1 =

λM (s)
1− λM (s)

PM,s + (Id −NM,s)
−1

.

Consider now any integer M with M < M1. There exists, for each such M , a rectan-
gle of the form [1−γ, 1+γ]×[−t[M ], +t[M ]] on which the quasi-inverse (Id −HM,s)

−1

decomposes. It is then sufficient to choose t1 := min(t′1,min{t[M ],M < M1}) to
obtain the conclusion.

Assertion (ii). The solutions of the equation λM (s) = 1 give rise to pôles for the
quasi–inverse (Id −HM,s)

−1. This last equation has been deeply studied because
its solution s = σM is the Hausdorff dimension of the set RM (see [10],[12],[19]).
Here we summarize the most important properties of the equation λM (s) = 1 and
refer to the cited papers for the full proofs and deeper results.
For any M ≤ ∞, the function σ 7→ λM (σ) of the real variable σ is strictly decreasing.
The two inequalities λM (1/2) > 1 and λM (1) ≤ 1 (see [19]) entail that the function
λM (s)−1 has a unique zero s = σM in the interval ]1/2, 1]. Moreover, the sequence
M 7→ λM (σ) is strictly decreasing, which implies that the sequence M 7→ σM of
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solutions of the equation λM (s) = 1 is strictly decreasing, too. Denote by M2 the
smallest integer M for which σM is larger than 1− γ.
Furthermore, due to the inequalities of Theorem 4, the sequence of analytic func-
tions M 7→ λM (s) converges to λ∞(s) uniformly on Vγ , and this is the same for
the sequence of derivatives M 7→ λ′M (s) which converges to λ′(s). Since λ∞(s)− 1
has a simple zero at s = 1, there exists a neighborhood of s = 1 of the form
W :=]1− δ, 1 + δ[×]− t′2,+t′2[ such that all the functions λM (s)− 1 have a unique
zero on W for M ≥ M2. Due to decreasing properties of functions σ 7→ λM (σ),
there exists t2 > 0 (with t2 < t′2) such that, for any M ≥ M2, the functions
λM (s)− 1 have a unique zero on ]1− γ, 1 + γ[×]− t2, +t2[ for M ≥ M0.

Assertion (iii). Consider, for γ < γ0, a constant θ such that

sup{r(s); s ∈ [1− γ, 1]} < θ < 1.

Consider any s of the real interval [1 − γ, 1], and apply Kato’s Theorem, with the
operator Hs and the circle Γ of center 0 and radius θ; The inequality λ∞(s) ≥ 1 for
s ∈ [1 − γ, 1] entails that the circle Γ is convenient for applying Kato’s Theorem.
This proves the existence of some δ′s. Then, Lemma 1 proves the existence of two
strictly positive reals a′s, t

′
(s), together with an integer M ′

(s), for which one has, for
any M ≥ M ′

(s),

‖HM,z −Hs‖1,1 ≤ δ′s for z ∈ [s− a′s, s + a′s]× [−t′(s), +t′(s)].

By Theorem E and Proposition 2, this entails that rM (z) < θ for z ∈ [s − a′s, s +
a′s] × [−t′(s), +t′(s)] and M ≥ M ′

(s). In the same vein as previously, there is a
finite subcovering formed with points s′i, which defines t3 := min{t′(s′i)},M3 :=
max{M ′

(s′i)
}. Finally, one has rM (z) < θ when z belongs to the rectangle [1−γ, 1+

γ]× [−t3,+t3] and M ≥ M3.

Assertion (iv). Choosing t4 := min(t2, t3),M0 := max(M2,M3) entails that the
quasi-inverse (Id −HM,s)

−1 fulfills the three previous assertions. The residue at
the only pôle σM of the function FM (s) is easily computed with the alternative
expression of FM (s) provided in Proposition 1. This is also true when M is infinite,
and, in this case, the two different expressions are also provided by Proposition 1.
On the left line of the rectangle V(4)

γ , the subdominant spectral radius rM (z) satisfies
rM (z) < θ, whereas the projector PM,z is bounded from above (uniformly with
respect to M). Moreover, the functions |λM (s)− 1| (for M0 ≤ M ≤ +∞) admit a
lower bound on the left line of the rectangle V(4)

γ . This is due to the fact that the
functions |λM (s)− 1| are continuous, strictly positive and the sequence |λM (s)− 1|
converges uniformly to |λ(s)− 1|. ¤

3.4. Speed of convergence of σM to 1 for M → ∞. As we already said, the
speed of convergence of the dominant spectral objects of HM,σ to those of H1 when
M →∞ and σ → 1 is crucial. We provide an extension of the result of Hensley to
the other Euclidean Dynamical Systems (centered and odd), with methods slighly
different from Hensley, since we do not deal with the same functional space. Inside
this subsection, we deal only with real values of the parameter s, and we use σ
instead of s.

Theorem 4. The following holds:

(i) (λ(σ)− λM (σ))
∫

I
fM,σ(x) dνσ(x) =

∫

I
(Hσ −HM,σ) [fM,σ](x) dνσ(x).

λ′M (σ) =
∫

I
H′

M,σ[fM,σ](x)dνM,σ(x)
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(ii) λ(σ)− λM (σ) = O(M1−2σ), |σM − 1| = O(M−1) .

(iii) ‖fM,σ − fσ‖1,1 and ‖νM,σ − νσ‖1,1 are both O
(
M1−2σ

)
.

‖fσ − f1‖1,1 and ‖νσ − ν1‖1,1 are both O (|σ − 1|) .

(iv) λ(σ)− λM (σ) = βM (σ)
(
1 + |σ − 1|+ O(M1−2σ)

)

with βM (σ) :=
∫
I(Hσ −HM,σ)[f1](x)dx

(v) σM − 1 = − 1
ζ(2)

1
M

− 2
ζ(2)2

log M

M2
+ O

(
1

M2

)
(M →∞).

(vi) ‖fM,σM
− f1‖1,1 = O

(
1
M

)
, ‖νM,σM

− ν1‖1,1 = O

(
1
M

)
.

|λ′M (σM )− λ′(1)| = O

(
log M

M

)

Proof. Assertion (i). With the two relations

HM,σ[fM,σ] = λM (σ) fM,σ, Hσ[fσ] = λ(σ) fσ,

the following equality holds

(λ(σ)− λM (σ)) fM,σ + λ(σ)(fσ − fM,σ) = (Hσ −HM,σ) [fM,σ] + Hσ[fσ − fM,σ].

We consider the integral with respect to measure νσ. Since νσ is an eigenvector of
the dual operator H?

σ, it satisfies
∫

I
Hσ[fσ − fM,σ](t) dνσ(x) = λ(σ)

∫

I
[fσ(x)− fM,σ(x)] dνσ(x),

which provides the equality

(λ(σ)− λM (σ))
∫

I
fM,σ(x) dνσ(x) =

∫

I
(Hσ −HM,σ) [fM,σ](x) dνσ(x).

In the same vein, taking the derivative (with respect to σ) of the relation
HM,σ[fM,σ] = λM (σ) fM,σ leads to the second equality of Assertion (i).

Assertion (ii). The functions fM,σ are positive and uniformly bounded from
above and below for M sufficiently large. This is the same for the integrals∫
I fM,σ(x)dνσ(x), and finally,

λ(σ)− λM (σ) = O (‖Hσ −HM,σ‖0) = O(M1−2σ).

Assertion (i) at σ = 1 entails the estimate 1 − λM (1) = O(M−1), and, with the
Mean Value Theorem, the equality

λM (1)− 1 = λM (1)− λM (σM ) = (1− σM )λ′M (τM )

with τM ∈]σM , 1[. Finally, when M → ∞, |λ′M (τM )| tends to the entropy h. One
obtains

(3.13) |σM − 1| = O(
1
M

) .

Assertion (iii). Denote by ĤM,σ the operator

ĤM,σ :=
1

λM (σ)
·HM,σ .
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The dominant eigenvalue λ̂M (σ) of ĤM,σ is constant and equal to 1, and fM,σ is
the dominant eigenfunction of ĤM,σ relative to the dominant eigenvalue 1. Since
νM,σ is an eigenvector of the dual operator H?

M,σ, it satisfies
∫

I
ĤM,σ[fM,σ − fσ](x) dνM,σ(x) =

∫

I
[fM,σ(x)− fσ(x)] dνM,σ(x) .

This entails the equality
∫
I gM,σ(x)dνM,σ(x) = 0 with

gM,σ :=
(
ĤM,σ − Id

)
[fM,σ−fσ] =

1
λM (σ)

(
(Hσ −HM,σ) [fσ]+(λ(σ)− λM (σ)) [fσ]

)
.

The projection of gM,σ on the dominant eigensubspace of ĤM,σ equals 0. Denote by
N̂M,σ the operator N̂M,σ := (1/λM (σ)) ·NM,σ with NM,σ defined in (3.6). Then,
for all n ≥ 1, one has Ĥn

M,σ[gM,σ] = N̂n
M,σ[gM,σ]. Now, the quasi–compacity of

ĤM,σ proves that the series of general term Ĥn
M,σ[gM,σ] is convergent, with a sum

equal to fσ − fM,σ. Finally,

fσ − fM,σ = (Id − N̂M,σ)−1[gM,σ]

Now, the norm ‖N̂M,σ‖1,1 is at most β < 1 for σ sufficiently close to 1, the function
fσ is uniformly bounded as well as λM (σ). Then, with (ii) and (3.8), the norm
||fσ − fM,σ||1,1 satisfies

||fσ − fM,σ||1,1 = O(‖HM,σ −Hσ‖1,1 + |λM (σ)− λ(σ)|) = O(M1−2σ) .

The proof is exactly the same for the dominant eigenmeasure νM,σ of the dual
operator H∗

M,σ.
Assertions (iv) and (v). With (i) and (iii), we have

(3.14) λ(σ)− λM (σ) = βM (σ)
[
1 + O

(|σ − 1|+ M1−2σ
)]

with βM (σ) :=
∫

I
(Hσ −HM,σ)[f1](x)dx =

∫

I

∑

h∈H\HM

|h′(x)|σf1 ◦ h(x)dx

A change a variables provides

βM (σ) =
∫

IM

u2(σ−1)f1(u)du, with IM :=
⋃

h∈H\HM

h(I).

Since the interval IM is of the form [0, aM ], with MaM → 1 for M →∞ and writing
f1(u) as f1(u) = f1(0) + ug(u) with g(u) = Θ(1), the integral βM (σ) decomposes
as

βM (σ) =
1

2σ − 1
f1(0)M1−2σ + Θ(M−2σ)

Consider now the special value σ = σM , for which one has |σM − 1| = O(M−1)
[Assertion (ii)]. Then,

(3.15) βM (σM ) = f1(0)
1
M

[1− 2(σM − 1)log M)] + O(M−2).

Now, the Taylor expansion λ(σ) = 1 + λ′(1)(σ − 1) + O((σ − 1)2), together with
the estimate |σM − 1| = O(M−1), relations (3.14, 3.15) entail

0 = λ′(1)(σM − 1)− f1(0)
1
M

+ O(
log M

M2
) .

Now, with the relation (3.10) which links f1(0), the entropy −λ′(1) and ζ(2) (see
Fig. 1), one obtains a first estimate of σM − 1, namely

(3.16) σM − 1 =
−1
ζ(2)

1
M

+ Θ(
log M

M2
).
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Putting the estimate obtained in Relation (3.16) inside Relation (3.15) provides a
refinement of the estimate about β(σM ) which permits to obtain the final estimate
about σM − 1.
Assertion (vi). The first two estimates are just consequences of Assertion (iii) and
(v). Indeed, one has

M1−2σM =
1
M

exp[2(1− σM ) log M ] = O

(
1
M

)
.

For the last estimate, one uses the expression of the derivative obtained in As-
sertion (i), together with the two first estimates of assertion (vi), and finally the
decomposition

||H′
M,σM

−H′
1||1,1 ≤ ||H′

M,σM
−H′

M,1||1,1 + ||H′
M,1 −H′

1||1,1,

which, with Lemma 1, proves the last estimate. ¤

4. Far from the real axis.

In this section, we aim to prove the US property for the quasi-inverse
(Id −HM,s)

−1 of the constrained transfer operator with uniform bounds with re-
spect to M . We have already obtained in Theorems 3 and 4 precise informations
about the behaviour of the quasi-inverse (Id −HM,s) near the real axis. We now
wish to obtain a bound for the norm of the quasi-inverse when parameter s is on a
vertical line on the left of s = 1, sufficiently far from the real axis (Theorem 2).
Estimates of this type have been previously obtained by Dolgopyat [5] for the
(unrestricted) transfer operators related to dynamical systems satisfying the UNI
Condition. Baladi and Vallée extended this results for maps with an infinite number
of branches [2].
The aim of this section is to obtain bounds on the norm of the quasi-inverse
(Id −HM,s) for large values of <s, and uniformly with respect to M . For dealing
with large values of the imaginary part t := =s, Dolgopyat introduced a family of
equivalents norms in C1(I), and, for t > 0, he defines

||f ||1,t := ||f ||0 +
1
t
||f ′||0.

This section is devoted to obtain Dolgopyat-type estimates for the (Id −HM,s)
−1

that are uniform with respect to M :

Theorem 5. [Dolgopyat-type estimates for the constrained transfer operators.]
Let HM,s be the constrained transfer operator acting on C1(I). For any ξ, with
0 < ξ < 1/10, there are a real interval Σ = [1− γ1, 1 + γ1] of 1, t5 > 0, and C > 0
such that for all s = σ + it with σ ∈ Σ and |t| ≥ t5, and any M ≥ 3,

(4.1) ‖(Id −HM,s)−1‖1,t ≤ C · |t|ξ .

In the proof, we shall take profit from the three following facts:
(s1) The operator HM,s is a small perturbation of H1 for M large and s near 1.
(s2) The operators HM,σ are “smaller” than Hσ for real σ, that is

(4.2) HM,σ[f ](x) ≤ Hσ[f ](x), for any f ∈ C1(I), f ≥ 0,M ≥ 3.

(s3) The constrained dynamical system is a restriction of the unconstrained
dynamical system, for which the UNI Condition holds. Even if we do not
make any explicit use of the UNI condition, most of the partial results of
[2] which we use strongly rely on this condition.
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Due to (s2), the (truncated) vertical strip {|<s− 1| ≤ γ, |t| ≥ t5} obtained for the
quasi–inverse of the restricted operator HM,s contains the (truncated) vertical strip
obtained in the proof [2] of Baladi-Vallée for the quasi–inverse of the plain operator
Hs, as we now prove it, in the sequel of this section.

4.1. Preparatory material. Here we prove three lemmas, whose proofs are
slightly modifications of the proofs of Lemma 1, 2, 3 from [2]. We deal with the
normalized transfer operators,

H̃s[f ] :=
1

λ(σ)fσ
Hs[fσ.f ], H̃M,s[f ] :=

1
λ(σ)fM,σ

HM,s[fM,σ.f ].

whose n–th iterates satisfy

H̃n
s [f ] :=

1
λn(σ)fσ

Hn
s [fσ.f ], H̃n

M,s[f ] :=
1

λn(σ)fM,σ
Hn

M,s[fM,σ.f ].

They have a spectral radius at most 1, and H̃σ fixes the constant function 1. The
following two inequalities

‖H̃M,s[f ]‖0 ≤ ‖H̃M,σ[1]‖0‖f‖0 and ‖H̃s[f ]‖0 ≤ ‖H̃σ[1]‖0‖f‖0
imply the useful bound

(4.3) ‖H̃M,s‖0 ≤ 1 for M ≤ ∞,<s > 1/2.

The following lemma compares the behavior of H̃M,σ and H̃1 when σ → 1. It
generalizes the same result already obtained in [2] for M = ∞.

Lemma 2. Let L be a compact subset of Σ0 :=]1/2, +∞[. For any σ ∈ L, for any
f ∈ C1(I), for any n ≥ 1, and for any M ≥ 3, one has

(4.4) ‖H̃M,σ[|f |]‖20 << A2n
σ ‖H̃1[f2]‖0, with Aσ :=

λ(2σ − 1)1/2

λ(σ)

The constants involved only depend on L, and the function σ 7→ Aσ is continuous
with A1 = 1.

Proof. Use the result of Baladi-Vallée that deals with the case M = ∞ and extend
it to the case M < ∞ with the inequality (4.2). ¤

First use of the (1, t)-norm. In the bound (3.3), there appear two terms: the
first one contains a factor |s| while the other one is exponentially decreasing in n.
In order to suppress the effect of the factor |s|, Dolgopyat uses the family of norms

‖f‖1,t := ‖f‖0 +
1
|t| ‖f

′‖0 = sup |f |+ 1
|t| sup |f ′|, t 6= 0,

which appear in the statement of Proposition 5. With this norm and Equation
(3.3), together with (4.3), we obtain the first (easy) result:

Lemma 3. For any t1 > 0, for every compact subset L of Σ0, there is C0 > 0 so

that for all n ≥ 1, all s for which <s ∈ L and |=s| ≥ t1 we have ||H̃n
M,s||1,=s ≤ C0.
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4.2. Estimates of the L2 norm. In [2], Lemmas 4 and 5 compare the L2 norm
of H̃n

s [f ] with the (1, t)–norm of f . Writing s = σ + it, the term |H̃n
s [f ](x)|2 can

be expressed as a sum taken over Hn ×Hn of the form,

(4.5) |H̃n
s [f ](x)|2 <<

1
λ(σ)2n

∑

(h,k)∈Hn×Hn

exp[itΨh,k(x)] ·Rh,k(x) ,

with Ψh,k(x) := log
|h′(x)|
|k′(x)| , and

(4.6) Rh,k(x) = |h′(x)|σ|k′(x)|σ 1
f2

σ(x)
(f · fσ) ◦ h(x) · (f · fσ) ◦ k(x) .

Dolgopyat, then Baladi and Vallée [2] estimate the oscillatory integrals

Î(h, k) :=
∫

I
exp[itΨh,k(x)] Rh,k(x)dx

and their lemmas 4 and 5 are summarized as follows:

Lemma 4. Consider a dynamical system that satisfies the UNI condition. Letting
dxe denote the smallest integer greater than x, set

(4.7) n0 := d 1
| log ρ| log |t|e .

Then, for any interval [1− γ, 1 + γ], and for any s with σ = <s ∈ L and |t| ≥ 1/ρ2,
for any a, with 0 < a < 1/2, one has:

∑

h,k∈Hn0×Hn0

|Î(h, k)| <<
(
max{ρ(1−2a), Aσρa/2}

)n0 ‖f‖21,t

where Aσ is defined in Lemma 2.

Lemma 4 can be extended for the case of a finite M , as we now explain. First,
notice that (4.5) can be extended to the case when M is finite,

∫

I
|H̃n

M,s[f ](x)|2dx <<
1

λ(σ)2n

∑

h,k∈Hn
M×Hn

M

|Î(h, k)|.

Now, the inclusionHn
M ⊂ Hn, together with Lemma 4 entail the following inequality

∫

I
|H̃n0

M,s[f ](x)|2dx <<
(
max{ρ(1−2a), Aσρa/2}

)n0 ‖f‖21,t

for n0 and t as in Lemma 4. Remark that the “hidden” constants do not depend
on M .

For a ∈]2/5, 1/2[, the inequality (a/2) > 1 − 2a > 0 holds, and there is a real
neighborhood Σ1 of σ = 1, defined

(4.8) Σ1 := {σ; Aσρa/2 ≤ ρ1−2a }
which does not depend on M . Finally, the inequality

(4.9)
∫

I
|H̃n0

M,s[f ](x)|2dx << ρ(1−2a)n0‖f‖21,t M ≥ 2

holds for <s ∈ Σ1, with constants which do not depend on M .
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4.3. End of the proof of Dolgopyat-type estimates. The end of the proof of
the Dolgopyat-type estimates for the quasi-inverse of the operator HM,s follows the
same lines as in [2]. It is necessary to operate transfers between various norms.
The uniform bounds are a consequence of the uniform bounds obtained in Lemma
2, Eq (3.3), Lemma 3, and Eq. (4.9).
From the L2-norm to the sup-norm. Since the normalized density transformer
H̃1 is quasi-compact with respect to the (1, 1)-norm, and fixes the constant function
1, it satisfies

(4.10) ||H̃k
1,M [|g|2]||0 =

(∫

I
|g|2(x) dx

)
+ O(rk

1 )||g2||1,1 ,

where r1 is the subdominant spectral radius of H1.
Consider an iterate H̃n

M,s with n ≥ n0. Then

||H̃n
M,s[f ]||20 << ||H̃n−n0

M,σ [gM ]||20 with gM = |H̃n0
M,s[f ]| .

Now, using (4.4) from Lemma 2 and (4.10) with k := n − n0, together with the
bound (4.9) for the L2-norm and finally Lasota-Yorke bounds (3.3) to evaluate
||g2

M ||1,1, one obtains

||H̃n
M,s[f ]||20 << A2(n−n0)

σ

[
ρ(1−2a)n0 + rn−n0

1 |t|
]
||f ||21,t

and the hidden constant does not depend on M . We now choose n = n1 as a
function of t so that the two terms ρ(1−2a)n0 and rn−n0

1 |t| are almost equal (with
n0(t) defined in (4.7)):

(4.11) n1 = (1 + η)n0 with η := 2(1− a)
log ρ

log r1
> 0 .

Choose now d such that 0 < η(5a− 2) < d < 1− 2a < 1/5 (which is possible if a
is of the form a = 2/5 + ε, with a small ε > 0). We then obtain, when σ := <s is
in Σ1 defined in (4.8), for n1(t) and η defined in (4.11)

(4.12) ||H̃n1
M,s[f ]||0 << ρn1b ||f ||1,t, with b :=

1− 2a− d

1 + η
.

From the sup-norm to the ||.||1,t-norm. Applying Lasota-Yorke bounds (3.3)
twice and using (4.12) yields the inequality

||H̃2n1
M,s[f ]||1 << |s| ||H̃n1

M,s[f ]||0 + ρn1 ||H̃n1
M,s[f ]||1

<< |s| ρn1b||f ||1,t + ρn1 |t|
( |s|
|t| ||f ||0 + ρn1

||f ||1
|t|

)

<< |t|ρn1b||f ||1,t ,(4.13)

which finally entails that there is a constant C1, such that, for any t ≥ 1/ρ2, and
n2 = 2n1 (with n1(t) as above),

(4.14) ||H̃n2
M,s||1,t ≤ C1ρ

n2b/2 (<s ∈ Σ1).

Now choose t sufficiently large, namely |t| ≥ t5 := C
1/(2(1−2a−d))
1 , to ensure the

inequality C1 < ρ−n2b/4 for any n2(t) with |t| ≥ t5. Finally one has

(4.15) ||H̃n2
M,s||1,t ≤ ρn2b/4 (<s ∈ Σ1, |t| ≥ t5).

The last step in Theorem 5. For fixed t with |t| > t5, any integer n can be
written n = kn2 + ` with ` < n2(t). Then (4.15) and Lemma 3 entail

||H̃n
M,s||1,t ≤ C2 ||H̃n2

M,s||k1,t ≤ C2 ρbkn2/4 ≤ C2 ρbn/4 ρ−bn2/4 .
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Since bn2/4 = bn1/2 = (1− 2a− d)n0/2, with n0 defined in (4.7), we finally obtain

||H̃n
M,s||1,t ≤ C3 |t|ξ γn ,

with ξ :=
1− 2a− d

2
, b :=

2ξ

1 + η
, γ := ρb/4.

Then ξ is any value between 0 and 1/10. Therefore, returning to the operator HM,s,
we have shown

(4.16) ‖Hn
M,s‖1,t ≤ C3 · γn · |t|ξ · λ(σ)n , ∀n , ∀M ∀|t| ≥ t5 .

Finally, with

a ∈]2/5, 1/2[, η := 2(1−a)
log ρ

log r1
, η(5a−2) < d < 1−2a, ξ :=

1− 2a− d

2
we take a refinement of the neighborhood Σ1 defined in (4.8) and define the neigh-
borhood Σ of σ = 1 as

Σ := {σ; Aσ < ρ−(2−5a)/2, λ(σ) < ρ−(1−2a−d)/8(1+η)} ⊃]1− γ1, 1 + γ1]

Then, for <s ∈ Σ, one has γλ(σ) ≤ ρ(1−2a−d)/8(1+η) = γ̂ < 1 . This finally proves
Theorem 5 with C := C3/(1− γ̂), and γ1 defined via the neighborhood Σ. ¤
4.4. Intermediate compact region. In this section, we deal with the intermedi-
ate region, and we wish to prove the following result:

Lemma 5. Consider the constrained operator HM,s relative to one of the three
Euclidean systems. For any pair of fixed real numbers t0, t5, with t5 > t0 > 0, there
exist γ2 > 0, θ < 1 so that the spectral radius satisfies, for any M ,

RM (s) ≤ θ for all s ∈ A := {s = σ + it : t0 ≤ |t| ≤ t5 and |<s− 1| ≤ γ2}
and, for any ξ > 0, there exists C2 > 0 such that the quasi-inverse (Id −HM,s)−1

satisfies
||(Id −HM,s)−1||1,t ≤ C2 · |t|ξ for all s ∈ A.

Proof. The same result is valid in the case of the plain operator Hs (see Lemma 8
[2]): there are γ3 > 0, θ3 < 1 so that the spectral radius R(s) satisfies

R(s) ≤ θ3 for all s ∈ A3 := {s = σ + it : t0 ≤ |t| ≤ t5 and |<s− 1| ≤ γ3} .

Now, we extend this property to the case of finite M , by using the upper-semi
continuity of the spectrum under small (continuous) perturbations, as it is described
in [13] Ch. IV, §3, Remark 3.3.
[Upper semi-continuity of the Spectrum.] For any T bounded and ε > 0, there is
δ > 0 such that supλ∈Sp(S) |λ− Sp(T)| < ε if ‖S−T‖ < δ.

We then apply the previous Property to T := Hs with the choice ε := (1 − θ3)/2.
This entails the existence of some δ. Then, Lemma 1 proves the existence of an
integer M4 for which ‖Hs −HM,s‖ < δ for all M ≥ M4 and s ∈ A3. Finally, for
M ≥ M4, the spectral radius RM (s) is at most θ2 := (1 + θ3)/2 for all s ∈ A3 :=
{s = σ + it : t1 ≤ |t| ≤ t5 and |<s− 1| ≤ γ3}.
Now, for each fixed M < M4, the spectral radius RM (s) is strictly less than λM (<s)
(see [19]). This implies that, for each M , there are γ[M ] > 0, θ[M ] < 1 so that the
spectral radius satisfies

RM (s) ≤ θ[M ] for all s ∈ A[M ] :=
{
s = σ + it : t0 ≤ |t| ≤ t5 and |<s− 1| ≤ γ[M ]

}
.

Then, choosing

θ := max
{
θ2,max{θ[M ],M ≤ M4}

}
, γ2 := min

{
γ3, min{γ[M ],M ≤ M4}

}

leads to the proof. ¤



SMALL QUOTIENTS IN EUCLIDEAN ALGORITHMS 25

4.5. End of the proof of Theorem 2. We now gather the conclusions of Theorem
3, Theorem 5, and Lemma 5. This will provide the proof of Theorem 2.
First, consider any γ less than min(γ0, γ1) where γ0 is defined in Theorem 3 and γ1

is defined in Theorem 5. Then, Theorem 3 defines a real t0, and Theorem 5 defines a
real t5 together with a constant C. Then, Lemma 5 associates to this pair (t0, t5) a
real γ2, and a constant C2. Finally, we let γ := min(γ0, γ1, γ2). Then, for any γ < γ,
Theorem 3 defines an integer M0 = M0(γ). Then, it follows that, for M ≥ M0, the
map s 7→ (Id −HM,s)

−1 is meromorphic on |<s − 1| ≤ γ with an unique pôle at
s = σM , and has a polynomial growth on the vertical strip |<s − 1| < γ, |t| ≥ t0,
with t0 = t0 and a constant C := max(C, C2). This polynomial growth is thus
uniform with respect to M ≥ M0. This ends the proof of Theorem 2.

5. Proof of Theorem 1.

In this section we complete the proof of Theorem 1. Remind that we have
introduced in Section 2.4 the probability Dirichlet generating functions and we have
obtained a fundamental relation between this Dirichlet series and the quasi-inverse
of transfer operators in Proposition 1.

5.1. The sums of order two. We wish to evaluate the partial sums ΦM (N)
defined in (2.5), but it is not possible to deal directly with them. We first consider,
for M ≤ ∞ the sums of order two of coefficients cM (n) of the Dirichlet series FM (s),
namely

ΨM (T ) :=
∑

n≤T

cM (n)(T − n)

which can be evaluated with the Perron formula (2.7), as

ΨM (T ) =
1

2πi

∫ L+i∞

L−i∞
FM (s)

T 2s+1

s(2s + 1)
ds

with L > 1.
Property US states that FM (s) has a meromorphic extension to <s ≥ 1−γ for some
positive γ, with a unique simple pôle at s = σM for all M ≥ M0. With Property
US(ii), it is possible to deform the integration contour, and Cauchy formula implies
the equality

ΨM (T ) := RM
T 2σM+1

σM (2σM + 1)
+ IM (T ),

with

RM := Ress=σM FM (s), IM (T ) =
1

2πi

∫ 1−γ+i∞

1−γ−i∞
FM (s)

T 2s+1

s(2s + 1)
ds .

Thanks to the US Property (ii), the integral IM (T ) is uniformly bounded for all
M ≥ M0, more precisely |IM (T )| ≤ C T 3−2γ with C independent of M . The residue
RM was evaluated in Theorem 4 and we obtain, for M ≤ ∞,

RM =
−1

λ′M (σM )
FM,σM

[fM,σM
](0) νM,σM

[f ].

The dominant spectral objects of HM,σM converge to the dominant spectral objects
of H1, uniformly with respect to M . This convergence implies that RM and σM

are uniformly bounded in M from above and below. With the definition of α as
α := min{σM − (1− γ); M ≥ M0}, the equality

ΨM (T ) = RM
T 2σM+1

σM (2σM + 1)

[
1 + O(T 2(1−σM−γ))

]
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= RM
T 2σM+1

σM (2σM + 1)
[
1 + O(T−2α)

]

holds, with the constants involved in the O–term uniform with respect to M .

5.2. Transfer of estimates. In order to exploit the above estimates, and trans-
form them into estimates on ΦM (T ), we use a simplified version of Lemma 10 from
[2].

Lemma 6. Assume that ΨM (T ) :=
∑

n≤T cM (n)(T − n) satisfies

ΨM (T ) = FM (T )
[
1 + O

(
T−2α

)]
, T →∞ ,

where the O-term is uniform with respect to M , and α < 1/2. Denote by T− :=
T − bT 1−αc, T+ := T + bT 1−αc. One has:

(5.1)
1

T − T−
[
ΨM (T )−ΨM

(
T−

)]
= F ′M (T )

[
1 + O

(
T−α

)]
.

(5.2)
1

T+ − T

[
ΨM

(
T+

)−ΨM (T )
]

= F ′M (T )
[
1 + O

(
T−α

)]
,

where the constants in the O-terms are uniform with respect to M .

Since the Dirichlet series FM (s) has positive coefficients, there exist relations be-
tween the sums ΨM (T ) (of order two), and the sums ΦM (T ) (of order one, which
are the sums of interest), namely

1
T − T−

[
ΨM (T )−ΨM

(
T−

)] ≤ ΦM (T ) ≤ 1
T+ − T

[
ΨM

(
T+

)−ΨM (T )
]

Then, for M0 ≤ M ≤ ∞, the following estimate holds for ΦM (T ),

ΦM (T ) = RM
T 2σM

σM

[
1 + O(T−α)

]
.

This finally provides the estimate of Theorem 1 for the probability of the subset
O[M ]

N , namely

PN,f [O[M ]
N ] = CMN2(σM−1)

[
1 + O(N−α)

]
with CM :=

RM

σMR∞
.

Then Theorem 4 provides an asymptotic expansion of σM − 1 together with the
estimate CM = 1 + O(log M/M). This concludes the proof of Theorem 1.

6. Conclusions, conjectures, and generalizations.

This paper precisely studies the probability that a rational with denominator
at most N has all its continued fraction digits smaller than M ; it considers all
the possible pairs (M,N), the only restriction being that M must be greater than
some M0. This result improves previous results due to Cusick, Hensley and Vallée
[4, 9, 19] (described in Theorem B), and enlarges the family of sequences M(N)
covered by Hensley’s previous result [11] described in Theorem C.

The Dynamical Analysis paradigm used in this paper also provides a machinery
that allows to extend the main result of the paper (Theorem 1) to a larger class of
constraints, as we now explain.

As in [17, 19], we consider constraints on the continued fraction digits associated
to an infinite subset A of N. We say that the number x ∈ I is A-constrained iff
any digit of its CFE–expansion belongs to A. We relate to the constraint A the
constrained Riemann zeta function ζA defined as

ζA(s) :=
∑

m∈A

1
ms

.
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The constraint A is said to be open if the intersection of the convergence domain of
ζA with the real axis is an open interval ΣA :=]pA, +∞[. In this case, the Hausdorff
dimension of reals whose all CFE–digits belong to A exists and is denoted by σA.
It is proved that A 7→ σA is strictly increasing.

To an infinite constraint A, we associate the family of constaints A(M) defined as
A(M) := A∩]M,∞[. In the same vein, the Hausdorff dimension of reals whose all
digits belong to A(M) exists and is denoted by σA(M). In [17, 19], Theorem B is
proven to hold in the case of an open constraint A. In this case, for any M ≤ ∞,
the probability that a rational of denominator less than N has all its digits in A(M)
satisfies

PN [OA(M)
N ] = CA(M) N2(σA(M)−1) [1 + εA(M)(N)].

Now, in the same vein as previously, we ask the following question: Is it is possible
to make precise the remainder term εA(M)(N)? We can answer the question in the
case where the constraint A is both “smooth” and “large”.

We say that the infinite constraint A is smooth if the Riemann zeta function ζA(M)

associated to A(M) and defined as

ζA(M)(s) :=
∑
m∈A
m≤M

1
ms

admits the following estimate

ζA(M)(2σ) = Θ(M1−gA(σ)), (with a Θ uniform for M →∞, σ ∈]pA, 1]),

where the function gA tends to 1 when σ tends to (1/2)pA. Then, the following
is true: (i) the function σ 7→ gA(σ) is strictly increasing, so that the inequality
gA(σA) > 1 holds; (ii) the mapA 7→ gA is decreasing, and thus satisfies gA(σ) ≥ 2σ.
For constraints A which are both open and smooth, a (weak) version of Theorem
A holds: the speed of convergence of σA(M) towards σA is of order M1−gA(σA).
The paper [19] introduces and studies classes of constraints which provide natu-
ral instances of constraints which are both open and smooth: these are modular
constraints, of the form

(6.1) A〈B,d〉 = {m ∈ N; m mod d ∈ B}, B ⊂ {0, 1, . . . d− 1},
or co-finite constraints, related to some finite subset B of N, of the form

(6.2) A〈6∈B〉 = {m ∈ N; m 6∈ B}, B finite.

Such constraints are open and smooth, with pA = 1/2 and gA(σ) = 2σ.

An open constraint A is large if the real σA belongs to the (maximal) US-strip
of the operator Hs. In this case, there exists an integer MA for which, for any
M ≥ MA, the remainder term is of the form

εA(M)(N) = O(N−αA),

where the O–term is uniform with respect to M ≥ MA and αA is related to the
position of σA inside the US-strip (More precisely, 2αA equals the distance of σA to
the left line of the US vertical strip). Then, for a constraintA which is open, smooth
and large, the probability that an A–constrained rational with a denominator at
most N has all its digits less than M is of the form

PN,f [OA(M)
N |OA

N ] =
CA(M)

CA
N2(σA(M)−σA)

[
1 + O(N−αA)

]
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We then obtain, in the same vein as in our main Theorem 1, a threshold phenom-
enon, depending on the relative order of σA(M) − σA (of order M1−gA(σA)) with
respect to n := log N . Consider

RM,n =
M

n1/(gA(σA)−1)
,

(a) If R(M, n) → +∞, then, almost everywhere, any rational of OAN has all its
CFE–digits less than M .

(b) If R(M,n) → 0, then, almost everywhere, any rational of OAN has at least
one of its CFE–digits greater than M .

This result applies in particular to the case of modular constraints, where the
exponent gA(σA)−1 equals 2σA−1. The Hausdorff dimension σA is strictly greater
than 1/2 and can be computed with principles described in [19] and proved later
by Lhote [15]. If our conjecture about the US-strip holds (see Section 1, Subsection
Our Results), then, our result applies to all the particular constraints A previously
described, the modular ones described in (6.1) or the co-finite ones, defined in (6.2).
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