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Introduction

This paper aims to estimate the probability that the continued fraction expansion of a rational number only contains "small" quotients. Every x ∈]0, 1] admits a finite or infinite (CF )-continued fraction expansion of the form (1.1) x = 1

m 1 + 1 m 2 + 1 . . . + 1 m n + . . . .
Ordinary continued fraction expansions can be viewed as trajectories of a onedimensional dynamical system, the Gauss map T : [0, 1] → [0, 1],

(1.2)

T (x) := 1 x - 1 x , for x = 0, T (0) = 0 .
Here, x is the integer part of x. For an irrational x, the trajectory T (x) = (x, T (x), T 2 (x), . . . , T n (x), . . .) never meets 0 and is encoded by the infinite sequence of digits (m 1 (x), m 2 (x), m 3 (x), . . . , m n (x), . . .), defined by

m i (x) := m(T i-1 (x)) with m(x) := 1 x .
For a rational number x = u/v, the trajectory T (x) reaches 0 in a finite number of steps p(x), and describes the execution of the Euclid's algorithm on the pair Date: July 7, 2010.

(u, v), the number p(x) being equal to the number of iterations of the algorithm. The digits coincide with the quotients obtained during the execution of the Euclid's algorithm on the input pair (u, v). For an irrational number x, we let p(x) := +∞.

Here, we wish to study the distribution of the function D : [0, 1] → [0, +∞] defined as D(x) := sup{m i (x) : 1 ≤ i ≤ p(x)}, and for an "integer" M ≤ ∞, we wish to study the probability of the event [D < M ]. We focus on the case when x is rational and aim to relate the distribution of D with the denominator of the rational x.

Previous results. There are in fact three possible studies, depending we are interested in the real case (with a fixed bound M possible infinite) or in the rational case. The last case gives rise to two possibilities: the bound M may be fixed or it may depend on the denominator of the rational.

Real Case. It is well-known that reals with small digits in the standard continued fraction expansion are badly approximable. This fact has promoted the study of the variable D. The Hausdorff dimension of the set R M := {x ∈ [0, 1]; D(x) < M } of real numbers whose digits are less than M is denoted by σ M . The asymptotics of σ M when M goes to infinite has been studied by Hensley in [START_REF] Hensley | Continued Fraction Cantor sets, Hausdorff dimension, and functional analysis[END_REF], and he proves the following: Theorem A. [Hensley] The Hausdorff dimension of the set R M := {x ∈ [0, 1]; D(x) < M } of real numbers whose digits in their continued fraction expansion are less than M satisfies

σ M < 1, 2(σ M -1) = - 2 ζ(2) 1 M - 4 ζ(2) 2 log M M 2 + O 1 M 2 (M → ∞).
Rational Case -Fixed M . The set O [M ] of rationals u/v ∈ [0, 1] whose all digits are less than some fixed M has been studied by Cusick [START_REF] Cusick | Continuants with bounded digits[END_REF], Hensley [START_REF] Hensley | The distribution of badly approximable numbers and continuants with bounded digits[END_REF] and Vallée [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF]. These authors consider the set of rationals

(1.3) Ω N := {x = u v ∈]0, 1]; 0 < v ≤ N, gcd(u, v) = 1}
endowed with the uniform probability P N , together with the subset

O [M ]
N := Ω N ∩ O [M ] := {x ∈ Ω N : D(x) < M }, and they prove the following: Hensley, Vallée] For each fixed M ≥ 2, the probability of the set

Theorem B. [Cusick,
O [M ] N satisfy P N (O [M ] N ) = C M N 2(σ M -1) [1 + M (N )], M (N ) → N →∞ 0.
Here, σ M is the Hausdorff dimension of R M , and C M is a positive sequence which satisfy C(M ) = 1 + O(log M/M ). Remark. The sequence M (N ) depends on M on a way which is not elucidated until now. This entails that the result cannot be extended in a direct way to the case where M depends on N . The present paper aims to deal with this case.

Rational Case -Bound M (N ) which depends on the denominator of rationals. Hensley [START_REF] Hensley | The Largest Digit in the Continued Fraction Expansion of a Rational Number[END_REF] is the first author to consider the case when M (N ) may depend on the denominator of the rational N . He studies the set O and obtains the following result: Theorem C. [Hensley] For any integer N , denote by n := log N . Consider a sequence M (N ) > 2 which satisfies (1.4) M (N ) = a(n)n with a(n) ≥ 4/ log n.

Then, as N → ∞, 2 1 + exp 24 a(n)π 2 1 + 1 a 2 (n) O log n n .

P N (O [a log N ] N ) = exp - 12 a(n)π
Our results. The paper provides a generalization and an improvement of these last three results (Theorems A, B, C). We consider a class of Continued Fraction Expansions, a class of probabilistic models, we deal with the all possible sequences M (N ) with M (N ) ≥ M 0 [and not only the sequences which satisfy (1.4)], and we improve the remainder term obtained by Hensley for any sequence satisfying (1.4).

A class of continued fractions. The standard continued fraction has several variants adapted to different applications, for example the computation of the Jacobi symbol. In this paper, we consider, together with the standard continued fraction, two variants: the centered and the odd continued fractions. The Euclidean algorithms corresponding to these variants and to the standard one are fast in the sense explained in [START_REF] Vallée | Dynamical Analysis of a class of Euclidean Algorithms[END_REF]. This is due to the fact that these three continued fractions systems share the same framework: There exist an interval I which contains 0, and a map T : I → I of the form

T (x) := 1 x -A 1 x , x = 0, T (0) = 0.
We have already seen that the standard continued fraction is defined by the interval I := [0, 1] and the map A(x) := x which is the integer part of x. The centered continued fraction is defined by the interval I := [0, 1/2] and the map A(x) := x which is the nearest integer to x. The odd continued fraction is defined by the interval I := [0, 1] and the map A(x) := x O which is the nearest odd integer to x. Each system produces, on the real x ∈ I, a sequence of digits m i (x) defined by the relation

(1.5) m i (x) := m(T i-1 (x)) with m(x) := A 1 x .
When restricted to rational numbers x = u/v ∈ I, the trajectory T (x) reaches 0 after a finite number of steps p(x), and describes the execution of the corresponding variant of the Euclid algorithm on the pair (u, v), the number p(x) being equal to the number of iterations of the algorithm. Each of them is related to a particular type of integer divisions. The centered division, of the form v = mu + r produces a quotient m ≥ 2 and a remainder r such that 0 ≤ r ≤ u/2. The odd division, also of the form v = mu + r, produces an odd quotient m and a remainder r with 0 ≤ r ≤ u. In the three cases (standard, centered, odd), the divisions are defined by pairs q = (m, ), which are called the partial quotients.

It is natural to study the function D : I → [1, +∞] related to each continued fraction variant and defined as

D(x) := sup{m i (x) : 1 ≤ i ≤ p(x)},
and, for an "integer" M ≤ ∞, to describe the probability of the event

[D < M ].
We first obtain a generalisation of Theorem A, and prove that the same asymptotic expansion holds for each variant.

A class of probabilistic models. We deal with the subset

Ω N := {x = u/v ∈ I; gcd(u, v) = 1, v ≤ N },
endowed with the probability P N,f associated to some strictly positive density f of class C 1 on the interval I, as

P N,f (x 0 ) := f (x 0 ) x∈Ω N f (x)
, and we recover, when f ≡ 1 the case of the uniform probability.

The uniform model f ≡ 1 is not always the most natural. It may be interesting and useful to study what it happens in the "middle" of an execution of the Euclidean Algorithm. Since the density evolves with the execution of the algorithm, this leads to consider non-uniform densities, even if one starts with a uniform density. Such a situation occurs when one studies the Divide and Conquer version of the Euclidean algorithm (the Knuth-Schönage algorithm).

The condition on the sequence M (N ): the integer M 0 and the exponent α. We consider a large class of possible sequences N → M (N ), whereas Hensley only deals with sequences which satisfy Condition (1.4). In fact, our result is valid as soon as M is at most equal to some integer M 0 . What is this integer M 0 ? Our result strongly depends on the width 2γ of a vertical strip of the form S γ := {s; | s -1| ≤ γ} where some crucial property -the US Property-holds. The US Property (US is a shorthand name for "Uniformity on Strips" ) means that there exists a vertical strip S γ where a certain Dirichlet series has an only pôle and a polynomial growth for s → ∞. The existence of such a vertical strip is precisely stated in Theorem D, Section 2. And the integer M 0 (which depends on the width γ) is related to the behaviour of two sequences with respect to the vertical strip S γ : first, the sequence σ M , already mentioned, which is the central object of our study ; second, another sequence of functions M → r M (s), defined in (3.6). More precisely, in our Theorem 1, the integer M 0 = M 0 (γ) satisfies 1 the following: For any M ≥ M 0 , the two conditions are fulfilled: (i) the real σ M belongs to the real interval ]1 -γ, 1 + γ[ (ii) the sequence r M (s) is strictly less than 1 on [1 -γ, 1 + γ]. Then, the exponent α of the remainder term is just the minimal distance α := σ M0 -(1 -γ). Conjecture. Previous results of Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF] and Baladi-Vallée [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF] have shown the existence of such a US-strip, but the maximal possible width is not known, even it is thought to be at most 1/2. Suppose that the maximal width can be chosen to be equal to any γ < 1/2. The Hausdorff dimension σ 3 , which is the smallest possible σ M satisfies σ 3 ≈ 0.53128. On the other hand, other results due to Mayer show that r ∞ (s) is strictly less than 1 on ]1/2, 1]. Then, if the sequence M → r M is increasing, it is perhaps possible to choose M 0 = 3. If it is the case, our result would take into account all possible sequences N → M (N ).

Our main result is as follows:

Theorem 1. For each of the three continued fraction expansions (standard, centered, odd), there are an integer M 0 = M 0 ≥ 3, and a real α, with 0 < α < 1/2 so that, for any N ≥ 1, M ≥ M 0 , the probability that a rational with a denominator at most N has all its digits less than M , satisfies, for any density f in C 1 (I),

P N,f (O [M ] N ) = C M (f ) N 2(σ M -1) 1 + O(N -α ) , with C M (f ) = 1+O log M M .
1 we prove that such an integer M 0 exists.

Here, σ M and C M (1) = C M are the constants of Theorem B, the constants in the O-terms only depend on the density f , and the following asymptotic expansion holds for σ M ,

2(σ M -1) = - 2 ζ(2) 1 M - 4 ζ(2) 2 log M M 2 + O 1 M 2 (M → ∞).
This result exhibits a threshold phenomenon (already obtained by Hensley) depending on the relative order of σ M -1 (of order O(1/M )) with respect to n := log N : (a) If M/n → +∞, then, almost everywhere, any rational of Ω N has all its CF E-digits less than M . (b) If M/n → 0, then, almost everywhere, any rational of Ω N has at least one of its CF E-digits greater than M . More precisely, there are several cases of interest, according to the behaviour of the sequence M (N ). As previously, we let n = log N . (i) If M (N ) = an, for some constant a, then

P N,f (O [a log N ] N ) = exp - 12 aπ 2 1 + O log n n .
In this case, we obtain the same estimates as Hensley, in a more general framework.

(ii) If M (N ) = a(n)n, for a sequence a(n) → ∞, then the probability of the subset tends to 1, and more precisely

P N,f (O [a(n) log N ] N ) = exp - 12 a(n)π 2 1 + 1 a 2 (n)n O (log n + log a(n)) .
A natural instance is provided by the case M (N ) = n b , with b > 1, where the two remainders may be compared:

1 + O log n n b (this paper) 1 + O log n n (Hensley).
(iii) Finally, if M (N ) = a(n)n, with a(n) → 0 and M (N ) → ∞, then the probability of the subset tends to 0. For instance, if M (N ) = n b with 1/2 < b < 1, one has

P N,f (O [a(n) log N ] N ) = exp - 12 π 2 n 1-b 1 + O log n n 2b-1 .
Remark that Hensley cannot deal with this case.

(iv) Our framework also applies to the case of a constant sequence M provided that M is large enough, M ≥ M 0 .

Motivations and methods. We use methods which are more direct than those used by Hensley. Hensley uses generating functions (even if he does not use explicitly the name), in particular generating functions for rationals whose all digits are less than M . He studies their continuants, and uses a quasi-multiplicativity property for continuants, which allows him to relate the generating functions of interest to powers of the Riemann zeta function. He then uses the Perron Formula for extracting coefficients from these Dirichlet series. The quasi-multiplicativity of continuants (which is not an exact multiplicativity property) creates an additional error term in his estimates. Like Hensley, we deal with generating functions of Dirichlet type, from which we extract coefficients via the Perron Formula. However, we directly use an exact alternative expression for our generating functions, by means of the transfer operator of the underlying dynamical system, and we apply the dynamical analysis paradigm to this problem.

The dynamical analysis methodology was introduced by Vallée around 1995 with the aim of studying the average-complexity of a whole class of Euclidean Algorithms. First used in the average-case analysis (e.g. [START_REF] Vallée | Digits and Continuants in Euclidean Algorithms. Ergodic Versus Tauberian Theorems[END_REF]), it was later extended by Baladi and Vallée [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF] to the distributional analysis. The Dynamical Analysis method proceeds in three main steps: First, each discrete algorithm is extended into a continuous process, which can be defined in terms of the corresponding dynamical system. Then the transfer operator associated to the dynamical system H s explains how the distribution evolves, but only in the continuous world. The executions of the Euclidean algorithms are now described by particular trajectories (i.e. trajectories of "rational" points), and a transfer "from continuous to discrete" must be finally performed, by means of Dirichlet Series.

For estimating the probability of the subset

O [M ]
N , we first use a generating Dirichlet series, which is proven to be exactly related with the (restricted) transfer operator H M,s of the dynamical system "constrained" by M [see for instance Proposition 1]. This relation is not new and has been already applied in previous works (see for instance [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF]), where it constitutes a crucial step for the analysis. Then, for instance in [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF], the extraction of coefficients was made with plain Tauberian Theorems (which do not provide explicit remainder terms) and only needs few (easy) properties of the quasi-inverse (Id -H M,s ) -1 of the (plain) operator near s = σ M , which entails the results cited in Theorem B.

Here, we wish to obtain remainder terms (uniform with respect to M ), and we enter inside the framework of Distributional Dynamical Analysis. Such an analysis is classically based on a precise knowledge of the quasi-inverse (Id -H s ) -1 when parameter s belongs to a vertical strip on the left of s = 1. A crucial point is the US Property (Uniformity on Strips) for the quasi-inverse (Id -H s ) -1 of the (plain) transfer operator [there exists a vertical strip where the quasi-inverse has an only pôle and a polynomial growth for s → ∞]. Thus, we need to extend this type of the results to the quasi-inverse (Id -H M,s ) -1 of the restricted operator, with estimates uniform to respect to M . We mainly use perturbation theory (since the operator H M,s is a small perturbation of H s , when M → ∞), and estimate the speed of convergence of the spectral objects of H M,s to those of H s by extending to our present framework methods due to Cesaratto and Vallée [START_REF] Cesaratto | Hausdorff Dimension of real numbers with bounded digits averages[END_REF] and Hensley [START_REF] Hensley | Continued Fraction Cantor sets, Hausdorff dimension, and functional analysis[END_REF].

Plan of the paper. Section 2 describes the main objects -dynamical systems, (restricted) transfer operators, Dirichlet series-and the central relation between these objects. The US Property for the operator (Id -H M,s ) -1 is stated. Then Section 3 is devoted to the proof of this property when s is "near the real axis", whereas Section 4 considers the case when s is "far from" the real axis. Finally, our main Theorem is proved in Section 5.

Remarks about notations.

In this paper, the notation A M (x) < < B M (x) means: A is less than B up to absolute multiplicative constants. This means that there exists some absolute constant k such that for every x of interest, A M (x) ≤ kB M (x). It is synonymous with A(x) = O(B(x)) with an absolute O-term.

Dynamical Methods

This section describes the three Euclidean dynamical systems, and their main geometric properties. Then, it introduces the two main tools of the paper; first, the transfer operators, with their constrained and unconstrained versions; second, the generating functions (of Dirichlet type). Finally, it exhibits the fundamental relation between these two objects, which is the base of the whole analysis.

2.1. Geometric properties of the three Euclidean Dynamical Systems. Each of the three dynamical systems, whose graphs are represented in Figure 1 possess the same three main properties:

(i) They are related to piecewise complete maps of the interval (ii) They belong to the so-called Good Class, which gathers expanding maps, with bounded distorsion. The notion of Good Class will be made more precise in Property 2. (iii) They satisfy the UNI Property: Their branches are not "too often too close". Property 1. [Piecewise complete maps of the interval] For each of the three systems, the map T : I → I is piecewise complete, i.e., there exist a (finite or countable) set Q and a partition {I q } q∈Q (modulo a countable set) of the interval I into open subintervals I q such that the restriction of T to I q extends to a bijective mapping of class C 2 from the closure of I q to I.

CFE Standard Centered 0dd 
Intervals I = [0, 1] I = [0, 1/2] I = [0, 1] Set Q m ≥ 1, = +1 m ≥ 2, = ±1 m ≥ 1 odd, = ±1 of pairs (m, ) if m = 2 then = +1 if m = 1 then = +1 Final set m ≥ 2 = +1 = +1 Graph of T (x) = | 1 x -A( 1 x )| Function A(
Contraction ratio ρ = 1/φ 2 ρ = 1/( √ 2 + 1) 2 ρ = 1/φ 2 Invariant density f 1 1 log 2 1 1 + x 1 log φ [ 1 φ + x + 1 φ 2 -x ] 1 3 log φ [ 1 φ -1 + x + 1 φ 2 -x ] Entropy π 2 6 log 2 π 2 6 log φ π 2 9 log φ
For each Euclidean dynamical system, the set Q is the set of all possible quotients q = (m, ) and it is described in Figure 1. The set H = {h [q] } of branches of the inverse function T -1 is then naturally indexed by the set Q. Each inverse branch relative to q = (m, ) is a linear fractional transformation (LFT) of the form

h [m,ε] = 1/(m + εx). The set of the inverse branches of the iterate T k is H k ; its elements are of the form h [q 1 ] • h [q 2 ] • • • • • h [q k ]
where k is called the depth of the branch. Setting H 0 = {Id}, the set

H := ∪ k≥0 H k is the semi-group generated by H. Each interval h(I) for h of depth k is called a fundamental interval of depth k.
It gathers all the reals x which have the same continued fraction expansion (CFE) of depth k.

Any Euclidean algorithm, whose execution on the input (u, v) involves the partial quotients (m 1 , ε 1 ), (m 2 , ε 2 ), . . . , (m p , ε p ), builds a CFE of the rational u/v as

u/v = h [m1,ε1] • h [m2,ε2] • . . . • h [mp,εp] (0).
The last step uses a particular set of digits, the final set described in Figure 1. Let F be the set of inverse branches related to the final set. The previous decomposition is unique and defines a bijection between the set Q ∩ I and the set H × F.

The three Euclidean systems (I, T ) corresponding to the Standard, Centered and Odd algorithms are instances of fractional systems in Schweiger's sense, that are extensively studied in [START_REF] Schweiger | Ergodic Theory of Fibred Systems and Metric Number Theory[END_REF]. The three systems also belong to a subclass of piecewise complete mappings, the Good Class. Systems that belong to this Class enjoy "nice" ergodic properties such as chaotic behavior of trajectories. For a more precise discussion about the behavior of Euclidean algorithms and dynamical properties of the corresponding map T see [START_REF] Vallée | Euclidean dynamics Discrete and Continuous Dynamical Systems[END_REF].

Property 2. [Good Class] Each Euclidean dynamical system belongs to the good class, which gathers the dynamical systems satisfying the following:

(i) T is piecewise uniformly expanding, i.e., there are C and ρ < 1 so that |h (x)| ≤ C ρ n for every inverse branch h of T n , all n and all x ∈ I. The infimum of such ρ is called the contraction ratio, and satisfies

(2.1) ρ = lim sup n→∞ (max{|h (x)|; h ∈ H n , x ∈ I}) 1/n .
(ii) There is K > 0, called the distortion constant, so that every inverse branch

h of T satisfies |h (x)| ≤ K|h (x)| for all x ∈ I. (iii) There is σ 0 < 1 such that h∈H sup |h | σ < ∞ for all real σ > σ 0 .
For each of the three Euclidean systems, the estimate |h [m, ] | = Θ(m -2 ) entails the equality σ 0 = 1/2. We will see that the abscissa σ 0 is a lower bound for the sequence (σ M ) M ≥3 . Finally, each system satisfies the UNI Condition, as Baladi and Vallée already proved it. If ∆(h, k) denotes the "distance" between two inverse branches h and k of same depth, defined as

(2.2) ∆(h, k) = inf x∈I |Ψ h,k (x)| with Ψ h,k (x) = log h (x) k (x) ,
the UNI Condition expresses that the inverse branches are not "too often too close". It uses the "ball" of center h and radius η > 0, formed with the fundamental intervals related to inverse branches whose distance to h is less than η,

(2.3) for h in H n , J(h, η) := k∈H n ,∆(h,k)≤η k(I)
and is stated as follows:

Property 3. [Condition UNI] Each Euclidean dynamical system, with contraction ratio ρ, fulfills the UNI Condition: Each inverse branch of T extends to a C 3 function and (a) For any a (0 < a < 1) we have

|J(h, ρ an )| < < ρ an , ∀n , ∀h ∈ H n . (b) Q := sup{|Ψ h,k (x)|; n ≥ 1 , h, k ∈ H n , x ∈ I} < ∞.

Transfer operators.

If I is endowed with an initial probability density g 0 with respect to Lebesgue measure, T acts on it and transforms it into a new density g 1 . The operator H such that g 1 = H[g 0 ] is called the density transformer, or the Perron-Frobenius operator (acting now on L 1 functions, soon we shall restrict its domain). An application of the change of variable formula gives

H[f ](x) := h∈H |h (x)| f • h(x) .
To generate Dirichlet Series it is useful to deal with a more general operator, the transfer operators H s , F s which depend on a complex parameter s:

H s [f ](x) := h∈H |h (x)| s • f • h(x) F s [f ](x) := h∈F |h (x)| s • f • h(x)
where H and F are the sets of inverse branches defined in Property 1 (Note that

H 1 = H.) If σ := s > 1/2, then H s , F s , act boundedly on the Banach space C 1 (I) of C 1 functions on I endowed with the norm f 1,1 = f 0 + f 0 , with f 0 := sup |f |.
2.3. Constrained continued fractions. Here, we are not interested in constraints on the ε i , and we only study constraints on the digits m i (x) defined in (1.5). The set R M of reals of the interval I for which all the digits m i are less than M , is associated to the "constrained" dynamical system T M : R M → R M , where T M is the restriction of T to R M . The set R M is a classical instance of a "fractal set" and its Hausdorff dimension denoted by σ M has been largely studied (see [START_REF] Hensley | The Hausdorff dimensions of some continued fraction Cantor sets[END_REF], [START_REF] Hensley | Continued Fraction Cantor sets, Hausdorff dimension, and functional analysis[END_REF], [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF]).

For any M ≥ 3, the sets H M := {h m,ε : m < M }, F M := H M ∩ F gather the inverse branches associated to digits less than M . The restricted transfer operators, defined as (2.4)

H M,s [f ](x) := h∈H M |h (x)| s • f • h(x) F M,s [f ](x) := h∈F M |h (x)| s • f • h(x),
are well-adapted to deal with continued fractions whose digits are less than M . We recover the case of the unconstrained operator when M = ∞, and we often let

H ∞,s := H s , F ∞,s := F s .
For any complex s with s > 1/2, the operator H M,s , F M,s act boundedly on the Banach space of C 1 (I) endowed with the norm . 1,1 .

2.4. Dirichlet Series and transfer to the discrete setting. We wish to analyze the distribution of D := max{m i (x) : 1 ≤ i ≤ p(x)}: for any fixed integer M , we consider the subsets

Ω := I ∩ Q, O [M ] := {x ∈ Ω : D(x) < M },
and, for any pair N, M of integers, the subsets

Ω N := {x = u v ∈ I∩Q : gcd(u, v) = 1, v ≤ N }, O [M ] N := {x ∈ Ω N : D(x) < M }. Remark the equality O [∞] N = Ω N . The probability of O [M ] N can be expressed as (2.5) P N,f (O [M ] N ) = φ M (N ) φ ∞ (N ) with φ M (N ) := x∈O [M ] N f (x)
In order to study φ M for M ≤ ∞, we introduce the probability Dirichlet series:

F M (s) := (u,v) u/v∈O [M ] 1 v s f ( u v ) = v≥1 1 v s c M (v) with c M (v) := u u v ∈O [M ] f ( u v ).
The following (easy) proposition relates the Dirichlet series F M (s) to the operator H M,s . This will be a central tool of the paper.

Proposition 1. For any M ≤ ∞, there is an alternative expression of the Dirichlet series F M (s) as a function of the quasi-inverse of the transfer operator H M,s ,

(2.6) F M (2s) = F M,s • (Id -H M,s ) -1 [f ](0).
Moreover, for any density of class C 1 on I, and s near 1, one has

F ∞ (2s) ∼ s→1 ζ(2s -1) ζ(2s) .
Proof. Any rational decomposes as a unique way as a continued fraction of the form

x = h(0), with h = h [m1,ε1] • h [m2,ε2] • . . . • h [mp,εp] .
Here, the digit m i is less than M if and only h [m i ,ε i ] belongs to H M , and the last h [m p ,ε p ] belongs to F M . Since all elements of H are linear fractional transformations, with determinant equal to ±1, the relations

1 v 2 = |h (0)| and f (x) = f (h(0))
provide the desired expressions for the Dirichlet series in terms of transfer operators. Finally, using Euler-Mac-Larin formula (which compares finite sums and integrals) leads to the equality

F ∞ (2s) = (u,v)∈Ω 1 v 2s f u v = 1 ζ(2s) v≥1 1 v 2s-1 u u/v∈I 1 v f u v = ζ(2s -1) ζ(2s) I f (t)dt + R(s),
where R(s) is analytic for s > 1/2, whereas the first term has a pôle at s = 1. This proves that, near s = 1, F ∞ (2s) behaves as a quotient of the Riemann ζ functions.

2.5. Dynamical analysis. We wish to study the asymptotics of the sum φ M (N ) of the first N coefficients of the Dirichlet series F M (s) [see Equation (2.5)], when N tends to ∞. In a general setting, the asymptotics of coefficients is related to the position and the nature of the dominant singularity of the function F M (s). This explains the importance of Proposition 1, which shows that the singularities of F M (s) are related to values s for which the transfer operator H M,s has a spectral value equal to 1. This is why we first study the operators H M,s and their spectral properties. This will provide precise information on the singularities of F M (s). Then, we need to transfer this knowledge on coefficients of this Dirichlet series. To achieve this, we rely on convenient "extractors" which express the coefficients of the series as a function of the series itself. The Perron Formula of order two (see e.g. [7]) is valid for a Dirichlet series F (s) = n≥1 a n n -s and a vertical line s = L inside the convergence domain of F , (2.7)

ψ(T ) := n≤T a n (T -n) = 1 2πi L+i∞ L-i∞ F (s) T 2s+1 s(2s + 1)
ds.

It is next natural to modify the integration contour s = L into a contour which contains the singularities of F (s).

Works of Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF], made precise by Baladi-Vallée [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF] related the behaviour of the quasi-inverse (Id -H s ) -1 of the unrestricted operator on vertical strips [summarized by the US (Uniformity on Strips) Property] to the geometry of the Dynamical System [summarized by the UNI (Uniform non Integrability) Condition]. We now state the US Property. Theorem D. [US property for the (unrestricted) transfer operator H s relative to each Euclidean dynamical system.] For any 0 < ξ < 1/10, there exist a γ > 0, t 0 > 0, C > 0 for which the following holds, for any f ∈ C 1 (I), (i) In the vertical strip S := {s = σ + it, |σ -1| ≤ γ}, the quasi-inverse (Id -H s ) -1 is a meromorphic function with a unique pôle. This pôle is simple and located at s = 1.

(ii) In the domain

S := {s = σ + it, |σ -1| ≤ γ, |t| > t 0 }, the quasi-inverse satisfies sup x∈I (Id -H s ) -1 [f ](x) ≤ C|t| ξ • ||f || 1,1 .
What is known about the width γ? From works of Mayer [START_REF] Mayer | A thermodynamic approach to Selberg's zeta function for P SL(2, Z)[END_REF], Efrat [START_REF] Efrat | Dynamics of the continued fraction map and the spectral theory of SL(2, Z)[END_REF], the quasi-inverse (Id -H s ) -1 of the plain operator H s relative to the standard Euclid algorithm (when acting on a nice functional space F of analytic functions) has a unique pôle located at s = 1 in the half-plane s > 1/2. The other singularities of the quasi-inverse are located on the line s = 1/2 or at values s for which the Riemann zeta function satisfies ζ(2s) = 0. Then, for any γ < 1/2, the vertical strip S γ := {s, | s -1| ≤ γ} contains only one pôle of the quasi-inverse (Id -H s ) -1 , located at s = 1: this is closely related to Property (i) of Theorem D. But this does not mean that the U S-strip can be chosen as S γ , for two main reasons : first, we do not know if the quasi-inverse (even if it acts on F) has a polynomial growth on S γ when | s| tends to ∞. Moreover, the quasi-inverse (Id -H s ) -1 (when it acts on C 1 ) may possess many other singularities than when it acts on F.

To extract coefficients of F M (s), we need a US property for the quasi-inverse of the constrained transfer operator. Furthermore, since later M will depend on N , we need this property to be uniform with respect to M . We will obtain the central result, which shows that Theorem D extends to all the restricted operators, Theorem 2 (Property US for the restricted operator.). Let (I, T ) be one of the three Euclidean systems of interest. Denote by H M,s the associated constrained transfer operator. For any 0 < ξ < 1/10, there exists γ > 0, C > 0, t 0 > 0 and an integer M 0 , for which, for any f ∈ C 1 (I), the following holds: 

(i) For any M ≥ M 0 , the quasi-inverse (Id -H M,s ) -1 [f ](0) is a
sup x∈I (Id -H M,s ) -1 [f ](x) ≤ C |t| ξ • ||f || 1,1 .
There are three main regions in a vertical strip to deal with. First, in the next Section, we consider the behaviour near the real axis, and we prove Theorem 3 and Theorem 4. Then, in Section 4, we focus on the behaviour far from the real axis, and we prove Theorem 5. It remains an intermediary region which will be considered in Lemma 5. With these three results at hand, we obtain the proof of Property US for the quasi-inverse of the restricted operator (Theorem 2). We then return to our main Theorem 1 in Section 5.

3.

Near the real axis.

The spectral properties of the operators H M,s in a neighborhood of the real axis are well-known and summarized in the next proposition. But they are not sufficient for our purpose, where we need spectral properties to be "uniform" on M : We have to prove the existence of a neighborhood of s = 1, the same neighborhood for all integers M , where all the quasi-inverses (Id -H M,s ) -1 are meromorphic, with an only possible pôle for each of them. This is obtained in Theorem 3. We also obtain in Theorem 4 the extension of Theorem A to the other two Euclidean dynamical systems.

3.1. Classical spectral properties. First we recall the definition of quasicompact operators for bounded operators. Let L be a bounded operator on a Banach space: Denote by Sp L the spectrum of L, by R(L) its spectral radius, and by R (e) (L) its essential spectral radius, i.e., the smallest r ≥ 0 such that any λ ∈ Sp(L) with modulus |λ| > r is an isolated eigenvalue of finite multiplicity. An operator L is quasi-compact if R (e) (L) < R(L) holds.

Proposition 2. [Spectral properties for the operator H M,s .] For a fixed M , let H M,s be the (constrained) transfer operators associated to a dynamical system with contraction radius ρ and abscissa de convergence σ 0 (quantities defined in Property 2). Let Σ 0 be the interval ]σ 0 , ∞[.

(i) [Quasi-compactness.] Let ρ < ρ < 1. If σ := s ∈ Σ 0 , then H M,s acts boundedly on C 1 (I). The spectral radius R M (s) of H M,s and its essential spectral R (e) M (s) satisfy R M (s) ≤ R M (σ), R (e) 
M (s) ≤ ρ • R M (σ); in particular H M,s is quasi-compact for real s. (ii) [Unique dominant eigenvalue.] For real σ ∈ Σ 0 , H M,σ has a unique eigenvalue λ M (σ) of maximal modulus, which is real and simple, the dominant eigenvalue. The associated eigenfunction f M,σ is strictly positive, and the associated eigenvector ν M,σ of the adjoint operator H * M,σ is a Radon measure. With the normalization conditions, ν M,σ [

1] = 1, ν M,σ [f M,σ ] = 1, the measure ν M,σ
is defined in a unique way. In particular, ν ∞,1 is Lebesgue measure, with λ ∞ (1) = 1. (iii) [Spectral gap.] For real parameters σ ∈ Σ 0 , there is a spectral gap, i.e., the subdominant spectral radius r M (σ) defined by

r M (σ) := sup{|λ|; λ ∈ Sp(H M,σ ), λ = λ M (σ)}, satisfies r M (σ) < λ M (σ). (iv) [Analyticity in compact sets.]
The operator H M,s depends analytically on s for s ∈ Σ 0 . Thus, λ M (σ) ±1 , f ±1 M,σ , f M,σ , depend analytically on σ ∈ Σ 0 . Sketches. Proofs of these properties can be found in [START_REF] Baladi | Positive Transfer operators and decay of correlations, Advanced Series in non linear dynamics[END_REF] for the usual transfer operator. In [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF] the author considers the constrained operator in the standard continued fraction context acting on the space of analytic functions. The spectrum of constrained operators in the continued fraction context acting on different Banach spaces is also studied in [START_REF] Gonzalez | On transfer operator of continued fractions with restricted entries[END_REF]. All these proofs are easily extended to the constrained transfer operator associated to dynamical systems of the good class.

We give here sketches of proof for Assertions (i) and (iv), since their arguments will be central in other proofs of this paper. In particular, many operators of interest in this paper can be written as a sum of operators R h of the form R h : f → r h • f • h, the sum being taken over a subset of H . In most cases functions

r h equal |h | s or |h (x)| s log |h (x)|. Remark that (3.1) ||r h •f •h|| 0 ≤ ||r h || 0 •||f || 0 ||(r h •f •h) || 0 ≤ ||r h || 0 ||f || 0 +||r h || 0 ||h || 0 ||f || 0 , so that (3.2) ||R h || 1,1 ≤ ||r h || 0 • [1 + ||h || 0 ] + ||r h || 0 .
Assertion (i). It is based on the existence of a Lasota-Yorke bound, which is uniform with respect to M . With Hennion's Theorem, this kind of bound entails the relation

R (e) (H M,s ) ≤ ρ • R(H M,s ).
[Lasota-Yorke bounds] For every compact subset L of Σ 0 , there exists C > 0 so that for all s with s ∈ L, and all f ∈ C 1 (I), for all M ≤ ∞, for all n ≥ 1

(3.3) ||H n M,s [f ]|| 1 ≤ C ||H n M,σ || 1 |s| ||f || 0 + ρ n ||f || 1
and ||H n M,σ || 1 is uniformly bounded for M ≥ 3. We now prove this bound: The quantity H n M,s [f ] can be written as a sum over In the same vein, the operator G M,s,z can be written as a sum over H M of terms r h • f • h, where the functions r h defined as

h ∈ H n M of functions r h • f • h with r h := |h | s .

The bounded distorsion property entails

|r h | ≤ |s||h |||h | s-1 | ≤ |s| K||h | s | = |s|K|h | σ , (σ := s).
r h = |h | s -|h | z -(s -z)|h | s log |h |
satisfy, with σ := min( s, z),

|r h | ≤ |s -z| 2 | log |h | 2 |h | σ , |r h | ≤ |h | |h | |z||r h |,
and, with the distorsion property, the estimate

|h [m,ε] (x)| = Θ(m -2 ), together with (3.2), this entails ||G M,s,z [f ]|| 0 ≤ C |s -z| 2 ζ (2σ) ||f || 0 , || (G M,s,z [f ]) || 0 ≤ C |s -z| 2 (K|z|ζ (2σ)||f || 0 + ζ (2σ + 1)||f || 1 )
where the constant C may depend on the system. These two relations prove that s → H M,s is analytic, with a derivative equal to H M,s defined in (3.4), whose norm ||H M,s || 1,1 admits via (3.5) an upper bound independent of M .

This proposition together with analytic perturbation theory [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] entail the following spectral decomposition for each H M,s , on a neighborhood of the real axis, that a priori depends on M : For each M ≤ ∞, there exists U M so that for all s ∈ U M , one has

(3.6) H M,s = λ M (s)P M,s + N M,s
where P M,s is the projector for the dominant eigenvalue λ M (s), the two operators satisfy N M,s • P M,s = P M,s • N M,s = 0 and the dominant spectral radius r M (s) satisfies r M (s) ≤ θ M |λ M (s)| for some θ M < 1. Therefore,

(3.7) H n M,s [f ](x) = λ n M (s)P M,s [f ](x) + N n M,s [f ](x) ∀n ≥ 1 .
Moreover, all the cited objects -except the subdominant spectral radius r M (s)-are analytic functions of s. The subdominant spectral radius r M (s) is a continuous function of s. As we already said, we need this spectral decomposition to hold on a common neighborhood of the real axis, in order to obtain in the sequel bounds "uniform" with respect to M . This is achieved in the next section. We first prove a perturbation result, from which we deduce the uniform spectral decomposition, the convergence of the dominant spectral objects of H M,s to those of the H s and a variety of uniform bounds.

Uniform spectral decomposition of H M,s around s = 1. The next result of Continuous Perturbation Theory (a simplified version of Theorem 3.16 from

Chapter IV of the book of Kato [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF]) is well suited to obtain an uniform spectral decomposition.

Theorem E. [Kato] Let X a Banach space and T a bounded operator on X. Suppose that T has a simple eigenvalue doubly separated from the rest of the spectrum by two curves Γ -and Γ + . This means that T has a a simple eigenvalue outside Γ + , no element of the spectrum between Γ -and Γ + , and the rest of the spectrum inside Γ -. Then, there exists δ > 0 (which depends on T and Γ ± ) with the following property: any bounded operator S which satisfies S -T ≤ δ has a simple eigenvalue doubly separated from the rest of the spectrum by Γ + and Γ -.

The following result proves that the hypotheses needed to apply Kato's Theorem are fulfilled. Lemma 1. Let (I, T ) be any of three Euclidean dynamical systems of the good class. There exists C > 0, such that the following holds:

(a) for any s with σ := s > 1/2, one has

(3.8) H M,s -H s 1,1 ≤ C 1 M 2σ-1 , H M,s -H s 1,1 ≤ C log M M 2σ-1 . (b) for any (s, z) with σ := min( s, z) > 1/2, for any M , one has (3.9) H M,s -H M,z 1,1 ≤ Cζ (2σ)|s -z|.
Proof. The first operator H M,s -H s is written as a sum of operators R h of the form 

R h : f → r h •f •h, with r h = |h s |,
h∈H\H M ||r h || 0 ≤ C M 2σ-1 , h∈H\H M ||r h • |h ||| 0 ≤ C M 2σ+1 , h∈H\H M ||r h || 0 ≤ KC|s| 1 M 2σ-1 ,
which prove the first inequality.

The second operator H M,s -H s is written as a sum of operators R h of the form 

R h : f → r h • f • h, with r h = |h s | log |h |,
h∈H\H M ||r h || 0 ≤ C log M M 2σ-1 , h∈H\H M ||r h • |h ||| 0 ≤ C M 2σ+1 , h∈H\H M ||r h || 0 ≤ KC|s| log M M 2σ-1 ,
which prove the second inequality.

The third inequality is just a consequence of the analyticity of s → H M,s [assertion (iv) of Proposition 2] together with the bound (3.5).

3.3.

The first result: Near the real axis. With this Lemma, together with Kato's Theorem, we now prove the first important result of this paper, which constitutes the first step for proving the part (ii) of the US Property for the constrained transfer operator (Theorem 2). (i) For any γ < 1/2, there exists t 1 > 0, such that, in the rectangle

V (1) γ := [1-γ, 1+γ]×[-t 1 , +t 1 ],
and for all M ≥ 3, the quasi-inverses (Id -H M,s ) -1 admit the spectral decomposition

(Id -H M,s ) -1 = λ M (s) 1 -λ M (s) P M,s + (Id -N M,s ) -1 .
(ii) For any γ < 1/2, there exists a real t 2 > 0 (with t 2 < t 1 ) and an integer M 2 ≥ 3, such that, for any integer M ≥ M 2 , the functions λ M (s)-1 possess a unique zero in the rectangle V

(2)

γ := [1 -γ, 1 + γ] × [-t 2 , +t 2 ]
, real and simple, located at s = σ M . The integer M 2 is chosen as

M 2 = M 2 (γ) := min{M ; σ M > 1 -γ}, so that α := min{σ M -(1 -γ); M ≥ M 2 } is strictly positive.
(iii) Define the real γ 0 as the supremum of reals γ < 1/2 for which the subdominant spectral radius r(s) of the plain operator H s is strictly less than 1 on the interval [1 -γ, 1 + γ]. Then, for any γ < γ 0 , there exists a real t 3 > 0 (with t 3 < t 1 ), and an integer M 3 ≥ 3 such that, for any integer M ≥ M 3 , for any s in the rectangle

V (3) γ = [1-γ, 1+γ]×[-t 3 , +t 3 ], the quasi-inverses (Id -N M,s ) -1 are analytic on V (3)
γ . (iv) For any γ < γ 0 , there exists a real t 4 > 0 and an integer M 0 ≥ 3, such that, for any integer M ≥ M 0 , the quasi-inverses

F M,s (Id -H M,s ) -1 are mero- morphic in the rectangle V (4) γ = [1-γ, 1+γ]×[-t 4 , +t 4 ], with a unique pôle at s = σ M . The residue of the function s → F M (s) := (Id -H M,s ) -1 [f ](0) at s = σ M is equal to Res s=σ M F M (s) = 1 2λ M (σ M ) F M,σ M • P M,σ M [f ](0).
In particular, for any density of class C 1 on I,

(3.10) Res s=1 F ∞ (s) = 1 2λ ∞ (1) F ∞,1 [f ∞,1 ](0) = 1 2ζ(2)
.

Furthermore, there exist a real t 0 ≤ t 4 and a constant C, such that, for any M ≥ M 0 , on the left line of the rectangle Proof. Assertion (i) Consider γ < 1/2 and two real constants

V γ := [1 -γ, 1 + γ] × [-t 0 , +t 0 ], ( 
θ -, θ + with sup{ r ∞ (s) λ ∞ (s) , s ∈ [1 -γ, 1 + γ]} < θ -< θ + < 1.
Consider any s of the real interval [1-γ, 1+γ], and apply Kato's Theorem, with the operator H s and the two circles Γ ± s of center 0 and radius θ ± λ ∞ (s). This entails the existence of some δ s . Then, Lemma 1 proves the existence of two strictly positive reals a s , t (s) , together with an integer M (s) , for which one has, for M ≥ M (s) ,

H M,z -H s 1,1 ≤ δ s for z ∈ [s -a s , s + a s ] × [-t (s) , +t (s) ].
By Theorem E and Proposition 2, the following spectral decomposition is valid for

all z ∈ [s -a s , s + a s ] × [-t (s) , +t (s) ] and M ≥ M (s) , (3.11) H M,z [f ](x) = λ M (z)P M,z [f ](x) + N M,z [f ](x).
Here, P M,z is the projector associated to the dominant eigenvalue λ M (z), the operators N M,z , P M,z satisfy N M,z • P M,z = P M,z • N M,z = 0 and the subdominant spectral radius r M (z) satisfies

r M (z) < θ -λ ∞ (s) < θ + λ ∞ (s) < |λ M (z)|, r M (z) |λ M (z)| < θ - θ + . The intervals ]s -a s , s + a s [ form an open covering of the compact [1 -γ, 1 + γ].
Then, there exists a finite sub-covering of [1-γ, 1+γ] associated to a finite family of points s i . With t 1 := min{t (si) }, M 1 := max{M (si) }, this proves that the spectral decomposition (3.11) holds for each operator H M,s on the rectangle

V γ := [1 - γ, 1 + γ] × [-t 1 , +t 1 ]
, for any M ≥ M 1 . Moreover, the dominant eigenvalue and the subdominant spectral radius satisfy

r M (z) |λ M (z)| < θ - θ + < 1.
Then, on the rectangle [1 -γ, 1 + γ] × [-t 1 , +t 1 ], and for any M ≥ M 1 , the quasiinverse of each operator decomposes as

(3.12) (Id -H M,s ) -1 = λ M (s) 1 -λ M (s) P M,s + (Id -N M,s ) -1 .
Consider now any integer M with M < M 1 . There exists, for each such M , a rectan-

gle of the form [1-γ, 1+γ]×[-t [M ] , +t [M ] ] on which the quasi-inverse (Id -H M,s ) -1 decomposes. It is then sufficient to choose t 1 := min(t 1 , min{t [M ] , M < M 1 }) to obtain the conclusion.
Assertion (ii). The solutions of the equation λ M (s) = 1 give rise to pôles for the quasi-inverse (Id -H M,s ) -1 . This last equation has been deeply studied because its solution s = σ M is the Hausdorff dimension of the set R M (see [START_REF] Hensley | The Hausdorff dimensions of some continued fraction Cantor sets[END_REF], [START_REF] Hensley | Continued Fraction Cantor sets, Hausdorff dimension, and functional analysis[END_REF], [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF]).

Here we summarize the most important properties of the equation λ M (s) = 1 and refer to the cited papers for the full proofs and deeper results. For any M ≤ ∞, the function σ → λ M (σ) of the real variable σ is strictly decreasing. The two inequalities λ M (1/2) > 1 and λ M (1) ≤ 1 (see [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF]) entail that the function λ M (s) -1 has a unique zero s = σ M in the interval ]1/2, 1]. Moreover, the sequence M → λ M (σ) is strictly decreasing, which implies that the sequence M → σ M of solutions of the equation λ M (s) = 1 is strictly decreasing, too. Denote by M 2 the smallest integer M for which σ M is larger than 1 -γ. Furthermore, due to the inequalities of Theorem 4, the sequence of analytic functions M → λ M (s) converges to λ ∞ (s) uniformly on V γ , and this is the same for the sequence of derivatives M → λ M (s) which converges to λ (s). Since λ ∞ (s) -1 has a simple zero at s = 1, there exists a neighborhood of s = 1 of the form

W :=]1 -δ, 1 + δ[×] -t 2 , +t 2 [
such that all the functions λ M (s) -1 have a unique zero on W for M ≥ M 2 . Due to decreasing properties of functions σ → λ M (σ), there exists t 2 > 0 (with t 2 < t 2 ) such that, for any M ≥ M 2 , the functions

λ M (s) -1 have a unique zero on ]1 -γ, 1 + γ[×] -t 2 , +t 2 [ for M ≥ M 0 . Assertion (iii). Consider, for γ < γ 0 , a constant θ such that sup{r(s); s ∈ [1 -γ, 1]} < θ < 1.
Consider any s of the real interval [1 -γ, 1], and apply Kato's Theorem, with the operator H s and the circle Γ of center 0 and radius θ; The inequality λ ∞ (s) ≥ 1 for s ∈ [1 -γ, 1] entails that the Γ is convenient for applying Kato's Theorem. This proves the existence of some δ s . Then, Lemma 1 proves the existence of two strictly positive reals a s , t (s) , together with an integer M (s) , for which one has, for any M ≥ M (s) ,

H M,z -H s 1,1 ≤ δ s for z ∈ [s -a s , s + a s ] × [-t (s) , +t (s) ].
By Theorem E and Proposition 2, this entails that r M (z

) < θ for z ∈ [s -a s , s + a s ] × [-t (s) , +t (s)
] and M ≥ M (s) . In the same vein as previously, there is a finite subcovering formed with points s i , which defines

t 3 := min{t (s i ) }, M 3 := max{M (s i ) }. Finally, one has r M (z) < θ when z belongs to the rectangle [1 -γ, 1 + γ] × [-t 3 , +t 3 ] and M ≥ M 3 .
Assertion (iv). Choosing t 4 := min(t 2 , t 3 ), M 0 := max(M 2 , M 3 ) entails that the quasi-inverse (Id -H M,s ) -1 fulfills the three previous assertions. The residue at the only pôle σ M of the function F M (s) is easily computed with the alternative expression of F M (s) provided in Proposition 1. This is also true when M is infinite, and, in this case, the two different expressions are also provided by Proposition 1. On the left line of the rectangle V (4) γ , the subdominant spectral radius r M (z) satisfies r M (z) < θ, whereas the projector P M,z is bounded from above (uniformly with respect to M ). Moreover, the functions |λ M (s) -1| (for M 0 ≤ M ≤ +∞) admit a lower bound on the left line of the rectangle V [START_REF] Cusick | Continuants with bounded digits[END_REF] γ . This is due to the fact that the functions |λ M (s) -1| are continuous, strictly positive and the sequence |λ M (s) -1| converges uniformly to |λ(s) -1|.

3.4. Speed of convergence of σ M to 1 for M → ∞. As we already said, the speed of convergence of the dominant spectral objects of H M,σ to those of H 1 when M → ∞ and σ → 1 is crucial. We provide an extension of the result of Hensley to the other Euclidean Dynamical Systems (centered and odd), with methods slighly different from Hensley, since we do not deal with the same functional space. Inside this subsection, we deal only with real values of the parameter s, and we use σ instead of s. Theorem 4. The following holds:

(i) (λ(σ) -λ M (σ)) I f M,σ (x) dν σ (x) = I (H σ -H M,σ ) [f M,σ ](x) dν σ (x). λ M (σ) = I H M,σ [f M,σ ](x)dν M,σ (x) (ii) λ(σ) -λ M (σ) = O(M 1-2σ ), |σ M -1| = O(M -1 ) . (iii) f M,σ -f σ 1,1 and ν M,σ -ν σ 1,1 are both O M 1-2σ . f σ -f 1 1,1 and ν σ -ν 1 1,1 are both O (|σ -1|) . (iv) λ(σ) -λ M (σ) = β M (σ) 1 + |σ -1| + O(M 1-2σ ) with β M (σ) := I (H σ -H M,σ )[f 1 ](x)dx (v) σ M -1 = - 1 ζ(2) 1 M - 2 ζ(2) 2 log M M 2 + O 1 M 2 (M → ∞). (vi) f M,σ M -f 1 1,1 = O 1 M , ν M,σ M -ν 1 1,1 = O 1 M . |λ M (σ M ) -λ (1)| = O log M M Proof. Assertion (i).
With the two relations

H M,σ [f M,σ ] = λ M (σ) f M,σ , H σ [f σ ] = λ(σ) f σ ,
the following equality holds

(λ(σ) -λ M (σ)) f M,σ + λ(σ)(f σ -f M,σ ) = (H σ -H M,σ ) [f M,σ ] + H σ [f σ -f M,σ ].
We consider the integral with respect to measure ν σ . Since ν σ is an eigenvector of the dual operator H σ , it satisfies

I H σ [f σ -f M,σ ](t) dν σ (x) = λ(σ) I [f σ (x) -f M,σ (x)] dν σ (x),
which provides the equality

(λ(σ) -λ M (σ)) I f M,σ (x) dν σ (x) = I (H σ -H M,σ ) [f M,σ ](x) dν σ (x).
In the same vein, taking the derivative (with respect to σ) of the relation

H M,σ [f M,σ ] = λ M (σ) f M,
σ leads to the second equality of Assertion (i).

Assertion (ii). The functions f M,σ are positive and uniformly bounded from above and below for M sufficiently large. This is the same for the integrals

I f M,σ (x)dν σ (x), and finally, λ(σ) -λ M (σ) = O ( H σ -H M,σ 0 ) = O(M 1-2σ ). Assertion (i) at σ = 1 entails the estimate 1 -λ M (1) = O(M -1
), and, with the Mean Value Theorem, the equality

λ M (1) -1 = λ M (1) -λ M (σ M ) = (1 -σ M )λ M (τ M ) with τ M ∈]σ M , 1[. Finally, when M → ∞, |λ M (τ M )| tends to the entropy h. One obtains (3.13) |σ M -1| = O( 1 M ) .
Assertion (iii). Denote by H M,σ the operator

H M,σ := 1 λ M (σ) • H M,σ .
The dominant eigenvalue λ M (σ) of H M,σ is constant and equal to 1, and f M,σ is the dominant eigenfunction of H M,σ relative to the dominant eigenvalue 1. Since ν M,σ is an eigenvector of the dual operator H M,σ , it satisfies

I H M,σ [f M,σ -f σ ](x) dν M,σ (x) = I [f M,σ (x) -f σ (x)] dν M,σ (x) .
This entails the equality I g M,σ (x)dν M,σ (x) = 0 with

g M,σ := H M,σ -Id [f M,σ -f σ ] = 1 λ M (σ) (H σ -H M,σ ) [f σ ]+(λ(σ) -λ M (σ)) [f σ ] .
The projection of g M,σ on the dominant eigensubspace of H M,σ equals 0. Denote by

N M,σ the operator N M,σ := (1/λ M (σ)) • N M,σ with N M,σ defined in (3.6). Then, for all n ≥ 1, one has H n M,σ [g M,σ ] = N n M,σ [g M,σ
]. Now, the quasi-compacity of H M,σ proves that the series of general term

H n M,σ [g M,σ ] is convergent, with a sum equal to f σ -f M,σ . Finally, f σ -f M,σ = (Id -N M,σ ) -1 [g M,σ ]
Now, the norm N M,σ 1,1 is at most β < 1 for σ sufficiently close to 1, the function f σ is uniformly bounded as well as λ M (σ). Then, with (ii) and (3.8), the norm

||f σ -f M,σ || 1,1 satisfies ||f σ -f M,σ || 1,1 = O( H M,σ -H σ 1,1 + |λ M (σ) -λ(σ)|) = O(M 1-2σ ) .
The proof is exactly the same for the dominant eigenmeasure ν M,σ of the dual operator H * M,σ . Assertions (iv) and (v). With (i) and (iii), we have

(3.14) λ(σ) -λ M (σ) = β M (σ) 1 + O |σ -1| + M 1-2σ with β M (σ) := I (H σ -H M,σ )[f 1 ](x)dx = I h∈H\H M |h (x)| σ f 1 • h(x)dx
A change a variables provides

β M (σ) = I M u 2(σ-1) f 1 (u)du, with I M := h∈H\H M h(I). Since the interval I M is of the form [0, a M ], with M a M → 1 for M → ∞ and writing f 1 (u) as f 1 (u) = f 1 (0) + ug(u) with g(u) = Θ(1), the integral β M (σ) decomposes as β M (σ) = 1 2σ -1 f 1 (0)M 1-2σ + Θ(M -2σ ) Consider now the special value σ = σ M , for which one has |σ M -1| = O(M -1 ) [Assertion (ii)]. Then, (3.15) β M (σ M ) = f 1 (0) 1 M [1 -2(σ M -1)log M )] + O(M -2 ). Now, the Taylor expansion λ(σ) = 1 + λ (1)(σ -1) + O((σ -1) 2 ), together with the estimate |σ M -1| = O(M -1 ), relations (3.14, 3.15) entail 0 = λ (1)(σ M -1) -f 1 (0) 1 M + O( log M M 2
) . Now, with the relation (3.10) which links f 1 (0), the entropy -λ (1) and ζ(2) (see Fig. 1), one obtains a first estimate of σ M -1, namely

(3.16) σ M -1 = -1 ζ(2) 1 M + Θ( log M M 2 ).
Putting the estimate obtained in Relation (3.16) inside Relation (3.15) provides a refinement of the estimate about β(σ M ) which permits to obtain the final estimate about σ M -1.

Assertion (vi). The first two estimates are just consequences of Assertion (iii) and (v). Indeed, one has

M 1-2σ M = 1 M exp[2(1 -σ M ) log M ] = O 1 M .
For the last estimate, one uses the expression of the derivative obtained in Assertion (i), together with the two first estimates of assertion (vi), and finally the decomposition

||H M,σ M -H 1 || 1,1 ≤ ||H M,σ M -H M,1 || 1,1 + ||H M,1 -H 1 || 1,1 ,
which, with Lemma 1, proves the last estimate.

4. Far from the real axis.

In this section, we aim to prove the US property for the quasi-inverse (Id -H M,s )

-1 of the constrained transfer operator with uniform bounds with respect to M . We have already obtained in Theorems 3 and 4 precise informations about the behaviour of the quasi-inverse (Id -H M,s ) near the real axis. We now wish to obtain a bound for the norm of the quasi-inverse when parameter s is on a vertical line on the left of s = 1, sufficiently far from the real axis (Theorem 2). Estimates of this type have been previously obtained by Dolgopyat [START_REF] Dolgopyat | On decay of correlations in Anosov flows[END_REF] for the (unrestricted) transfer operators related to dynamical systems satisfying the UNI Condition. Baladi and Vallée extended this results for maps with an infinite number of branches [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF]. The aim of this section is to obtain bounds on the norm of the quasi-inverse (Id -H M,s ) for large values of s, and uniformly with respect to M . For dealing with large values of the imaginary part t := s, Dolgopyat introduced a family of equivalents norms in C 1 (I), and, for t > 0, he defines

||f || 1,t := ||f || 0 + 1 t ||f || 0 .
This section is devoted to obtain Dolgopyat-type estimates for the (Id -H M,s )

-1

that are uniform with respect to M : Theorem 5. [Dolgopyat-type estimates for the constrained transfer operators.] Let H M,s be the constrained transfer operator acting on C 1 (I). For any ξ, with 0 < ξ < 1/10, there are a real interval Σ = [1 -γ 1 , 1 + γ 1 ] of 1, t 5 > 0, and C > 0 such that for all s = σ + it with σ ∈ Σ and |t| ≥ t 5 , and any M ≥ 3,

(4.1) (Id -H M,s ) -1 1,t ≤ C • |t| ξ .
In the proof, we shall take profit from the three following facts: (s1) The operator H M,s is a small perturbation of H 1 for M large and s near 1.

(s2) The operators H M,σ are "smaller" than H σ for real σ, that is

(4.2) H M,σ [f ](x) ≤ H σ [f ](x), for any f ∈ C 1 (I), f ≥ 0, M ≥ 3.
(s3) The constrained dynamical system is a restriction of the unconstrained dynamical system, for which the UNI Condition holds. Even if we do not make any explicit use of the UNI condition, most of the partial results of [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF] which we use strongly rely on this condition.

Due to (s2), the (truncated) vertical strip {| s -1| ≤ γ, |t| ≥ t 5 } obtained for the quasi-inverse of the restricted operator H M,s contains the (truncated) vertical strip obtained in the proof [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF] of Baladi-Vallée for the quasi-inverse of the plain operator H s , as we now prove it, in the sequel of this section.

4.1. Preparatory material. Here we prove three lemmas, whose proofs are slightly modifications of the proofs of Lemma 1, 2, 3 from [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF]. We deal with the normalized transfer operators,

H s [f ] := 1 λ(σ)f σ H s [f σ .f ], H M,s [f ] := 1 λ(σ)f M,σ H M,s [f M,σ .f ].
whose n-th iterates satisfy

H n s [f ] := 1 λ n (σ)f σ H n s [f σ .f ], H n M,s [f ] := 1 λ n (σ)f M,σ H n M,s [f M,σ .f ].
They have a spectral radius at most 1, and H σ fixes the constant function 1. The following two inequalities

H M,s [f ] 0 ≤ H M,σ [1] 0 f 0 and H s [f ] 0 ≤ H σ [1] 0 f 0 imply the useful bound (4.3) H M,s 0 ≤ 1 for M ≤ ∞, s > 1/2.
The following lemma compares the behavior of H M,σ and H 1 when σ → 1. It generalizes the same result already obtained in [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF] for M = ∞.

Lemma 2. Let L be a compact subset of Σ 0 :=]1/2, +∞[. For any σ ∈ L, for any f ∈ C 1 (I), for any n ≥ 1, and for any M ≥ 3, one has

(4.4) H M,σ [|f |] 2 0 < < A 2n σ H 1 [f 2 ] 0 , with A σ := λ(2σ -1) 1/2 λ(σ)
The constants involved only depend on L, and the function σ → A σ is continuous with A 1 = 1.

Proof. Use the result of Baladi-Vallée that deals with the case M = ∞ and extend it to the case M < ∞ with the inequality (4.2).

First use of the (1, t)-norm. In the bound (3.3), there appear two terms: the first one contains a factor |s| while the other one is exponentially decreasing in n.

In order to suppress the effect of the factor |s|, Dolgopyat uses the family of norms 

f 1,t := f 0 + 1 |t| f 0 = sup |f | + 1 |t| sup |f |, t =
| H n s [f ](x)| 2 < < 1 λ(σ) 2n (h,k)∈H n ×H n exp[itΨ h,k (x)] • R h,k (x) , with Ψ h,k (x) := log |h (x)| |k (x)|
, and

(4.6) R h,k (x) = |h (x)| σ |k (x)| σ 1 f 2 σ (x) (f • f σ ) • h(x) • (f • f σ ) • k(x) .
Dolgopyat, then Baladi and Vallée [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF] estimate the oscillatory integrals

I(h, k) := I exp[itΨ h,k (x)] R h,k (x)dx
and their lemmas 4 and 5 are summarized as follows:

Lemma 4. Consider a dynamical system that satisfies the UNI condition. Letting x denote the smallest integer greater than x, set (4.7)

n 0 := 1 | log ρ| log |t| .
Then, for any interval [1 -γ, 1 + γ], and for any s with σ = s ∈ L and |t| ≥ 1/ρ 2 , for any a, with 0 < a < 1/2, one has:

h,k∈H n 0 ×H n 0 | I(h, k)| < < max{ρ (1-2a) , A σ ρ a/2 } n 0 f 2 1,t
where A σ is defined in Lemma 2.

Lemma 4 can be extended for the case of a finite M , as we now explain. First, notice that (4.5) can be extended to the case when M is finite,

I | H n M,s [f ](x)| 2 dx < < 1 λ(σ) 2n h,k∈H n M ×H n M | I(h, k)|.
Now, the inclusion H n M ⊂ H n , together with Lemma 4 entail the following inequality

I | H n 0 M,s [f ](x)| 2 dx < < max{ρ (1-2a) , A σ ρ a/2 } n 0 f 2 1,t
for n 0 and t as in Lemma 4. Remark that the "hidden" constants do not depend on M .

For a ∈]2/5, 1/2[, the inequality (a/2) > 1 -2a > 0 holds, and there is a real neighborhood Σ 1 of σ = 1, defined (4.8) Σ 1 := {σ; A σ ρ a/2 ≤ ρ 1-2a } which does not depend on M . Finally, the inequality (4.9)

I | H n 0 M,s [f ](x)| 2 dx < < ρ (1-2a)n0 f 2 1,t M ≥ 2
holds for s ∈ Σ 1 , with constants which do not depend on M .

4.3.

End of the proof of Dolgopyat-type estimates. The end of the proof of the Dolgopyat-type estimates for the quasi-inverse of the operator H M,s follows the same lines as in [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF]. It is necessary to operate transfers between various norms. The uniform bounds are a consequence of the uniform bounds obtained in Lemma 2, Eq (3.3), Lemma 3, and Eq. (4.9).

From the L 2 -norm to the sup-norm. Since the normalized density transformer H 1 is quasi-compact with respect to the (1, 1)-norm, and fixes the constant function 1, it satisfies

(4.10) || H k 1,M [|g| 2 ]|| 0 = I |g| 2 (x) dx + O(r k 1 )||g 2 || 1,1 ,
where r 1 is the subdominant spectral radius of H 1 .

Consider an iterate

H n M,s with n ≥ n 0 . Then || H n M,s [f ]|| 2 0 < < || H n-n0 M,σ [g M ]|| 2 0 with g M = | H n0 M,s [f ]
| . Now, using (4.4) from Lemma 2 and (4.10) with k := n -n 0 , together with the bound (4.9) for the L 2 -norm and finally Lasota-Yorke bounds (3.3) to evaluate

||g 2 M || 1,1 , one obtains || H n M,s [f ]|| 2 0 < < A 2(n-n 0 ) σ ρ (1-2a)n 0 + r n-n0 1 |t| ||f || 2 1,t
and the hidden constant does not depend on M . We now choose n = n 1 as a function of t so that the two terms ρ (1-2a)n0 and r n-n 0 1 |t| are almost equal (with n 0 (t) defined in (4.7)):

(4.11) n 1 = (1 + η)n 0 with η := 2(1 -a) log ρ log r 1 > 0 .
Choose now d such that 0 < η(5a -2) < d < 1 -2a < 1/5 (which is possible if a is of the form a = 2/5 + , with a small > 0). We then obtain, when σ := s is in Σ 1 defined in (4.8), for n 1 (t) and η defined in (4.11)

(4.12) || H n 1 M,s [f ]|| 0 < < ρ n 1 b ||f || 1,t , with b := 1 -2a -d 1 + η .
From the sup-norm to the ||.|| 1,t -norm. Applying Lasota-Yorke bounds (3.3) twice and using (4.12) yields the inequality 

|| H 2n1 M,s [f ]|| 1 < < |s| || H n1 M,s [f ]|| 0 + ρ n 1 || H n1 M,s [f ]|| 1 < < |s| ρ n 1 b ||f || 1,t + ρ n 1 |t| |s| |t| ||f || 0 + ρ n 1 ||f || 1 |t| < < |t|ρ n 1 b ||f ||
|| H n M,s || 1,t ≤ C 2 || H n 2 M,s || k 1,t ≤ C 2 ρ bkn2/4 ≤ C 2 ρ bn/4 ρ -bn2/4 .

4.5.

End of the proof of Theorem 2. We now gather the conclusions of Theorem 3, Theorem 5, and Lemma 5. This will provide the proof of Theorem 2. First, consider any γ less than min(γ 0 , γ 1 ) where γ 0 is defined in Theorem 3 and γ 1 is defined in Theorem 5. Then, Theorem 3 defines a real t 0 , and Theorem 5 defines a real t 5 together with a constant C. Then, Lemma 5 associates to this pair (t 0 , t 5 ) a real γ 2 , and a constant C 2 . Finally, we let γ := min(γ 0 , γ 1 , γ 2 ). Then, for any γ < γ, Theorem 3 defines an integer M 0 = M 0 (γ). Then, it follows that, for M ≥ M 0 , the map s → (Id -H M,s ) -1 is meromorphic on | s -1| ≤ γ with an unique pôle at s = σ M , and has a polynomial growth on the vertical strip | s -1| < γ, |t| ≥ t 0 , with t 0 = t 0 and a constant C := max(C, C 2 ). This polynomial growth is thus uniform with respect to M ≥ M 0 . This ends the proof of Theorem 2.

Proof of Theorem 1.

In this section we complete the proof of Theorem 1. Remind that we have introduced in Section 2.4 the probability Dirichlet generating functions and we have obtained a fundamental relation between this Dirichlet series and the quasi-inverse of transfer operators in Proposition 1.

5.1. The sums of order two. We wish to evaluate the partial sums Φ M (N ) defined in (2.5), but it is not possible to deal directly with them. We first consider, for M ≤ ∞ the sums of order two of coefficients c M (n) of the Dirichlet series

F M (s), namely Ψ M (T ) := n≤T c M (n)(T -n)
which can be evaluated with the Perron formula (2.7), as

Ψ M (T ) = 1 2πi L+i∞ L-i∞ F M (s) T 2s+1 s(2s + 1) ds with L > 1.
Property US states that F M (s) has a meromorphic extension to s ≥ 1-γ for some positive γ, with a unique simple pôle at s = σ M for all M ≥ M 0 . With Property US(ii), it is possible to deform the integration contour, and Cauchy formula implies the equality

Ψ M (T ) := R M T 2σ M +1 σ M (2σ M + 1) + I M (T ), with R M := Res s=σ M F M (s), I M (T ) = 1 2πi 1-γ+i∞ 1-γ-i∞ F M (s) T 2s+1 s(2s + 1)
ds .

Thanks to the US Property (ii), the integral I M (T ) is uniformly bounded for all M ≥ M 0 , more precisely |I M (T )| ≤ C T 3-2γ with C independent of M . The residue R M was evaluated in Theorem 4 and we obtain, for M ≤ ∞,

R M = -1 λ M (σ M ) F M,σ M [f M,σ M ](0) ν M,σ M [f ].
The dominant spectral objects of H M,σ M converge to the dominant spectral objects of H 1 , uniformly with respect to M . This convergence implies that R M and σ M are uniformly bounded in M from above and below. With the definition of α as

α := min{σ M -(1 -γ); M ≥ M 0 }, the equality Ψ M (T ) = R M T 2σ M +1 σ M (2σ M + 1) 1 + O(T 2(1-σ M -γ) ) = R M T 2σ M +1 σ M (2σ M + 1) 1 + O(T -2α )
holds, with the constants involved in the O-term uniform with respect to M . 5.2. Transfer of estimates. In order to exploit the above estimates, and transform them into estimates on Φ M (T ), we use a simplified version of Lemma 10 from [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF].

Lemma 6. Assume that Ψ M (T ) := n≤T c M (n)(T -n) satisfies Ψ M (T ) = F M (T ) 1 + O T -2α , T → ∞ ,
where the O-term is uniform with respect to M , and α < 1/2. Denote by T -:= T -T 1-α , T + := T + T 1-α . One has:

(5.1) 1 T -T -Ψ M (T ) -Ψ M T -= F M (T ) 1 + O T -α . (5.2) 1 T + -T Ψ M T + -Ψ M (T ) = F M (T ) 1 + O T -α ,
where the constants in the O-terms are uniform with respect to M .

Since the Dirichlet series F M (s) has positive coefficients, there exist relations between the sums Ψ M (T ) (of order two), and the sums Φ M (T ) (of order one, which are the sums of interest), namely

T -T -Ψ M (T ) -Ψ M T -≤ Φ M (T ) ≤ 1 T + -T Ψ M T + -Ψ M (T ) 1 
Then, for M 0 ≤ M ≤ ∞, the following estimate holds for Φ M (T ),

Φ M (T ) = R M T 2σ M σ M 1 + O(T -α ) .
This finally provides the estimate of Theorem 1 for the probability of the subset O

[M ] N , namely

P N,f [O [M ] N ] = C M N 2(σ M -1) 1 + O(N -α ) with C M := R M σ M R ∞ .
Then Theorem 4 provides an asymptotic expansion of σ M -1 together with the estimate C M = 1 + O(log M/M ). This concludes the proof of Theorem 1.

6. Conclusions, conjectures, and generalizations.

This paper precisely studies the probability that a rational with denominator at most N has all its continued fraction digits smaller than M ; it considers all the possible pairs (M, N ), the only restriction being that M must be greater than some M 0 . This result improves previous results due to Cusick,Hensley and Vallée [4,[START_REF] Hensley | The distribution of badly approximable numbers and continuants with bounded digits[END_REF][START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF] (described in Theorem B), and enlarges the family of sequences M (N ) covered by Hensley's previous result [START_REF] Hensley | The Largest Digit in the Continued Fraction Expansion of a Rational Number[END_REF] described in Theorem C.

The Dynamical Analysis paradigm used in this paper also provides a machinery that allows to extend the main result of the paper (Theorem 1) to a larger class of constraints, as we now explain.

As in [START_REF] Mauldin | Conformal Iterated function systems with applications to the geometry of continued fractions[END_REF][START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF], we consider constraints on the continued fraction digits associated to an infinite subset A of N. We say that the number x ∈ I is A-constrained iff any digit of its CF E-expansion belongs to A. We relate to the constraint A the constrained Riemann zeta function ζ A defined as

ζ A (s) := m∈A 1 m s .
The constraint A is said to be open if the intersection of the convergence domain of ζ A with the real axis is an open interval Σ A :=]p A , +∞[. In this case, the Hausdorff dimension of reals whose all CF E-digits belong to A exists and is denoted by σ A . It is proved that A → σ A is strictly increasing.

To an infinite constraint A, we associate the family of constaints A(M ) defined as A(M ) := A∩]M, ∞[. In the same vein, the Hausdorff dimension of reals whose all digits belong to A(M ) exists and is denoted by σ A(M ) . In [START_REF] Mauldin | Conformal Iterated function systems with applications to the geometry of continued fractions[END_REF][START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF], Theorem B is proven to hold in the case of an open constraint A. In this case, for any M ≤ ∞, the probability that a rational of denominator less than N has all its digits in A(M ) satisfies

P N [O A(M ) N ] = C A(M ) N 2(σ A(M ) -1) [1 + A(M ) (N )].
Now, in the same vein as previously, we ask the following question: Is it is possible to make precise the remainder term A(M ) (N )? We can answer the question in the case where the constraint A is both "smooth" and "large".

We say that the infinite constraint A is smooth if the Riemann zeta function ζ A(M ) associated to A(M ) and defined as where the function g A tends to 1 when σ tends to (1/2)p A . Then, the following is true: (i) the function σ → g A (σ) is strictly increasing, so that the inequality g A (σ A ) > 1 holds; (ii) the map A → g A is decreasing, and thus satisfies g A (σ) ≥ 2σ.

For constraints A which are both open and smooth, a (weak) version of Theorem A holds: the speed of convergence of σ A(M ) towards σ A is of order M 1-g A (σ A ) .

The paper [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF] introduces and studies classes of constraints which provide natural instances of constraints which are both open and smooth: these are modular constraints, of the form An open constraint A is large if the real σ A belongs to the (maximal) US-strip of the operator H s . In this case, there exists an integer M A for which, for any M ≥ M A , the remainder term is of the form

A(M ) (N ) = O(N -α A )
, where the O-term is uniform with respect to M ≥ M A and α A is related to the position of σ A inside the US-strip (More precisely, 2α A equals the distance of σ A to the left line of the US vertical strip). Then, for a constraint A which is open, smooth and large, the probability that an A-constrained rational with a denominator at most N has all its digits less than M is of the form

P N,f [O A(M ) N |O A N ] = C A(M ) C A N 2(σ A(M ) -σ A ) 1 + O(N -α A )
We then obtain, in the same vein as in our main Theorem 1, a threshold phenomenon, depending on the relative order of σ A(M ) -σ A (of order M 1-g A (σ A ) ) with respect to n := log N . Consider R M,n = M n 1/(g A(σ A ) -1) , (a) If R(M, n) → +∞, then, almost everywhere, any rational of O A N has all its CF E-digits less than M . (b) If R(M, n) → 0, then, almost everywhere, any rational of O A N has at least one of its CF E-digits greater than M . This result applies in particular to the case of modular constraints, where the exponent g A(σ A ) -1 equals 2σ A -1. The Hausdorff dimension σ A is strictly greater than 1/2 and can be computed with principles described in [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF] and proved later by Lhote [START_REF] Lhote | Computation of a Class of Continued Fraction Constants[END_REF]. If our conjecture about the US-strip holds (see Section 1, Subsection Our Results), then, our result applies to all the particular constraints A previously described, the modular ones described in (6.1) or the co-finite ones, defined in (6.2).
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  meromorphic function in S := {s; | s -1| ≤ γ} and has a unique pôle on S. This pôle is simple and located at s = σ M . (ii) In the domain S := {s = σ + it, |σ -1| ≤ γ, |t| > t 0 }, and for any M , the quasi-inverse satisfies

  and, with the definition of contraction ratio, one has |h | ≤ Cρ n . Finally, with (3.1), we obtain the bound (3.3).Assertion (iv). Consider the operator GM,s,z := H M,s -H M,z -(s -z)H M,s , with (3.4) H M,s [f ] := h∈H M |h | s log |h | • f • h.The operator H M,s can be written as a sum overH M of terms r h • f • h, with r h =|h | s log |h |. With the distorsion property, the estimate |h [m,ε] (x)| = Θ(m -2 ), together with (3.1), this entails (3.5) ||H M,s || 1,1 ≤ Cζ (2σ), (σ := s).

  the sum being taken over H\H M . Together with (3.1), and the bounded distorsion property, the estimates |h [m,ε] (x)| = Θ(m -2 ), entail the bounds

  the sum being taken over H \ H M . Together with (3.1), the estimates |h [m,ε] (x)| = Θ(m -2 ) entail the bounds

Theorem 3 .

 3 Denote by H M,s the constrained operator relative to one of the three Euclidean dynamical systems. The following holds:

  i.e., for any s of the form s = 1-γ +it, with |t| ≤ t 0 ), one has |F M (s)| ≤ C.

  estimate ζ A(M ) (2σ) = Θ(M 1-g A (σ) ), (with a Θ uniform for M → ∞, σ ∈]p A , 1]),

(6. 1 )

 1 A B,d = {m ∈ N; m mod d ∈ B}, B ⊂ {0, 1, . . . d -1},or co-finite constraints, related to some finite subset B of N, of the form (6.2)A ∈B = {m ∈ N; m ∈ B}, B finite.Such constraints are open and smooth, with p A = 1/2 and g A (σ) = 2σ.

  For any t 1 > 0, for every compact subset L of Σ 0 , there is C 0 > 0 so that for all n ≥ 1, all s for which s ∈ L and| s| ≥ t 1 we have || H n M,s || 1, s ≤ C 0 .4.2. Estimates of the L 2 norm. In [2], Lemmas 4 and 5 compare the L 2 norm of H n s [f ] with the (1, t)-norm of f . Writing s = σ + it, the term | H n s [f ](x)| 2 can be expressed as a sum taken over H n × H n of the form,

	0, which appear in the statement of Proposition 5. With this norm and Equation (3.3), together with (4.3), we obtain the first (easy) result: Lemma 3. (4.5)

  1,t , (4.[START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] which finally entails that there is a constant C 1 , such that, for any t ≥ 1/ρ 2 , andn 2 = 2n 1 (with n 1 (t) as above), || 1,t ≤ C 1 ρ n2b/2 ( s ∈ Σ 1 ). Now choose t sufficiently large, namely |t| ≥ t 5 := C || 1,t ≤ ρ n 2 b/4 ( s ∈ Σ 1 , |t| ≥ t 5 ).

	(4.14) inequality C 1 < ρ -n 2 b/4 for any n 2 (t) with |t| ≥ t 5 . Finally one has || H n 2 M,s 1/(2(1-2a-d)) , to ensure the 1
	(4.15)	|| H n 2 M,s

The last step in Theorem 5. For fixed t with |t| > t 5 , any integer n can be written n = kn 2 + with < n 2 (t). Then
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Since bn 2 /4 = bn 1 /2 = (1 -2a -d)n 0 /2, with n 0 defined in (4.7), we finally obtain

Then ξ is any value between 0 and 1/10. Therefore, returning to the operator H M,s , we have shown

we take a refinement of the neighborhood Σ 1 defined in (4.8) and define the neighborhood Σ of σ = 1 as

Then, for s ∈ Σ, one has γλ(σ) ≤ ρ (1-2a-d)/8(1+η) = γ < 1 . This finally proves Theorem 5 with C := C 3 /(1 -γ), and γ 1 defined via the neighborhood Σ. 4.4. Intermediate compact region. In this section, we deal with the intermediate region, and we wish to prove the following result: Lemma 5. Consider the constrained operator H M,s relative to one of the three Euclidean systems. For any pair of fixed real numbers t 0 , t 5 , with t 5 > t 0 > 0, there exist γ 2 > 0, θ < 1 so that the spectral radius satisfies, for any M ,

and, for any ξ > 0, there exists C 2 > 0 such that the quasi-inverse

Proof. The same result is valid in the case of the plain operator H s (see Lemma 8 [START_REF] Baladi | Euclidean algorithms are Gaussian[END_REF]): there are γ 3 > 0, θ 3 < 1 so that the spectral radius R(s) satisfies R(s) ≤ θ 3 for all s ∈ A 3 := {s = σ + it : t 0 ≤ |t| ≤ t 5 and | s -1| ≤ γ 3 } . Now, we extend this property to the case of finite M , by using the upper-semi continuity of the spectrum under small (continuous) perturbations, as it is described in [START_REF] Kato | Perturbation Theory for Linear Operators[END_REF] Ch. IV, §3, Remark 3.3.

[Upper semi-continuity of the Spectrum.] For any T bounded and ε > 0, there is

We then apply the previous Property to T := H s with the choice ε := (1 -θ 3 )/2. This entails the existence of some δ. Then, Lemma 1 proves the existence of an integer M 4 for which H s -H M,s < δ for all M ≥ M 4 and s ∈ A 3 . Finally, for M ≥ M 4 , the spectral radius R M (s) is at most θ 2 := (1 + θ 3 )/2 for all s ∈ A 3 := {s = σ + it : t 1 ≤ |t| ≤ t 5 and | s -1| ≤ γ 3 }. Now, for each fixed M < M 4 , the spectral radius R M (s) is strictly less than λ M ( s) (see [START_REF] Vallée | Dynamique des fractions Continues à contraintes périodiques[END_REF]). This implies that, for each M , there are γ