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1 Introduction

When D is an elliptic operator on a manifold M preserved by a symmetry
group K, one can understand the aim of “geometric invariant theory” as
the realization of the space of K-invariant solutions of D as the space of
solutions of an elliptic operator on a “geometric quotient” My of M.

The by now classical case is concerned with an action of a compact
group K on a compact complex manifold M: we may consider the Dolbeault
operator D acting on sections of a holomorphic line bundle L. When L is
ample, Guillemin-Sternberg [14] proved that the K-invariant solutions of
D can be realized on Mumford’s GIT quotient My := ®;'(0)/K: here &,
is the moment map associated to the K-action on the line bundle L. This
result was extended to the other cohomology groups of an ample line bundle
by Teleman in [35] (see also [34]).

In our article, we show that the same construction can be generalized
to the differentiable case if properly reformulated. We consider a compact
connected Lie group K with Lie algebra ¢ acting on a compact, oriented and
even dimensional manifold M. In this introduction we assume for simplic-
ity that M carries a K-invariant spin structure: the corresponding Dirac
operator plays the role of the Dolbeaut operator.

For any line bundle L, we consider the Dirac operator D := Dy, twisted
by L. It acts on sections of the Clifford bundle § = Sgp,in ® L on M, where
Sepin is the spinor bundle of M. We are concerned with the equivariant
index of D, that we denote by Qi (M,S) and we also say that Qg (M,S)



is the space of virtual solutions of D. It belongs to the Grothendieck group
of representations of K. More generally, we can consider any irreducible
equivariant Clifford module S over M, when M admits a Spin® structure.

An important example is when M is a compact complex manifold, K a
compact group of holomorphic transformations of M, L a holomorphic K-
equivariant line bundle on M, not necessarily ample, and D the Dolbeault
operator acting on sections on the Clifford bundle S of L-valued differential
forms of type (0,q). Then Qx(M,S) = Z;lfé‘cM(—l)qHO’q(M, L).

Our aim is to show that the virtual space of K-invariant solutions of the
twisted Dirac operator D can be identified with the space of virtual solutions
of a twisted Dirac operator on a “geometric quotient” My of M, constructed
with the help of a moment map. To formulate a clean result in the context
of Dirac operators is not obvious. Let us first state the vanishing theorem
(surprisingly difficult to prove) which will allow us to do so.

We use Duflo’s notion of admissible coadjoint orbits (see Section 3) to
produce unitary irreducible representations of K. There is a map Q?gm asso-
ciating to an admissible coadjoint orbit P a virtual representation Q?{)in(P)
of K. By this correspondence, regular admissible coadjoint orbits parame-
terize the set K of classes of unitary irreducible representations of K. The
coadjoint orbit of p is regular admissible and parameterizes the trivial rep-
resentation of K. However, if r is the rank of [€, €], there are 2" admissible
orbits P such that Q}?™(P) is the trivial representation of K. We will say
that such an orbit P is an ancestor of the trivial representation.

For b a subalgebra of ¢, we denote by (h) the conjugacy class of h. If
£ € £*, we denote by £ its infinitesimal stabilizer. The set H; of conjugacy
classes of the algebras €¢, { running in € £*, is a finite set. Indeed the
complexified Lie algebras of £ varies over the Levi subalgebras of £c. For
(h) € He, we say that a coadjoint orbit K¢ is of type (h) if & belongs to the
conjugacy class (h). The semi-simple part of € is [€, €].

Let (€p7) be the generic infinitesimal stabilizer of the K-action on M.
We prove the following theorem.

Theorem 1.1 If ([tar, Ear]) is not equal to some ([b,h]), for b € He, then
for any K -equivariant line bundle L, Qr(M,S) = 0.

We may thus assume that there exists () € He, such that ([€rr, €r/]) =
([h,5]) : this class is unique and is denoted (hps). This condition on the
K-action is always satisfied in the Hamiltonian setting [23], but not always
in the spin setting (see the case of spheres in Example 4.23).

Consider our line bundle L. The choice of an Hermitian connection V



determines a moment map
& M — ¢*

by the relation £(X) — Vx,, = i{®r, X), for all X €¢.

We now describe the geometric quotient My. Let us first state the result,
when the infinitesimal stabilizer (€)/) is abelian. The corresponding (hys) is
the conjugacy class of Cartan subalgebras, and we consider

My = B (Kp)/K

where Kp is the regular admissible orbit that parameterizes the trivial rep-
resentation. In the general case, we define Oy = | JP to be the union of
the ancestors of the trivial representation which are of type (hys). Thus
O is a union of a finite number of admissible coadjoint orbits, a number
that might be greater than 1 (see Example 6.3 in the last section). We then
consider

My = &' (On)/K.

Then we define, by a desingularization procedure, a virtual vector space
Q*P™ (M) which coincides when M; is smooth with the space of virtual
solutions of a twisted Dirac operator on My. We prove the following theorem.

Theorem 1.2 .
[Qx (M, 8)] = Q™ (My).

This is an equality of dimensions. However, this equality holds also in
the Grothendieck group of irreducible representations of G, if G is a compact
group of symmetry commuting with the action of K.

Thus our space My plays the role of the geometric quotient in this purely
differentiable setting. The space My may vary dramatically with the choice
of the connection V (see Example 6.1 in the last section), but not its quan-
tized space Q%P (M).

Let us recall that we did not make any assumption on the line bundle L.
So this equality is true for any line bundle L, and any choice of K-invariant
connection V on L. In particular, the curvature of V might be always
degenerate, whatever choice of connection. In the last section, Section 6, we
raise a question on existence of “best connections”.

Let us recall the previous results on this subject. After their work on the
Kahler case, [14], Guillemin-Sternberg formulated the conjecture “Quanti-
zation commutes with reduction” denoted by [@, R] = 0 when M was sym-
plectic and L a Kostant line bundle on M. The curvature of L is thus ¢ times



the symplectic form and the reduced space My is again a symplectic mani-
fold. This conjecture was proved in full generality by Meinrenken-Sjamaar
[26], following partial results notably by [13, 37, 19, 25]. Later, other proofs
by analytic or topological methods were given by [36, 28].

After the remarkable results of Meinrenken-Sjamaar [26], it was tempting
to find in what way we can extend their results for the Hamiltonian case
to the general Spin® situation. In this general context, our manifold M
is not necessarily complex, nor even almost-complex. So the only elliptic
operators which make sense in this case are twisted Dirac operators. We
restrict ourselves to line bundles, the case of vector bundles being obtained
by pushforward of index of line bundles.

When M is a Spin® manifold, with an action of S, a partial answer to
the question of quantization commutes with reduction in the spin setting
has been obtained by [11, 12, 8]. The case of toric manifolds and non
ample line bundles have been treated in [20]. These interesting examples
(we give an example due to Karshon-Tolman in the last section, Example
6.2) motivated us to search for a general result. However, to formulate what
should be the result in the general non abelian case was not immediately
clear to us, although a posteriori very natural. We really had to use (in
the case where the generic stabilizer is non abelian) non regular admissible
orbits.

Let us also say that, due to the inevitable p-shift in the spin context,
our theorem does not imply immediately the [@, R] = 0 theorem of the
Hamiltonian case. Both theorems are somewhat magical, but each one on its
own. We will come back to the comparison between these two formulations
in future work devoted to the special case of almost complex manifolds.

Recently, using analytic methods adapted from those of Braverman, Ma,
Tian and Zhang [36, 6, 24, 7], Hochs-Mathai [17] and Hochs-Song [18] have
extended our theorem to other natural settings where the group and/or the
manifold are not compact. Note that in their works, the authors have to use
our result in the compact setting to obtain these extensions.

1.1 Description of the results

We now give a detailed description of the theorem proved in this article.

Let M be a compact connected manifold. We assume that M is even
dimensional and oriented. We consider a spin® structure on M, and denote
by S the corresponding spinor bundle. Let K be a compact connected Lie
group acting on M and S and we denote by D : T'(M,S8%) — I'(M,S™) the
corresponding K-equivariant Spin® Dirac operator.



Our aim is to describe the space of K-invariant solutions, or more gen-
erally, the equivariant index of D, denoted by Qg (M,S). It belongs to the
Grothendieck group of representations of K:

Ok (M,S) = > m(m) .

reK

Consider the determinant line bundle det(S) of the spin® structure. This
is a K-equivariant complex line bundle on M. The choice of a K-invariant
hermitian metric and of a K-invariant hermitian connection V on det(S)
determines a moment map

Bs: M — E*.

If M is spin and S = Sgpin ® L, then det(S) = L®? and P is equal to the
moment map Pj, associated to a connection on L.

We start to explain our result on the geometric description of m(m) in
the torus case. The general case reduces (in spirit) to this case, using an
appropriate slice for the K-action on M.

Let K =T be a torus acting effectively on M. In contrast to the sym-
plectic case, the image ®s(M) might not be convex. Let A < t* be the
lattice of weights. If u € A, we denote by C, the corresponding one dimen-
sional representation of T'. The equivariant index Q7 (M,S) decomposes as
or(M,S) = ZMEA my, C,,.

The topological space M, = <I>§1(u) /T, which may not be connected,
is an orbifold provided with a Spin®-structure when p in t* is a regular
value of ®s. In this case we define the integer Q*P™(M,,) as the index of
the corresponding Spin® Dirac operator on the orbifold M,. We can define
QP (M,,) even if u is a singular value. Postponing this definition, our result
states that

(1.1) m, = Q" (M,), VueA.

Here is the definition of Q*P™(M,,) (see Section 5.1). We approach u by
a regular value y + ¢, and we define QP (M, ) as the index of a Spin® Dirac
operator on the orbifold M, ., and this is independent of the choice of €
sufficiently close. Remark here that p has to be an interior point of ®s(M)
in order for Q%P"(M,,) to be non zero, as otherwise we can take p + € not in
the image. In a forthcoming article, we will give a more detailed description
of the function p — Q%P (M, ,.) in terms of locally quasi-polynomial functions
on t*.



Figure 1: T-multiplicities for non ample bundle on Hirzebruch surface

The identity (1.1) was obtained by Karshon-Tolman [20] when M is a
toric manifold, by Grossberg-Karshon [12] when M is a locally toric space,
and by Cannas da Silva-Karshon-Tolman [8] when dim7 = 1. In Figure
1, we draw the picture of the function p +— Q%P"(M,,) for the Hirzebruch
surface, and a non ample line bundle on it (we give the details of this example
due to Karshon-Tolman in the last section). The image of ® is the union
of the two large triangles in red and blue. The multiplicities are 1 on the
integral points of the interior of the red triangle, and —1 on the integral
points of the interior of the blue triangle.

Now consider the general case of a compact connected Lie group K
acting on M and S§. So we may assume that ([tar,€r]) = ([has, basr]) for
(bar) € He, as otherwise Qg (M,S) = 0.

We say that a coadjoint orbit P < £* is admissible if P carries a Spin®-
bundle Sp such that the corresponding moment map is the inclusion P — &£*.
We denote simply by Q2™ (P) the element Qi (P, Sp) € R(K). It is either
0 or an irreducible representation of K, and the map

O 1o = i?in((’))

defines a bijection between the regular admissible orbits and the dual K.
When O is a regular admissible orbit, an admissible coadjoint orbit P is



called an ancestor of O (or an ancestor of mp) if Qb}()in(P) = 7o.

Denote by A((has)) the set of admissible orbits of type (har). If P e
A((har)), we can define the Spin® index Q*P"(Mp) € Z of the reduced space
Mp = &5 (P)/K (by a deformation procedure if Mp is not smooth).

We obtain the following theorem which is the main result of the paper.

Theorem 1.3 Assume that ([tnr, tar]) = ([bar, bar]) for (bar) € He.
e The multiplicity of the representation wo in Qi (M,S) is equal to

> Q)
P
where the sum runs over the ancestors of O of type (har). In other words

Qk(M,8) = Y. QP (Mp)QR™(P).
PeA((ba))

When we consider the orbit Kp, the multiplicity of the representation
Trp in Qi (M,S) is the space of K-invariant virtual solutions of D and
Theorem 1.3 implies Theorem 1.2.

It may be useful to rephrase this theorem by describing the parametriza-
tion of admissible orbits by parameters belonging to the closed Weyl chamber
tLy. Let Axg := A nt{, be the set of dominant weights, and let p be the
half sum of the positive roots.

The set of regular admissible orbits is indexed by the set Asq + p: if
A € Ao + p, the coadjoint orbit K\ is regular admissible and 7y is the
representation with highest weight A — p.

Denote by F the set of the relative interiors of the faces of t{;. Thus

%0 = Ll,ero. The face t£, is the open face in F.

Let 0 € F. The stabilizer K¢ of a point { € o depends only of 0. We
denote it by K,, and by €, its Lie algebra. We choose on £, the system
of positive roots compatible with t{;, and let p%e be the corresponding
p. When p € o, the coadjoint orbit Kp is admissible if and only if A =
p—p+pfo e A.

The map F —> Hg, 0 — (&), is surjective but not injective. We denote
by F(M) the set of faces of t£, such that (¢) = (har).

Using the above parameters, we may rephrase Theorem 1.3 as follows.

Theorem 1.4 Assume that ([€rr,€0r]) = ([bar, bar]) with (bar) € He. Let
A€ Aso + p and let my € Z be the multiplicity of the representation mgy in



Figure 2: K-multiplicities and ancestors

Qk(M,S). We have

(1.2) my = Y QMg o)

oeF (M)
A—pKoeo

More explicitly, the sum (1.2) is taken over the faces o of the Weyl
chamber such that

(1.3) ([ar, tar]) = ([65,85]), ®(M)no # &, e {o+plo).

In Section 6.3, we give an example of a SU(3)-manifold M with generic
stabilizer SU(2), and a Spin® bundle & where several ¢ contribute to the
multiplicity of a representation 7y in Qg (M,S). On Figure 2, the picture
of the decomposition of Qf (M,S) is given in terms of the representations

W (P) associated to the ancestors P of type (has) = (su(2)). All reduced
spaces are points, but the multiplicity Q*P"(Mp) are equal to —1, following
from the orientation rule. On the picture, the links between admissible
regular orbits O and their ancestors P are indicated by segments. We see
that the trivial representation of K has two ancestors P; and Ps, of type
(har) so that the multiplicity of the trivial representation is equal to

QP (M) + QP (Mp,) = =2

and comes from two different faces of the Weyl chamber.



1.2 Strategy

The moment map ®g allows us to define the Kirwan vector field ks on M:
at m € M, ks is the tangent vector obtained by the infinitesimal action of
—®Pgs(m) at m € M. Our proof is based on a localization procedure using
the vector field k5. Before going into the details, let us recall the genealogy
of the method.

In [2], Atiyah and Bott calculate the cohomology of moduli spaces of
vector bundles over Riemann surfaces by using a stratification defined by
the Yang-Mills functional. This functional turns to be the square of a mo-
ment map (in a infinite dimensional setting). Their approach was developed
by Kirwan in [22] to relate the cohomology of the Munford GIT quotient
with the equivariant cohomology of the initial manifold. Recall that, in the
Hamiltonian setting, the Kirwan vector field is the Hamiltonian vector field
of the square of the moment map.

In [39], Witten proposed a non abelian localization procedure on the zero
set of the Kirwan vector field for the integration of equivariant classes. This
idea had a great influence in many other contexts. For example, Tian and
Zhang [36] gave an analytical proof of the [@Q, R] = 0 theorem by deforming
a la Witten the Dolbeault-Dirac operator with the Kirwan vector field.

In this paper, we use our K-theoretic analogue of the Witten non abelian
localization procedure. We defined a topological deformation of symbols by
pushing the zero section of T*M inside T* M using the Kirwan vector field
ks. Let us briefly explain the main consequences of this powerful tool which
was initiated in [37, 28] and developed in [32].

In Witten non abelian localization formula, computation of integrals of
equivariant cohomology classes on M reduces to the study of contributions
coming from a neighborhood of Zg, the set of zeroes of the invariant vector
field ks. Here, our K-theoretical non abelian localization formula allows us
to compute the index Qi (M, S) as a sum of equivariant indices of transver-
sally elliptic operators associated to connected components Z of Zs. We are
able to identify them with some basic transversally elliptic symbols whose
indices were computed by Atiyah-Singer (see [1]). Although these indices are
infinite dimensional representations, they are easier to understand than the
original finite dimensional representation Qg (M,S). The main difficulty is
in estimating which components Z contributes to the K-invariant part. We
are able to do so, using a miraculous estimate on distance between admissi-
ble coadjoint orbits proved in [33]. Here is when the ancestors of the trivial
representation enter the game. As shown by the final result, we have (in
contrast to the Hamiltonian setting) to take in account several components
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and to identify their contributions.

1.3 Outline of the article

Let us explain the contents of the different sections of the article, and their
main use in the final proof.

e In Section 2, we give the definition of the index of a Spin®-bundle.

e In Section 3, we describe the canonical Spin®-bundle on admissible
coadjoint orbits (see (3.12)). For a K-admissible coadjoint orbit P, we

determine the regular admissible orbit O such that if Q?{)m(P) is not zero,

then Q?()in(P) = 1o (Proposition 3.6).

In Proposition 3.13, we state the “magical inequality” that will be used
over and over again in this article.

e In Section 4, we define our K-theoretical analogue of the Witten de-
formation and recall some of its properties (proved in [28, 32]). It allows us
to reduce the computation of Qg (M,S) to indices gz of simpler transver-
sally elliptic operators defined in neighborhoods of connected components
of ZS = {HS = 0}.

We introduce a function ds : Zs — R. If ds takes strictly positive values
on some component Z of Zg, then the K-invariant part of the (virtual)
representation gz is equal to 0 (Proposition 4.17). This is a very important
technical proposition.

If O is an admissible regular coadjoint orbit, the shifting trick leads us
to study the manifold M x O* with Spin®-bundle S ® Spx. We want to
select the component Z of Zsgs,, so that [¢z]* is not zero.

Here is where we discover that, for Qx (M, S) to be non zero, it is neces-
sary that the semi-simple part of the generic stabilizer €3, of the action of K
on M is equal to the semi-simple part of a Levi subalgebra h of £. Let H be
the connected subgroup of K with Lie algebra . It follows that such a com-
ponent Z is described rather simply as an induced manifold K x i (Y x o(h)),
with Y a H/[H, H] manifold, and o(h) the [H, H]-orbit of the correspond-
ing pl#:H] element. Then we use the fact that the quantization of the orbit
of p is the trivial representation. In fact, to determine the contributing
components Z, we study a function do : Zsgs,, — R relating the represen-
tation of K, on T,, M and the norm of ®s(m). Here K, is the stabilizer of
m € M. It relies on the “magical inequality” (Proposition 3.13) on distance
of regular weights to faces of the Weyl chamber proved in [33].

e In Section 5, we explain how to define indices on singular reduced
spaces. The main theorem is their invariance under small deformation. We
then have done all the work needed to be able to prove the main theorem.

11



e The last section is dedicated to some simple examples intended to show
several features of our theory.
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Notations

Throughout the paper :

e K denotes a compact connected Lie group with Lie algebra €.
e T is a maximal torus in K with Lie algebra t.

o A c t* is the weight lattice of T : every u € A defines a 1-dimensional
T-representation, denoted C,, where ¢ = exp(X) acts by tH := el X)

e We fix a K-invariant inner product (-, -) on £. This allows us to identify
t and * when needed.

We denote by (-, -) the natural duality between ¢ and £*.

e We denote by R(K) the representation ring of K : an element E €
R(K) can be represented as finite sum E = Zuef( m,m,, with m, € Z.

The multiplicity of the trivial representation is denoted [E]X.

e We denote by R(K) the space of Z-valued functions on K. An element
E € R(K) can be represented as an infinite sum E = > o m(u)Vy,
with m(u) € Z.

e If H is a closed subgroup of K, the induction map md¥ : R(H) -
R(K) is the dual of the restriction morphism R(K) — R(H).

e When K acts on a set X, the stabilizer subgroup of z € X is denoted
K, :={ke K | k-x = z}. The Lie algebra of K, is denoted &,.

e An clement £ € £* is called regular if K¢ is a maximal torus of K.

e When K acts on a manifold M, we denote Xpr(m) := 4 |i—ge ™% -m

the vector field generated by —X € €. Sometimes we will also use the
notation Xs(m) = —X - m. The set of zeroes of the vector field X,
is denoted M.

12



e If V is a complex (ungraded) vector space, then the exterior space
AV =ATV® A"V will be Z/2Z graded in even and odd elements.

o If B = Ef @ E; and Ep = E; @ E, are two Z/2Z graded vector
spaces (or vector bundles), the tensor product Ey ® Fs is Z/2Z-graded
with (E1® E»)" = Ef Q Ef ®E] ® Ey and (E1®E»)~ = Ef Q By @
Ef®FE; . Similarly the spaces End(E;) are Z/27Z graded. The action of
End(E;)®End(E;) on E1® E5 obeys the usual sign rules: for example,
if f € End(E2)~, v1 € E] and vy € Ey, then f(v; ® v2) = —v1 ® fus.

e If F'is a vector space and M a manifold, we denote by [FE] the trivial
vector bundle on M with fiber E.

2 Spin¢ equivariant index

2.1 Spin° modules

Let V be an oriented Euclidean space of even dimension n = 2. We denote
by Cl(V) its Clifford algebra. If e, ..., e, is an oriented orthonormal frame
of V, we define the element

e:=(i)er ey e ClV)

that depends only of the orientation. We have € = 1 and ev = —ve for any
veV.

If £ is a Cl(V)-module, the Clifford map is denoted cg : Cl(V) —
End(E). We see then that the element of order two €g := cg(e) defines a
7./27-graduation on E by defining E* := ker(Idg F eg). Moreover the maps
cg(v) : E — E for v € V interchanges the subspace E. This graduation
will be called the canonical graduation of the Clifford module E.

We follow the conventions of [4]. Recall the following fundamental fact.

Proposition 2.1 Let V' be an even dimensional Euclidean space.

o There exists a complex Cl(V')-module S such that the Clifford mor-
phism cg : CI(V') — End(S) induces an isomorphism of complex alge-
bra C1(V) ® C ~ End(S).

e The Clifford module S is unique up to isomorphism. We call it the
spinor CL(V')-module.

13



e Any complex CI(V')-module E has the following decomposition
(24) Ex~S ® hOIIlCl(V) (S, E)

where homgy) (S, E) is the vector space spanned by the C1(V')-complex
linear maps from S to E. If V is oriented and the Clifford modules S
and E carry their canonical grading, then (2.4) is an isomorphism of
graded Clifford CL(V')-modules.

Let V = V1 @ V4 be an orthogonal decomposition of even dimensional
Euclidean spaces. We choose an orientation o(V7) on Vi. There is a one-
to-one correspondence between the graded Cl(V3)-modules and the graded
Cl(V)-modules defined as follows. Let S; be the spinor module for C1(V}).
If W is a Cl(V2)-module, the vector space E := 51 ® W is a C1(V')-module
with the Clifford map defined by

cp(v1 @ v2) i=cg (v1) Idw + €5, ® ey (v2).

Here v; € V; and €g, € End(S]) defines the canonical graduation of S;. Con-
versely, if E is a graded CI(V)-module, the vector space W := homcyy,)(S1, F)
formed by the complex linear maps f : S1 — E commuting with the action
of C1(V1) has a natural structure of Cl(V3) graded module and E ~ S; @ W.

If we fix an orientation o(V') on V, it fixes an orientation o(V3) on V3 by
the relation o(V') = o(V1)o(V2). Then the Clifford modules E and W carries
their canonical Z/27 graduation, and E ~ S; ® W becomes an identity of
graded Clifford modules.

Example 2.2 Let H be an Fuclidean vector space equipped with a complex
structure J € O(H): we consider the complex vector space N ; H. Denote
by m(v) the exterior multiplication by v. The action ¢ of H on \ ; H given
by c(v) = m(v) —m(v)* satisfies c(v)? = —|v|*Id. Thus, \; H, equipped
with the action c, is a realization of the spinor module for H. Note that the
group U(J) of unitary transformations of H acts naturally on )\ ; H. If one
choose the orientation on H induced by the complex structure, one sees that
the canonical grading is (N, H)* = N7 H.

Suppose now that we have another complex structure J' € O(H) : the
vector space )\ ;s H is another spinor module for H. We denote by efl the
ratio between the orientations defined by J and J'. One can check that

(2.5) NH=~ejCoo N\ H,
J’ J
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as a graded C1(H)-module and also as a graded U(J") n U(J)-module. Here
Cy is the 1-dimensional representation of U(J") n U(J) associated to the
unique character x defined by the relation x(g)? = dety(g) det(g)~!, Vg €
U(J'") nU(J).

Example 2.3 When V = Q®Q with Q an Fuclidean space, we can identify
V with Qc by (x,y) — x@iy. Thus Sg := /\ Qc is a realization of the
spinor module for V. It carries a natural action of the orthogonal group
O(Q) acting diagonally. If Q carries a complex structure J € O(Q), we
can consider the spin modules )\ ; Q and \_;Q for Q. We have then the
isomorphism Sg ~ \;Q® A_;Q of graded CI(V)-modules (it is also an
isomorphism of U(J)-modules).

2.2 Spin° structures

Consider now the case of an Euclidean vector bundle V — M of even rank.
Let C1(V) — M be the associated Clifford algebra bundle. A complex vector
bundle &€ — M is a Cl(V)-module if there is a bundle algebra morphism
ce : CI(V) — End(€).

Definition 2.4 Let S — M be a C1(V)-module such that the map cs induces
an isomorphism Cl(V) ®g C — End(S). Then we say that S is a Spin®-
bundle for V.

As in the linear case, an orientation on the vector bundle V determines a
7,/27 grading of the vector bundle S (called the canonical graduation) such
that for any v € V,,,, the linear map' cs(m,v) : Sy, — Sy, is odd.

Example 2.5 When H — M is a Hermitian vector bundle, the complex
vector bundle /\ H is a Spin® bundle for H. If one choose the orientation
of the vector bundle H induced by the complex structure, one sees that the
canonical grading is (\H)E = AT H.

We assume that the vector bundle V is oriented, and we consider two
Spin®-bundles S, S’ for V, both with their canonical grading. We have the
following identity of graded Spin“-bundles : &' ~ S®Lgs s where Lg g is a
complex line bundle on M defined by the relation

(26) L&Sl = homCl(V) (S,Sl)

The map cs(m, —) : Vi, — End(S,,) will also be denoted by cs,, .
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Definition 2.6 Let V — M be an FEuclidean vector bundle of even rank.
The determinant line bundle of a Spin®-bundle S on V is the line bundle
det(S) — M defined by the relation

det(S) := homgy) (S, S)
where S is the C1(V)-module with opposite complex structure.

Example 2.7 When H — M is a Hermitian vector bundle, the determinant
line bundle of the Spin®-bundle \ H is det(H) := A" H.

If S and S’ are two Spin®-bundles for V, we see that
det(S') = det(S) @ LE%,.

Assume that V = V; @ Vs, is an orthogonal sum of Euclidean vector
bundles of even rank. We assume that V; is oriented, and let S; be a Spin®-
bundle for V; that we equip with its canonical grading. If £ is a Clifford
bundle for V, then we have the following isomorphism?

(2.7) E~SIQW

where W := homgy(y,)(S1,€) is a Clifford bundle for V,. If V is oriented, it
fixes an orientation 0()s) on Vs by the relation o(V) = o(V1)o(Vs). Then the
Clifford modules £ and W carries their canonical Z/27Z grading, and (2.7)
becomes an identity of graded Clifford modules.

In the particular situation where S is a Spin®-bundle for V, then & ~
S1 ® So where Sy := homcyy,)(S1,S) is a Spin“-bundle for V2. At the level
of determinant line bundles we obtain det(S) = det(S1) ® det(S2).

Let us end this section by recalling the notion of Spin-structure and
Spin®structure. Let ¥V — M be an oriented Euclidean vector bundle of
rank n, and let Pgo(V) be its orthogonal frame bundle : it is a principal
SO,, bundle over M.

Let us consider the spinor group Spin,, which is the double cover of the
group SO,,. The group Spin,, is a subgroup of the group Spin;, which covers
SO,, with fiber U(1).

A Spin structure on V is a Spin,-principal bundle Pgp;,(V) over M
together with a Spin,,- equivariant map P gy, (V) — Pgo(V).

We assume now that V is of even rank n = 2¢. Let S,, be the irreducible
complex spin representation of Spin,,. Recall that S,, = S} @ S, inherits

2The proof is identical to the linear case explained earlier.
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a canonical Clifford action ¢ : R"™ — End(S,) which is Spin,-equivariant,
and which interchanges the graduation: c(v) : S — SF. The spinor bundle
attached to the Spin-structure Pgp;n (V) is

S = PSpm(V) X Spin,, Sn

A Spin®-bundle for V determines a Spin® structure, that is a principal
bundle over M with structure group Spiny,. When V admits a Spin-structure,
any Spin“-bundle for V is of the form S;, = Sgpin ® L where Sgpiy is the spinor
bundle attached to the Spin-structure and L is a line bundle on M. Then
the determinant line bundle for Sy, is L&?2.

2.3 Moment maps and Kirwan vector field

In this section, we consider the case of a Riemannian manifold M acted on
by a compact Lie group K. Let S — M be a Spin®-bundle on M. If the
K-action lifts to the Spin®-bundle S in such a way that the bundle map
¢s : CI(TM) — End(S) commutes with the K-action, we say that S defines
a K-equivariant Spin“-bundle on M. In this case, the K-action lifts also to
the determinant line bundle det(S). The choice of an invariant Hermitian
connection V on det(S) determines an equivariant map ®s: M — £* and a
2-form Qs on M by means of the Kostant relations

(2.8) L(X)—Vx,, =2i{ds,X) and V?=-2iQs

for every X € ¢. Here £(X) denotes the infinitesimal action on the sections
of det(S). We will say that ®s is the moment map for S (it depends however
of the choice of a connection).

Via the equivariant Bianchi formula, Relations (2.8) induce the relations

(2.9) L(XM)QS = —d<(I)$,X> and ng =0

for every X € ¢.
In particular the function m — (®s(m), X) is locally constant on M*X.

Remark 2.8 Let b e t and m € M®, the set of zeroes of by;. We consider
the linear actions L(b)ls,, and L(b)|de(s),, on the fibers at m of the Spin®-
bundle S and the line bundle det(S). Kostant relations imply L(b)|get(s),, =
2i(®s(m),by. The irreducibility of S implies that

L(O)ls,, = i{Ps(m),b)1ds,,.

Furthermore the function m — (®s(m),b) is locally constant on MP.
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Note that the closed 2-form Qgs, which is half of the curvature of det(S),
is not (in general) a symplectic form. Furthermore, if we take any (real
valued) invariant 1-form A on M, V + iA is another connection on det(S).
The corresponding curvature and moment map will be modified in Qg — %dA
and &g — %CDA where ®4 : M — ¢* is defined by the relation (®4,X) =
—u(Xar)A.

Let ® : M — ¢ be a K equivariant map. We define the K-invariant
vector field kg on M by

(2.10) ko(m) := —P(m) - m,

and we call it the Kirwan vector field associated to ®. The set where k¢
vanishes is a K-invariant subset that we denote by Zs < M.

We identify ¢* with ¢ by our choice of K-invariant scalar product and
we will have a particular interest in the equivariant map ®s : M — ¢* ~
t associated to the Spin“-bundle S§. In this case we may denote the K-
invariant vector field ke simply by ks (even if it depends of the choice of
a connection):

ks(m) := —®g(m) - m.

and we denote Zg by Zs.
As &5 is a moment map, we have the following basic description (see
[28, 32]).

Lemma 2.9 If the manifold M is compact, the set ®s(Zs) is a finite col-
lection of coadjoint orbits. For any coadjoint orbit O = K, we have

Zs n 51 (0) = K(MP n d51(B)).

Here we have identified 5 € € with an element in € still denoted by 5.
Furthermore, any 3 in the image ®s(Zs) is such that ||3]|? is a critical value
of the map ||®|>.

Remark 2.10 Although the map ®s as well as the set Zs vary when we
vary the connection, we see that the image ®s(Zs) is contained in a finite
set of coadjoint orbits that does not depend of the connection (see [32]).

Figure 3 describes the set ®s5(Zs) for the action of the diagonal torus of
K = SU(3) on the orbit Kp equipped with its canonical Spin®-bundle.
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Figure 3: The set ®5(Zs)

2.4 Equivariant index

Assume in this section that the Riemannian K-manifold M is compact,
even dimensional, oriented, and equipped with a K-equivariant Spin“-bundle
S — M. The orientation induces a decomposition S = ST @ S, and the
corresponding Spin® Dirac operator is a first order elliptic operator Dgs :
I'(M,S8*) - I'(M,S87) [4, 10]. TIts principal symbol is the bundle map
o(M,S) € T'(T* M, hom(p*S™,p*S™)) defined by the relation

o(M,S)(m,v) =cs,, (¥): S} — S,

Here v € T*M — ©» € TM is the identification defined by the Riemannian
structure.

If W — M is a complex K-vector bundle, we can define similarly the
twisted Dirac operator DY : I'(M,S* @ W) —» T'(M, S~ @W).

Definition 2.11 Let S — M be an equivariant Spin®-bundle. We denote :
e O (M,S) € R(K) the equivariant index of the operator Dg,
o Ox(M,S®W) € R(K) the equivariant index of the operator DY'.

Let A(M)(X) be the equivariant A-genus class of M: it is an equivari-
ant analytic function from a neighborhood of 0 € £ with value in the alge-
bra of differential forms on M. Berline-Vergne equivariant index formula
[4][Theorem 8.2] asserts that
@1) QM) = ()" | @ A (x)
2T M
for X € € small enough. Here we write Qg (M,S)(e*) for the trace of the
element eX € K in the virtual representation Qg (M,S) of K. It shows in
particular that Qg (M, S) € R(K) is a topological invariant : it only depends
of the class of the equivariant form Qg + (®s, X), which represents half of

the first equivariant Chern class of the line bundle det(S).

19



Example 2.12 We consider the simplest case of the theory. Let M :=
PY(C) be the projective space of (complex) dimension one. We write an
element of M as [z1,z2] in homogeneous coordinates. Consider the (am-
ple) line bundle L — P, dual of the tautological bundle. Let S(n) be
the Spin®-bundle N\ TM ® L®". The character Qr(M,S(n)) is equal to
HO(PL,O(n)) — HY(P',0(n)). Then forn >0,

Qr(M,S(n)) = Z t*.
k=0
Here T = {t € C;|t| = 1} acts on [z1,22] via t - [21, 20] = [t 21, 22].

3 Coadjoint orbits

In this section, we describe Spin®-bundles on admissible coadjoint orbits of
K and the equivariant indices of the associated Dirac operators.

For any ¢ € £*, the stabilizer K¢ is a connected subgroup of K with same
rank. We denote by £ its Lie algebra. Let H¢ be the set of conjugacy classes
of the reductive algebras £¢,{ € £* it contains the conjugacy class formed by
the Cartan sub-algebras, and it contains also ¢ (stabilizer of 0).

We denote by S¢ the set of conjugacy classes of the semi-simple parts
[b, b] of the elements (h) € H¢. The map (h) — ([h, h]) induces a bijection
between He and S (see [33]).

We group the coadjoint orbits according to the conjugacy class (h) € He
of the stabilizer, and we consider the Dixmier sheet Ez‘h) of orbits K¢ with £
conjugated to h. The connected Lie subgroup with Lie algebra § is denoted
H, that is if h = €&, then H = K¢. We write h = 3 ® [h, b] where ; is the
center and [, h] is the semi-simple part of h. Thus h* = 3* @ [h, h]* and
3™ is the set of elements in h* vanishing on the semi-simple part of . We
write € = h @ [3, €], so we embed h* in €* as a H-invariant subspace, that is
we consider an element £ € h* also as an element of £* vanishing on [3, £].
Let 3§ be the set of £ € 3*, such that € = h. We see then that the Dixmier
sheet Ez‘h) is equal to K - 3§.

3.1 Admissible coadjoint orbits

We first define the p-orbit. Let T be a Cartan subgroup of K. Then t* is
imbedded in £* as the subspace of T-invariant elements. Choose a system
of positive roots AT < t*, and let p = %Za>0 a. The definition of p¥
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requires the choice of a Cartan subgroup 7" and of a positive root system.
However a different choice leads to a conjugate element. Thus we can make
the following definition.

Definition 3.1 We denote by o(t) the coadjoint orbit of p* € €. We call
o(¥) the p-orbit.

If K is abelian, then o(¥) is {0}.

The notion of admissible coadjoint orbit is defined in [9] for any real
Lie group G. When K is a compact connected Lie group, we adopt the
following equivalent definition: a coadjoint orbit O < ¢* is admissible if O
carries a K-equivariant Spin®-bundle Sp, such that the associated moment
map is the injection O — €*. If K¢ is an admissible orbit, we also say that
the element ¢ is admissible. An admissible coadjoint orbit O is oriented
by its symplectic structure, and we denote by QF™(0) := Qk(0,So) the
corresponding equivariant spin® index.

We have (&, [€¢,€¢]) = 0. The quotient space q = €/ is equipped with
the symplectic form Q¢ (X,Y) := (£, [X,Y]), and with a unique K¢-invariant
complex structure J¢ such that Q¢(—, Je—) is a scalar product. We denote
by q¢ the complex K¢-module (€/€c, J).

Any element X € ¥ defines a complex linear map ad(X) : q° — g°.

Definition 3.2 For any £ € €, we denote p(§) € EZ‘ the element defined by

1
<p(f),X>= ﬂﬁqéad(X), XEE&.

We extend p(§) to an element of €, that we still denote by p(§).

If 10 : & — iR is the differential of a character of K¢, we denote by
Cy the corresponding 1-dimensional representation of K¢, and by [Cy| =
K %k, Cy the corresponding line bundle over the coadjoint orbit K¢ — £*.
The condition that K¢ is admissible means that there exists a Spin®-bundle
S on K¢ such that det(S) = [Cy¢] (2i€ needs to be the differential of a
character of Kg).

Lemma 3.3 o (p(&), ke, te]) = 0.

e The coadjoint orbit K& is admissible if and only if i(§ — p(§)) is the
differential of a 1-dimensional representation of K.
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Proof. Consider the character k — detge(k) of K¢. Its differential is

2ip(§). Thus (p(£), [t te]) = 0.

We can equip K¢ ~ K /K¢ with the Spin“bundle S¢ := K xg, A ¢
with determinant line bundle det(S¢) = [Cy¢)]. Any other K-equivariant
Spin®-bundle on K¢ is of the form S¢ ® [Cy] where if is the differential of
a character of K¢. Then det(S¢ ® [Cy]) = [Co¢] if and only if & — p(§) = 6.
The lemma then follows.

In particular the orbit o(f) is admissible. Indeed if £ = p&, then & —
p(&) = 0.

An admissible coadjoint orbit O = K¢ is then equipped with the Spin®-
bundle

(3.12) S5 =K % (/\ 0¥ ®Cepe))

Its Spin® equivariant index is

(3.13) QE"(0) = dff, (AN ®Ce o))

See [32].
The following proposition is well known (see [33]).

Proposition 3.4 e The map O — 7o := igin((’)) defines a bijection

~

between the set of reqular admissible orbits and K.

. Qi?in(o(ﬁ)) is the trivial representation of K.

We now describe the representation Q?;in(P) attached to any admissible
orbit P in terms of regular admissible orbits.

Definition 3.5 To any coadjoint orbit P < €*, we associate the coadjoint
orbit s(P) < € which is defined as follows : if P = Ku, take s(P) = K¢
with £ € p+ o(€,). We call s(P) the shift of the orbit P.

If P is regular, s(P) = P. If P = {0}, then s(P) = o(¥).

The following proposition summarises the results concerning the quan-
tization of admissible orbits.

Proposition 3.6 ([33]) Let P be an admissible orbit.

o P*:= —P is also admissible and Qi?in(P*) = Sjgin(P)*.
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o If s(P) is regular, then s(P) is also admissible.

o Conversely, if O is reqular and admissible, and P is such that s(P) =
O, then P is admissible.

o — Ifs(P) is not reqular, then Q?(’in(P) =0.
— If s(P) is regular, then Q?{’in(P) = ?(’in(s(p)) = Ty(p)-

It is important to understand what are the admissible orbits P such that
s(P) is equal to a fixed regular admissible orbit O.

Definition 3.7 e For a conjugacy class (h) € He, we denote by A((h)) the
set of admissible orbits belonging to the Dizmier sheet EZ"h).

o If P,O c ¢* are K-orbits, P is called a (h)-ancestor of O if P < Ez‘h)
and s(P) = O.

We make the choice of a connected Lie subgroup H with Lie algebra b
and write h = 3 @ [h,h]. We denote by 3; the set of elements £ € 3* such
that K¢ = H. The orbit o(h) (the p-orbit for H) is contained in [b, h]*. The
orbit P is a (h)-ancestor to O, if and only if there exists p € 33 such that
P = Kp and pf € o(h) such that O = K(pu + pf). If O is admissible then
P is admissible (see [33]).

Given a regular admissible orbit O, there might be several (h)-ancestors
to O. There might also be several classes of conjugacy (h) such that O
admits a (h)-ancestor P. For example, let O = o(€). Then, for any h € Hs,
the orbit K (p® — pf) is a (h)-ancestor to O. Here we have chosen a Cartan
subgroup T contained in H, H = K¢ and a positive root system such that
¢ is dominant to define p¥ and p*.

Example 3.8 Consider the group K = SU(3) and let (h) be the centralizer
class of a subregular element f € € with centralizer H = S(U(2) x U(1)).

We consider the Cartan subalgebra of diagonal matrices and choose a
Weyl chamber. Let wi,ws be the two fundamental weights. Let 01,09 be the
half lines R-gw1, Rogwa. The set A((h)) is equal to the collection of orbits
K- (H2w),n € Z (see Figure 4).

As —w is conjugated to we, we see that the set A((h)) is equal to the
collection of orbits K - (%wi),n € Z=p,1 = 1,2. Here we have chosen the
representatives in the chosen closed Weyl chamber.

One has s(K - (222w;)) = K(p¥ + (n—1)w;). Thus the shifted orbit is a
reqular orbit if and only if n > 0. For n =1, both admissible orbits K - %wl
and K - (S2w1) = K - 3wy are (h)-ancestors to the orbit Kp™ = o(t).
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Figure 4: H-admissible orbits

Both admissible orbits P1 = K - %wl and Py = K - %wg are such that
®(P) =0
In Figure 5, we draw the link between H-admissible orbits and their
respective shifts.

Figure 5: H-admissible orbits and their shifts

3.2 Magical inequality

We often will use complex structures and normalized traces on real vector
spaces defined by the following procedure.

Definition 3.9 Let N be a real vector space and b: N — N a linear trans-
formation, such that —b® is diagonalizable with non negative eigenvalues.

Define
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e the diagonalizable transformation |b| of N by |b| = v/—0b2,

o the complex structure J, = b|b|~! on N/ker(b)

o we denote by nTry|b| = STry|b|, that is half of the trace of the action
of |b| in the real vector space N. We call n'Tr|b| the normalized trace of b.

If N has a Hermitian structure invariant by b, Try/|b| is the trace of [b|
considered as a Hermitian matrix. The interest of our notation is that we
do not need complex structures to define nTry|b|.

If N is an Euclidean space and b a skew-symmetric transformation of N,
then —b? is diagonalizable with non negative eigenvalues. By definition of .Jj,
the transformation b of N determines a complex diagonalizable transforma-
tion of N/ ker(b), and the list of its complex eigenvalues is [iaq, . . ., ias] where
the ay are strictly positive real numbers. We have nTry|b| = Zi;l a = 0.

Recall our identification ¢ = ¢* with the help of a scalar product. When
B € t*, denote by b the corresponding element of €. We have defined a
complex structure Jg on €£/€3. On the other hand, b defines an invertible
transformation of €/€g. It can be checked that Jg = J,. If we choose a
Cartan subalgebra containing b, then nTre|b| = > [{c, b)|.

For further use, we include a lemma. Let us consider £c, the complexified
space of . Consider the complex space A fc.

Lemma 3.10 Let be t. Let x € R be an eigenvalue for the action of% n
Atc. Then x = —nTrg|b|

Proof. Indeed, consider a Cartan subalgebra t containing b, the system
of roots A and an order such that (a,b) > 0 for all & > 0. An eigenvalue
x on /\ tc is thus of the form ) _;-x{a,b). Thus we see that the lowest
eigenvalue is — >} - o{(c,b) = —n'Tr|b|.

Assume now that N' — M is a real vector bundle equipped with an
action of a compact Lie group K. For any b € ¢, and any m € M such that
bar(m) = 0, we may consider the linear action £(b)|y;, which is induced by
b on the fibers A,,. It is easy to check that (£(b)|x, )? is diagonalizable with
eigenvalues which are negative or equal to zero. We denote by |L,,(b)| =

NSO

Definition 3.11 We denote by nTry, |b| = 3Tr|L,,(b)| that is half of the
trace of the real endomorphism |Ly,(b)| on Ny,. We call n'Try,, |b| the nor-
malized trace of the action of b on Ny,.
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For any b € ¢ and p € ¢* fixed by b, we may consider the action
ad(b) : £, — €, and the corresponding normalized trace nTre,|ad(b)| de-
noted simply by nTre,[b].

Definition 3.12 A regular element A € € determines a closed positive Weyl
chamber Cy < €. We say that X is very regqular if A € p(A) + Cj.

Notice that regular admissible elements are very regular.
The following “magical inequality”, that is proved in [33], will be a crucial
tool in Section 4.5.

Proposition 3.13 (Magical Inequality) Let b € ¢ and denote by [ the
corresponding element in €. Let A\, i be elements of €* fized by b. Assume
that A is very reqular and that y— X = 5. Then

1
18]* = §nTI'E,L

b.

If the equality holds, then p belongs to the positive Weyl chamber Cy and
1. A=p(\) = u—p(p), hence X is admissible if and only if u is admissible,

2. s(Kp) = KA.

3.3 Slices and induced Spin® bundles

We suppose here that M is a K-manifold and that ® : M — ¢* is a K-
equivariant map. If O is a coadjoint orbit, a neighborhood of ®~1(0) in
M can be identified with an induced manifold, and the restriction of Spin®-
bundles to a neighborhood of ®~!(0) can be identified with an induced
bundle. To this aim, let us recall the notion of slice [23].

Definition 3.14 Let M be a K-manifold and m € M with stabilizer sub-
group Kp,. A submanifold Y < M containing m is a slice at m if Y 1is
K,,-invariant, KY 1is a neighborhood of m, and the map

K xg, Y — M, [k,y] — ky
1 an isomorphism on KY .

Consider the coadjoint action of K on £*. Let us fix u € £* and H := K,. Let
C be the connected of the open subset b := {£ € b* | K¢ © H} containing
p. The map K xg C — KC'is a diffeomorphism. Thus C'is a slice at u for
the coadjoint action.

The following construction was used as a fundamental tool in the sym-
plectic setting [15].
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Proposition 3.15 Let & : M — ¢* be a K-invariant map. Let u € €*, and
let C be the slice at p defined previously.

e Vo =071(C) is a K,-invariant submanifold of M (perhaps empty).
e KC is an open neighborhood of ® (K u) diffeomorphic to K Xr, Vo

The manifold V¢, when is not empty, is called the slice (of M) at p € €*.
Note that Yo can be disconnected.

Proof. Let us consider the K ,-invariant decompositions ¢ = ¢, @ q,
t* =), @ q": we denote { — [{]qx the corresponding projection to q*.

A point £ is in (£)), if and only if the map X — §oad(X) is an
isomorphism from g to q*. Thus for any y € V¢, the linear map II, :=
[—]qx 0 Ty® : TyM — q* is onto. Indeed, the tangent space to Ky projects
onto the tangent space to K®(y), which contains [q, ®(y)] = q*. Thus we
obtain that Y is a submanifold with tangent space ker(Il,) and furthermore
TyM =T, Yc®q-y.

The rest of the assertions follow from the fact that C is a slice at u for
the coadjoint action.

Suppose now that M is oriented and carries a K-equivariant Spin®-
bundle S. Let us explain how this data induces a Spin®-bundle on the
slice V.

Any element £ € b := {¢ € h* | K; © H} determines a complex structure
Je on q := ¢/h which depends only of the connected component C' of hj
containing &: thus we denote by J¢ the corresponding complex structure on
q:= £/h. We denote q¢ the complex H-module (q, Jo), and pc the element
of 3* defined by the relation

(3.14) (e X) = 5 Tread(X), X b,

Consider the H-manifold Yo and the open subset K x g Yo of M. At the
level of tangent spaces we have TM |y, = [q]@TYc. We orient the manifold
Y through the relation o(M) = o(Jc)o(Ye). The restriction of the Spin®-
bundle S to the submanifold Vo allows to define the unique Spin®-bundle
Sy, on V¢ such that

(3.15) S|yc = /\qc®8y0‘

This gives a bijection between the K-equivariant Spin®-bundles on K x g V¢
and the H-equivariant Spin®-bundles on Y¢. If the relation (3.15) holds, we
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say that Sy, is the Spin“-bundle induced by S. Notice that at the level of
determinant line bundles we have

det(s)b)c = det(Syc) ® CQPC'

Let us consider the particular situation where the slice V¢ is a compact
submanifold of M. It is the case when M = K Xy V¢, and in this setting
we have a simple formula that relate the Spin®-indices on M and on the slice

Ve
(3.16) Qi (M, ) = ndfs (\ a® ® Qu(Vo. Sy.))

See [32].

4 Computing the multiplicities

4.1 Transversally elliptic operators

In this subsection, we recall the basic definitions from the theory of transver-
sally elliptic symbols (or operators) defined by Atiyah and Singer in [1]. We
refer to [5, 30] for more details.

Let M be a compact K-manifold with cotangent bundle T*M. Let
p: T*M — M be the projection. If £ is a vector bundle on M, we may
denote still by £ the vector bundle p*€ on the cotangent bundle T*M. If
ET,E™ are K-equivariant complex vector bundles over M, a K-equivariant
morphism o € I'(T*M,hom(E™,E7)) is called a symbol on M. For z € M,
and v € TFM, thus o(z,v) : & — &, is a linear map from & to & .
The subset of all (z,v) € T*M where the map o(z,v) is not invertible is
called the characteristic set of o, and is denoted by Char(c). A symbol
is elliptic if its characteristic set is compact. An elliptic symbol ¢ on M
defines an element [o] in the equivariant K-theory of T*M with compact
support, which is denoted by K(}((T*M ). The index of ¢ is a virtual finite
dimensional representation of K, that we denote by Index) (¢) € R(K).

Recall the notion of transversally elliptic symbol. Let T% M be the fol-
lowing K-invariant closed subset of T* M

TiM = {(x,v)e T*M, (v, X -z)=0 forall X €t}.

Its fiber over a point « € M is formed by all the cotangent vectors v € T, M
which vanish on the tangent space to the orbit of x under K, in the point
x. A symbol o is K-transversally elliptic if the restriction of o to T7 M
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is invertible outside a compact subset of T} M (i.e. Char(o) n T3 M is
compact).
A K-transversally elliptic symbol o defines an element of K9 (T% M),
and the index of ¢ defines an element Index! (¢) of R(K) defined in [1].
We will use the following obvious remark. Let o € I'(T* M, hom(E1,E7))
be a transversally elliptic symbol on M.

Lemma 4.1 Assume an element b € K acts trivially on M, and that £F
are K -equivariant vector bundles on M such that the subbundles [ET]° fized
by b are equal to {0}. Then [Index} (0)]% =0

Proof. The space [Index! (¢)]¥ is constructed as the (virtual) subspace of
invariant C®-sections of the bundle £ which are solutions of a K-invariant
pseudo-differential operator on M with symbol o. But, as the action of b is
trivial on the basis, and [£¥]® = {0}, the space of b-invariant C®-sections
of the bundle £* is reduced to 0.

Any elliptic symbol is K-transversally elliptic, hence we have a restriction
map K% (T*M) — K% (T% M), and a commutative diagram

(4.17) K9 (T*M) — KO (T% M)
Index%l J{Index%
R(K) R(K) .

Using the excision property, one can easily show that the index map
Indexg : K% (T%U) — R(K) is still defined when U is a K-invariant rela-
tively compact open subset of a K-manifold (see [28][section 3.1]).

In the rest of this article, M will be a Riemannian manifold, and we
denote v € T*M — € TM the corresponding identification.

4.2 The Witten deformation

In this section M is an oriented K-manifold of even dimension (not neces-
sarily compact). Let ® : M — £* be a K-equivariant map. Let kg be the
Kirwan vector field associated to ® (see (2.10)). We denote by Zg the set
of zeroes of kg : clearly Zg contains the set of fixed points of the action of
K on M as well as ®1(0)).

Definition 4.2 Let o(M,S)(m,v) = cs,, (D) : S, — S, be the symbol of
the Dirac operator attached to the Spin®-bundle S, and let & : M — €* be
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an equivariant map. The symbol o(M,S, ®) pushed by the vector field kg is
the symbol defined by

o(M,S,®)(m,v) =cs,, (7 — ke(m)): St — S

for any (m,v) e TM.
Similarly of W — M s a K-equivariant vector bundle, we define

0—<Ma5®qu))(may) = U(M,S,@)(T)’L,V)@Idwm.

Note that o(M, S, ®)(m, v) is invertible except if 7 = kg (m). If further-
more (m, ) belongs to the subset T3 M of cotangent vectors orthogonal to
the K-orbits, then v = 0 and ke (m) = 0. Indeed kg (m) is tangent to K -m
while 7 is orthogonal. So we note that (m,v) € Char(c(M, S, ®s)) N T35 M
if and only if v = 0 and ke(m) = 0.

For any K-invariant open subset &4 < M such that U N Zg is compact in
M, we see that the restriction o(M,S, @)y is a transversally elliptic symbol
on U, and so its equivariant index is a well defined element in R(K).

Thus we can define the following localized equivariant indices.

Definition 4.3 o A closed invariant subset Z < Zg is called a compo-
nent if it is a union of connected components of Zg.

o If Z c Zg is a compact component, and W is a K -equivariant vector
bundle over M, we denote by

Qk(M,S@W, Z,®) € R(K)

the equivariant index of o(M,S @ W, ®)|yy where U is an invariant
neighborhood of Z so thatU N Zy = Z.

o If we make the Witten deformation with the map ® = ®g, the term
Or(M,SQW, Z,Ps) is denoted simply by Qg (M, SQOW, Z).

By definition, Z = ¢ is a component and Qi (M,S W, &, ®) = 0.

When M is compact it is clear that the classes of the symbols o (M, S, @)
and o(M,S) are equal in K% (T% M), thus we get the first form of the
localization theorem.

Theorem 4.4 Assume that M is compact. If Ze = Z1][...11Zp is a
decomposition into disjoint (compact) components, we have the following
equality in R(K) :

p
Qi (M,8) = >, Qk(M,S, Z;, ®)

i=1
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Remark 4.5 Write ®s(Zs) = | [; O; as a disjoint union of a finite set of
coadjoint orbits. Then we obtain the decomposition

Qk(M,8) = > Qo,
J

with Qo = Ok (M, S, 5 (0) N Zs). As in [28], this decomposition is the
main tool of our study. However, in this work, we will need to introduce a
further refinement of this decomposition.

Example 4.6 We return to our basic example (Example 2.12). Let p, =
[1,0] and p_ = [0, 1] be the fived points of the T-action on M = P(C). The
determinant line bundle of S(n) is Ly, = [C_1] ® L®?"+2 where [C_1] is the
trivial line bundle equipped with the representation t—1 on C. We choose the
moment map ®,, associated to a connection on the determinant bundle (see
more details in Section 6):

|21 1

@n([ZhZQ]) = (n + 1)m — 5

Then, forn >0, Z = {p:} v {p_} v @;1(0), thus ®,(Zs) = {—1} U {0} L
{n+ %} Remark that Zs is smooth: it has 3 connected components, the two
fized points, and ®,1(0) a circle with free action of T. Then we obtain the
associated decomposition Qp(M,S(n)) = Qfé + Qo + Q% with

- _Zozotk, Qo = _ZO]O t*, Qi=- i t*.

k=-—1 k=—0o0 k=n+1

Q_

N

Example 4.7 Take the product N = P}(C) x PY(C), with spin bundle S =
S(0)®S8(0), moment map Py and we consider the diagonal action of T with
moment map ®(my,ma) = ®o(m1) + ®o(mz). As Qr(PH(C),S(0)) is the
trivial representation of T, Qp(N,S) is still the trivial representation of T.
We have ®(Zs) = {—1} u {0} U {1}. In this case ®~1(£1) = {(p+, p+)},
and ®~1(0) is not smooth.
Consider the associated decomposition of Qr(N,S) = Q-1 + Qo + Q1.
We have
—2 —0 o0
Q1= D, (k=1 Qo= >, (kl-Dt*, Q@ = > (k-1
k=2

k=— k=—00

We see that indeed Q_1 + Qo + Q1 = t°. Figure 6 shows the corresponding
multiplicity functions.
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L/jﬁ

Figure 6: The graph of Q_1 + 1 and the graph of Qg

4.3 Some properties of the localized index

In this subsection, we recall the properties of the localized index Qx (M, S, Z, @)
that we will use in this article.

4.3.1 Fixed point submanifolds and Spin®~-bundles

Let S be a K-equivariant Spin®-bundle over the tangent bundle TM of a K-
manifold M (equipped with an invariant Riemannian metric). The manifold
M is oriented and the Clifford bundle S is equipped with its canonical Z/27Z-
grading. Let b € £ be a non-zero K-invariant element, and consider the
submanifold M? where the vector field by; vanishes. We have an orthogonal
decomposition
TM|yp =N @ TM.
The normal bundle N inherits a fibrewise linear endomorphism L£(b)

which is anti-symmetric relatively to the metric.

Definition 4.8 e We denote by N, the vector bundle N over M® equipped
with the complex structure Jy, :== L(b)|L(b)] ™.

o We take on N the orientation o(N') induced by the complex structure
—Jy. On M we take the orientation o(MP) defined by o(N)o(M?) = o(M).

Note that the endomorphism L(b) : N}, — N}, is C-linear, diagonalizable,
with eigenvalues iH}(, ...,i0% that depends of the connected component X
of M®. For further use, we note the following positivity result which follows
directly from the definition of Jp.

Lemma 4.9 The eigenvalues of the action of %E(b) on Ny are positive.

If we consider the complex line bundle det(N;) — M?, we see that +.£(b)
acts on the fibers of det(N,)|x by multiplication by the positive number

p
nTry; |, b] = Z 0.
j=1
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Proposition 4.10 Let det(S) be the determinant line bundle of the spin®
bundle S. There exists an equivariant Spin®-bundle dy(S) on the tangent
bundle TM? with determinant line bundle equal to

(4.18) det(dy(S)) := det(S)|yp ® det(N5).

Proof. The restriction S|z is a Spin®-bundle over the tangent bundle
TM|yp = N@®TMP. We denote A, the vector bundle N with the complex
structure —J,. Let /\J\Tb be the spinor bundle on N with its canonical
grading : since o(N) = o(—J,) we have (AN,)E = AT N,

Since AN, is a graded Spin“-bundle over N, we know that there exists
an equivariant Spin® bundle d(S) over the tangent bundle TM? (with its
canonical grading) such that

(4.19) Sl = \No @ dy(S).

is an isomorphism of graded Clifford modules. At the level of determinant
line bundle, we get det(S)|y» = det(Ny) @ det(dy(S)). The identity (4.18)
then follows.

Consider the linear action £(b)|s, of b on the fibers of the Spin°-bundle
Sy — MP.

Lemma 4.11 We have L£(b)|q,(s) = alds, where
1
a(m) = (Pg(m),b) + §nTrTmM|b|

is a locally constant function on MP.

Proof. Thanks to Remark 2.8, we know that a(m) is equal to (®y(m),b)
where ®; is a moment map attached to the line bundle det(d;(S)). Thanks
to (4.18) we see that (®y(m), by = (Ps(m),b) + +Trp; |b]. But nTrra|b| =
Try;, |b| as well as and (®5(m),b) are locally constant on M?.

The localization formula of Atiyah-Segal can be expressed in the follow-
ing way (see [32]):

Theorem 4.12 Let b € € be a non-zero K-invariant element and assume
that M is compact. For any complex K -vector bundle VW — M, we have the
following equalities in R(K) :

Qx(M,S®W) = Ok (Mb, dp(S) @ W, ® Sym(j\fb)) .

Here Sym(N,) is the symmetric algebra of the complex vector bundle Nj.
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4.3.2 The localization formula over a coadjoint orbit

Let ® : M — £* be an equivariant map. Let 5 € £*. We also consider 3 as an
element of ¢ that we denote by the same symbol. In this section we assume
that Zg = K(MP n®~1(3)) is a compact component of Z¢ = M. The study
of Q(M,SQ@W,Zs, @) € R(K) is thus localized in a neighborhood of
®~1(Kp), an induced manifold. Let us recall the corresponding induction
formula.

The restriction of ® to M”? is a K g-equivariant map taking value in EZ.

The subset Z’ﬁ = MPn®~1(B) is a compact component of Z(I)‘MB = ZonMP.
We may then define the localized index

QKﬁ(MB? d,B(S) ® W’Mﬁv Zév <I)‘Mﬁ) € R(Kﬂ)

where dg(S) is the graded Spin“-bundle on M? defined in Proposition 4.10.

We consider the normal bundle N’ — M? of M? in M. Recall that N, 8
denotes the vector bundle N equipped with the complex Jg. The following
formula is proved in [28, 32]:

QK(Ma‘S@WvZﬁaq))
— ndf, (Que, (M7, ds(S) ® Wlas @ Sym(Ns), Zj, Blags) ® /\(¥/ts)c)
Remark 4.13 When K is abelian, this gives

Qr (M, SQW,d1(3) n M”,®)
= Qx(MP,ds(S) @ W] ys ® Sym(Ng), @ 1(B) n MP, ®|y6)

which shows that the Atiyah-Segal localization formula (4.12) still holds for
the Witten deformation.

Thus we obtain the following proposition.

Proposition 4.14 Let S be a K -equivariant Spin®-bundle over M, with its
canonical grading. Let ® : M — €* be an equivariant map. Let W — M be
an equivariant complex vector bundle. Assume that Zg = K(MP n ®~1(B))
s a compact component of Zg < M. Then

[Qx(M,S@W, Zs, ®)|¥ =

(1.20) [ @i, (M7 d3(8) @ Wlass @ Sym(Ni). Z, ¥lpe) © At/ts)c ]|
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This proposition will be used to obtain vanishing results, by studying the
infinitesimal action of 8 on the vector bundle dg(S) ® W|ys ® Sym(Ng).

The formula (4.20) can be specialized to each connected component of
MP. For a connected component X < MP# intersecting ®~1(3), we define
the compact subset

Z5(X) = K (X 0 @7'(B)) < Zp.

First we note that Qg (M,SQW, Zg, ®) is equal to the sum ), Qg (M,S®
W, Zg(X), @) parameterized by the connected component of M # intersecting
®~1(B) (their are finite in number).

We have a localization formula for each term Qx(M,S®@W, Z3(X), ®)
separately (see [28, 32]) :

[QK (M, 8 @W, Z5(X), )] =
(4.21{QKﬁ(X, ds(S)|x ® Wlx ® Sym(Np)|x, Z5(X), |x) ® /\(E/Eﬂ)C]Kﬂ

where Z5(X) = X' n o1(B) = Z.

4.3.3 Induction formula

For the Witten deformation, we proved in [32] the following variation on the
invariance of the index under direct images.

Let H be a closed subgroup of K, and consider a H-invariant decompo-
sition

tE=bdDqg.

Let By be an open ball in g, centered at 0 and H-invariant. Let N’ be a
H-manifold, and consider N = K x g (Bq x N'). Then N’ is a submanifold
of M, and the normal bundle of N’ in N is isomorphic to the trivial bundle
with fiber @ q. Let Sy be the Spin® module for @ q (we can take A qc as
realization of S;). Thus if £ is a K-equivariant graded Clifford bundle on
N, there exists a H-equivariant graded Clifford bundle £ on N’ such that

Eln = 5, @&

Let ® : N’ — b* be a H-equivariant map, and let ® : N — £* be a
K-equivariant map. We assume that these maps are linked by the following
relations :

P[y =P,
(4.22) P([1; X,n']) e b* <= X =0,
(@([1; X, n']), X) =0,
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for (X,n’) € By x N'.
Under these conditions, we see that the critical sets Zg < N and Zg <
N’ are related by : Zg = K xp ({0} x Zg).

Proposition 4.15 ([32]) Let Z be a compact component of Zg and Z' its
intersection with N'. Then Z' is a compact component of Zg and

Ok (N,&,Z,@) = Indfy (Qu(N', €', 2", 9')) .

This leads to the relation [Qx (N, &, Z, )% = [Qu(N', &', 2/, )]

4.4 The function ds

Let M be a compact oriented even dimensional K-manifold, equipped with
a K-equivariant Spin® bundle S. Let ®s be the associated moment map on
M, and kg be the Kirwan vector field. Let Zs be the vanishing set of kg :

Zs ={me M | ds(m)-m =0} = JM’ n 25(6).
0

We now introduce a function ds : Zs — R which will localize our study of
[QK (M, S, Zs)]* to special components Z of Zs.

Define ds : Zs — R by the following relation
1
(4.23)  ds(m) = |0]* + 50 Trr, ar[0] = 0Treld],  with 0 = Ds(m).

Lemma 4.16 e The function dg is a K-invariant locally constant func-
tion on Zs that takes a finite number of values.

o The subsets ZZ° = {ds > 0}, Z5° = {ds = 0}, Z5" = {ds < 0} are
components of Zs.

Proof. The K-invariance of dg is immediate.

The image ®s(Zs) is equal to a finite union Uj O; of coadjoint orbits.
For each coadjoint orbit O = K3, the set Zs n ®5*(0) is equal to a finite
disjoint union (J; K (X In®5'(B)) where (X7) are the connected components
of M¥ intersecting ®5'(8). Since m — nTrr,, r|0] is well defined and locally
constant on MY, the map ds is constant on each component K (X7 n®5'(3)).
This proves that dg is locally constant function that takes a finite number
of values.

The second point is a direct consequence of the first.

We now prove the following fundamental fact.
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Proposition 4.17 Let ZEO be the component of Zs where ds takes strictly
positive values. We have [QK(M,S, ZEO)]K =0.

Since QK(M, 8) = QK(M,S,ZEO) + QK(M,S,Z§O) + QK(M,S, ZEO)
by Theorem 4.4, note first the following immediate corollary.

Corollary 4.18 If ds takes non negative values on Zs, we have

[Qk (M, 8" = [Qk (M, S, Z5")]".

We now prove Proposition 4.17.

Proof. Consider a coadjoint orbit K contained in ®g(Zs). Let X
be the connected component of M” and let Zy(X) = X n ®~1(B). Let
Zp(X) = KZp(X). Let us show that [Qx(M,S, Zs(X))]* = 0 if ds is
strictly positive on Zg(X).

As [Qk (M, S, Zg(X))]K is equal to

(124) [, (¥, ds(8) | ® SymW)l, Z5(X), Bsl) © At/ts)c]

by the localization formula (4.21), it is sufficient to prove that the infinitesi-
mal action £(3) on the fibers of the vector bundles dg(S)|x ®Sym’ (N3)|x®
/\(¢/€s)c have only strictly positive eigenvalues. We establish this by mi-
norizing the possible eigenvalues : they are sums of eigenvalues on each
factor of the tensor product.

We have

1 \WHQ"'%UTTTM\XW on dg(S)|x,
L) - =0 on Sym? (N
= —nTre\B| on /\(E/EB)C-

In the first equality, we have used Lemma 4.11: the function m —
(®s(m),B) is constant on X, and as X contains a point projecting on f3,
LB ags)e = (BI? + 30Trny, [B]) Idagys)x-

In the second inequality, we used Lemma 4.9, so that the action of %E(,B )
on the graded piece Sym’(Np) is strictly positive for j > 0 or equal to 0 for
j=0.

In the last inequality, we have used Lemma 3.10.

If ds takes a strictly positive value on Zg(X'), we see that 1L(8) >0 on
ds(S)|x ® Sym? (N3)|x ® A(8/8s)c : this forces (4.24) to be equal to zero.

37



4.5 The Witten deformation on the product M x O*

In this section, M is a compact oriented even dimensional K-manifold,
equipped with a K-equivariant Spin® bundle S§. Let ®s be the associated
moment map on M. Our aim is to compute geometrically the multiplicities
of the equivariant index Qg (M, S).

4.5.1 Vanishing theorems

Let Hg be the set of conjugacy classes of the reductive algebras £, & € €.
We denote by Sg the set of conjugacy classes of the semi-simple parts [b, h]
of the elements () € Hs.

Recall that an orbit P is a (h)-ancestor of O if P belongs to the Dixmier
sheet &) and s(P) = O. Here s(P) is defined as follows : if P = Ky with

£, = b, then s(P) = K( + o(h)) (see Definition 3.5).

spin

Recall that the map O — 7o = Q5 (O) is a bijection between the
regular admissible orbits and K. IfOisa regular admissible orbit, then
O* := —QO is also admissible and wp* = (mp)*. If we apply the shifting
trick, we see that the multiplicity of 7o in Qi (M,S) is equal to

mo = [Qx(M,S)® (m0)*]"
(4.25) = [Qk(M x O*, 8@ So+)]" .

Let (€ps) be the generic infinitesimal stabilizer of the K-action on M. In
this section, we prove the following vanishing results.

Theorem 4.19 o If ([£r, Err]) # ([B, b]) for any (b) € He, then
Qk(M,S8) =0
for any K -equivariant Spin-bundle S on M.
o Assume that ([tar,er]) = ([0, b]) for (b) € He. Then
me = 0
if there is no (h)-ancestor P to O contained in ®s(M).

We consider the product M x O* equipped with the Spin®-bundle S&SoHx .
The corresponding moment map is ®Psgs, . (m,§) = ®s(m) + & We use
the simplified notation ®» for PsRS,xr KO for the corresponding Kirwan
vector field on M x O*, Zp := {ko = 0}, and do for the function dsgs,.
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on Zp. Theorem 4.19 will result from a careful analysis of the function
do : Zo — R that was introduced in Section 4.4. Thanks to Proposition 4.17
and Corollary 4.18, Theorem 4.19 is a direct consequence of the following
theorem.

Theorem 4.20 Let O be a reqular admissible orbit.
o The function dp is non negative on Zo.

o If the function dp is not strictly positive, then there exists a unique
() € He such that the following conditions are satisfied:

2. the orbit O has an (h)-ancestor P contained in ®s(M).

Proof. Let P = M x O* and let us compute the function dp on Zp.
Let m € M and A € O. The point p = (m,—\) € Zp < P if and only
Dp(p)-p=0. Let § = ®p(p). This means that [ stabilizes m and A\, and
if u=®s(m) € t*, then = p— A

We write T, _y)P = T, M @ T_\O* and, since O* is a regular orbit,
we have nTrr_, o«|8| = nTr¢|S|.

We consider a K,,-invariant decomposition T,,M = ¢-m @ F,, where
t-m ~ £/t,,, we obtain nTrr, r/|3] = nTrg, |5|+nTre|3|—nTre,, |3|. Thus,

1
do(p) = [B]° + o Trr, , plA| — nTrelf]

1 1
= [B8]* + §anTmM\5| - 51’1’1‘1‘3‘5‘

1 1
18]% + §nﬂEm‘6| - §HTI‘EmW

1 1
|81 + 5nTrp,, |6 — S nTre, |6].

(4.26) 5 5

A\

In the last inequality, we used &, < £, as u = ®s(m). By Proposition
3.13, ||B]? — inTre,|8] = 0 when 8 = p — A, as A is very regular (being
regular and admissible), and /3 € €, n €5. Then the first point follows.

Assume now that there exists a point p = (m,—\) € Zp such that
do(p) = 0. It implies then that |3]? = %nTrgM|ﬁ| and nTrg, || = 0. The
first equality implies, thanks to Proposition 3.13, that Ky is an admissible
orbit such that s(Kpu) = O. Let us denote H = K, : the relation s(Ku) = O
implies that —3 € o(h) < [h,h]*. We write —3 = pfl. Now we have to
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explain why the condition nTrg, [p"| = 0 implies ([€rr,€r]) = ([h,b]).
Since ®s(m) = p, we have

(4.27) (tar) < (Em) < ().

Consider Y = @gl (U,,) the H-invariant slice constructed in Proposition 3.15.
The product KY is an invariant neighborhood of m isomorphic to K xgz Y.
The subspace E,, can be taken as the subspace T,,Y < T,,M. Now the
condition nTrg,, [p*| = 0 implies that pf acts trivially on the connected
component Yy, of Y containing m. Elements X € [h, h] such that Xy, =0
form an ideal in [, h]. Since the ideal generated by p'! in [b, b] is equal to
[b, b], we have proved that [h, h] acts trivially on Y;,. Since K'Y, is an open
subset of M, we get

(4.28) ([0, b]) < (ear).

With (4.27) and (4.28) we get ([€ar,as]) = ([, b]). Finally we have proven
that if dp vanishes at some point p, then ([¢rr,€rr]) = ([h,b]) for some
(h) € He, and there exists an admissible orbit Ku < E’("h) N ®s(M) such that
s(Kp) = 0.

4.5.2 (Geometric properties

We summarize here some of the geometric properties enjoyed by (M, & =
®s), when Qg (M,S) is not zero.

Let (h) € He. We choose a representative . Let H the corresponding
group and Ng(H) the normalizer of H in K. Consider the decomposition
h = [b,H] @3 where 3 is the center of h. Thus 3* < h*. Consider the open
set

ho = {€b™ |t = b}

of h*. Let 35 = b n 3" be the corresponding open subset of 3;.
We first note the following basic proposition.

Proposition 4.21 Let M be a K-manifold such that ([€rr,€rr]) = ([H, H])
and let ® : M — €* be an equivariant map. Then

o O(M) c Kj3*.
o Assume Y := ®~1(b%) non empty, then

a) Y is a submanifold of M invariant by the action of Ni(H), and
[H, H] acts trivially on Y.
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b) The image ®(Y) is contained in 3§.
c¢) The open subset K is diffeomorphic to K Xy, (i) V-

Proof. Let us prove the first item. Using our K-invariant inner product,
we consider ¢ as a map ¢ : M — £. The condition on the infinitesimal
stabilizer (£7) gives that M = KMUH 1f m e MULH] the term ®(m)
belongs to the Lie algebra g of the centralizer subgroup G := Zg([H, H]).
But one can easily prove that 3 is a Cartan subalgebra of g: hence ®(m) is
conjugated to an element of 3. This proves the first item.

If Y is non empty, the proof that it is a submanifold follows the same
line than the proof of Proposition 3.15. The set K) is a non empty open
set in M : so on Y we have (£y/) = (¢,) on a dense open subset )’. The
condition ([txr,€rs]) = ([b,b]) implies that dim[b,h] = dim[¢,,€,] on V',
but since €, < £3(,) < b, we conclude that [h, h] = [€,,€,] = € on ) : in
other words [H, H] acts trivially on Y, and [h, ] = [€,,€,] for any y € V.
Furthermore, if £ = ®(y), then [h, b] acts trivially on £. So £ is in the center
of b.

Let us prove that 7 : K x .y Y — KY is one to one. If y1 = kyz, we
have & = k& with &§ = ®(y;). As ®(Y) < 3§, the stabilizers of &, &, are
both equal to H. It follows that k£ belongs to the normalizer of H.

The following theorem results directly from Theorem 4.20 and Lemma
4.21. Indeed, in the case where Qi (M,S) # {0}, then ([¢r7, rs]) = ([h, b])
for some (h) € He. Furthermore, there exists at least a regular admissible
orbit O such that me is non zero, and consequently there exists orbit P

er N @s(M).

Theorem 4.22 Let M be a K-manifold and let S be an equivariant Spin®-
bundle on M with moment map ®g. Assume Qi (M,S) # {0}. Then

(1) There exists (h) € He such that ([Ear, ar]) = ([b, b]).

(2) If 3 is the center of b, then ®s(M) < K3* and the open set q)gl(K;,E‘j)
18 mon empty.

(3) The group [H, H]| acts trivially on the submanifold Y = ®5*(3%).
This condition (1) on the K-action is always satisfied in the Hamiltonian

setting [23], but not always in the spin setting as can be seen in the following
example.
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Example 4.23 For n > 3, the sphere S™ admits a unique spin structure,
equivariant under the action of the group K := Spin(n + 1). The generic
stabilizer for the K-action is isomorphic to the group K := Spin(n) and
we see that (8rr) = ([€ar, €ar]) is not equal to ([b, b)), for any (h) € He.

In the next sections, we will restrict the submanifold )’ to a connected
component C' of hi. We work with the H-invariant submanifold Vo :=
<I>§1(C) < Y : here the open subset K)¢ is diffeomorphic to K x gy Ve

We follow the notations of Section 3.3. We denote q€ the vector space
t/h equipped with the complex structure Jo. There exists a unique H-
equivariant Spin“-bundle Sy, on V¢ such that

(4.29) Slye = \ 17 ® Sy,

At the level of determinant line bundles we have det(Sy,.) = det(S)|y, ®
C_2y., and the corresponding moment map satisfy the relation ®y, =

ds |yc —pcC-

We know already that the subgroup [H, H] acts trivially on the subman-
ifold Vo (see Theorem 4.22). It acts also trivially on the bundle Sy, since
the moment map @y, takes value in 3* (see Remark 2.8).

4.5.3 Localization on Zgo

Let O be a regular admissible orbit. By Theorem 4.20 and Corollary 4.18,
we know that our object of study

mo = [Qx(M x 0%, S ® Sp«)|™

is equal to [QK(M x O*, 8§ ® Sox, Z5°, @@)]K.

Let us give a description of the subset Zgo of Zo < M x O* where
do vanishes. We denote by ¢ : M x O* — £* @ £* the map given by
q(m, &) = (Ps(m), —£). If u belongs to a coadjoint orbit P, and & € u+o(t,),
then P is an ancestor to the orbit O of &.

Definition 4.24 Let P be a coadjoint orbit.

e Define the following subset of £* @ £*:
R(P) = {(1,€)in e P;E € p+o(ty)}.
e Define Zl, = ¢ H(R(P)) € M x O*.
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Proposition 4.25 Assume M is a K-manifold with ([€rr,€0]) = ([H,b]).
Let S be a K-equivariant Spin®-bundle over M with moment map ®s. Let
O be a reqular admissible coadjoint. Then

75’ =| | Z5
P

where the disjoint union is over the set of (h)-ancestors to O. Furthermore,
for P a (h)-ancestor to O, the set Z} is equal to (®5'(P) x O*) n Z5°.

Proof. In the proof of Proposition 4.20, we have seen that, if do(m, —\) =
0, then the element © = ®s(m) is such that (¢,) = (h) and X\ = § + p with
Be€o(t,). So Kpisa (h) ancestor of O and g(m, —X) € | |p Z}. This proves
the first assertion.

Conversely take now (m,—¢) € Z} , define u = ®s(m). So Ky is a
(h) ancestor of O and £ = 4+ B with 3 € o(¢,). By K-invariance, we may
assume f € 35, so m € Y. We have T,,M = ¢/t,, ®T,,Y. So

1 1
do(m, ~€) = |8 ~ JnTry, 5] + JnTex,,y5).

As B € o(h) < [h,h] acts trivially on ) by Lemma 4.21, we have
do(m,—€) = [p"|> — 3nTre, |p"|. But since [h,h] < &, = b, and then
LTy, o] = SnTeglo?| = [p#]2 : fimally do(m, —£) - 0.

At this stage we have proved that

(4.30) mo = Y, mp
P

where the sum runs over the (h)-ancestor of O and

K
mg [QK(MX O*,S®5@*,Zg,(1)@)]
In the next section we will go into the computation of the terms mg We
finish this section with the following important fact.

Proposition 4.26 Fach individual term mg is independent of the choice

of the moment map Pgs.

Proof. Let ®%,¢ € [0,1] be a family of moment maps for S. This gives a
family ®%,(m, &) := ®%(m) + & for S ® Spx.

Let k%, be the Kirwan vector field associated to ®f,, and let Zp(t) :=
{rl, = 0}. We denote simply by o' the symbol o(M x O* 8§ ® Spx, DL,).
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For any ¢ € [0,1], we consider the quantity Q5 (t) € R(K) which is the
equivariant index of o'|y,, where Uy is a (small) neighborhood of

Z5(t) < Zo(t)

such that Uy n Zo(t) = Z5(t).

Let us prove that the multiplicity m(¢) = [Q%(¢)]¥ is independent of
t. It is sufficient to prove that ¢t — [QF()]¥ is locally constant : let us
show that it is constant in a neighborhood of 0. We follow the same line of
proof that the proof of the independence of the connection of the local piece
QK(M,S,851(0) n Zs) of Qx(M,S) in [32].

Let Uy be a neighborhood of Z5(0) such that

(4.31) Uy N Zo(0) = 25(0).

The vector field n% does not vanish on dUj : there exist € > 0 so that /@%
does not vanish on dUy for t € [0,¢]. The family o'|y,, t € [0,¢€] is then
an homotopy of transversally elliptic symbols : hence they have the same
equivariant index.

Lemma 4.27 For small t we have
Uo n Z5°(t) = Z5(t).

Indeed, by Proposition 4.25, Zgo(t) projects by the first projection ®% :
M x O* - M — ¢* to a finite union of coadjoint orbits (the (h)-ancestors
to O) and Zp(0) projects on P. So, for ¢ small, Uy n Z5"(t) is the subset
Z5(t) of Z5°(t) projecting on P.

So, for small ¢, we have the decomposition Uy n Zp(t) = Zg(t) U Z,
where Z; is a component contained in Z3%(¢). Finally, for small ¢, we have

Q6(0)

Indexy (O’O o)

Indexy (O't )
= QL(t) + Qx (M x O*, S @ Sp, Z;, D).

Since [Qx (M x O*,8 ® Sox*, Z;, ®%,)]% = 0 by Proposition 4.17 the proof
of Proposition 4.26 is completed.

4.5.4 Computation of mg

In this section we compute

mf = [Qx (M x 0%, S ® Sox, 25, 00)] "
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Let C be a connected component of b that intersects the orbit P. With
the help of Proposition 4.15, we will reduce the computation of mg to a
similar computation where the group K acting on M is replaced with the
torus Ay = H/[H, H] acting on the slice V¢

Let ue PnC: ¢, = bhand p — p(p) defines a character of H. Then
75 is equal to K(®5'(u) x (—p + o(h)*). Here o(h) is the p orbit for H, so
o(h) = o(h)* and Q™ (0(h)*) is the trivial representation of H.

Let Vo = <I>§1(C) be the slice relative to the connected component C'
(see Section 4.5.2). Thus KY¢ is an open neighborhood of ®5'(P) in M
diffeomorphic with K x g Yo. We see that

Zh < (K xg Vo) x Of ~ K xy (Vo x OF).
We consider the H-manifold N’ := Yo x o(h)* and the K-manifold
N =K xp (Bgx N') =K xy (Bg x Yo x o(h)*),

where By is a small open ball in ¢, centered at 0 and H-invariant.

When By is small enough, the map (X, &) — exp(X)(—p+¢§), from By x
o(h)* into O*, defines a diffeomorphism into a H-invariant neighborhood of
the H-orbit —u + o(h)* in O*. Hence a K-invariant neighborhood of Z} in
M x O* is diffeomorphic to IN. Under this isomorphism, the equivariant map
Pp = s+ ip+ defines a map ® on N. For ke K, X € B,y € Yc,§ € o(h)*,
we have

O([k; X, y,&]) := k (Ps(y) + exp(X)(—p + ).
It restricts to N’ as the H-equivariant map ®'(y,&) = ®s(y) — p + £ with
value in h*. Furthermore, if By is small enough, ®([1; X, y,£]) belongs to
h* if and only X = 0. As X € g, we see also that (®([1; X,y,£{]), X) =
(Ds(y), X)+ (exp(X)(—p+£), X) = (@s(y) —pu+€, X) = 0 for all (X, 3,¢) €
By x Yo x o(h)*. Conditions (4.22) are satisfied. Proposition 4.15 tells us
that
mp = [Qu(N', &, 7/, "]

where Z' := @' (1) x o(h)*.

Now we have to explain the nature of the spinor bundle &’ over N/ =
Yo x o(h)*. Let S, be the canonical Spin“-bundle of the orbit o(h)*. Let
Sy, be the Spin®-bundle on V¢ defined by (4.29).

Proposition 4.28 We have 8’ = 83750 XIS, )+ where S;fc =Sy ®C_ 4 o)

is a Spin®-bundle on Yo. The determinant line bundle of 837;0 1s equal to

det(S)]y, ®C_a,, and the corresponding moment map is <I>§C = Dsly, — -
The subgroup [H, H] acts trivially on (:)/c,ngc).
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Proof. Let A be an element of the H-orbit Op := u + o(h). The spinor
bundle Spx on O* = (KA)* induces a spinor bundle S; over OF through
the relation S@*\O;z; ~ AN ®S;.

We can check that S; is the H-spinor bundle on OF = (HA)* ~ o(h)*
equal to

0

H xg, </\ h/ba ®C_,\+p(>\)> (H X H), /\ b/bA) ®C_x1pn)

—Jx —Jy
So(hy* ® Cpirp(n)

0

since A — p(A) = p— p(n) € 5*.

As the spinor bundle S, is equal to the product A q¢ ® A q¢ (see Ex-
ample 2.3), we know then that S' ~ Sy, X S1 =~ Sy, K S+ @ C_ 4 p()-

The relation det(ngC) = det(S)]y, ® C_y, comes from the fact that
det(Syg) = det(S) yip @ C_ap( since pe: = plk)

We consider now the H-manifold Vo equipped with the Spin®-bundle
S;fc. Let

(4.32) Q1 (Yo, S5, {0}) € R(H)

be the equivariant index localized on the compact component {<I>§C =0} =
{®s = u} < Vo. Let Ay be the torus H/[H, H]. Since [H, H] acts trivially
on (yc,sgfc) we may also define the localized index Qa,, (yc,sg,’c, {0}) €

R(Ap).
We can now prove the main result of this section.

Theorem 4.29 The multiplicity mg 1s equal to
Ag

|Qn e, 510" = [ Q9,5 (0]

Proof. Let Z' := ®3*(u) x o(h)*. The character Qu(N',S', 7, ¥') €
R(H) is equal to the equivariant index of o(N",S’, ®)|,; where U < N’ is an
invariant open subset such that U N Zg: = Z'. For (y,£) € N' = Vo x o(h)*
and (v,7) € T(y¢)N’, the endomorphism o (N', Sy, '), ¢)(v, ) is equal to

cr(v+(Ps(y) —p+8) - y) @lds, .| +e1@ca(n+ (Ps(y) —p+¢)-¢).

Here c¢; acts on Sg,jc|y7 cg acts on Syp)yx|¢ and € is the canonical grading
operator on ngc |y-
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Since o(h)* is compact, we can replace the term co(n+ (Ps(y) —p+£)-€)
simply by cao(n). Since [H, H]| acts trivially on V¢, and £ € [, b], the vector
field y — (Ps(y) —pu+&) -y isequal to y — (Ps(y) — ) -y. Thus our symbol
is homotopic to the symbol

ci(v+ (Ps(y) — ) - y) ®Ids, | + €1 ® c2(n).

This last expression is the product symbol of the H-transversally elliptic
symbol ¢ (v + (Ps(y) — ) - y) on Yo and of the elliptic symbol c2(n) on
o(h)*. The equivariant indices multiply under the product (as one is elliptic)

([1],300)-

Now the H-equivariant index of c2(n) acting on Sy(y)+ is the trivial repre-
sentation of H. Thus we obtain our theorem. We have also to remark that

H A
the identity [QH(J)C,SJEC,{O})] = [QAH()/C,SJEC,{O})] " follows from
the fact that [H, H] acts trivially on (Vc, ngc).

5 Multiplicities and reduced spaces

In this section, we interpret the multiplicity as an equivariant index on a
reduced space.

Let O < #* be a regular admissible orbit, and () € H, so that ([h,h]) =
([ar,€ar]). In the previous section, we have proved that the multiplicity of
mo in Qx(M,S) is equal to

mo = Y\ m}
P

where the sum runs over the K-orbits P which are (h)-ancestors of O. Fur-
A
thermore, we have proved that m); = [QAH (JJC,S)?C, {0})] "

The aim of this section is to prove the following theorem.

Theorem 5.1 The multiplicity mg is equal to the spin® index of the (pos-
sibly singular) reduced space Mp := ®5'(P)/K.

However, our first task is to give a meaning to a Q*"(Mp) € Z even if
Mp is singular.

5.1 Spin® index on singular reduced spaces

We consider a connected oriented manifold N, equipped with a Spin“-bundle
S. We assume that a torus G acts on the data (N,S). An invariant
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connection on the determinant line bundle det(S) defines a moment map
®: N — g*. We do not assume that N is compact, but we assume that the
map ® is proper®. Thus, for any £ € g*, the reduced space N¢ := ®~1(¢)/G
is compact.

The purpose of this subsection is to explain how we can define the spin®-
index, Q""(N,,) € Z, for any u in the weight lattice A of the torus G.

Let gn be the generic infinitesimal stabilizer of the G-action on N : the
image of N under the map ® leaves in an affine space I(N) parallel to gﬁ.
If £ € I(N) is a regular value of ® : N — I(N), the reduced space N¢
is a compact orbifold (as proved in [32]). We can define Spin°-bundles on
orbifolds, as well as Spin“indices.

We start with the following basic fact.

Lemma 5.2 For any reqular value § € I(N) of ® : N — I(N), the orbifold
N¢ is oriented and equipped with a family of Spin®-bundles Sg parameterized
by pe AnI(N).

Proof. Let Gy be the subtorus with Lie algebra gy. Let G' = G/Gy.

The dual of the Lie algebra g’ of G’ admits a canonical identification with
1
gn-

We assume that £ is a regular value of ® : N — I(N) : the fiber

7Z = ®71(¢) is a submanifold equipped with a locally free action of G’. Let

N¢ := Z/G' be the corresponding “reduced” space, and let 7 : Z — N¢ be

the projection map. We can define the tangent (orbi)-bundle T'N¢ to Ng.

On Z, we obtain an exact sequence 0 — TZ — TN|z D 7«

(g')* — 0, and an orthogonal decomposition TZ = T Z @ g, where g/,
is the trivial bundle corresponding to the subspace of TZ formed by the
vector fields generated by the infinitesimal action of g’. So TN|; admits the
decomposition TN |z ~ T Z @ g’ @ [(¢')*]. We rewrite this as

(5.33) TN|z ~ T Z @ [gc]

with the convention g/, = Z x (¢ ® iR) and Z x (¢')* = Z x (¢’ ® R). Note
that the bundle T Z is naturally identified with 7*(TN¢).

If we take on g¢ the orientation o(7) given by the complex structure,
there exists a unique orientation o(N¢) on N¢ such that o(IN) = o(Ng)o(4).

Definition 5.3 Let gg be the Spin® bundle on the vector bundle TenZ — Z
such that N
Slz =S¢ @[\ gcl.

3We will use sometimes a slightly different hypothesis : ® is proper as a map from N
to an open subset of g*.
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The Kostant relation shows that for any X € gy, the element eX acts on
the fibers of 5‘5 as a multiplication by e**X” where v is any element of I(N).
Hence, for any p € A n I(N), the action of G on the tensor S¢ ® [C_,,] is
trivial. We can then define a Spin®-bundle Sg on TN¢ by the relation

S®[C_,] =" (sg) .
The proof of the following theorem is given in the next subsection.

Theorem 5.4 For any p € I(N)nA, consider the compact oriented orbifold
Ny 1e associated to a generic* element € € gﬁ. Then the index

Q(Nute i)
1s independent of the choice of a generic and small enough €.

Thanks to the previous Theorem, one defines the spin® index of singular
reduced spaces as follows.

Definition 5.5 If u € A, the number QP™(N,,) is defined by the following
dichotomy

0 if p¢ I(N),
Qspin(N#) _ Q(Nu+678ﬁ+6) if ue I(N) and €€ gJN is generic

and small enough.

The invariant QP"(N,,) € Z vanishes if 4 does not belongs to the relative
interior of ®(N) in the affine space I(N). It is due to the fact that we can
then approach p by elements p + € that are not in the image ®(N).

Let us consider the particular case where p € I(N) n A is a regular value
of ® : N — I(N) such that the reduced space N, is reduced to a point. Let
me € ®1(p), and let T' = G’ be the stabilizer subgroup of m, (I is finite).
In this case (5.33) becomes T,,, N ~ g, and o(N,) is the quotient between
the orientation of NV and those of gi-. At the level of graded Spin“-bundles
we have

Smy = 0(N) /\ 8 ® det(S)[}/2

where det(S) ,1743 is a one dimensional representation of I' such that
(det(S) 71743)@2 = det(S)|m,. In this case Definition 5.5 becomes

. r
(5.34) QP™(N,,) = o(N,) dim [det(S) 2 C_#] e {~1,0,1).
4So that u + € is a regular value of ® : N — I(N).
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5.2 Proof of Theorem 5.4

In this subsection we work with a fixed g € I(N) n A. For any € € g(N)*,

we consider the moment map ®. = ® — u —e.
We start with the fundamental Lemma,

Lemma 5.6 The map € — [Qg(N,S,®.1(0), @) ®C_,]¢ is constant in a
neighborhood of 0.

Proof. Changing S to S ® [C_,], we might as well take 1 = 0.

Let 7 > 0 be smallest non-zero critical value of |®|?, and let U :=
dL({¢ | €]l < r/2}). Using Lemma 2.9, we have U n {ko = 0} = ®~1(0).

We describe now {ke = 0} n U using a parametrization similar to those
introduced in [27][Section 6].

Let g;,7 € I be the finite collection of infinitesimal stabilizers for the
G-action on the compact set U. Let D be the subset of the collection of
subspaces gi- of g* such that ®~(0) n N% # .

Note that D is reduced to I(N) if 0 is regular value of ® : N — I(N).
If A= gil belongs to D, and € € I(N), write the orthogonal decomposition
€ =€en + Ba with ea € A, and Sa € g;. Let

Be ={fn =€¢—en,AeD}
the set of 8 so obtained.

Figure 7: The point ¢ and its projections ea

We denote by Z. the zero set of the vector field k. associated to ..
Thus, if € is sufficiently small (|le| < r/2),

(5.35) ZenU = | NP~ @1 (B).
B€De
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With (5.35) in hands, we see easily that ¢ € [0,1] — o(N,S, s)|y is an
homotopy of transversally elliptic symbols on ¢/. Hence they have the same
index

QcU,S,271(0),®)

QG(U7S7 Z€ N ua (I)e)

>, Qa(N,8,0.1(8) n NP, ®,).
BEeBe

The lemma will be proved if we check that [Qg (N, S, @1 (8)n NP, ®.)]¢ =0
for any non-zero 3 € Be.

If Ba € Beand n € @71 (BA) NP2, ®(n) = Ba+e = en. So{(P(n),Ba) =
{(en, Bay = 0. So the infinitesimal action, £(/3), on the fiber of the vector
bundle §,, is equal to 0.

The Atiyah-Segal localization formula for the Witten deformation (Re-
mark 4.13) gives

Qc(N,S,2.1(B) n NP, @) = Qa(N? ds(S)®@Sym(Vg), @ ' (8), ®)
= D, Qa(X,ds(S)|x @ Sym(Vs)|x, D7 (8), @)

XcNB

where Vg — N # is the normal bundle of N® in N and the sum runs over
the connected components X of N? that intersects ®71(3).

Let us look to the infinitesimal action of 3, denoted L£(/3), on the fibers
of the vector bundle d(S)|x ® Sym(N3)|x-

This action can be checked at a point n € ®-1(8) n N®. As the action
of B on the fiber of the vector bundle S, is equal to 0, we obtain

} _ %TrTN|X(|B|) on dg(S)|x,
lﬁ(ﬁ) B {2 0 on Sym(Npg)|x

So we have checked that 1£(8) > lTrTN‘X (18]) on dg(S)|x@Sym(N3)|x.
Now we remark that § does not acts trivially on NV, since S belongs to
the direction of the subspace I(N) = gy: this forces %TrTN|X(|ﬁ|) to be

strictly positive. Finally we see that %E(ﬁ) > 0 on dg(S)|x ® Sym(N3)|x,
and then

[Qc (X, ds(S)|x ® Sym(Vs)lx, 82 (5), )] = 0.

if 8 # 0. The Lemma 5.6 is proved.
The proof of Theorem 5.4 will be completed with the following
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Lemma 5.7 If p + € is a regular value of ® : N — I(N), the invariant
[QG(N,S,®.1(0), ) ® C_,]¢ is equal to the index O Nute: Siive)-

We assume that p + € is a regular value of ® : N — I(N) : the fiber
Z = ® Y + €) is a submanifold equipped with a locally free action of
G' = G/Gy. Let Nyqc := Z /G’ be the corresponding “reduced” space, and
let m: Z — N, be the projection map. We have the decomposition

(5.36) TN|; ~ 7 (TN,+0) @ [gl].

For any v € A n I(N), S

/+c is a the spinor bundle on Ny, defined by the
relation

Slz®C_, ~ 7" ( u+e /\g(C
The following result is proved in [32].

Proposition 5.8 We have the following equality in R(G)

Q:(N,8,2.10),®) = >, Q(Nute,Siy) Co

veAnI(N)

In particular [Qg(N, S, ®.1(0),®.) ® C_,]% is equal to Q( Nute;Shive)-

53 [Q,R]=0

We come back to the setting of a compact K-manifold M, oriented and of
even dimension, that is equipped with a K-spinor bundle S. Let det(S) its
determinant bundle, and let &5 be the moment map that is attached to an
invariant connection on det(S). We assume that there exists (h) € Hg such
that ([€ar, ar]) = ([b, b]). Let 3 be the center of b.

We consider an admissible element p € 3* such that K, = H : the
coadjoint orbit P := K is admissible and contained in the Dixmier sheet
szh). Let

Mp = o5 (P)/K
In order to define QP™(Mp) € Z we proceed as follows.

We follow here the notations of Section 3.3. Let C be the connected
component of hi = {{ € h* |K¢ < H} containing pu. The slice Yo =
<I>§1(C) is a H-submanifold of M equipped with a H-Spin® bundle Sy, : the
associated moment map is @y, := ®s|y, —pc where pe is defined by (3.14).
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The element fi := u — p(p) = pu — pc belongs to the weight lattice A of
the torus Ay := H/[H, H], and the reduced space Mf,, is equal to

(Vo) == A{Pye = i}/An.

By definition, we take QP (M) := QP™((Vc)a) where the last term
is computed as explained in the previous section. More precisely, let us
decompose Yo into its connected components )Vi,...,Y,.. For each j, let
3; C 3 be the generic infinitesimal stabilizer relative to the Ag-action on Y.
Then we take

QP (M) = QP (M) = 3 Q7 ()
J

where €; € ;)JL are generic and small enough.

With this definition of quantization of reduced spaces Q¥P™(Mp), we
obtain the main theorem of this article, inspired by the [Q, R] = 0 theorem
of Meinrenken-Sjamaar.

Let M be a K-manifold and S be a K-equivariant Spin“~-bundle over M.
Let (h) € He such that ([ar, Ear]) = ([H,b]), and consider the set A((h)) of
admissible orbits contained in the Dixmier sheet Ez‘h)’

Theorem 5.9

(5.37) Qk(M,S) = Y QF(Mp)QE™(P).
PeA((h))

We end this section by giving yet another criterium for the vanishing of
Ok (M7 8) :

Consider the map s : M — ¢*. At each point m € M, the differential
dm®s gives a map T,, M — €*. Let E,ln c £*. From the Kostant relations,
we see that d,,Ps take value in E#.

Proposition 5.10 If Qi (M,S) # 0, then there exists m € M\MX such
that Tmage(d,, ®s) = &

Proof. If we consider the decomposition of the slice Yo = | J Y; in connected
components, for Qg (M,S) # 0, then for some j, ®(Y;) has non empty
interior in 35‘. Here 3; is the infinitesimal stabilizer of the action of H/[H, H |
on Y;. Thus 3; is equal to £,, < b for generic m € Y;. So there exists a point
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m € Y; such that the differential of ®s|y is surjective on ﬁ c b*. Now if
we consider KY; c M, then Image(d,,®s) = b* 6—)3}. This is exactly &%

When the action of K is abelian, we can always reduce ourselves to
an effective action with €y, = {0}. Then the support of decomposition of
Qr(M,S) is contained in the interior of ®5(M) n A. If this set has no
interior point, then Qx(M,S) = 0. This small remark implies the well-
known Atiyah-Hirzebruch vanishing theorem in the spin case [3], as well as
the variant of Hattori [16].

We also note another corollary.

Corollary 5.11 If the two form Qs is exact, and the K-action on M 1is
non-trivial then Qi (M,S) = 0.

It is due to the fact that if Qs = do, by modifying the connection on
det(S) by «, our moment map is constant. So if the action is non trivial,

6 Examples: multiplicities and reduced spaces

In this last section, we give some simple examples in order to illustrate
various features of our result relating multiplicities and reduced spaces.

An open question remains even for a toric manifold M equipped with a
non ample line bundle L. The determinant line bundle of the spinor bundle
S := A\c¢TM ® L is equal to det(S) := detc(TM) ® L& A connection
V on det(S) determines a moment map ®y : M — t* and a curvature
Oy = %Vz. The push-forward of the density (Qv)3™M/2 by &y does not
depends on the choice of the connection: it is a signed measure, denoted
DH(M,S), and we still call it the Duistermaat-Heckmann measure. The
support of DH(M,S) is a union of convex polytopes contained in ®v(M).
Can we find V such that the image ®v (M) is exactly the support of the
Duistermaat-Heckman measure ?

6.1 The reduced space might not be connected

We consider the simplest case of the theory. Let P! := P}(C) be the
projective space of (complex) dimension one. Consider the (ample) line
bundle £ — P!, dual of the tautological bundle. It is obtained as quo-
tient of the trivial line bundle C2\{(0,0)} x C on C?\{(0,0)} by the action
u- (21,22,2) = (uz1,uz9,uz) of C*. We consider the action of T = S! on
L — P! defined by t - [21, 22, 2] = [t~ 121, 22, 2].
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Let S(n) be the Spin®-bundle A TP!®LE". The character Q;?in(M ,S(n))
is equal to HY(P!,O(n)) — H'(P!,O(n)) where O(n) is the sheaf of holo-
morphic sections of £L&". Note that the holomorphic line bundle £&" is not
ample if n < 0. We have

o QP (M S(m) = = Yk, 1" when n < =2,
° Q;Pin(M,S(_l)) =0,
7'M, S(n)) = Ti_ot* when n > 0.

The determinant line bundle of S(n) is L,, = [C_1]®L®?*"2 where [C_1]
is the trivial line bundle equipped with the representation ¢t~! on C.
Remark that P! is homogeneous under U(2), so there exists a unique
U(2)-invariant connection on L,. The corresponding moment map @, is
such that
|21 1

(6.38) Ps(n)([21, 22]) = (n + 1)m 5

The image I, = ®g(,) (M) is

e the interval [—%, n —+ %] when n = 0,

e a point {—3} when n = —1,
e the interval [n + %, —%] when n < —2,

It is in agreement with our theorem. Indeed all characters occurring in
(M, S8(n)) are the integral points in the relative interior of I,,, and all
reduced spaces are points.
If we consider simply the action of T on P!, the choice of connection may
vary. In fact, given any smooth function f on R, we can define a connection
V7 on L, such that the corresponding moment map is

Els ) |21 %] 22 ]2

|2112 + 222 ) (|21]? + |22]2)?

cI)é(n)([Zh 22]) = q)S(n)([zla 2’2]) + f (
Let Q‘];(n) be half the curvature of (Ly, v/ ), then the Duistermaat-Heckman

measure (@g(n))*Qé(n) is independent of the choice of the connection V/
and is equal to the characteristic function of I,,.
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Take for example n = 4 and the function f(z) = 15. the corresponding
moment map is
|21]? |21]? |22 1

D(|z1,22]) =5 + 15 - —.
N P P A (PTCEPAU

2
% varying between 0 and

1. We see that the image of ® is the interval [—%, %, ], but the image of the
signed measure is still [f%, %]: so for this choice of connection the image of
® is larger than the support of the Duistermaat-Heckman measure.

Above the integral points in [—%, —%], the reduced space is not con-

nected, it consists of two points giving opposite contributions to the index.
So our theorem holds.

Figure 8 is the graph of ® in terms of x =

T 1
03 1

Figure 8: The graph of ¢

6.2 The image of the moment map might be non convex

We consider M to be the Hirzebruch surface. Represent M as the quotient
of U = C? — {(0,0)} x C2—{(0,0)} by the free action of C* x C* acting by

(u,v) - (21, 22, 23, 24) = (uz1,uze, UVZ3,V24)

and we denote by [z1, 22, 23, 24] € M the equivalence class of (z1, 22, 23, 24).
The map 7 : [21, 22, 23, 24] — [21, 22] is a fibration of M on P;(C) with fiber
P (C).

Consider the line bundle L(n;,ng2) obtained as quotient of the trivial line
bundle ¢ x C on U by the action

(u,v) - (21, 22, 23, 24, 2) = (uz1, uz2, UVZ3, V24, U V" 2)
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for (u,v) € C* x C*. The line bundle L(n;,n2) is ample if and only if
niy > ng > 0.

We have a canonical action of the group K :=U(2) on M : g-[Z1,Z2] =
(921, Z5] for Z1,Zy € C*—{(0,0)} and the line bundle L(nj,ny) with action
g 121,29, 2] =921, Z2, z] is K-equivariant.

We are interested in the (virtual) K-module

HO(M, (’)(m, ng)) — Hl(M, (’)(nl, TZQ)) + HQ(M, (’)(nl,ng))

where O(n1,n2) be the sheaf of holomorphic sections of L(ny,ns).

In this case, it is in fact possible to compute directly individual cohomol-
ogy groups H'(M,O(n1,nz)). However, we will describe here only results
on the alternate sum and relate them to the moment map.

Let T = U(1) x U(1) be the maximal torus of K. The set Y :=
{[z1, 22, 23,24] € M|z = 0} is a T-invariant complex submanifold of M
(with trivial action of (¢1,1)). The map

Y — PYC), [0,2,23,24] — [(22) ‘23, 24]

is a T-equivariant isomorphism and the map (g,y) € K XY — g-ye M
factorizes through an isomorphism K x7 Y ~ M. Thus M is an induced
manifold.

For any (a,b) € Z?, we denote Cq,p the 1-dimensional representation
of T associated to the character (t1,t) — t9t5. We denote by e}, e5 the
canonical bases of t* ~ R?. The Weyl chamber is t5y = {zef +yes, x>y}
The elements e}, e5 are conjugated by the Weyl group.

The line bundle L(n1,n2), when restricted to Y ~ P!(C), is isomorphic
to LO2 ® [CO,—nl]-

We consider L, = L(3,2) the line bundle obtained from the reduction
of the trivial line bundle A*C* with natural action of C* x C*. We denote
Suv = N TM (resp. Sy := A¢TY) the Spin®-bundle associated to the
complex structure on M (resp. Y).

We denote by ¢ : Y — [0,1] the map defined by ¢(y) = % if

y ~ a1, az].

Proposition 6.1 e Let S(ny,n2) be the spin bundle Spr ® L(ng, ng) on M.
Its determinant line bundle is

LnlynQ = [(Cdet] ® L,‘-g ® L(2n1, 2TL2)

where [Cqer] — M is the trivial U(2)-equivariant line bundle associated to
the character det : U(2) — C*.
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o There exists a connection on Ly, », such that the corresponding mo-
ment map ®p, pn, : K x7 Y — € is defined by

3 1
upna([ky]) = (= (n1+3) + (2 + Dp(y) ) k- e + S(ef + ).

Proof.

For the second point, we construct a U(2)-invariant connection on Ly, p,
by choosing the T-invariant connection on (Ly, n,)|y having moment map
(—=(n1+ 2) + (n2 + Dp(y)) 5+ 3 (e +e5) under the T-action (see Equation
(6.38)).

From Proposition 6.1, it is not difficult to describe the “Kirwan set”
A(ny,n2) = Image(®yp, n,) Nt for all cases of ny,ny. It depends of the
signs of ny + %, ng+1,n1 —ng + %, that is, as we are working with integers,
the signs of ny + 1, no + 1 and ny — ny. We concentrate in the case where
n1 + 1= 0,n2+1 > 0 (other cases are similarly treated). Then, we have
two cases:

e If ny > ny, then the Kirwan set A(ny,ns9) is the interval

1 3 1
[(n1 —n2) + 3:m + 5](—65) + 5(eT +€3).

e If ny > ny, then the Kirwan set A(nq,n9) is the union of the intervals

1 1
[0,n2 —n1 — 5]6’{ + 5(5{ +e3)

and

3 1
(0,71 + S](=e3) + 5 (e1 + €3).

If n1 = ng > 0 the curvature of the corresponding connection on Ly, 5, =
L(2n1 + 3,2n2 + 2) (which is an ample line bundle) is non degenerate, thus
the image is a convex subset of t§ (in agreement with Kirwan convexity
theorem) while for ng > n; the image set is not convex.

The character Qg (ni,n2) := Qx(M,S(n1,n2)) is equal to the (virtual)
K-module H°(M, O(n1,n2)) — H' (M, O(n1,n2)) + H*(M, O(n1,n2)) where
O(n1,n2) be the sheaf of holomorphic sections of L(ni,nsg).

Let Aso = {(A1,A2); A1 = A2} be the set of dominant weights for U(2).
We index the representations of U(2) by p + Asg. Here p = (%, _71) and
A1, Ao are integers. We then have



the space of complex polynomials on C? homogeneous of degree k.

If ny = 0, we know that Q7 (Y, Sy@LO™2) = 22:0 t’;. From the induction
formula (3.16) (or direct computation via Cech cohomology !!) we obtain

e If ny = no, then

n1
Quc(mima) = D, 73 gy
k=ni1—mno
e If ny > nq, then
ny ng—mi—2
Que(myma) = XMk = 2, sty
k=0 k=0

Let us checked how our theorem works in these cases. First, we notice
that we are in a multiplicity free case : all the non-empty reduced spaces
are points.

e Consider the case where n1 > ny. We see that the parameter (%, —k—%)
belongs to the relative interior of the interval A(ni,ng2). In particular for
b = (0,0), the unique point in the relative interior of the interval A(0,0) is
p. This is in agreement to the fact that the representation Qg (0,0) is the
trivial representation of K.

o Consider the case where ny > ny. We see that the parameter (3, —k—3)
belongs to the relative interior of [—n1 — 2,0]e} + 1 (ef + e}) if and only if
k < mp. Similarly, the parameter (k + %, %) belongs to the relative interior
of [0,np —ny — 3]} + L(ef + e3) if and only if k < ng —ny — 2.

In Figures 9, 10, 11, we draw the Kirwan subsets of t, corresponding to
the values (nq,n92) = (8,5) or (3,6). The circle points on the red line repre-
sents the admissible points occurring with multiplicity 1 in Q(n1,n2). The
diamond points on the blue line represents the admissible points occurring
with multiplicity —1 in Qg (n1,n2).

Consider now M as a T-manifold. Let @Zlm : M — t* be the moment
map relative to the action of 7" which is the composite of ®, 5, : M — €*
with the projection £* — t*. Thus, the image of <I>:,f1 n, 18 the convex hull of
A(n1,n2) and its symmetric image with respect to the diagonal.

Consider first the case where n; = ng = 0. Thus our determinant bundle
Lo,0 = [Cyget] ® L(3,2) is ample. The image of the moment map (I)%)F,O M —

t* is equal to the convex polytope A with vertices (0, %), (%, 0), (%, —1), (-1, %),
the images of the 4 fixed points [1,0,1,0], [1,0,0,1],[0,1,1,0],[0,1,0,1].

99



Figure 9: K-Multiplicities for Qx(8,5)

Figure 10: T-multiplicities for Q7 (0,0)

The only integral point in the interior of the polytope is (0,0) and the re-
duced space (@30)_1 ((0,0))/T is a point. The representation QF" (M, S(0,0))
is indeed the trivial representation of T'.

We now concentrate on the case (n1,n2) = (3,6). The line bundle L :=
[Caet] ® L3 6 is not an ample bundle, so that its curvature Qr, is degenerate,
and the Liouville form [, = Qp A Q is a signed measure on M. Let us
draw the Duistermaat measure (®1,)./L, a signed measure on t*. In red the
measure is with value 1, in blue the measure is with value —1.

We also verify that our theorem is true. Indeed the representation
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Figure 11: K-Multiplicities for Qg (3,6)

Qr(M,8(3,6)) = Qr(M,S(3,6))|r is
Lttty Tt 2t g Tty 2t Ry o T Rt P — bt — it — t .

The X\ € Z? such that t* occurs in Qr(M,S(3,6)) are the integral points
in the interior of the image of ®r,(M) : they have multiplicity +1, and the
reduced space are points.

In this case, we verify thus that the image of the moment map is exactly
the support of the Duitermaat-Heckman measure, however, we do not know
if (even in the toric case, and non ample bundle) we can always find a
connection with this property.

6.3 The multiplicity of the trivial representation comes from
two reduced spaces

Let C* with its canonical basis {e1, ..., es}. Let K ~ SU(3) be the subgroup
of SU(4) that fixes ey.

Let T = S(U(1) x U(1) x U(1)) be the maximal torus of K with Lie
algebra t = {(x1,22,73), >, ; = 0}, and Weyl chamber t£, := {{; > & >
&,2,;& = 0}. We choose the fundamental roots wi,ws so that K, =
S(U(2)xU(1)) and K, = S(U(1) xU(2)). Recall that wy,ws generates the
weight lattice A < t* so that A>¢p = Nw; + Nwsy. Note also that p = wy + wo.
For any A € Ao + p, we denote 7 the irreducible representation of K with
highest weight A — p.

Let X = {0 c L1 ¢ Ly = C* dimL; = i} be the homogeneous partial
flag manifold under the action of SU(4). We have two lines bundles over X:
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Figure 12: T-multiplicities for non ample bundle on Hirzebruch surface

£1($) = L1 and £2(.’L') = Lg/Ll for x = (Ll,LQ).
Our object of study is the complex submanifold

M = {(L1,L2) eX | C64 n LQ}.

The group K acts on M, and the generic stabilizer of the action is [ K, , K, |
SU(2). We consider the family of lines bundles

L(a,b) = L9y @ LS ar,  (a,b) € N2

Let Spr := /\¢ TM be the Spin°~-bundle associated to the complex structure
on M. We compute the characters

Qk(a,b) == Qr(M,Sy ® L(a,b)) € R(K).

Again
dim M

Qx(ab) = Y, (-1 H(M,O(L(a, b))
i=0
We notice that K, corresponds to the subgroup of K that fixes the
line Ces. The set Y := {(L1, L) € X | Ly = Ces ® Cey} is a K,,-invariant
complex submanifold of M such that the map (k,y) € K xY — kye M
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factorizes through an isomorphism K xy,, Y =~ M. Notice that [Ky,, Ku,]
acts trivially on Y.
If we take @ > 4 and b > 1 we get that

b—1 a—4
(6.39) QK(CL, b) = - 2 Thkwi+p — Z Tjwa+p-
k=0 j=0

In particular the multiplicity of 7, (the trivial representation) in Qg (a,b)
is equal to —2.

We now verify the formula (5.37) in our case. The Spin°-bundle Sy is
equal to Sk, ® K x Ko, Sy. The corresponding determinant line bundle
det(Sys) satisfies

det(Sy) = K X Ko, Caw, ® K X Koy det(Sy)
= K X Kuy Cle ®£?_2.

Hence for the Spin®-bundle Sy ® L(a, b) we have

det(Sy @ L(a,b)) = det(Sy) ® L(a,b)®?
2(a+b—1
= K Xle C(?b+2)w1 ®£(1>§ (a+ )
The line bundle det(Sy ® L(a, b)) is equipped with a natural holomorphic
and hermitian connection V. To compute the corresponding moment map
®,p, 0 M — £*, we notice that £; = K X Ko, L7 where £ — P! is the
prequantum line bundle over P; (equipped with the Fubini-Study symplectic
form). If we denote ¢ : Y ~ P! — [0, 1] the function defined by ¢([21, 22]) =
|21]?

W’ we see that

Do p([ky]) = K[((0+1) = (a+b—Dp(y)) w].
for [k,y] € M. In this case, the Kirwan set ®,;(M) n t is the non convex
set [0,0+ 1]wy U [0,a — 2]ws.
We know (see Exemple 3.8) that the set A((£y,)) is equal to the collection
of orbits K(M2%w;),n € N,i = 1,2, and we have Qg (K (3w;)) = 0 and
Qr (K (32 w;)) = Thews+p When k > 0.

If we apply (5.37), we see that mp, 4+, occurs in Qk(a,b) only if % <
b+1:soke{0,...,b—1}. Similarly 7., , occurs in Qx (a, b) only if % <
a—2:s0je{0,...,a—4}. For all this cases the corresponding reduced

spaces are points and one could check that the corresponding quantizations
are all equal to —1 (see (5.34)).
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trivial representation in A((£y,)
sentation in Qp (M,Sy ® L(a,b

In this case, two orbits P; = K(%wi),i = 1,2 are the ancestors of the
), and the multiplicity of the trivial repre-
)) is equal to

Q¥ (Mp,) + QP (Mp,) = 2.
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