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1 Introduction

Let M be a compact connected manifold. We assume that M is even dimen-
sional and oriented. We consider a spinc structure on M , and denote by S

the corresponding Spinc bundle. Let K be a compact connected Lie group
acting on M and S and we denote by D : ΓpM,S`q Ñ ΓpM,S´q the corre-
sponding K-equivariant Spinc Dirac operator. The equivariant index of D,
denoted QKpM,Sq, belongs to the Grothendieck group of representations of
K :

QKpM,Sq “
ÿ

πP pK

mpπq π.

An important example is when M is a compact complex manifold, K
a compact group of holomorphic transformations of M , and L any holo-
morphic K-equivariant line bundle on M , not necessarily ample. Then the
Dolbeaut operator twisted by L can be realized as a Spinc Dirac opera-
tor D acting on sections of a Spinc-bundle S. In this case QKpM,Sq “ř

qp´1qqH0,qpM,Lq.
Another example is when M is a compact even dimensional oriented

manifold with a K-invariant spin structure. Let Sspin be the corresponding
canonical spin bundle, L be any K-equivariant line bundle, and take the
Spinc bundle Sspin b L. Then QKpM,Sspin b Lq is the index of the Dirac
operator associated to the spin structure twisted by the line bundle L.
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The aim of this article is to give a geometric description of the multiplic-
ity mpπq in the spirit of the Guillemin-Sternberg phenomenon rQ,Rs “ 0
[10, 17, 18, 28, 20]. After the remarkable results of Meinrenken-Sjamaar [18],
it was tempting to find in what way we can extend these results to other
situations. Consider the determinant line bundle L “ detpSq of the spinc

structure. This is a K-equivariant complex line bundle on M . The choice of
a K-invariant hermitian metric and of a K-invariant hermitian connection
∇ on L determines a moment map

ΦS : M Ñ k˚

by the relation LpXq ´ ∇XM
“ 2ixΦS , Xy, for all X P k. If M is spin and

S “ Sspin bL, then ΦS is the “moment map” associated to a connection on
L.

We compute mpπq in term of the reduced “manifolds” Φ´1
S pKξq{K. This

formula extends the result of [21]. However, in this article, we do not assume
any hypothesis on the line bundle L, in particular we do not assume that the
curvature of the connection ∇ is a symplectic form. In this pre-symplectic
setting, a partial answer to this question has been obtained by [12, 8, 9, 5]
when K is a torus.

In a recent preprint [14], Hochs and Mathai use our result to obtain a
rQ,Rs “ 0 theorem in the case of an action of a connected Lie group G on a
Spinc manifold M . In their work, G or M are not necessarily compact but
the G-action on M is proper and co-compact : in this context they are able
to come back to the compact setting by Abel’s slice theorem.

Results obtained here have been announced in [23].

1.1 The result

We start to explain our result in the torus case. The general case reduces
(in spirit) to this case, using an appropriate slice for the K-action on M .

Let T be a torus acting effectively on M , and let S Ñ M be a T -
equivariant Spinc-bundle (with connection) on M . In contrast to the sym-
plectic case, the image ΦSpMq might not be convex and depends of the
choice of the connection. Let Λ Ă t˚ be the lattice of weights. If µ P Λ, we
denote by Cµ the corresponding one dimensional representation of T . The
topological space Mµ “ Φ´1

S pµq{T , which may not be connected, is an orb-
ifold provided with a Spinc-structure when µ in t˚ is a regular value of ΦS .
In this case we define the integer QspinpMµq as the index of the correspond-
ing Spinc Dirac operator on the orbifold Mµ. We can define QspinpMµq even
if µ is a singular value. Postponing this definition, our result states that
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Figure 1: T -multiplicities for non ample bundle on Hirzebruch surface

QT pM,Sq “
ÿ

µPΛXΦSpMq

QspinpMµq Cµ.

Here is the definition of QspinpMµq (see Section 5.1). We approach µ by
a regular value µ` ǫ, and we define QspinpMµq as the index of a Spinc Dirac
operator on the orbifold Mµ`ǫ, and this is independent of the choice of ǫ
sufficiently close. Remark here that µ has to be an interior point of ΦSpMq
in order for QspinpMµq to be non zero, as otherwise we can take µ` ǫ not in
the image. In a forthcoming article, we will give a more detailed description
of the function µ Ñ QspinpMµq in terms of locally quasi-polynomial functions
on t˚.

When M is a toric manifold, this result was obtained by Karshon-
Tolman. In Figure 1, we draw the picture of the function µ ÞÑ QspinpMµq
for the Hirzebruch surface, and a non ample line bundle on it (we give the
details of this example in the last section). The image of ΦS is the union
of the two large triangles in red and blue. The multiplicities are 1 on the
integral points of the interior of the red triangle, and ´1 on the integral
points of the interior of the blue triangle.

Now consider the case of a compact connected Lie group K acting on M

and S. Before describing precisely the multiplicities of QKpM,Sq, we first
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give a vanishing result.
Let Hk be the set of conjugacy classes of the reductive algebras kξ, ξ P k˚.

We group the coadjoint orbits according to the conjugacy class phq P Hk of
the stabilizer, and we consider the Dixmier sheet k˚

phq of orbits Kξ with kξ
conjugated to h. We denote by H the connected subgroup of K with Lie
algebra h. If z is the center of h, let z˚

0 be the set of ξ P z˚, such that kξ “ h.
We see then that the Dixmier sheet k˚

phq is equal to Kz˚
0 .

Let pkM q be the generic infinitesimal stabilizer of the K-action on M .
We prove the following vanishing result in Sections 4.5.1 and 4.5.2.

Theorem 1.1 If QKpM,Sq is non zero, then there exists a unique phq P Hk

such that :

• prkM , kM sq “ prh, hsq,

• the pullback Φ´1
S pk˚

phqq is open and dense in M .

A typical example of a couple pM,Sq satisfying the conditions of Theo-
rem 1.1 if when M is equal to KˆH Y with Y a compact H{rH,Hs-manifold
(see Subsection 5.4). The Spinc-bundle on M determines a Spinc-bundle SY

on Y such that the moment map ΦSY
takes value in z˚ (z is the Lie algebra

of H{rH,Hs). In this case, it is easy to compute QKpM,Sq in terms of
QHpY,SY q via an induction formula.

In spirit, we are in this situation. Indeed we can define the non-compact
“slice” Y “ Φ´1

S pz˚
0q which is a H{rH,Hs submanifold of M such that KY

is a dense open subset of M .

In order to study the K-multiplicities of QKpM,Sq, we need a geometric
parametrization of the dual pK.

We say that a coadjoint orbit P Ă k˚ is admissible if P carries a Spinc-
bundle SP such that the corresponding moment map ΦS is the inclusion
P ãÑ k˚. We denote simply by Qspin

K pPq the element QKpP,SPq P RpKq. It
is either 0 or an irreducible representation of K, and the map

O ÞÑ πO :“ Qspin
K pOq

defines a bijection between the regular admissible orbits and the dual pK.
Denote by Apphqq the set of admissible orbits contained in the Dixmier

sheet k˚
phq. When O is a regular admissible orbit, a coadjoint orbit P P Apphqq

is called a phq-ancestor of O if Qspin
K pPq “ πO.

When pM,Sq satisfy the conditions of Theorem 1.1, we can define the
Spinc index QspinpMPq P Z of the reduced space MP “ Φ´1

S pPq{K, for any
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P P Apphqq. We use the slice Y and the deformation procedure, as explained
in the abelian case.

We obtain the following rQ,Rs “ 0 theorem which is the main result of
the paper.

Theorem 1.2 Assume that prkM , kM sq “ prh, hsq with phq P Hk.
‚ The multiplicity of the representation πO in QKpM,Sq is equal to

ÿ

P

QspinpMPq

where the sum runs over the phq-ancestor of O. In other words

QKpM,Sq “
ÿ

PPApphqq

QspinpMPqQspin
K pPq.

‚ Furthermore, each term QspinpMPq P Z does not depend on the choice
of the connection on the determinant line bundle detpSq.

It may be useful to rephrase this theorem by describing the parametriza-
tion of admissible orbits by parameters belonging to the closedWeyl chamber
t˚ě0. Let Λě0 :“ Λ X t˚ě0 be the set of dominant weights, and let ρ be the
half sum of the positive roots.

The set of regular admissible orbits is indexed by the set Λě0 ` ρ: if
λ P Λě0 ` ρ, the coadjoint orbit Kλ is regular admissible and πKλ is the
representation with highest weight λ ´ ρ.

Denote by F the set of the relative interiors of the faces of t˚ě0. Thus
t˚ě0 “ š

σPF σ. The face t˚ą0 is the open face in F .
Let σ P F . The stabilizer Kξ of a point ξ P σ depends only of σ. We

denote it by Kσ, and by kσ its Lie algebra. We choose on kσ the system
of positive roots compatible with t˚ě0, and let ρKσ be the corresponding
ρ. When µ P σ, the coadjoint orbit Kµ is admissible if and only if λ “
µ ´ ρ ` ρKσ P Λ.

The map F ÝÑ Hk, σ ÞÑ pkσq, is surjective but not injective. We denote
by Fpphqq the set of faces of t˚ě0 such that pkσq “ phq.

Using the above parameters, we may rephrase Theorem 1.2 as follows.

Theorem 1.3 Assume that prkM , kM sq “ prh, hsq with phq P Hk. Let λ P
Λě0 ` ρ and let mλ P Z be the multiplicity of the representation πKλ in
QKpM,Sq. We have

(1.1) mλ “
ÿ

σPFpphqq

λ´ρKσPσ

QspinpMKpλ´ρKσ qq.
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Figure 2: K-multiplicities and ancestors

More explicitly, the sum (1.1) is taken over the faces σ of the Weyl
chamber such that

(1.2) prkM , kM sq “ prkσ, kσsq, ΦSpMq X σ ‰ H, λ P tσ ` ρKσu.

In Section 6.3, we give an example of a SUp3q-manifold M with generic
stabilizer SUp2q, and a Spinc bundle S where several σ contribute to the
multiplicity of a representation πKλ in QKpM,Sq. On Figure 2, the picture
of the decomposition of QKpM,Sq is given in terms of the representations
Qspin

K pPq associated to the SUp2q-ancestors P. All reduced spaces are points,
but the multiplicity QspinpMPq are equal to ´1, following from the orien-
tation rule. On the picture, the links between admissible regular orbits O

and their ancestors P are indicated by segments. We see that the orbit
Opρq of ρ has two ancestors P1 and P2, so that the multiplicity of the trivial
representation is equal to

QspinpMP1
q ` QspinpMP2

q “ ´2

and comes from two different faces of the Weyl chamber.

If the generic stabilizer of the action of K in M is abelian, expression
(1.1) simplifies as follows. Consider the slice Y “ Φ´1

S pt˚ą0q which is a T -
invariant submanifold. Let ΦY be the restriction of ΦS to Y . If QKpM,Sq
is non zero, then KY is a dense open subset of M , and we have simply

(1.3) mλ “ QspinpYλq
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where Yλ “ Φ´1
Y pλq{T . In other words

QKpM,Sq “
ÿ

λPΛě0`ρ

QspinpYλqπKλ.

In particular, if the group K is the circle group, and λ is a regular value
of the moment map Φ, Identity (1.3) was obtained in [5].

1.2 Techniques of the proof

Consider the Kirwan vector field κS on M : at m P M , κS is the tangent
vector obtained by the infinitesimal action of ´ΦSpmq at m P M (we have
identified k and k˚). We use a topological deformation σκ of the symbol σ
of the Dirac operator D by pushing the zero section of T˚M inside T˚M

using the Kirwan vector field κS . We call this deformation the Witten
deformation, as it was used by Witten (in the symplectic setting) to show
that the computation of integrals of equivariant cohomology classes on M

reduces to the study of contributions coming from a neighborhood of ZS , the
set of zeroes of κS , leading to the so called non abelian localization formula.

Here we apply the same technique to compute the index QKpM,Sq as
a sum of equivariant indices of transversally elliptic operators associated
to connected components Z of ZS . We are able to identify them to some
basic transversally elliptic symbols whose indices were computed by Atiyah-
Singer (see [1]). Although these indices are infinite dimensional represen-
tations, they are easier to understand than the original finite dimensional
representation QKpM,Sq (an analogue, strongly related via the theory of
toric manifolds, is the Brianchon-Gram decomposition of the characteristic
function of a compact convex polytope P as an alternate sum of character-
istic functions of cones). We give an example of the decomposition of the
representation QKpM,Sq in Subsection 4.2.

All properties of the K-theory version of Witten deformation that we
use here were previously proved in [20]. However, we have written in [24] a
hopefully more readable description of the functorial properties of this non
abelian localization formula in K-theory.

To compute the multiplicity of πO in QKpM,Sq, we use the shifting
trick and compute the K-invariant part of the equivariant index QKpP,SP q
where P is the product manifold M ˆ O˚. Let ZP be the zero set of the
corresponding Kirwan vector field κP and σκ the deformed symbol. The
computation of the equivariant index is thus reduced to the study of the
deformed symbol σκ in a neighborhood of ZP . We have to single out the
components Z such that the trivial representation of K occurs with non
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zero multiplicity. Here is where we discover that, for QKpM,Sq to be non
zero, it is necessary that the semi-simple part of the generic stabilizer kM of
the action of K on M is equal to the semi-simple part of a Levi subalgebra
h of k. It follows that such a component Z is described rather simply as
an induced manifold K ˆH pY ˆ ophqq, with Y a H{rH,Hs manifold, and
ophq the rH,Hs-orbit of the corresponding ρrH,Hs element. Then we use the
fact that the quantization of the orbit of ρ is the trivial representation. In
fact, to determine the contributing components Z, we study a function dP :
ZP Ñ R relating the representation of Km on TmM and the norm of ΦSpmq.
Here Km is the stabilizer of m P M . It relies on the “magical inequality”
(Corollary 3.15) on distance of regular weights to faces of the Weyl chamber.
This step differs from the crucial step in the proof of rQ,Rs “ 0 theorem in
the symplectic case. Both theorems are somewhat both magical, but each
one on its own. It maybe useful for the reader to read first [24], where we
recall the first author proof of rQ,Rs “ 0 in the Hamiltonian case, where
the strategy is straightforward. This strategy is also explained in more
combinatorial terms in Szenes-Vergne [26].

1.3 Outline of the article

Let us explain the contents of the different sections of the article, and their
main use in the final proof.

‚ In Section 2, we give the definition of the index of a Spinc-bundle.
‚ In Section 3, we describe the canonical Spinc-bundle on admissible

coadjoint orbits (see (3.12)). For a K-admissible coadjoint orbit P, we
determine the regular admissible orbit O such that if Qspin

K pPq is not zero,

then Qspin
K pPq “ πO (Proposition 3.8).

We prove the magical inequality (Corollary 3.15) on distance of the
shifted Weyl chamber ρK ` t˚ě0 to admissible µ P t˚ (that is Kµ is an
admissible orbit). This inequality on Weyl chambers will be used over and
over again in this article.

‚ In Section 4, we define the Witten deformation and recall some of its
properties (proved in [20, 24]). It allows us to reduce the computation of
QKpM,Sq to indices qZ of simpler transversally elliptic operators defined in
neighborhoods of connected components of ZS “ tκS “ 0u.

We introduce a function dS : ZS Ñ R. If dS takes strictly positive values
on some component Z of ZS , then the K-invariant part of the (virtual)
representation qZ is equal to 0 (Proposition 4.17). This is a very important
technical proposition.

If O is an admissible regular coadjoint orbit, the shifting trick leads us
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to study the manifold M ˆ O˚ with Spinc-bundle S b SO˚ . We want to
select the component Z of ZSbS

O˚ so that rqZsK is not zero. Theorem
4.22 summarizes the geometric structure enjoyed by M and S when there
exists such a component. Although this theorem is natural (as we tried to
explain it in the introduction), we are able to obtain it only using Witten
deformation on M ˆ O˚ (for all regular admissible orbits O) and a careful
study of the function dSbS

O˚ .
We show that the components Z for which rqZsK ‰ 0 are contained

in the subsets Φ´1
S pPq ˆ O˚ of M ˆ O˚ where P is a phq-ancestor to O

(Proposition 4.24).
We then obtain that the multiplicity mO of πO in QKpM,Sq is the sumř

P mP
O parametrized by the phq-ancestors of O. In Proposition 4.25, we

prove that each term mP
O is independent of the choice of the connection.

‚ In Section 5, we prove that mP
O is equal to QspinpMPq. Here we explain

how to define indices on singular reduced spaces. The main theorem is their
invariance under small deformation.

We then have done all the work needed to be able to prove the main
theorem.

We finally verify that (fortunately) the statement rQ,Rs “ 0 in the Spinc

case is compatible with Spinc induction.
‚ The last section is dedicated to some examples.
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Notations

Throughout the paper :

• K denotes a compact connected Lie group with Lie algebra k.

• T is a maximal torus in K with Lie algebra t.

• Λ Ă t˚ is the weight lattice of T : every µ P Λ defines a 1-dimensional
T -representation, denoted Cµ, where t “ exppXq acts by tµ :“ eixµ,Xy.

• We fix aK-invariant inner product p¨, ¨q on k. This allows us to identify
k and k˚ when needed.

We denote by x¨, ¨y the natural duality between k and k˚.
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• We denote by RpKq the representation ring of K : an element E P
RpKq can be represented as finite sum E “ ř

µP pK mµπµ, with mµ P Z.

The multiplicity of the trivial representation is denoted rEsK .

• We denote by R̂pKq the space of Z-valued functions on K̂. An element
E P R̂pKq can be represented as an infinite sum E “ ř

µP pK mpµqπµ,
with mpµq P Z.

• If H is a closed subgroup of K, the induction map IndKH : R̂pHq Ñ
R̂pKq is the dual of the restriction morphism RpKq Ñ RpHq. In
particular rIndKHpEqsK “ rEsH .

• When K acts on a set X, the stabilizer subgroup of x P X is denoted
Kx :“ tk P K | k ¨ x “ xu. The Lie algebra of Kx is denoted kx.

• An element ξ P k˚ is called regular if Kξ is a maximal torus of K.

• When K acts on a manifold M , we denote XM pmq :“ d
dt

|t“0e
´tX ¨ m

the vector field generated by ´X P k. Sometimes we will also use the
notation XM pmq “ ´X ¨ m. The set of zeroes of the vector field XM

is denoted MX .

• If V is a complex (ungraded) vector space, then the exterior spaceŹ
V “ Ź` V ‘ Ź´ V will be Z{2Z graded in even and odd elements.

• If E1 “ E`
1 ‘ E´

1 and E2 “ E`
2 ‘ E´

2 are two Z{2Z graded vector
spaces (or vector bundles), the tensor product E1 bE2 is Z{2Z-graded
with pE1 bE2q` “ E`

1 bE`
2 ‘E´

1 bE´
2 and pE1 bE2q´ “ E´

1 bE`
2 ‘

E`
1 bE´

2 . Similarly the spaces EndpEiq are Z{2Z graded. The action of
EndpE1qbEndpE2q on E1bE2 obeys the usual sign rules: for example,
if f P EndpE2q´, v1 P E´

1 and v2 P E2, then fpv1 b v2q “ ´v1 b fv2.

• If E is a vector space and M a manifold, we denote by rEs the trivial
vector bundle on M with fiber E.

2 Spinc equivariant index

2.1 Spinc modules

Let V be an oriented Euclidean space of even dimension n “ 2ℓ. We denote
by ClpV q its Clifford algebra. If e1, . . . , en is an oriented orthonormal frame
of V , we define the element

ǫ :“ piqℓe1 ¨ ¨ ¨ en P ClpV q
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that depends only of the orientation. We have ǫ2 “ 1 and ǫv “ ´vǫ for any
v P V .

If E is a ClpV q-module, the Clifford map is denoted cE : ClpV q Ñ
EndpEq. We see then that the element of order two ǫE :“ cEpǫq defines
a Z{2Z-graduation on E by defining E˘ :“ kerpIdE ¯ ǫEq. Moreover the
maps cEpvq : E Ñ E for v P V interchange the subspaces E` and E´. This
graduation will be called the canonical graduation of the Clifford module E.

We follow the conventions of [3]. Recall the following fundamental fact.

Proposition 2.1 Let V be an even dimensional Euclidean space.

• There exists a complex ClpV q-module S such that the Clifford mor-
phism cS : ClpV q Ñ EndpSq induces an isomorphism of complex alge-
bra ClpV q b C » EndpSq.

• The Clifford module S is unique up to isomorphism. We call it the
spinor ClpV q-module.

• Any complex ClpV q-module E has the following decomposition

(2.4) E » S b homClpV qpS,Eq

where homClpV qpS,Eq is the vector space spanned by the ClpV q-complex
linear maps from S to E. If V is oriented and the Clifford modules S

and E carry their canonical grading, then (2.4) is an isomorphism of
graded Clifford CLpV q-modules.

Let V “ V1 ‘ V2 be an orthogonal decomposition of even dimensional
Euclidean spaces. We choose an orientation opV1q on V1. There is a one-
to-one correspondence between the graded ClpV2q-modules and the graded
ClpV q-modules defined as follows. Let S1 be the spinor module for ClpV1q.
If W is a ClpV2q-module, the vector space E :“ S1 b W is a ClpV q-module
with the Clifford map defined by

cEpv1 ‘ v2q :“ cS1
pv1q b IdW ` ǫS1

b cW pv2q.

Here vi P Vi and ǫS1
P EndpS1q defines the canonical graduation of S1. Con-

versely, if E is a graded ClpV q-module, the vector space W :“
homClpV1qpS1, Eq formed by the complex linear maps f : S1 Ñ E com-
muting with the action of ClpV1q has a natural structure of ClpV2q graded
module and E » S1 b W .

If we fix an orientation opV q on V , it fixes an orientation opV2q on V2 by
the relation opV q “ opV1qopV2q. Then the Clifford modules E and W carries
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their canonical Z{2Z graduation, and E » S1 b W becomes an identity of
graded Clifford modules.

Example 2.2 Let H be an Euclidean vector space equipped with a complex
structure J P OpHq: we denote by

Ź
J H the exterior product of the space

H considered as a complex vector space with complex structure J . Denote
by mpvq the exterior multiplication by v. The action c of H on

Ź
J H given

by cpvq “ mpvq ´ mpvq˚ satisfies cpvq2 “ ´}v}2Id. Thus,
Ź

J H, equipped
with the action c, is a realization of the spinor module for H. Note that the
group UpJq of unitary transformations of H acts naturally on

Ź
J H. If one

choose the orientation on H induced by the complex structure, one sees that
the canonical grading is pŹ

J Hq˘ “ Ź˘
J H.

Consider another complex structure J 1 P OpHq : the vector space
Ź

J 1 H

is another spinor module for H. We denote by ǫJ
1

J the ratio between the
orientations defined by J and J 1. One can check that

(2.5)
ľ

J 1

H » ǫJ
1

J Cχ b
ľ

J

H,

as a graded ClpHq-module and also as a graded UpJ 1q X UpJq-module. Here
Cχ is the 1-dimensional representation of UpJ 1q X UpJq associated to the
unique character χ defined by the relation χpgq2 “ detJ 1pgqdetJpgq´1, @g P
UpJ 1q X UpJq.

Example 2.3 When V “ Q‘Q with Q an Euclidean space, we can identify
V with QC by px, yq Ñ x ‘ iy. Thus SQ :“ Ź

QC is a realization of the
spinor module for V . It carries a natural action of the orthogonal group
OpQq acting diagonally. If Q carries a complex structure J P OpQq, we
can consider the spin modules

Ź
J Q and

Ź
´J Q for Q. We have then the

isomorphism SQ » Ź
J Q b Ź

´J Q of graded ClpV q-modules (it is also an
isomorphism of UpJq-modules).

2.2 Spinc structures

Consider now the case of an Euclidean vector bundle V Ñ M of even rank.
Let ClpVq Ñ M be the associated Clifford algebra bundle. A complex vector
bundle E Ñ M is a ClpVq-module if there is a bundle algebra morphism
cE : ClpVq ÝÑ EndpEq.
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Definition 2.4 Let S Ñ M be a ClpVq-module such that the map cS induces
an isomorphism ClpVq bR C ÝÑ EndpSq. Then we say that S is a Spinc-
bundle for V.

As in the linear case, an orientation on the vector bundle V determines a
Z{2Z grading of the vector bundle S (called the canonical graduation) such
that for any v P Vm, the linear map1 cSpm, vq : Sm Ñ Sm is odd.

Example 2.5 When H Ñ M is a Hermitian vector bundle, the complex
vector bundle

Ź
H is a Spinc bundle for H. If one choose the orientation

of the vector bundle H induced by the complex structure, one sees that the
canonical grading is pŹ

Hq˘ “ Ź˘
H.

We assume that the vector bundle V is oriented, and we consider two
Spinc-bundles S,S 1 for V, both with their canonical grading. We have the
following identity of graded Spinc-bundles : S 1 » S b LS,S1 where LS,S1 is a
complex line bundle on M defined by the relation

(2.6) LS,S1 :“ homClpVqpS,S 1q.

Definition 2.6 Let V Ñ M be an Euclidean vector bundle of even rank.
The determinant line bundle of a Spinc-bundle S on V is the line bundle
LS Ñ M defined by the relation

LS :“ homClpVqpS,Sq

where S is the ClpVq-module with opposite complex structure. Sometimes
LS is also denoted detpSq.

Example 2.7 When H Ñ M is a Hermitian vector bundle, the determinant
line bundle of the Spinc-bundle

Ź
H is detpHq :“ Źmax

H.

If S and S 1 are two Spinc-bundles for V, we see that

LS1 “ LS b pLS,S1qb2.

Assume that V “ V1 ‘ V2 is an orthogonal sum of Euclidean vector
bundles of even rank. We assume that V1 is oriented, and let S1 be a Spinc-
bundle for V1 that we equip with its canonical grading. If E is a Clifford
bundle for V, then we have the following isomorphism2

(2.7) E » S1 b W

1The map cSpm,´q : Vm Ñ EndpSmq will also be denoted by cSm
.

2The proof is identical to the linear case explained earlier.
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where W :“ homClpV1qpS1, Eq is a Clifford bundle for V2. If V is oriented, it
fixes an orientation opV2q on V2 by the relation opVq “ opV1qopV2q. Then the
Clifford modules E and W carries their canonical Z{2Z grading, and (2.7)
becomes an identity of graded Clifford modules.

In the particular situation where S is a Spinc-bundle for V, then S »
S1 b S2 where S2 :“ homClpV1qpS1,Sq is a Spinc-bundle for V2. At the level
of determinant line bundles we obtain LS “ LS1

b LS2
.

Let us end this section by recalling the notion of Spin-structure and
Spinc-structure. Let V Ñ M be an oriented Euclidean vector bundle of
rank n, and let PSOpVq be its orthogonal frame bundle : it is a principal
SOn bundle over M .

Let us consider the spinor group Spinn which is the double cover of the
group SOn. The group Spinn is a subgroup of the group Spincn which covers
SOn with fiber Up1q.

A Spin structure on V is a Spinn-principal bundle PSpinpVq over M

together with a Spinn- equivariant map PSpinpVq Ñ PSOpVq.
We assume now that V is of even rank n “ 2ℓ. Let Sn be the irreducible

complex spin representation of Spinn. Recall that Sn “ S`
n ‘ S´

n inherits
a canonical Clifford action c : Rn Ñ EndpSnq which is Spinn-equivariant,
and which interchanges the graduation: cpvq : S˘

n Ñ S¯
n . The spinor bundle

attached to the Spin-structure PSpinpVq is

S :“ PSpinpVq ˆSpinn
Sn.

A Spinc-bundle for V determines a Spinc structure, that is a principal
bundle overM with structure group Spincn. When V admits a Spin-structure,
any Spinc-bundle for V is of the form SL “ SspinbL where Sspin is the spinor
bundle attached to the Spin-structure and L is a line bundle on M . Then
the determinant line bundle for SL is Lb2.

2.3 Moment maps and Kirwan vector field

In this section, we consider the case of a Riemannian manifold M acted on
by a compact Lie group K. Let S Ñ M be a Spinc-bundle on M . If the
K-action lifts to the Spinc-bundle S in such a way that the bundle map
cS : ClpTMq Ñ EndpSq commutes with the K-action, we say that S defines
a K-equivariant Spinc-bundle on M . In this case, the K-action lifts also
to the determinant line bundle LS . The choice of an invariant Hermitian
connection ∇ on LS determines an equivariant map ΦS : M Ñ k˚ and a
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2-form ΩS on M by means of the Kostant relations

(2.8) LpXq ´ ∇XM
“ 2ixΦS , Xy and ∇2 “ ´2iΩS

for every X P k. Here LpXq denotes the infinitesimal action of X P k on the
sections of LS . We will say that ΦS is the moment map for S (it depends
however of the choice of a connection).

Via the equivariant Bianchi formula, Relations (2.8) induce the relations

(2.9) ιpXM qΩS “ ´dxΦS , Xy and dΩS “ 0

for every X P k. It follows that ΦS is a moment map, as defined in [24].
In particular the function m Ñ xΦSpmq, Xy is locally constant on MX .

Remark 2.8 Let b P k and m P M b, the set of zeroes of bM . We consider the
linear actions Lpbq|Sm and Lpbq|LSm

on the fibers at m of the Spinc-bundle
S and the line bundle LS . Kostant relations imply Lpbq|LSm

“ 2ixΦSpmq, by.
The irreducibility of S implies that

Lpbq|Sm “ i xΦSpmq, by IdSm .

Furthermore the function m Ñ xΦSpmq, by is locally constant on M b.

Note that the closed 2-form ΩS , which is half of the curvature of LS ,
is not (in general) a symplectic form. Furthermore, if we take any (real
valued) invariant 1-form A on M , ∇` iA is another connection on LS . The
corresponding curvature and moment map will be modified in ΩS ´ 1

2
dA

and ΦS ´ 1
2
ΦA where ΦA : M Ñ k˚ is defined by the relation xΦA, Xy “

´ιpXM qA.
Let Φ : M Ñ k be a K-equivariant map. We define the K-invariant

vector field κΦ on M by

(2.10) κΦpmq :“ ´Φpmq ¨ m,

and we call it the Kirwan vector field associated to Φ. The set where κΦ
vanishes is a K-invariant subset that we denote by ZΦ Ă M .

We identify k˚ to k by our choice ofK-invariant scalar product and we will
have a particular interest in the equivariant map ΦS : M Ñ k˚ » k associated
to the Spinc-bundle S. In this case we may denote the K-invariant vector
field κΦS

simply by κS (even if it depends of the choice of a connection):

κSpmq :“ ´ΦSpmq ¨ m.

and we denote ZΦ by ZS .
As ΦS is a moment map, we have the following basic description (see

[20, 24]).
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Lemma 2.9 If the manifold M is compact, the set ΦSpZSq is a finite col-
lection of coadjoint orbits. For any coadjoint orbit O “ Kβ, we have

ZS X Φ´1
S pOq “ KpMβ X Φ´1

S pβqq.

Here we have identified β P k˚ to an element in k still denoted by β.
Furthermore, any β in the image ΦSpZSq is such that }β}2 is a critical
value of the map }ΦS}2.

Remark 2.10 Although the map ΦS as well as the set ZS vary when we
vary the connection, we see that the image ΦSpZSq is contained in a finite
set of coadjoint orbits that does not depend of the connection (see [24]).

Figure 3 describes the set ΦSpZSq for the action of the diagonal torus of
K “ SUp3q on the orbit Kρ equipped with its canonical Spinc-bundle.

Figure 3: The set ΦSpZSq

2.4 Equivariant index

Assume in this section that the Riemannian K-manifold M is compact,
even dimensional, oriented, and equipped with aK-equivariant Spinc-bundle
S Ñ M . The orientation induces a decomposition S “ S` ‘ S´, and
the corresponding Spinc Dirac operator is a first order elliptic operator
DS : ΓpM,S`q Ñ ΓpM,S´q [3, 7]. Its principal symbol is the bundle map
σpM,Sq P ΓpT˚M, hompp˚S`, p˚S´qq defined by the relation

σpM,Sqpm, νq “ cSmpν̃q : S`
m ÝÑ S´

m.

Here ν P T˚M Ñ ν̃ P TM is the identification defined by the Riemannian
structure.

If W Ñ M is a complex K-vector bundle, we can define similarly the
twisted Dirac operator DW

S : ΓpM,S` b Wq Ñ ΓpM,S´ b Wq.
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Definition 2.11 Let S Ñ M be an equivariant Spinc-bundle. We denote :
‚ QKpM,Sq P RpKq the equivariant index of the operator DS ,
‚ QKpM,S b Wq P RpKq the equivariant index of the operator DW

S .

Let pApMqpXq be the equivariant Â-genus class of M : it is an equivari-
ant analytic function from a neighborhood of 0 P k with value in the alge-
bra of differential forms on M . Berline-Vergne equivariant index formula
[3][Theorem 8.2] asserts that

(2.11) QKpM,SqpeXq “ p i

2π
qdimM

2

ż

M

eipΩS`xΦS ,Xyq pApMqpXq

for X P k small enough. Here we write QKpM,SqpeXq for the trace of the
element eX P K in the virtual representation QKpM,Sq of K. It shows in
particular that QKpM,Sq P RpKq is a topological invariant : it only depends
of the class of the equivariant form ΩS ` xΦS , Xy, which represents half of
the first equivariant Chern class of the line bundle LS .

Example 2.12 We consider the simplest case of the theory. Let M :“
P1pCq be the projective space of (complex) dimension one. We write an
element of M as rz1, z2s in homogeneous coordinates. Consider the (ample)
line bundle L Ñ P1, dual of the tautological bundle. Let Spnq be the Spinc-
bundle

Ź
C
TM b Lbn. The virtual representation QT pM,Spnqq is equal to

H0pP1,Opnqq ´ H1pP1,Opnqq. Then for n ě 0,

QT pM,Spnqq “
nÿ

k“0

tk.

Here T “ tt P C; |t| “ 1u acts on rz1, z2s via t ¨ rz1, z2s “ rt´1z1, z2s.

3 Coadjoint orbits and the magical inequality

In this section, we describe Spinc-bundles on admissible coadjoint orbits of
K and the equivariant indices of the associated Dirac operators.

3.1 Conjugacy classes of centralizers

For any ξ P k˚, the stabilizer Kξ is a connected subgroup of K with same
rank. We denote by kξ its Lie algebra.

Let Hk be the set of conjugacy classes of the reductive algebras kξ, ξ P k˚.
The set Hk contains the conjugacy class formed by the Cartan sub-algebras.
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It contains also k (stabilizer of 0). A coadjoint orbitO belongs to the Dixmier
sheet k˚

phq, for phq P Hk if pkξq “ phq for (any) ξ P O.

Remark 3.1 If h “ kξ, then hC is the Levi subalgebra of the parabolic sub-
algebra determined by ξ. Parabolics are classified by subsets of simple roots.
However, different conjugacy classes of parabolics might give rise to the same
conjugacy class of Levi subalgebras (as seen immediately for type An).

We denote by Sk the set of conjugacy classes of the semi-simple parts
rh, hs of the elements phq P Hk.

Lemma 3.2 The map phq Ñ prh, hsq induces a bijection between Hk and Sk

Proof. Assume that rh, hs “ rh1, h1s “ s. Consider n the normalizer of s.
Then h and h1 are both contained in n. Let t, t1 be Cartan subalgebras of
h, h1. Then t and t1 are conjugated inside the normalizer of s. As h “ s ` t,
we see that h is conjugated to h1.

The connected Lie subgroup with Lie algebra h is denoted H, that is
if h “ kξ, then H “ Kξ. We write h “ z ‘ rh, hs where z is the center
and rh, hs is the semi-simple part of h. Thus h˚ “ z˚ ‘ rh, hs˚ and z˚ is
the set of elements in h˚ vanishing on the semi-simple part of h. We write
k “ h ‘ rz, ks, so we embed h˚ in k˚ as a H-invariant subspace, that is we
consider an element ξ P h˚ also as an element of k˚ vanishing on rz, ks.

3.2 Statement of results on admissible coadjoint orbits

We first define the ρ-orbit. Let T be a Cartan subgroup of K. Then t˚ is
imbedded in k˚ as the subspace of T -invariant elements. Choose a system
of positive roots ∆` Ă t˚, and let ρK “ 1

2

ř
αą0 α. The definition of ρK

requires the choice of a Cartan subgroup T and of a positive root system.
However a different choice leads to a conjugate element. Thus we can make
the following definition.

Definition 3.3 We denote by opkq the coadjoint orbit of ρK P k˚. We call
opkq the ρ-orbit.

If K is abelian, then opkq is t0u.
The notion of admissible coadjoint orbit is defined in [6] for any real

Lie group G. When K is a compact connected Lie group, we adopt the
following equivalent definition: a coadjoint orbit O Ă k˚ is admissible if O
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carries a K-equivariant Spinc-bundle SO, such that the associated moment
map is the injection O ãÑ k˚. If Kξ is an admissible orbit, we also say that
the element ξ is admissible. An admissible coadjoint orbit O is oriented
by its symplectic structure, and we denote by Qspin

K pOq :“ QKpO,SOq the
corresponding equivariant spinc index.

We have xξ, rkξ, kξsy “ 0. The quotient space q “ k{kξ is equipped with
the symplectic form ΩξpX̄, Ȳ q :“ xξ, rX,Y sy, and with a uniqueKξ-invariant
complex structure Jξ such that Ωξp´, Jξ´q is a scalar product. We denote
by qξ the space k{kξ considered as a complex vector space via the
complex structure Jξ. Any element X P kξ defines a complex linear map
adpXq : qξ Ñ qξ.

Definition 3.4 ‚ For any ξ P k˚, we denote by ρpξq the element of k˚
ξ such

that

xρpξq, Xy “ 1

2i
TrqξadpXq, X P kξ.

We extend ρpξq to an element of k˚, that we still denote by ρpξq.

Thus, given a ξ P t˚, and H “ Kξ, we have written ρK as sum of
ρKξ ` ρpξq, according to the decomposition k “ kξ ‘ q.

If iθ : kξ Ñ iR is the differential of a character of Kξ, we denote by
Cθ the corresponding 1-dimensional representation of Kξ, and by rCθs “
K ˆKξ

Cθ the corresponding line bundle over the coadjoint orbit Kξ Ă k˚.
The condition that Kξ is admissible means that there exists a Spinc-bundle
S on Kξ such that detpSq “ rC2ξs (2iξ needs to be the differential of a
character of Kξ).

Lemma 3.5 1. xρpξq, rkξ, kξsy “ 0.

2. The coadjoint orbit Kξ is admissible if and only if ipξ ´ ρpξqq is the
differential of a 1-dimensional representation of Kξ.

Proof. Consider the character k ÞÑ detqξpkq of Kξ. Its differential is
2iρpξq. Thus xρpξq, rkξ, kξsy “ 0.

We can equip Kξ » K{Kξ with the Spinc-bundle

Sξ :“ K ˆKξ

ľ
qξ

with determinant line bundle detpSξq “ rC2ρpξqs. Any other K-equivariant
Spinc-bundle on Kξ is of the form Sξ b rCθs where iθ is the differential of

20



a character of Kξ. Then detpSξ b rCθsq “ rC2ξs if and only if ξ ´ ρpξq “ θ.
The lemma then follows.

In particular the orbit opkq is admissible. Indeed if ξ “ ρK , then ξ ´
ρpξq “ 0.

An admissible coadjoint orbit O “ Kξ is then equipped with the Spinc-
bundle

(3.12) S˘
O :“ K ˆKξ

´ľ˘
qξ b Cξ´ρpξq

¯
.

Its Spinc equivariant index is

(3.13) Qspin
K pOq “ IndKKξ

´ľ
qξ b Cξ´ρpξq

¯
.

See [24].
The following proposition is well known. We will recall its proof in

Lemma 3.11 in the next subsection.

Proposition 3.6 • The map O ÞÑ πO :“ Qspin
K pOq defines a bijection

between the set of regular admissible orbits and pK.

• Qspin
K popkqq is the trivial representation of K.

We now describe the representation Qspin
K pOq attached to any admissible

orbit in terms of regular admissible orbits.

Definition 3.7 To any coadjoint orbit O Ă k˚, we associate the coadjoint
orbit spOq Ă k˚ which is defined as follows : if O “ Kµ, take spOq “ Kξ

with ξ P µ ` opkµq. We call spOq the shift of the orbit O.

If O is regular, spOq “ O. If O “ t0u, then spOq “ opkq.
The following proposition will be proved in the next subsection.

Proposition 3.8 Let P be an admissible orbit.

• P˚ :“ ´P is also admissible and Qspin
K pP˚q “ Qspin

K pPq˚.

• If spPq is regular, then spPq is also admissible.

• Conversely, if O is regular and admissible, and P is such that spPq “
O, then P is admissible.
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• – If spPq is not regular, then Qspin
K pPq “ 0.

– If spPq is regular, then Qspin
K pPq “ Qspin

K pspPqq “ πspPq.

It is important to understand what are the admissible orbits P such that
spPq is equal to a fixed regular admissible orbit O.

For the remaining part of this subsection, we fix a conjugacy class phq.
We denote by Apphqq the set of admissible orbits belonging to the Dixmier
sheet k˚

phq.

Definition 3.9 Let O Ă k˚ be a K-orbit. A K-orbit P is called a phq
ancestor of O is P Ă k˚

phq and spPq “ O.

We make the choice of a connected Lie subgroup H with Lie algebra h

and write h “ z ‘ rh, hs. We denote by z˚
0 the set of elements ξ P z˚ such

that Kξ “ H. The orbit ophq (the ρ-orbit for H) is contained in rh, hs˚. The
orbit P is a phq-ancestor to O, if and only if there exists µ P z˚

0 such that
Kµ “ P and ρH P ophq such that O “ Kpµ ` ρHq. If O is admissible then
P is admissible (see Lemma 3.16).

Given a regular admissible orbit O, there might be several phq-ancestors
to O.

Example 3.10 Consider the group K “ SUp3q and let phq be the centralizer
class of a subregular element f P k˚ with centralizer H “ SpUp2q ˆ Up1qq.

We consider the Cartan subalgebra of diagonal matrices and choose a
Weyl chamber. Let ω1, ω2 be the two fundamental weights. Let σ1, σ2 be the
half lines Rą0ω1, Rą0ω2. The set Apphqq is equal to the collection of orbits
K ¨ p1`2n

2
ω1q, n P Z (see Figure 4).

Figure 4: H-admissible orbits
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As ´ω1 is conjugated to ω2, we see that the set Apphqq is equal to the
collection of orbits K ¨ p1`2n

2
ωiq, n P Zě0, i “ 1, 2. Here we have chosen the

representatives in the chosen closed Weyl chamber.
One has spK ¨ p1`2n

2
ωiqq “ KpρK `pn´1qωiq. Thus the shifted orbit is a

regular orbit if and only if n ą 0. For n “ 1, both admissible orbits K ¨ 3
2
ω1

and K ¨ p ´3
2
ω1q “ K ¨ 3

2
ω2 are phq-ancestors to the orbit KρK “ opkq.

Both admissible orbits P1 “ K ¨ 1
2
ω1 and P2 “ K ¨ 1

2
ω2 are such that

Qspin
K pPiq “ 0
In Figure 5, we draw the link between H-admissible orbits and their

respective shifts.

Figure 5: H-admissible orbits and their shifts

There might also be several classes of conjugacy phq such that O admits
a phq-ancestor P. For example, let O “ opkq. Then, for any h P Hk, the
orbit KpρK ´ ρHq is a phq-ancestor to O. Here we have chosen a Cartan
subgroup T contained in H, H “ Kξ and a positive root system such that
ξ is dominant to define ρK and ρH .

3.3 Admissible coadjoint orbits and Weyl chamber

In order to parameterize coadjoint orbits, we choose a Cartan subgroup T

of K with Lie algebra t. Let Λ Ă t˚ be the lattice of weights of T . Let W

be the Weyl group. Choose a system of positive roots ∆` Ă t˚, and let

ρK “ 1

2

ÿ

αą0

α.
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If α P t˚ is a root, we denote by Hα P t the corresponding coroot (so
xα,Hαy “ 2). Then xρK , Hαy “ 1 if and only if α is a simple root.

Define the positive closed Weyl chamber by

t˚ě0 “ tξ P t˚; xξ,Hαy ě 0 for all α ą 0u,

and we denote by Λě0 :“ ΛXt˚ě0 the set of dominant weights. Any coadjoint
orbit O of K is of the form O “ Kξ with tξu “ O X t˚ě0.

We index the set pK of classes of finite dimensional irreducible repre-
sentations of K by the set ρK ` Λě0. The irreducible representation πλ
corresponding to λ P ρK ` Λě0 is the irreducible representation with in-
finitesimal character λ. Its highest weight is λ ´ ρK . The representation
πρK is the trivial representation of K. The Weyl character formula for the
representation πλ is, for X P t,

TrπλpeXq “
ř

wPW ǫpwqeixwλ,Xy

ś
αą0 e

ixα,Xy{2 ´ e´ixα,Xy{2
.

For any µ P t˚, we consider its element ρpµq P k˚ (Definition 3.4).

Lemma 3.11 Let λ P t˚ě0 be a regular admissible element of k˚. Then

1. λ P ρK ` Λě0.

2. Qspin
K pKλq “ πλ.

Proof. Let λ P t˚ě0 be regular and admissible, then ρpλq “ ρK , so λ P tρK `
ΛuX t˚ą0. If α is a simple root, then the integer xλ´ρK , Hαy “ xµ,Hαy´1
is non negative, as xλ,Hαy ą 0. So λ ´ ρK is a dominant weight.

Atiyah-Bott fixed point for the trace of the representation Qspin
K pKλq is

Weyl character formula.
Thus we obtain Lemma 3.11 and Proposition 3.6.

If h P Hk, we denote by }ρH} the norm of any element in the coadjoint
orbit ophq Ă h˚ for H.

The positive Weyl chamber is the simplicial cone determined by the
equations xλ,Hαy ě 0 for the simple roots α ě 0. We denote by Fk the set
of the relative interiors of the faces of t˚ě0. Thus t˚ě0 “ š

σPFk
σ, and we

denote by t˚ą0 P Fk the interior of t˚ě0.
Let σ P Fk. Thus Rσ, the linear span of σ, is the subspace determined

by xλ,Hαy “ 0 where the α varies over a subset of the simple roots.
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The stabilizer Kξ does not depend of the choice of the point ξ P σ : we
denote it by Kσ. The map σ Ñ kσ induces a surjective map from Fk to Hk.

For σ P Fk, we have the decomposition kσ “ rkσ, kσs ‘ zpkσq with dual
decomposition k˚

σ “ rkσ, kσs˚ ‘ Rσ. Let

ρKσ :“ 1

2

ÿ

αą0

pα,σq“0

α

be the ρ-element of the group Kσ associated to the positive root system
tα ą 0, pα, σq “ 0u for Kσ. Then

ρK ´ ρKσ “ 1

2

ÿ

αą0

pα,σqą0

α,

and for any µ P σ, the element ρpµq P k˚ is equal to ρK ´ρKσ . In particular,
ρK ´ ρKσ vanishes on rkσ, kσs, so ρK ´ ρKσ P Rσ, while ρKσ P rkσ, kσs˚. The
decomposition ρK “ pρK ´ ρKσq ` ρKσ is an orthogonal decomposition.

Figure 6 shows this orthogonal decomposition of ρ for the case SUp3q.

Figure 6: Orthogonal decomposition of ρK

We start by proving some geometric properties of the Weyl chamber. The
subset ρK ` t˚ě0 of the positive Weyl chamber will be called the shifted Weyl
chamber. It is determined by the inequalities xλ,Hαy ě 1 for any simple
root α ě 0, and thus xλ,Hαy ě 1 for any positive root. The following
proposition is illustrated in Figure 7 in the case SUp3q.

Proposition 3.12 1. If λ P ρK ` t˚ě0, then pλ, λq ě pλ, ρKq ě pρK , ρKq.
The equality pλ, λq “ pλ, ρKq holds only if λ “ ρK .
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Figure 7: Distance of a singular element µ to a strongly regular element λ

2. Let σ P Fk.

‚ The orthogonal projection of ξ P t˚ą0 onto Rσ belongs to σ.

‚ We have ρK ´ ρKσ P σ for any σ P Fk.

3. For any phq P Hk, }ρK} ě }ρH}, and }ρK} “ }ρH} only if H “ K.

4. If λ P ρK ` t˚ě0 and µ P t˚, then:

(3.14) }λ ´ µ}2 ě 1

2

ÿ

αą0

pα,µq“0

pλ, αq ě }ρKµ}2.

The equality

}λ ´ µ}2 “ 1

2

ÿ

αą0

pα,µq“0

pλ, αq

holds if and only if µ belongs to t˚ě0, and if µ is the projection of λ on
the face σ of t˚ě0 containing µ. In particular λ ´ ρpλq “ µ ´ ρpµq.

Proof. If λ “ ρK ` c, with c P t˚ě0, inequalities pλ, λq ě pλ, ρKq ě
pρK , ρKq follows from the fact that pλ, cq and pρK , cq are non negative, as
the scalar product of two elements of t˚ě0 is non negative.

The second point follows from the fact that the dual cone to t˚ě0 is
generated by the simple roots αi, and pαi, αjq ď 0, if i ‰ j.
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We have the orthogonal decomposition ρK “ ρKσ ` pρK ´ ρKσq: hence
ρK ´ ρKσ , which is the orthogonal projection of ρK P t˚ą0 on Rσ, belongs to
σ.

For the third point, we might choose H conjugated to Kσ, so }ρK}2 “
}ρKσ}2 ` }ρK ´ ρKσ}2.

We now prove the last point.
Let kµ be the centralizer of µ and let z be the center of kµ. Consider the

orthogonal decomposition t˚ “ z˚ ‘ a˚ where a is a Cartan subalgebra for
rkµ, kµs, that is a “ ř

pα,µq“0 RHα. Let ρKµ P a˚ be the ρ element for the

system ∆1
` “ tα ą 0, pα, µq “ 0u of rkµ, kµs.

Let us write λ “ ρK ` c, with c dominant, and decompose ρK “ p0 ` p1,
c “ c0 ` c1, with p0, c0 P z˚, p1, c1 P a˚. Thus λ “ λ0 ` λ1, with λ0 P z˚ and
λ1 “ p1 `c1. Now p1 belongs to the shifted Weyl chamber in a˚. Indeed, for
any α ą 0 such that pα, µq “ 0, we have xp1, Hαy “ xρK , Hαy ě 1. Similarly
c1 is dominant for the system ∆1

`.
As µ P z˚, we have }λ ´ µ}2 “ }λ0 ´ µ}2 ` }p1 ` c1}2. Using the first

point of 3.12, we obtain

}λ ´ µ}2 “ }λ0 ´ µ}2 ` }p1 ` c1}2 ě pp1 ` c1, ρ
Kµq ě }ρKµ}2.

As

pp1 ` c1, ρ
Kµq “ 1

2

ÿ

αą0

pα,µq“0

pλ, αq

we obtain Inequalities (3.14).
If the inequality }λ ´ µ}2 ě pp1 ` c1, ρ

Kµq is an equality, then c1 “ 0,
p1 “ ρKµ , and λ0 “ µ. Thus for roots α P ∆1

`, xρKµ , Hαy “ xρK , Hαy. As
ρKµ takes value 1 on simple roots for Kµ, it follows that the set S1 of simple
roots for the system ∆1

` is contained in the set of simple roots for ∆`. As
a “ ‘αPS1

RHα, the orthogonal z of a is Rσ for the face σ of t˚ orthogonal
to the subset S1 of simple roots. We then have Kµ “ Kσ. Furthermore,
λ “ µ ` ρKσ . Thus µ is the projection of λ on Rσ, so µ P σ Ă t˚ě0. As
ρpλq “ ρK , and ρpµq “ ρK ´ ρKσ , we obtain λ ´ ρpλq “ µ ´ ρpµq. So all
assertions are proved.

Corollary 3.13 Let σ P Fk. The distance between the shifted Weyl chamber
ρK ` t˚ě0 and the vector space Rσ is equal to }ρKσ}. Furthermore, if ρK `λ1,
with λ1 P t˚ě0 and λ P Rσ are at distance }ρKσ}, then ρK ` λ1 “ ρKσ ` λ.

Proof. Indeed, if µ P Rσ, and λ P ρK ` t˚ě0, then Inequality (3.14)
implies that }λ ´ µ} ě }ρKµ}. As Kσ Ă Kµ, }ρKµ} ě }ρKσ}.
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Let us reformulate Inequalities (3.14) above independently of the choice
of a positive root system.

Definition 3.14 A regular element λ P k˚ determines a closed positive Weyl
chamber Cλ Ă k˚

λ. We say that λ is very regular if λ P ρpλq ` Cλ.

Regular admissible elements are very regular.
Here is the magical inequality that we will use over and over again to

get vanishing results.

Corollary 3.15 (The magical inequality) Let λ, µ be two elements of
t˚. Assume that λ is very regular, then

}λ ´ µ}2 ě 1

2

ÿ

pα,λqą0

pα,µq“0

pλ, αq ě }ρKµ}2.

If the equality

}λ ´ µ}2 “ 1

2

ÿ

pα,λqą0

pα,µq“0

pλ, αq

holds, then µ P Cλ and λ ´ ρpλq “ µ ´ ρpµq.

Let us now study the admissible coadjoint orbits and their shifts. The
following lemma just restate properties which follow directly from the pre-
ceding discussions.

Lemma 3.16 For any µ P σ,

• ρpµq “ ρK ´ ρKσ and ρK ´ ρKσ P σ,

• opkµq “ Kσρ
Kσ ,

• Kµ is admissible if and only if µ ` ρKσ P ρK ` Λ,

• spKµq “ Kpµ ` ρKσq.

Proposition 3.17 below says that the shifts of admissible elements stay
in the closure of the Weyl chamber. Figure 8 illustrate this fact in the case
SUp3q.

Proposition 3.17 Let σ be a relative interior of a face of t˚ě0 and let µ be
an admissible element of t˚ě0.

28



Figure 8: Shifts of admissible orbits

1. If µ is regular and µ ´ ρK P σ, then µ ´ ρKσ P σ.

2. If µ P σ and µ ` ρKσ is regular, then µ ` ρKσ P ρK ` pΛě0 X σq.

3. If µ P σ, we have

Qspin
K pKµq “

#
0 if µ ` ρKσ is singular,

πµ`ρKσ if µ ` ρKσ is regular.

Proof. The first point follows from the fact that ρK ´ ρKσ P σ.
We prove the second point. Let µ P σ such that λ “ µ ` ρKσ is regular.

Thus }λ ´ µ}2 “ }ρKµ}2. Then λ being regular and admissible, λ is very
regular. We use Corollary 3.15. The equality }λ ´ µ}2 “ }ρKµ}2 implies
λ ´ ρpλq “ µ ´ ρpµq “ µ ´ pρK ´ ρKσq. Thus ρpλq “ ρK , so λ P t˚ě0. The
element λ ´ ρK “ µ ´ pρK ´ ρKσq is in Rσ. As it is dominant, it is in σ.

Let us prove the last point. Let qµ be the complex space k{kµ equipped
with the complex structure Jµ. The equivariant index Θ of the Dirac oper-
ator associated to the Spinc-bundle SKµ “ K ˆKµ pŹ

qµ b Cµ´ρK`ρKσ q is

given by Atiyah-Bott fixed point formula: for X P t, ΘpeXq “ ř
wPW {Wµ

w ¨
eixµ,Xyś

xα,µyą0
eixα,Xy{2´e´ixα,Xy{2 . Here Wµ, the stabilizer of µ in W , is equal to the

Weyl group of the groupKσ. Using
ř

wPWσ
ǫpwqewρKσ “ ś

αą0,xα,σy“0peα{2´
e´α{2q, we obtain

(3.15) ΘpeXq “
ř

wPW ǫpwqeixwpµ`ρKσ q,Xy

ś
αą0 e

ixα,Xy{2 ´ e´ixα,Xy{2
.
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If µ ` ρKσ is singular, Θ is equal to zero. If µ ` ρKσ is regular, thanks
to the second point, µ ` ρKσ is in ρK ` Λě0, so Θ “ πµ`ρKσ .

Remark that ρKσ itself is not dominant, so it is not true that any element
µ ` ρKσ , with µ P σ, is dominant. Thus the integrality conditions on µ are
needed to obtain Proposition 3.17.

Let us prove Proposition 3.8.
We choose a Cartan subgroup T and a positive root system, and let

P “ Kµ be an admissible orbit, with µ P t˚ě0. Let σ be the face (interior)
of t˚ě0 where µ belongs. By Lemma 3.16, spPq “ Kpµ ` ρKσq. Thus the
two first points of Proposition 3.8 as well as the last point are consequence
of Proposition 3.17. From the Atiyah-Bott fixed point formula, we obtain
TrpQspin

K pP˚qqpgq “ TrpQspin
K pPqqpg´1q, so Qspin

K pP˚q “ Qspin
K pPq˚.

3.4 Complex structures

We often will use complex structures and normalized traces on real vector
spaces defined by the following procedure.

Definition 3.18 Let N be a real vector space and b : N Ñ N a linear
transformation, such that ´b2 is diagonalizable with non negative eigenval-
ues. Define

‚ the diagonalizable transformation |b| of N by |b| “
?

´b2,
‚ the complex structure Jb “ b|b|´1 on N{ kerpbq
‚ we denote by nTrN |b| “ 1

2
TrN |b|, that is half of the trace of the action

of |b| in the real vector space N . We call nTrN |b| the normalized trace of b.

If N has a Hermitian structure invariant by b, 1
2
TrN |b| is the trace of |b|

considered as a Hermitian matrix. The interest of our notation is that we
do not need complex structures to define nTrN |b|.

If N is an Euclidean space and b a skew-symmetric transformation of N ,
then ´b2 is diagonalizable with non negative eigenvalues. By definition of Jb,
the transformation b of N determines a complex diagonalizable transforma-
tion ofN{ kerpbq, and the list of its complex eigenvalues is ria1, . . . , iaℓs where
the ak are strictly positive real numbers. We have nTrN |b| “ řℓ

k“1 ak ě 0.
Recall our identification k “ k˚ with the help of a scalar product. When

β P k˚, denote by b the corresponding element of k. We have defined a
complex structure Jβ on k{kβ . On the other hand, b defines an invertible
transformation of k{kβ . It can be checked that Jβ “ Jb. If we choose a
Cartan subalgebra containing b, then nTrk|b| “ ř

αą0 |xα, by|.
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For further use, we include a lemma. Let us consider kC, the complexified
space of k. Consider the complex space

Ź
kC.

Lemma 3.19 Let b P k. Let x P R be an eigenvalue for the action of b
i
inŹ

kC. Then x ě ´nTrk|b|

Proof. Indeed, consider a Cartan subalgebra t containing b, the system
of roots ∆ and an order such that xα, by ě 0 for all α ą 0. An eigenvalue
x on

Ź
kC is thus of the form

ř
αPIĂ∆xα, by. Thus we see that the lowest

eigenvalue is ´ ř
αą0xα, by “ ´nTrk|b|.

Assume now that N Ñ M is a real vector bundle equipped with an
action of a compact Lie group K. For any b P k, and any m P M such that
bM pmq “ 0, we may consider the linear action Lpbq|Nm which is induced by
b on the fibers Nm. It is easy to check that pLpbq|Nmq2 is diagonalizable with
eigenvalues which are negative or equal to zero. We denote by |Lmpbq| “a

´pLpbq|Nmq2.

Definition 3.20 We denote by nTrNm |b| “ 1
2
Tr|Lmpbq| that is half of the

trace of the real endomorphism |Lmpbq| on Nm. We call nTrNm |b| the nor-
malized trace of the action of b on Nm.

For further use, we rewrite Corollary 3.15 as an inequality on normalized
traces.

For any b P k and µ P k˚ fixed by b, we may consider the action
adpbq : kµ Ñ kµ and the corresponding normalized trace nTrkµ |adpbq| de-
noted simply by nTrkµ |b|.

Proposition 3.21 Let b P k and denote by β the corresponding element in
k˚. Let λ, µ be elements of k˚ fixed by b. Assume that λ is very regular and
that µ ´ λ “ β. Then

}β}2 ě 1

2
nTrkµ |b|.

If the equality holds, then µ belongs to the positive Weyl chamber Cλ and

1. λ´ρpλq “ µ´ρpµq, hence λ is admissible if and only if µ is admissible,

2. spKµq “ Kλ.

Proof. Indeed, as λ is fixed by b, we see that β belong to k˚
λ. We may

assume that k˚
λ “ t˚. Thus β, λ and µ “ λ´β belong to t˚. The element λ is

a very regular element of t˚. Proposition is thus a restatement of Corollary
3.15.
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3.5 Induced Spinc bundles

Let H Ă K be the stabilizer subgroup of some element in k˚. We denote by
h the Lie algebra of H and we consider the open subset h˚

0 :“ tξ P h˚ |Kξ Ă
Hu. Equivalently, the element ξ, identified to an element of h, is such that
the transformation adpξq is invertible on k{h, so it determines a complex
structure on k{h denoted Jξ. The complex structure Jξ on k{h determined
by ξ P h˚

0 depends only of the connected component C of h˚
0 containing ξ.

Thus we denote by JC the corresponding complex structure on q “ k{h, by
ρC P z˚ the element ρKpξq ´ ρHpξq for any ξ P C and by qC the complex
vector space q equipped with JC . If C and C 1 are two connected components,
we denote by ǫC

1

C the ratio of the orientation opJCq and opJC1q on q.
Consider a compact H-manifold Y and the manifold M “ K ˆH Y .

Assume M is oriented and equipped with a K-equivariant Spinc-bundle S.
At the level of tangent spaces we have TM |Y » rqs ‘TY where rqs “ Y ˆq.
We orient the manifold Y through the relation opMq “ opJCqopY q. We
consider the Spinc-bundle SY defined by

(3.16) S|Y “
”ľ

qC
ı

b SY .

Here
“Ź

qC
‰

“ Y ˆ Ź
qC is a Spinc-bundle for the trivial bundle rqs.

This gives a bijection (depending of C) between theK-equivariant Spinc-
bundles S on M and the H-equivariant Spinc-bundles SY on Y . If the
relation (3.16) holds, we say that S is the Spinc-bundle induced by SY . In
this “induced setting”, we have

(3.17) QKpM,Sq “ IndKH

´ľ
qC b QHpY,SY q

¯
.

See [24].
We end this section by considering the particular case of an induced

manifoldM :“ KˆHHµ whereHµ is an admissibleH-coadjoint orbit. Here
Hµ is equipped with its canonical Spinc-bundle SHµ, and the representation

QHpHµ,SHµq is simply denoted by Qspin
H pHµq.

The Spinc index on the manifold M “ KˆHHµ is equal to the character

ICµ :“ IndKH

´ľ
qC b Qspin

H pHµq
¯
.

The following result will be used in Section 5.4.

Proposition 3.22 ‚ If µ ` ρC R h˚
0 , then ICµ “ 0.
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‚ If µ ` ρC P h˚
0 , then µ ` ρC is K-admissible, and

ICµ “ ǫCC1 Q
spin
K pKpµ ` ρCqq

where C 1 is the connected component of h˚
0 containing µ ` ρC .

Proof. By definition Qspin
H pHµq “ IndHHµ

´ Ź
Jµ

h{hµ b Cµ´ρHpµq

¯
. We

assume first that µ1 :“ µ ` ρC P h˚
0 : let C 1 be the connected component of

h˚
0 containing µ ` ρC . As Kµ1 “ Hµ1 “ Hµ, we have

ICµ “ IndKKµ1

´ ľ
qC b

ľ

Jµ1

h{hµ1 b Cµ1´ρC´ρHpµ1q

¯
.

Now we use the fact that the gradedKµ1-module
Ź

qC is equal to ǫCC1

Ź
qC

1 b
CρC´ρ1

C
(see Example 2.2). It gives that

ICµ “ ǫCC1 IndKKµ1

´ ľ
qC

1 b
ľ

Jµ1

h{hµ1 b Cµ1´ρC1 ´ρHpµ1q

¯

“ ǫCC1 IndKKµ1

´ ľ

Jµ1

k{kµ1 b Cµ1´ρpµ1q

¯

“ ǫCC1 Q
spin
K pKµ1q.

Assume now that ICµ ‰ 0. The equivariant index Qspin
H pHµq must be

non zero. Hence we have Qspin
H pHµq “ Qspin

H pHµ̃q where µ̃ P µ ` ophµq is an
H-admissible and H-regular element.

Consider the maximal torus T :“ Hµ̃, and the Weyl chamber C “ t˚ě0 for
K containing µ̃. Let JC be the corresponding complex structure on k{t. Let
ρK be the ρ element associated to the choice of Weyl chamber. Let C 1 be
the connected component of h˚

0 that contains the open face t˚ą0. We check
that ρK “ ρC1 ` ρHpµ̃q.

Like before one has

ICµ “ IndKH

´ľ
qC b Qspin

H pHµ̃q
¯

“ IndKT

´ ľ
qC b

ľ

Jµ̃

h{t b Cµ̃´ρHpµ̃q

¯

“ ǫCC1 IndKT

´ ľ

JC

k{t b Cµ̃`ρC´ρK

¯
.

We see then that ICµ ‰ 0 only if λ :“ µ̃ ` ρC “ µ1 ` ρHµ1 is a K-regular
element.
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Here we have }ρHµ1 } “ }λ ´ µ1}, and one the other hand by the magical
inequality we must have }λ´µ1} ě }ρKµ1 } since λ is K-regular and admissi-
ble. It forces }ρKµ1 } to be equal to }ρHµ1 }, and then Kµ1 “ Hµ1 : the element
µ1 “ µ ` ρC belongs to h˚

0 .
The proof is completed.

Remark 3.23 This proposition is a particular case of the vanishing theorem
that we will prove later on in Section 4.5.1. Indeed the generic stabilizer of
the action of K on M » K{Hµ is Hµ, and the moment map associated to
the induced bundle is k ÞÑ k ¨µ1. Our vanishing Theorem 4.19 says then that
for QKpM,Sq to be non zero, the subalgebras hµ and kµ1 have to be equal.

3.6 Slices

We assume here that M is a K-manifold and that Φ : M Ñ k˚ is a K-
equivariant map. If O is a coadjoint orbit, a neighborhood of Φ´1pOq in
M can be identified with an induced manifold, and the restriction of Spinc-
bundles to a neighborhood of Φ´1pOq can be identified to an induced bundle.
To this aim, let us recall the notion of slice [16].

Definition 3.24 Let M be a K-manifold and m P M with stabilizer sub-
group Km. A submanifold Y Ă M containing m is a slice at m if Y is
Km-invariant, KY is a neighborhood of m, and the map

K ˆKm Y ÝÑ M, rk, ys ÞÑ ky

is an isomorphism on KY .

Consider the coadjoint action of K on k˚. Define Uξ to be the connected
component of the open subset pk˚

ξ q0 :“ tζ P k˚
ξ | kζ Ă kξu of k˚

ξ containing ξ.
Then K ˆKξ

Uξ Ñ KUξ is a diffeomorphism. We call Uξ the maximal slice
at ξ.

The following construction was used as a fundamental tool in the sym-
plectic setting [11].

Proposition 3.25 Let Φ : M Ñ k˚ be a K-invariant map. Let ξ P k˚, and
let Uξ be the maximal slice at ξ.

• Y “ Φ´1pUξq is a Kξ-invariant submanifold of M (perhaps empty).

• KY is an open neighborhood of Φ´1pKξq diffeomorphic to K ˆKξ
Y .
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The manifold Y , when is not empty, is called the slice (of M) at ξ P k˚.
Note that Y can be disconnected.

Proof. Let us consider the Kξ-invariant decompositions k “ kξ ‘ q,
k˚ “ k˚

ξ ‘ q˚: we denote ξ Ñ rξsq˚ the corresponding projection to q˚.
A point ζ is in pk˚

ξ qo if and only if the map Y P q Ñ Y ζ is an isomorphism
from q to q˚. Thus for any y P Y , the linear map Πy :“ r´sq˚ ˝TyΦ : TyM Ñ
q˚ is onto. Indeed, the tangent space to Ky projects onto the tangent
space to KΦpyq, which contains rq,Φpyqs “ q˚. Thus we obtain that Y is a
submanifold with tangent space kerpΠyq and furthermore TyM “ TyY ‘q¨y.

The rest of the assertions follow from the fact that Uξ is a slice at ξ for
the coadjoint action.

4 Computing the multiplicities

4.1 Transversally elliptic operators

In this subsection, we recall the basic definitions from the theory of transver-
sally elliptic symbols (or operators) defined by Atiyah and Singer in [1]. We
refer to [4, 22] for more details.

Let M be a compact K-manifold with cotangent bundle T˚M . Let
p : T˚M Ñ M be the projection. If E is a vector bundle on M , we may
denote still by E the vector bundle p˚E on the cotangent bundle T˚M . If
E`, E´ are K-equivariant complex vector bundles over M , a K-equivariant
morphism σ P ΓpT˚M, hompE`, E´qq is called a symbol on M . For x P M ,
and ν P T˚

xM , thus σpx, νq : E`
x Ñ E´

x is a linear map from E`
x to E´

x .
The subset of all px, νq P T˚M where the map σpx, νq is not invertible is
called the characteristic set of σ, and is denoted by Charpσq. A symbol
is elliptic if its characteristic set is compact. An elliptic symbol σ on M

defines an element rσs in the equivariant K-theory of T˚M with compact
support, which is denoted by K0

KpT˚Mq. The index of σ is a virtual finite
dimensional representation of K, that we denote by IndexMK pσq P RpKq.

Recall the notion of transversally elliptic symbol. Let T˚
KM be the fol-

lowing K-invariant closed subset of T˚M

T˚
KM “ tpx, νq P T˚M, xν,X ¨ xy “ 0 for all X P ku .

Its fiber over a point x P M is formed by all the cotangent vectors ν P T˚
xM

which vanish on the tangent space to the orbit of x under K, in the point
x. A symbol σ is K-transversally elliptic if the restriction of σ to T˚

KM
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is invertible outside a compact subset of T˚
KM (i.e. Charpσq X T˚

KM is
compact).

A K-transversally elliptic symbol σ defines an element of K0
KpT˚

KMq,
and the index of σ defines an element IndexMK pσq of R̂pKq defined in [1].

We will use the following obvious remark. Let σ P ΓpT˚M, hompE`, E´qq
be a transversally elliptic symbol on M .

Lemma 4.1 Assume an element b P K acts trivially on M , and that E˘

are K-equivariant vector bundles on M such that the subbundles rE˘sb fixed
by b are equal to t0u. Then rIndexMK pσqsK “ 0

Proof. The space rIndexMK pσqsK is constructed as the (virtual) subspace of
invariant C8-sections of the bundle E˘ which are solutions of a K-invariant
pseudo-differential operator on M with symbol σ. But, as the action of b is
trivial on the basis, and rE˘sb “ t0u, the space of b-invariant C8-sections
of the bundle E˘ is reduced to 0.

Any elliptic symbol isK-transversally elliptic, hence we have a restriction
map K0

KpT˚Mq Ñ K0
KpT˚

KMq, and a commutative diagram

(4.18) K0
KpT˚Mq //

IndexM

K

��

K0
KpT˚

KMq

IndexM

K
��

RpKq // R̂pKq .

Using the excision property, one can easily show that the index map
IndexK : K0

KpT˚
KUq Ñ R̂pKq is still defined when U is a K-invariant rela-

tively compact open subset of a K-manifold (see [20][section 3.1]).
In the rest of this article, M will be a Riemannian manifold, and we

denote ν P T˚M Ñ ν̃ P TM the corresponding identification.

4.2 The Witten deformation

In this section M is an oriented K-manifold of even dimension (not neces-
sarily compact). Let Φ : M Ñ k˚ be a K-equivariant map. Let κΦ be the
Kirwan vector field associated to Φ (see (2.10)). We denote by ZΦ the set
of zeroes of κΦ (clearly ZΦ contains the set of fixed points of the action of
K on M as well as Φ´1p0q).

Definition 4.2 Let σpM,Sqpm, νq “ cSmpν̃q : S`
m Ñ S´

m be the symbol of
the Dirac operator attached to the Spinc-bundle S, and let Φ : M Ñ k˚ be
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an equivariant map. The symbol σpM,S,Φq pushed by the vector field κΦ is
the symbol defined by

σpM,S,Φqpm, νq “ cSmpν̃ ´ κΦpmqq : S`
m ÝÑ S´

m

for any pm, νq P TM .
Similarly if W Ñ M is a K-equivariant vector bundle, we define

σpM,S b W,Φqpm, νq “ σpM,S,Φqpm, νq b IdWm .

Note that σpM,S,Φqpm, νq is invertible except if ν̃ “ κΦpmq. If further-
more pm, νq belongs to the subset T˚

KM of cotangent vectors orthogonal to
the K-orbits, then ν “ 0 and κΦpmq “ 0. Indeed κΦpmq is tangent to K ¨m
while ν̃ is orthogonal. So we note that pm, νq P CharpσpM,S,ΦSqq X T˚

KM

if and only if ν “ 0 and κΦpmq “ 0.
For any K-invariant open subset U Ă M such that U XZΦ is compact in

M , we see that the restriction σpM,S,Φq|U is a transversally elliptic symbol
on U , and so its equivariant index is a well defined element in R̂pKq.

Thus we can define the following localized equivariant indices.

Definition 4.3 • A closed invariant subset Z Ă ZΦ is called a compo-
nent if it is a union of connected components of ZΦ.

• If Z Ă ZΦ is a compact component, and W is a K-equivariant vector
bundle over M , we denote by

QKpM,S b W, Z,Φq P R̂pKq
the equivariant index of σpM,S b W,Φq|U where U is an invariant
neighborhood of Z so that U X ZΦ “ Z.

• If we make the Witten deformation with the map Φ “ ΦS , the term
QKpM,S b W, Z,ΦSq is denoted simply by QKpM,S b W, Zq.

By definition, Z “ H is a component and QKpM,S b W,H,Φq “ 0.
When M is compact it is clear that the classes of the symbols σpM,S,Φq

and σpM,Sq are equal in K0
KpT˚

KMq, thus we get the first form of the
localization theorem.

Theorem 4.4 Assume that M is compact. If ZΦ “ Z1

š
. . .

š
Zp is a

decomposition into disjoint (compact) components, we have the following
equality in R̂pKq :

QKpM,Sq “
pÿ

i“1

QKpM,S, Zi,Φq
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Remark 4.5 Write ΦSpZSq “ š
j Oj as a disjoint union of a finite set of

coadjoint orbits. Then we obtain the decomposition

QKpM,Sq “
ÿ

j

QOj

with QO “ QKpM,S,Φ´1
S pOq X ZSq. As in [20], this decomposition is the

main tool of our study. However, in this work, we will need to introduce a
further refinement of this decomposition.

Example 4.6 We return to our basic example (Example 2.12). Let p` “
r1, 0s and p´ “ r0, 1s be the fixed points of the T -action on M “ P1pCq. The
determinant line bundle of Spnq is Ln “ rC´1s b Lb2n`2 where rC´1s is the
trivial line bundle equipped with the representation t´1 on C. We choose the
moment map Φn associated to a connection on the determinant bundle (see
more details in Section 6):

Φnprz1, z2sq “ pn ` 1q |z1|2
|z1|2 ` |z2|2 ´ 1

2
.

Then, for n ě 0, Z “ tp`u Y tp´u Y Φ´1
n p0q, thus ΦnpZSq “ t´1

2
u Y t0u Y

tn` 1
2
u. Remark that ZS is smooth: it has 3 connected components, the two

fixed points, and Φ´1
n p0q a circle with free action of T . Then we obtain the

associated decomposition QT pM,Spnqq “ Q´ 1

2

` Q0 ` Q 1

2

with

Q´ 1

2

“ ´
´8ÿ

k“´1

tk, Q0 “
´8ÿ

k“´8

tk, Q 1

2

“ ´
8ÿ

k“n`1

tk.

Example 4.7 Take the product N “ P1pCq ˆ P1pCq, with Spinc bundle
S “ Sp0q b Sp0q, moment map Φ0 and we consider the diagonal action of
T with moment map Φpm1,m2q “ Φ0pm1q ` Φ0pm2q. As QT pP1pCq,Sp0qq
is the trivial representation of T , QT pN,Sq is still the trivial representation
of T .

We have ΦpZSq “ t´1u Y t0u Y t1u. In this case Φ´1p˘1q “ tpp˘, p˘qu,
and Φ´1p0q is not smooth.

Consider the associated decomposition of QT pN,Sq “ Q´1 ` Q0 ` Q1.
We have

Q´1 “
´2ÿ

k“´8

p´k ´ 1qtk, Q0 “
´8ÿ

k“´8

p|k| ´ 1qtk, Q1 “
8ÿ

k“2

pk ´ 1qtk.

We see that indeed Q´1 ` Q0 ` Q1 “ t0. Figure 9 shows the corresponding
multiplicity functions.
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Figure 9: The graph of Q´1 ` Q1 and the graph of Q0

4.3 Some properties of the localized index

In this subsection, we recall the properties of the localized index
QKpM,S, Z,Φq that we will use in this article.

4.3.1 Fixed point submanifolds and Spinc-bundles

Let S be a K-equivariant Spinc-bundle over the tangent bundle TM of a K-
manifold M (equipped with an invariant Riemannian metric). The manifold
M is oriented and the Clifford bundle S is equipped with its canonical Z{2Z-
grading. Let b P k be a non-zero K-invariant element, and consider the
submanifold M b where the vector field bM vanishes. We have an orthogonal
decomposition

TM |Mb “ N ‘ TM b.

The normal bundle N inherits a fibrewise linear endomorphism Lpbq
which is anti-symmetric relatively to the metric.

Definition 4.8 ‚ We denote by Nb the vector bundle N over M b equipped
with the complex structure Jb :“ Lpbq|Lpbq|´1.

‚ We take on N the orientation opN q induced by the complex structure
´Jb. On M b we take the orientation opM bq defined by opN qopM bq “ opMq.

Note that the endomorphism Lpbq : Nb Ñ Nb is C-linear, diagonalizable,
with eigenvalues iθ1X , . . . , iθ

p
X that depends of the connected component X

of M b. For further use, we note the following positivity result which follows
directly from the definition of Jb.

Lemma 4.9 The eigenvalues of the action of 1
i
Lpbq on Nb are positive.

If we consider the complex line bundle detpNbq Ñ M b, we see that 1
i
Lpbq

acts on the fibers of detpNbq|X by multiplication by the positive number

nTrNb|X |b| “
pÿ

j“1

θ
j
X .
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Proposition 4.10 Let LS be the determinant line bundle of the Spinc bun-
dle S. There exists a equivariant Spinc-bundle dbpSq on the tangent bundle
TM b with determinant line bundle equal to

(4.19) LdbpSq :“ LS |Mb b detpNbq.

Proof. The restriction S|Mb is a Spinc-bundle over the tangent bundle
TM |Mb “ N ‘ TM b. We denote Nb the vector bundle N with the complex
structure ´Jb. Let

Ź
Nb be the Spinc bundle on N with its canonical

grading : since opN q “ op´Jbq we have pŹ
Nbq˘ “ Ź˘

Nb.
Since

Ź
Nb is a graded Spinc-bundle over N , we know that there exists

an equivariant Spinc bundle dbpSq over the tangent bundle TM b (with its
canonical grading) such that

(4.20) S|Mb “
ľ

Nb b dbpSq.

is an isomorphism of graded Clifford modules. At the level of determinant
line bundle, we get detpSq|Mb “ detpNbqbdetpdbpSqq. Identity (4.19) follows.

Consider the linear action Lpbq|dbpSq of b on the fibers of the Spinc-bundle

dbpSq Ñ M b.

Lemma 4.11 We have 1
i
Lpbq|dbpSq “ a IddbpSq where

apmq “ xΦSpmq, by ` 1

2
nTrTmM |b|

is a locally constant function on M b.

Proof. Thanks to Remark 2.8, we know that apmq is equal to xΦdbpSqpmq, by
where ΦdbpSq is a moment map attached to the line bundle LdbpSq. Thanks to

(4.19) we see that xΦdbpSqpmq, by “ xΦSpmq, by ` 1
2
TrNb

|b|. But nTrTM |b| “
TrNb

|b| as well as and xΦSpmq, by are locally constant on M b.

The localization formula of Atiyah-Segal can be expressed in the follow-
ing way (see [24]):

Theorem 4.12 Let b P k be a non-zero K-invariant element and assume
that M is compact. For any complex K-vector bundle W Ñ M , we have the
following equalities in R̂pKq :

QKpM,S b Wq “ QK

´
M b, dbpSq b W|Mb b SympNbq

¯
.

Here SympNbq is the symmetric algebra of the complex vector bundle Nb.
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4.3.2 The localization formula over a coadjoint orbit

Let Φ : M Ñ k˚ be an equivariant map. Let β P k˚. We also consider β as an
element of k that we denote by the same symbol. In this section we assume
that Zβ “ KpMβ XΦ´1pβqq is a compact component of ZΦ Ă M . The study

of QKpM,S b W, Zβ ,Φq P R̂pKq is thus localized in a neighborhood of
Φ´1pKβq, an induced manifold. Let us recall the corresponding induction
formula.

The restriction of Φ to Mβ is a Kβ-equivariant map taking value in k˚
β .

The subset Z 1
β “ MβXΦ´1pβq is a compact component of ZΦ|

Mβ
“ ZΦXMβ .

We may then define the localized index

QKβ
pMβ , dβpSq b W|Mβ , Z 1

β ,Φ|Mβ q P R̂pKβq

where dβpSq is the graded Spinc-bundle on Mβ defined in Proposition 4.10.
We consider the normal bundle N Ñ Mβ of Mβ in M . Recall that Nβ

denotes the vector bundle N equipped with the complex Jβ . The following
formula is proved in [20, 24]:

QKpM,S b W, Zβ ,Φq
“ IndKKβ

´
QKβ

pMβ , dβpSq b W|Mβ b SympNβq, Z 1
β ,Φ|Mβ q b

ľ
pk{kβqC

¯
.

Remark 4.13 When K is abelian, this gives

QKpM,S b W,Φ´1pβq X Mβ ,Φq
“ QKpMβ , dβpSq b W|Mβ b SympNβq,Φ´1pβq X Mβ ,Φ|Mβ q

which shows that the Atiyah-Segal localization formula (4.12) still holds for
the Witten deformation.

Thus we obtain the following proposition.

Proposition 4.14 Let S be a K-equivariant Spinc-bundle over M , with its
canonical grading. Let Φ : M Ñ k˚ be an equivariant map. Let W Ñ M be
an equivariant complex vector bundle. Assume that Zβ “ KpMβ X Φ´1pβqq
is a compact component of ZΦ Ă M . Then

rQKpM,S b W, Zβ ,ΦqsK “
”
QKβ

pMβ , dβpSq b W|Mβ b SympNβq, Z 1
β ,Φ|Mβ q b

ľ
pk{kβqC

ıKβ

.(4.21)
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This proposition will be used to obtain vanishing results, by studying
the infinitesimal action of β on the vector bundle dβpSqbW|Mβ bSympNβq.

The formula (4.21) can be specialized to each connected component of
Mβ . For a connected component X Ă Mβ intersecting Φ´1pβq, we define
the compact subset

ZβpX q “ K
`
X X Φ´1pβq

˘
Ă Zβ .

First we note that QKpM,SbW, Zβ ,Φq is equal to the sum
ř

X QKpM,Sb
W, ZβpX q,Φq parameterized by the connected component ofMβ intersecting
Φ´1pβq (their are finite in number).

We have a localization formula for each term QKpM,S b W, ZβpX q,Φq
separately (see [20, 24]) :

rQKpM,S b W, ZβpX q,ΦqsK “(4.22)
”
QKβ

pX , dβpSq|X b W|X b SympNβq|X , Z 1
βpX q,Φ|X q b

ľ
pk{kβqC

ıKβ

where Z 1
βpX q “ X X Φ´1pβq Ă Z 1

β .

4.3.3 Induction formula

For the Witten deformation, we proved in [24] the following variation on the
invariance of the index under direct images.

Let H be a closed subgroup of K, and consider a H-invariant decompo-
sition

k “ h ‘ q.

Let Bq be an open ball in q, centered at 0 and H-invariant. Let N 1 be a
H-manifold, and consider N “ K ˆH pBq ˆ N 1q. Then N 1 is a submanifold
of M , and the normal bundle of N 1 in N is isomorphic to the trivial bundle
with fiber q‘ q. Let Sq be the Spinc module for q‘ q (we can take

Ź
qC as

realization of Sq). Thus if E is a K-equivariant graded Clifford bundle on
N , there exists a H-equivariant graded Clifford bundle E 1 on N 1 such that

E |N 1 “ Sq b E 1.

Let Φ1 : N 1 Ñ h˚ be a H-equivariant map, and let Φ : N Ñ k˚ be a
K-equivariant map. We assume that these maps are linked by the following
relations :

(4.23)

$
’&
’%

Φ|N 1 “ Φ1,

Φpr1;X,n1sq P h˚ ðñ X “ 0,

pΦpr1;X,n1sq, Xq ě 0,
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for pX,n1q P Bq ˆ N 1.
Under these conditions, we see that the critical sets ZΦ Ă N and ZΦ1 Ă

N 1 are related by : ZΦ “ K ˆH pt0u ˆ ZΦ1q.

Proposition 4.15 ([24]) Let Z be a compact component of ZΦ and Z 1 its
intersection with N 1. Then Z 1 is a compact component of ZΦ1 and

QKpN, E , Z,Φq “ IndKH
`
QHpN 1, E 1, Z 1,Φ1q

˘
.

This leads to the relation rQKpN, E , Z,ΦqsK “ rQHpN 1, E 1, Z 1,Φ1qsH .

4.4 The function dS

Let M be a compact oriented even dimensional K-manifold, equipped with
a K-equivariant Spinc bundle S. Let ΦS be the associated moment map on
M , and κS be the Kirwan vector field. Let ZS be the vanishing set of κS :

ZS “ tm P M | ΦSpmq ¨ m “ 0u “
ď

θ

M θ X Φ´1
S pθq.

We now introduce a function dS : ZS ÝÑ R which will localize our study of
rQKpM,S, ZSqsK to special components Z of ZS .

Define dS : ZS ÝÑ R by the following relation

(4.24) dSpmq “ }θ}2 ` 1

2
nTrTmM |θ| ´ nTrk|θ|, with θ “ ΦSpmq.

Lemma 4.16 • The function dS is a K-invariant locally constant func-
tion on ZS that takes a finite number of values.

• The subsets Zą0
S “ tdS ą 0u, Z“0

S “ tdS “ 0u, Ză0
S “ tdS ă 0u are

components of ZS .

Proof. The K-invariance of dS is immediate.
The image ΦSpZSq is equal to a finite union

Ť
j Oj of coadjoint orbits.

For each coadjoint orbit O “ Kβ, the set ZS X Φ´1
S pOq is equal to a finite

disjoint union
Ť

j KpX jXΦ´1
S pβqq where pX jq are the connected components

ofMβ intersecting Φ´1
S pβq. Sincem ÞÑ nTrTmM |θ| is well defined and locally

constant onM θ, the map dS is constant on each componentKpX jXΦ´1
S pβqq.

This proves that dS is locally constant function that takes a finite number
of values.

The second point is a direct consequence of the first.

We now prove the following fundamental fact.
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Proposition 4.17 Let Zą0
S be the component of ZS where dS takes strictly

positive values. We have
“
QKpM,S, Zą0

S q
‰K “ 0.

Since QKpM,Sq “ QKpM,S, Ză0
S q ` QKpM,S, Z“0

S q ` QKpM,S, Zą0
S q

by Theorem 4.4, note first the following immediate corollary.

Corollary 4.18 If dS takes non negative values on ZS , we have

rQKpM,SqsK “ rQKpM,S, Z“0
S qsK .

We now prove Proposition 4.17.
Proof. Consider a coadjoint orbit Kβ contained in ΦSpZSq. Let X

be the connected component of Mβ and let Z 1
βpX q :“ X X Φ´1pβq. Let

ZβpX q “ KZ 1
βpX q. Let us show that rQKpM,S, ZβpX qqsK “ 0 if dS is

strictly positive on ZβpX q.
As rQKpM,S, ZβpX qqsK is equal to

(4.25)
”
QKβ

pX , dβpSq|X b SympNβq|X , Z 1
βpX q,ΦS |X q b

ľ
pk{kβqC

ıKβ

by the localization formula (4.22), it is sufficient to prove that the infinitesi-
mal action Lpβq on the fibers of the vector bundles dβpSq|X bSymjpNβq|X bŹpk{kβqC have only strictly positive eigenvalues. We establish this by mi-
norizing the possible eigenvalues : they are sums of eigenvalues on each
factor of the tensor product.

We have

1

i
Lpβq “

$
’&
’%

}β}2 ` 1
2
nTrTM |X |β| on dβpSq|X ,

ě 0 on SymjpNβq|X ,
ě ´nTrk|β| on

Źpk{kβqC.

In the first equality, we have used Lemma 4.11: the function m ÞÑ
xΦSpmq, βy is constant on X , and as X contains a point projecting on β,
1
i
Lpβq|dβpSq|X “ p}β}2 ` 1

2
nTrTM |X |β|q IddβpSq|X .

In the second inequality, we used Lemma 4.9, so that the action of 1
i
Lpβq

on the graded piece SymjpNβq is strictly positive for j ą 0 or equal to 0 for
j “ 0.

In the last inequality, we have used Lemma 3.19.
If dS takes a strictly positive value on ZβpX q, we see that 1

i
Lpβq ą 0 on

dβpSq|X b SymjpNβq|X b Źpk{kβqC : this forces (4.25) to be equal to zero.
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4.5 The Witten deformation on the product M ˆ O˚

In this section, M is a compact oriented even dimensional K-manifold,
equipped with a K-equivariant Spinc bundle S. Let ΦS be the associated
moment map on M . Our aim is to compute geometrically the multiplicities
of the equivariant index QKpM,Sq.

4.5.1 Vanishing theorems

Let Hk be the set of conjugacy classes of the reductive algebras kξ, ξ P k˚.
We denote by Sk the set of conjugacy classes of the semi-simple parts rh, hs
of the elements phq P Hk.

Recall that an orbit P is a phq-ancestor of O if P belongs to the Dixmier
sheet k˚

phq and spPq “ O. Here spPq is defined as follows : if P “ Kµ with

kµ “ h, then spPq “ Kpµ ` ophqq (see Definition 3.7).

Recall that the map O ÞÑ πO :“ Qspin
K pOq is a bijection between the

regular admissible orbits and pK. If O is a regular admissible orbit, then
O˚ :“ ´O is also admissible and πO˚ “ pπOq˚. If we apply the shifting
trick, we see that the multiplicity of πO in QKpM,Sq is equal to

mO “ rQKpM,Sq b pπOq˚sK

“ rQKpM ˆ O˚,S b SO˚qsK .(4.26)

Let pkM q be the generic infinitesimal stabilizer of the K-action on M . In
this section, we prove the following vanishing results.

Theorem 4.19 • If prkM , kM sq ‰ prh, hsq for any phq P Hk, then

QKpM,Sq “ 0

for any K-equivariant Spinc-bundle S on M .

• Assume that prkM , kM sq “ prh, hsq for phq P Hk. Then

mO “ 0

if there is no phq-ancestor P to O contained in ΦSpMq.

We consider the productMˆO˚ equipped with the Spinc-bundle SbSO˚ .
The corresponding moment map is ΦSbS

O˚ pm, ξq “ ΦSpmq ` ξ. We use
the simplified notation ΦO for ΦSbS

O˚ , κO for the corresponding Kirwan
vector field on M ˆ O˚, ZO :“ tκO “ 0u, and dO for the function dSbS

O˚
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on ZO. Theorem 4.19 will result from a careful analysis of the function
dO : ZO Ñ R that was introduced in Section 4.4. Thanks to Proposition 4.17
and Corollary 4.18, Theorem 4.19 is a direct consequence of the following
theorem.

Theorem 4.20 Let O be a regular admissible orbit.

• The function dO is non negative on ZO.

• If the function dO is not strictly positive, then there exists a unique
phq P Hk such that the following conditions are satisfied:

1. prkM , kM sq “ prh, hsq.
2. the orbit O has an phq-ancestor P contained in ΦSpMq.

Proof. Let P “ M ˆ O˚ and let us compute the function dO on ZO.
Let m P M and λ P O. The point p “ pm,´λq P ZO Ă P if and only
ΦOppq ¨ p “ 0. Let β “ ΦOppq. This means that β stabilizes m and λ, and
if µ “ ΦSpmq P k˚, then β “ µ ´ λ.

We write Tpm,´λqP “ TmM ‘ T´λO
˚ and, since O˚ is a regular orbit,

we have nTrT´λO
˚ |β| “ nTrk|β|.

We consider a Km-invariant decomposition TmM “ k ¨ m ‘ Em where
k¨m » k{km, we obtain nTrTmM |β| “ nTrEm |β|`nTrk|β|´nTrkm |β|. Thus,

dOppq “ }β}2 ` 1

2
nTrTpm,´λqP |β| ´ nTrk|β|

“ }β}2 ` 1

2
nTrTmM |β| ´ 1

2
nTrk|β|

“ }β}2 ` 1

2
nTrEm |β| ´ 1

2
nTrkm |β|

ě }β}2 ` 1

2
nTrEm |β| ´ 1

2
nTrkµ |β|.(4.27)

In the last inequality, we used km Ă kµ as µ “ ΦSpmq. By Proposition
3.21, }β}2 ´ 1

2
nTrkµ |β| ě 0 when β “ µ ´ λ, as λ is very regular (being

regular and admissible), and β P kµ X kλ. Then the first point follows.
Assume now that there exists a point p “ pm,´λq P ZO such that

dOppq “ 0. It implies then that }β}2 “ 1
2
nTrkµ |β| and nTrEm |β| “ 0. The

first equality implies, thanks to Proposition 3.21, that Kµ is an admissible
orbit such that spKµq “ O. Let us denoteH “ Kµ : the relation spKµq “ O

implies that ´β P ophq Ă rh, hs˚. We write ´β “ ρH . Now we have to

46



explain why the condition nTrEm |ρH | “ 0 implies prkM , kM sq “ prh, hsq.
Since ΦSpmq “ µ, we have

(4.28) pkM q Ă pkmq Ă phq.

Consider Y “ Φ´1
S pUµq theH-invariant slice constructed in Proposition 3.25.

The product KY is an invariant neighborhood of m isomorphic to K ˆH Y .
The subspace Em can be taken as the subspace TmY Ă TmM . Now the
condition nTrEm |ρH | “ 0 implies that ρH acts trivially on the connected
component Ym of Y containing m. Elements X P rh, hs such that XYm “ 0
form an ideal in rh, hs. Since the ideal generated by ρH in rh, hs is equal to
rh, hs, we have proved that rh, hs acts trivially on Ym. Since KYm is an open
subset of M , we get

(4.29) prh, hsq Ă pkM q.

With (4.28) and (4.29) we get prkM , kM sq “ prh, hsq. Finally we have proven
that if dO vanishes at some point p, then prkM , kM sq “ prh, hsq for some
phq P Hk, and there exists an admissible orbit Kµ Ă k˚

phq XΦSpMq such that

spKµq “ O.

4.5.2 Geometric properties

We summarize here some of the geometric properties enjoyed by (M , Φ “
ΦS), when QKpM,Sq is not zero.

Let phq P Hk. We choose a representative h. Let H be the corresponding
group and NKpHq be the normalizer of H in K. Consider the decomposition
h “ rh, hs ‘ z where z is the center of h. Thus z˚ Ă h˚. Consider the open
set

h˚
0 “ tξ P h˚ | kξ Ă hu

of h˚. Let z˚
0 “ h˚

0 X z˚ be the corresponding open subset of z˚
0 .

We first note the following basic proposition.

Proposition 4.21 Let M be a K-manifold such that prkM , kM sq “ prh, hsq
and let Φ : M Ñ k˚ be an equivariant map. Then

• ΦpMq Ă Kz˚.

• Assume Y :“ Φ´1ph˚
0q non empty, then

a) Y is a submanifold of M invariant by the action of NKpHq, and
rH,Hs acts trivially on Y.
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b) The image ΦpYq is contained in z˚
0 .

c) The open subset KY is diffeomorphic to K ˆNKpHq Y.

Proof. Let us prove the first item. Using our K-invariant inner product,
we consider Φ as a map Φ : M Ñ k. The condition on the infinitesimal
stabilizer pkM q gives that M “ KM rH,Hs. If m P M rH,Hs, the term Φpmq
belongs to the Lie algebra g of the centralizer subgroup G :“ ZKprH,Hsq.
But one can easily prove that z is a Cartan subalgebra of g: hence Φpmq is
conjugated to an element of z. This proves the first item.

If Y is non empty, the proof that it is a submanifold follows the same
line than the proof of Proposition 3.25. The set KY is a non empty open
set in M : so on Y we have pkM q “ pkyq on a dense open subset Y 1. The
condition prkM , kM sq “ prh, hsq implies that dimrh, hs “ dimrky, kys on Y 1,
but since ky Ă kΦpyq Ă h, we conclude that rh, hs “ rky, kys Ă ky on Y 1 : in
other words rH,Hs acts trivially on Y, and rh, hs “ rky, kys for any y P Y.
Furthermore, if ξ “ Φpyq, then rh, hs acts trivially on ξ. So ξ is in the center
of h.

Let us prove that π : K ˆNKpHq Y Ñ KY is one to one. If y1 “ ky2, we
have ξ1 “ kξ2 with ξi “ Φpyiq. As ΦpY q Ă z˚

0 , the stabilizers of ξ1, ξ2 are
both equal to H. It follows that k belongs to the normalizer of H.

The following theorem results directly from Theorem 4.20 and Lemma
4.21. Indeed, in the case where QKpM,Sq ‰ t0u, then prkM , kM sq “ prh, hsq
for some phq P Hk. Furthermore, there exists at least a regular admissible
orbit O such that mO is non zero, and consequently there exists orbit P Ă
k˚

phq X ΦSpMq.

Theorem 4.22 Let M be a K-manifold and let S be an equivariant Spinc-
bundle on M with moment map ΦS . Assume QKpM,Sq ‰ t0u. Then

• There exists phq P Hk such that prkM , kM sq “ prh, hsq.

• If z is the center of h, then ΦSpMq Ă Kz˚ and the open set Φ´1
S pKz˚

0q
is non empty.

• The group rH,Hs acts trivially on the submanifold Y “ Φ´1
S pz˚

0q.

In the next sections, we consider a connected component C of h˚
0 . We

consider the H-invariant submanifold YC :“ Φ´1
S pCq of Y : here the open

subset KYC is diffeomorphic to K ˆH YC .
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We follow here the notations of Section 3.5. We denote qC the vector
space k{h equipped with the complex structure JC . There exists a unique
H-equivariant Spinc-bundle SYC

on YC such that

(4.30) S|YC
»

ľ
qC b SYC

.

At the level of determinant line bundles we have detpSYC
q “ detpSq|YC

b
C´2ρC , and the corresponding moment map satisfy the relation ΦYC

“
ΦS |YC

´ ρC .
We know already that the subgroup rH,Hs acts trivially on the subman-

ifold YC (see Theorem 4.22). It acts also trivially on the bundle SYC
since

the moment map ΦYC
takes value in z˚ (see Remark 2.8).

4.5.3 Localization on Z“0
O

Let O be a regular admissible orbit. By Theorem 4.20 and Corollary 4.18,
we know that our object of study

mO “ rQKpM ˆ O˚,S b SO˚qsK

is equal to
“
QKpM ˆ O˚,S b SO˚ , Z“0

O ,ΦOq
‰K

.
Let us give a description of the subset Z“0

O of ZO Ă M ˆ O˚ where
dO vanishes. We denote by q : M ˆ O˚ Ñ k˚ ‘ k˚ the map given by
qpm, ξq “ pΦSpmq,´ξq. If µ belongs to a coadjoint orbit P, and ξ P µ`opkµq,
then P is an ancestor to the orbit O of ξ.

Definition 4.23 Let P be a coadjoint orbit.

• Define the following subset of k˚ ‘ k˚:

RpPq “ tpµ, ξq;µ P P; ξ P µ ` opkµqu.

• Define ZP
O “ q´1pRpPqq Ă M ˆ O˚.

Proposition 4.24 Assume M is a K-manifold with prkM , kM sq “ prh, hsq.
Let S be a K-equivariant Spinc-bundle over M with moment map ΦS . Let
O be a regular admissible coadjoint. Then

Z“0
O “

ğ

P

ZP
O

where the disjoint union is over the set of phq-ancestors to O. Furthermore,
for P a phq-ancestor to O, the set ZP

O is equal to pΦ´1
S pPq ˆ O˚q X Z“0

O .
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Proof. In the proof of Proposition 4.20, we have seen that, if dOpm,´λq “
0, then the element µ “ ΦSpmq is such that pkµq “ phq and λ “ β ` µ with
β P opkµq. So Kµ is a phq ancestor of O and qpm,´λq P Ů

P ZP
O . This proves

the first assertion.
Conversely take now pm,´ξq P ZP

O , define µ “ ΦSpmq. So Kµ is a
phq ancestor of O and ξ “ µ ` β with β P opkµq. By K-invariance, we may
assume µ P z˚

0 , so m P Y. We have TmM “ k{km ‘ TmY. So

dOpm,´ξq “ }β}2 ´ 1

2
nTrkm |β| ` 1

2
nTrTmY |β|.

As β P ophq Ă rh, hs acts trivially on Y by Lemma 4.21, we have
dOpm,´ξq “ }ρH}2 ´ 1

2
nTrkm |ρH |. But since rh, hs Ă km Ă h, and then

1
2
nTrkm |ρH | “ 1

2
nTrh|ρH | “ }ρH}2 : finally dOpm,´ξq “ 0.

At this stage we have proved that

(4.31) mO “
ÿ

P

mP
O

where the sum runs over the phq-ancestor of O and

mP
O “

“
QKpM ˆ O˚,S b SO˚ , ZP

O ,ΦOq
‰K

.

In the next section we will go into the computation of the terms mP
O. We

end up this section with the following important fact.

Proposition 4.25 Each individual term mP
O is independent of the choice

of the moment map ΦS .

Proof. Let Φt
S , t P r0, 1s be a family of moment maps for S. This gives a

family Φt
Opm, ξq :“ Φt

Spmq ` ξ for S b SO˚ .
Let κtO be the Kirwan vector field associated to Φt

O, and let ZOptq :“
tκtO “ 0u. We denote simply by σt the symbol σpM ˆ O˚,S b SO˚ ,Φt

Oq.
For any t P r0, 1s, we consider the quantity QP

Optq P R̂pKq which is the
equivariant index of σt|Ut , where Ut is a (small) neighborhood of

ZP
Optq Ă ZOptq

such that Ut X ZOptq “ ZP
Optq.

Let us prove that the multiplicity mP
Optq “ rQP

OptqsK is independent of
t. It is sufficient to prove that t Ñ rQP

OptqsK is locally constant : let us
show that it is constant in a neighborhood of 0. We follow the same line of
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proof that the proof of the independence of the connection of the local piece
QKpM,S,Φ´1

S pOq X ZSq of QKpM,Sq in [24].
Let U0 be a neighborhood of ZP

Op0q such that

(4.32) U0 X ZOp0q “ ZP
Op0q.

The vector field κ0O does not vanish on BU0 : there exist ǫ ą 0 so that κtO
does not vanish on BU0 for t P r0, ǫs. The family σt|U0

, t P r0, ǫs is then
an homotopy of transversally elliptic symbols : hence they have the same
equivariant index.

Lemma 4.26 For small t we have

U0 X Z“0
O ptq “ ZP

Optq.

Indeed, by Proposition 4.24, Z“0
O ptq projects by the first projection Φt

S :
M ˆ O˚ Ñ M Ñ k˚ to a finite union of coadjoint orbits (the phq-ancestors
to O) and ZOp0q projects on P. So, for t small, U0 X Z“0

O ptq is the subset
ZP
Optq of Z“0

O ptq projecting on P.
So, for small t, we have the decomposition U0 X ZOptq “ ZP

Optq Y Zt,
where Zt is a component contained in Zą0

O ptq. Finally, for small t, we have

QP
Op0q “ IndexKpσ0|U0

q
“ IndexKpσt|U0

q
“ QP

Optq ` QKpM ˆ O˚,S b SO˚ , Zt,Φ
t
Oq.

Since rQKpM ˆ O˚,S b SO˚ , Zt,Φ
t
OqsK “ 0 by Proposition 4.17 the proof

of Proposition 4.25 is completed.

4.5.4 Computation of mP
O

In this section we compute

mP
O :“

“
QKpM ˆ O˚,S b SO˚ , ZP

O ,ΦOq
‰K

.

Let C be a connected component of h˚
0 that intersects the orbit P. With

the help of Proposition 4.15, we will reduce the computation of mP
O to a

similar computation where the group K acting on M is replaced with the
torus AH “ H{rH,Hs acting on the slice YC .

Let µ P P X C : kµ “ h and µ ´ ρpµq defines a character of H. Then
ZP
O is equal to KpΦ´1

S pµq ˆ p´µ ` ophq˚q. Here ophq is the ρ orbit for H, so

ophq “ ophq˚ and Qspin
H pophq˚q is the trivial representation of H.
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Let YC “ Φ´1
S pCq be the slice relative to the connected component C

(see Section 4.5.2). Thus KYC is an open neighborhood of Φ´1
S pPq in M

diffeomorphic with K ˆH YC . We see that

ZP
O Ă pK ˆH YCq ˆ O˚ » K ˆH pYC ˆ O˚q .

We consider the H-manifold N 1 :“ YC ˆ ophq˚ and the K-manifold

N “ K ˆH pBq ˆ N 1q “ K ˆH pBq ˆ YC ˆ ophq˚q,

where Bq is a small open ball in q, centered at 0 and H-invariant.
When Bq is small enough, the map pX, ξq ÞÑ exppXqp´µ`ξq, from Bq ˆ

ophq˚ into O˚, defines a diffeomorphism into a H-invariant neighborhood of
the H-orbit ´µ ` ophq˚ in O˚. Hence a K-invariant neighborhood of ZP

O in
MˆO˚ is diffeomorphic to N . Under this isomorphism, the equivariant map
ΦO “ ΦS ` iO˚ defines a map Φ on N . For k P K,X P Bq, y P YC , ξ P ophq˚,
we have

Φprk;X, y, ξsq :“ k pΦSpyq ` exppXqp´µ ` ξqq .
It restricts to N 1 as the H-equivariant map Φ1py, ξq “ ΦSpyq ´ µ ` ξ with
value in h˚. Furthermore, if Bq is small enough, Φpr1;X, y, ξsq belongs to
h˚ if and only X “ 0. As X P q, we see also that pΦpr1;X, y, ξsq, Xq “
pΦSpyq, Xq`pexppXqp´µ`ξq, Xq “ pΦSpyq´µ`ξ,Xq “ 0 for all pX, y, ξq P
Bq ˆ YC ˆ ophq˚. Conditions (4.23) are satisfied. Proposition 4.15 tells us
that

mP
O :“

“
QHpN 1,S 1, Z 1,Φ1q

‰H

where Z 1 :“ Φ´1
S pµq ˆ ophq˚.

Now we have to explain the nature of the Spinc bundle S 1 over N 1 “
YC ˆ ophq˚. Let Sophq˚ be the canonical Spinc-bundle of the orbit ophq˚. Let
SYC

be the Spinc-bundle on YC defined by (4.30).

Proposition 4.27 We have S 1 “ SP
YC

bSophq˚ where SP
YC

“ SYC
bC´µ`ρpµq

is a Spinc-bundle on YC . The determinant line bundle of SP
YC

is equal to

detpSq|YC
bC´2µ, and the corresponding moment map is ΦP

YC
:“ ΦS |YC

´µ.

The subgroup rH,Hs acts trivially on pYC ,S
P
YC

q.

Proof. Let λ be an element of the H-orbit OP :“ µ ` ophq. The Spinc

bundle SO˚ on O˚ “ pKλq˚ induces a Spinc bundle S1 over O˚
P through the

relation SO˚ |O˚
P

» Ź
qC b S1.
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We can check that S1 is the H-Spinc bundle on O˚
P “ pHλq˚ » ophq˚

equal to

H ˆHλ

´ ľ

´Jλ

h{hλ b C´λ`ρpλq

¯
»

´
H ˆHλ

ľ

´Jλ

h{hλ
¯

b C´λ`ρpλq

» Sophq˚ b C´µ`ρpµq

since λ ´ ρpλq “ µ ´ ρpµq P z˚.
As the Spinc bundle Sq is equal to the product

Ź
qCbŹ

qC (see Example
2.3), we know then that S 1 » SYC

b S1 » SYC
b Sophq˚ b C´µ`ρpµq.

The relation detpSP
YC

q “ detpSq|YC
b C´2µ comes from the fact that

detpSYC
q “ detpSq|YC

b C´2ρpµq since ρC “ ρpµq.
We consider now the H-manifold YC equipped with the Spinc-bundle

SP
YC

. Let

(4.33) QHpYC ,S
P
YC

, t0uq P R̂pHq

be the equivariant index localized on the compact component tΦP
YC

“ 0u “
tΦS “ µu Ă YC . Let AH be the torus H{rH,Hs. Since rH,Hs acts trivially
on pYC ,S

P
YC

q we may also define the localized index QAH
pYC ,S

P
YC

, t0uq P
R̂pAHq.

We can now prove the main result of this section.

Theorem 4.28 The multiplicity mP
O is equal to

”
QHpYC ,S

P
YC

, t0uq
ıH

“
”
QAH

pYC ,S
P
YC

, t0uq
ıAH

.

Proof. Let Z 1 :“ Φ´1
S pµq ˆ ophq˚. The character QHpN 1,S 1, Z 1,Φ1q P

R̂pHq is equal to the equivariant index of σpN 1,S 1,Φ1q|U where U Ă N 1 is an
invariant open subset such that U X ZΦ1 “ Z 1. For py, ξq P N 1 “ YC ˆ ophq˚

and pv, ηq P Tpy,ξqN
1, the endomorphism σpN 1,SN 1 ,Φ1q|py,ξqpv, ηq is equal to

c1pv ` pΦSpyq ´ µ ` ξq ¨ yq b IdSophq˚ |ξ ` ǫ1 b c2pη ` pΦSpyq ´ µ ` ξq ¨ ξq.

Here c1 acts on SP
YC

|y, c2 acts on Sophq˚ |ξ and ǫ1 is the canonical grading

operator on SP
YC

|y.
Since ophq˚ is compact, we can replace the term c2pη`pΦSpyq´µ`ξq¨ξq

simply by c2pηq. Since rH,Hs acts trivially on YC , and ξ P rh, hs, the vector
field y ÞÑ pΦSpyq´µ`ξq ¨y is equal to y ÞÑ pΦSpyq´µq ¨y. Thus our symbol
is homotopic to the symbol

c1pv ` pΦSpyq ´ µq ¨ yq b IdSophq|ξ ` ǫ1 b c2pηq.
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This last expression is the product symbol of the H-transversally elliptic
symbol c1pv ` pΦSpyq ´ µq ¨ yq on YC and of the elliptic symbol c2pηq on
ophq˚. The equivariant indices multiply under the product (as one is elliptic)
([1],[22]).

Now the H-equivariant index of c2pηq acting on Sophq˚ is the trivial repre-
sentation of H. Thus we obtain our theorem. We have also to remark that

the identity
”
QHpYC ,S

P
YC

, t0uq
ıH

“
”
QAH

pYC ,S
P
YC

, t0uq
ıAH

follows from

the fact that rH,Hs acts trivially on pYC ,S
P
YC

q.

5 Multiplicities and reduced spaces

In this section, we interpret the multiplicity as an equivariant index on a
reduced space.

Let O Ă k˚ be a regular admissible orbit, and phq P Hk so that prh, hsq “
prkM , kM sq. In the previous section, we have proved that the multiplicity of
πO in QKpM,Sq is equal to

mO “
ÿ

P

mP
O

where the sum runs over the K-orbits P which are phq-ancestors of O. Fur-

thermore, we have proved that mP
O “

”
QAH

pYC ,S
P
YC

, t0uq
ıAH

.

The aim of this section is to prove the following theorem.

Theorem 5.1 The multiplicity mP
O is equal to the spinc index of the (pos-

sibly singular) reduced space MP :“ Φ´1
S pPq{K.

However, our first task is to give a meaning to a QspinpMPq P Z even if
MP is singular.

5.1 Spinc index on singular reduced spaces

We consider a connected oriented manifold N , equipped with a Spinc-bundle
S. We assume that a torus G acts on the data pN,Sq. An invariant con-
nexion on the determinant line bundle L “ detpSq defines a moment map
Φ : N Ñ g˚. We do not assume that N is compact, but we assume that
the map Φ is proper3. For any ξ P g˚, the reduced space Nξ :“ Φ´1pξq{G is
compact.

3We will use sometimes a slightly different hypothesis : Φ is proper as a map from N

to an open subset of g˚.
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The purpose of this subsection is to explain how we can define the spinc-
index, QspinpNµq P Z, for any µ in the weight lattice Λ of the torus G.

Let gN be the generic infinitesimal stabilizer of the G-action on N : the
image of N under the map Φ leaves in an affine space IpNq parallel to gK

N .
If ξ P IpNq is a regular value of Φ : N Ñ IpNq, the reduced space Nξ

is a compact orbifold (as proved in [24]). We can define Spinc-bundles on
orbifolds, as well as Spinc-indices.

We start with the following basic fact.

Lemma 5.2 For any regular value ξ P IpNq of Φ : N Ñ IpNq, the orbifold
Nξ is oriented and equipped with a family of Spinc-bundles Sµ

ξ parameterized
by µ P Λ X IpNq.

Proof. Let GN be the subtorus with Lie algebra gN . Let G1 “ G{GN .
The dual of the Lie algebra g1 of G1 is canonically identified with gK

N .
We assume that ξ is a regular value of Φ : N Ñ IpNq : the fiber

Z “ Φ´1pξq is a submanifold equipped with a locally free action of G1. Let
Nξ :“ Z{G1 be the corresponding “reduced” space, and let π : Z Ñ Nξ be
the projection map. We can define the tangent (orbi)-bundle TNξ to Nξ.

On Z, we obtain an exact sequence 0 ÝÑ TZ ÝÑ TN |Z dΦǫÝÑ rpg1q˚s Ñ
0, and an orthogonal decomposition TZ “ TG1Z ‘ rg1s where rg1s is the
trivial bundle on Z corresponding to the subspace of TZ formed by the
vector fields generated by the infinitesimal action of g1. So TN |Z admits the
decomposition TN |Z » TG1Z ‘ rg1s ‘ rpg1q˚s. We rewrite this as

(5.34) TN |Z » TG1Z ‘ rg1
Cs

with the convention g1 » g1 b iR and pg1q˚ » g1 b R. Note that the bundle
TG1Z is naturally identified with π˚pTNξq.

If we take on g1
C

the orientation opiq given by the complex structure,
there exists a unique orientation opNξq on Nξ such that opNq “ opNξqopiq.

Definition 5.3 Let rSξ be the Spinc bundle on the vector bundle TG1Z Ñ Z

such that
S|Z » rSξ b r

ľ
g1
Cs.

Here rŹ g1
C

s “ Z ˆ Ź
g1
C
is a Spinc-bundle on the bundle rg1

C
s “ Z ˆ g1

C

The Kostant relation shows that for any X P gN , the element eX acts on
the fibers of rSξ as a multiplication by eixν,Xy where ν is any element of IpNq.
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Hence, for any µ P Λ X IpNq, the action of GN on the tensor rSξ b rC´µs is
trivial. We can then define a Spinc-bundle S

µ
ξ on TNξ by the relation

rSξ b rC´µs “ π˚
´
S
µ
ξ

¯
.

The proof of the following theorem is given in the next subsection.

Theorem 5.4 For any µ P IpNqXΛ, consider the compact oriented orbifold
Nµ`ǫ associated to a generic4 element ǫ P gK

N . Then the index

QpNµ`ǫ,S
µ
µ`ǫq

is independent of the choice of a generic and small enough ǫ.

Thanks to the previous Theorem, one defines the spinc index of singular
reduced spaces as follows.

Definition 5.5 If µ P Λ, the number QspinpNµq is defined by the following
dichotomy

QspinpNµq “

$
’&
’%

0 if µ R IpNq,
QpNµ`ǫ,S

µ
µ`ǫq if µ P IpNq and ǫ P gK

N is generic

and small enough.

The invariant QspinpNµq P Z vanishes if µ does not belongs to the relative
interior of ΦpNq in the affine space IpNq. It is due to the fact that we can
then approach µ by elements µ ` ǫ that are not in the image ΦpNq.

Let us consider the particular case where µ P IpNq XΛ is a regular value
of Φ : N Ñ IpNq such that the reduced space Nµ is reduced to a point. Let
mo P Φ´1pµq, and let Γ Ă G1 be the stabilizer subgroup of mo (Γ is finite).
In this case (5.34) becomes TmoN » g1

C
, and opNµq is the quotient between

the orientation of N and those of g1
C
. At the level of graded Spinc-bundles

we have
Smo » opNµq

ľ
g1
C b L

1{2
mo

where L
1{2
mo is a one dimensional representation of Γ such that

pL1{2
moqb2 “ Lmo . In this case Definition 5.5 gives that

(5.35) QspinpNµq “ opNµqdim
”
L
1{2
mo

b C´µ

ıΓ
P t´1, 0, 1u.

4So that µ ` ǫ is a regular value of Φ : N Ñ IpNq.
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5.2 Proof of Theorem 5.4

In this subsection we consider a fixed µ P IpNq X Λ. For any ǫ P gpNqK, we
consider the moment map Φǫ “ Φ ´ µ ´ ǫ.

We start with the fundamental Lemma

Lemma 5.6 The map ǫ ÞÑ rQGpN,S,Φ´1
ǫ p0q,Φǫq b C´µsG is constant in a

neighborhood of 0.

Proof. Changing S to S b rC´µs, we might as well take µ “ 0.
Let r ą 0 be smallest non-zero critical value of }Φ}2, and let U :“

Φ´1ptξ | }ξ} ă r{2uq. Using Lemma 2.9, we have U X tκ0 “ 0u “ Φ´1p0q.
We describe now tκǫ “ 0u X U using a parametrization similar to those

introduced in [19][Section 6].
Let gi, i P I be the finite collection of infinitesimal stabilizers for the

G-action on the compact set U . Let D be the subset of the collection of
subspaces gK

i of g˚ such that Φ´1p0q X Ngi ‰ H.

Note that D is reduced to IpNq if 0 is regular value of Φ : N Ñ IpNq.
If ∆ “ gK

i belongs to D, and ǫ P IpNq, write the orthogonal decomposition
ǫ “ ǫ∆ ` β∆ with ǫ∆ P ∆, and β∆ P gi. Let

Bǫ “ tβ∆ “ ǫ ´ ǫ∆,∆ P Du
the set of β so obtained.

Figure 10: The point ǫ and its projections ǫ∆

We denote by Zǫ the zero set of the vector field κǫ associated to Φǫ.
Thus, if ǫ is sufficiently small (}ǫ} ă r{2),
(5.36) Zǫ X U “

ď

βPDǫ

Nβ X Φ´1
ǫ pβq.
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With (5.36) in hands, we see easily that t P r0, 1s ÞÑ σpN,S,Φtǫq|U is an
homotopy of transversally elliptic symbols on U . Hence they have the same
index

QGpU ,S,Φ´1p0q,Φq “ QGpU ,S, Zǫ X U ,Φǫq
“

ÿ

βPBǫ

QGpN,S,Φ´1
ǫ pβq X Nβ ,Φǫq.

The lemma will be proved if we check that rQGpN,S,Φ´1
ǫ pβqXNβ ,ΦǫqsG “ 0

for any non-zero β P Bǫ.
If β∆ P Bǫ and n P Φ´1

ǫ pβ∆qXNβ∆ , Φpnq “ β∆`ǫ “ ǫ∆. So xΦpnq, β∆y “
xǫ∆, β∆y “ 0. So the infinitesimal action, Lpβq, on the fiber of the vector
bundle Sn is equal to 0.

The Atiyah-Segal localization formula for the Witten deformation (Re-
mark 4.13) gives

QGpN,S,Φ´1
ǫ pβq X Nβ ,Φǫq “ QGpNβ , dβpSq b SympVβq,Φ´1

ǫ pβq,Φǫq
“

ÿ

XĂNβ

QGpX , dβpSq|X b SympVβq|X ,Φ´1
ǫ pβq,Φǫq

where Vβ Ñ Nβ is the normal bundle of Nβ in N and the sum runs over
the connected components X of Nβ that intersects Φ´1

ǫ pβq.
Let us look to the infinitesimal action of β, denoted Lpβq, on the fibers

of the vector bundle dβpSq|X bSympNβq|X . This action can be checked at a
point n P Φ´1

ǫ pβq X Nβ .As the action of β on the fiber of the vector bundle
Sn is equal to 0, we obtain

1

i
Lpβq “

#
1
2
TrTN |X p|β|q on dβpSq|X ,

ě 0 on SympNβq|X .

So we have checked that 1
i
Lpβq ě 1

2
TrTN |X p|β|q on dβpSq|X b SympNβq|X .

Now we remark that β does not acts trivially on N , since β belongs to
the direction of the subspace IpNq “ gK

N : this forces 1
2
TrTN |X p|β|q to be

strictly positive. Finally we see that 1
i
Lpβq ą 0 on dβpSq|X b SympNβq|X ,

and then

“
QGpX , dβpSq|X b SympVβq|X ,Φ´1

ǫ pβq,Φǫq
‰G “ 0.

if β ‰ 0. The Lemma 5.6 is proved.

The proof of Theorem 5.4 will be completed with the following
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Lemma 5.7 If µ ` ǫ is a regular value of Φ : N Ñ IpNq, the invariant
rQGpN,SN ,Φ´1

ǫ p0q,Φǫq b C´µsG is equal to the index QpNµ`ǫ,S
µ
µ`ǫq.

We assume that µ ` ǫ is a regular value of Φ : N Ñ IpNq : the fiber
Z “ Φ´1pµ ` ǫq is a submanifold equipped with a locally free action of
G1 “ G{GN . Let Nµ`ǫ :“ Z{G1 be the corresponding “reduced” space, and
let π : Z Ñ Nµ`ǫ be the projection map. We have the decomposition

(5.37) TN |Z » π˚pTNµ`ǫq ‘ rg1
Cs.

For any ν P Λ X IpNq, Sν
µ`ǫ is a the Spinc bundle on Nµ`ǫ defined by the

relation
SN |Z b C´ν » π˚

`
Sν
µ`ǫ

˘
b r

ľ
g1
Cs.

The following result is proved in [24].

Proposition 5.8 We have the following equality in R̂pGq

QGpN,SN ,Φ´1
ǫ p0q,Φǫq “

ÿ

νPΛXIpNq

QpNµ`ǫ,S
ν
µ`ǫq Cν .

In particular rQGpN,SN ,Φ´1
ǫ p0q,Φǫq b C´µsG is equal to QpNµ`ǫ,S

µ
µ`ǫq.

5.3 rQ,Rs “ 0

We come back to the setting of a compact K-manifold M , oriented and of
even dimension, that is equipped with a K-Spinc bundle S. Let LS be its
determinant bundle, and let ΦS Ñ k˚ be the moment map that is attached
to an invariant connection on LS . We assume that there exists phq P Hk such
that prkM , kM sq “ prh, hsq. Let z be the center of h.

We consider an admissible element µ P z˚ such that Kµ “ H : the
coadjoint orbit P :“ Kµ is admissible and contained in the Dixmier sheet
k˚

phq. Let

MP :“ Φ´1
S pPq{K

In order to define QspinpMPq P Z we proceed as follows.

Let h˚
0 :“ tξ P h˚ |Kξ Ă Hu and let Y :“ Φ´1

S ph˚
0q. We recall that the

map ξ ÞÑ ρpξq is locally constant on h˚
0 . Let us fix a connected component

C of h˚
0 : we denote ρC “ ρpξq for any ξ P C. We consider YC “ Φ´1

S pCq
that is a H-submanifold of M equipped with a H-Spinc bundle SYC

: the
associated moment map is ΦYC

:“ ΦS |YC
´ ρC .
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For any admissible element µ P C X z˚ the element

µ̃ :“ µ ´ ρpµq “ µ ´ ρC

belongs to the weight lattice Λ of the torus AH :“ H{rH,Hs, and the
reduced space MKµ is equal to

pYCqµ̃ :“ tΦYC
“ µ̃u{AH .

By definition, we take QspinpMKµq :“ QspinppYCqµ̃q where the last term
is computed as explained in the previous section. More precisely, let us
decompose YC into its connected components Y1, . . . ,Yr. For each j, let
zj Ă z be the generic infinitesimal stabilizer relative to the AH -action on Yj .
Then we take

QspinpMPq “ QspinpMKµq :“
ÿ

j

Qspin
`
pYjqµ̃`ǫj

˘

where ǫj P zK
j are generic and small enough.

With this definition of quantization of reduced spaces QspinpMPq, we
obtain the main theorem of this article, inspired by the rQ,Rs “ 0 theorem
of Meinrenken-Sjamaar.

Let M be a K-manifold and S be a K-equivariant Spinc-bundle over M .
Let phq P Hk such that prkM , kM sq “ prh, hsq, and consider the set Apphqq of
admissible orbits contained in the Dixmier sheet k˚

phq.

Theorem 5.9

(5.38) QKpM,Sq “
ÿ

PPApphqq

QspinpMPqQspin
K pPq.

We end this section by giving yet another criterium for the vanishing of
Qspin

K pM,Sq.
Consider the map ΦS : M Ñ k˚. At each point m P M , the differential

dmΦS gives a map TmM Ñ k˚. Let kK
m Ă k˚. From the Kostant relations,

we see that dmΦS take value in kK
m.

Proposition 5.10 If QKpM,Sq ‰ 0, then there exists m P MzMK such
that ImagepdmΦSq “ kK

m.
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Proof. If we consider the decomposition of the slice YC “ Ť
Yj in connected

components, for QKpM,Sq ‰ 0, then for some j, ΦpYjq has non empty
interior in zK

j . Here zj is the infinitesimal stabilizer of the action of H{rH,Hs
on Yj . Thus zj is equal to km Ă h for generic m P Yj . So there exists a point
m P Yj such that the differential of ΦS |Y is surjective on zK

j Ă h˚. Now if

we consider KYj Ă M , then ImagepdmΦSq “ h˚ ‘ zK
j . This is exactly kK

m.

When the action of K is abelian, we can always reduce ourselves to
an effective action with kM “ t0u. Then the support of decomposition of
QKpM,Sq is contained in the interior of ΦSpMq X Λ. If this set has no
interior point, then QKpM,Sq “ 0. This small remark implies the well-
known Atiyah-Hirzebruch vanishing theorem in the spin case [2], as well as
the variant of Hattori [13].

We also note another corollary.

Corollary 5.11 If the two form ΩS is exact, and the K-action on M is
non-trivial then QKpM,Sq “ 0.

It is due to the fact that if ΩS “ dα, by modifying the connection on LS by α,
our moment map is constant. So if the action is non trivial, QKpM,Sq “ 0.

5.4 rQ,Rs “ 0 on induced manifolds

Let H Ă K be the stabilizer subgroup of some element in k˚. We adopt the
notations of Section 3.5. Let C be a choice of a connected component of h˚

0 .
Assume that Y is a compactH-manifold, and consider the manifoldM “

K ˆH Y . Assume that M is oriented and equipped with a K-equivariant
Spinc-bundle S. We consider the Spinc-bundle SY on Y such that S|Y “Ź

qC b SY . The equivariant index QKpM,Sq verifies the equation

(5.39) QKpM,Sq “ IndKH

´ ľ
qC b QHpY,SY q

¯
.

The aim of this section is to explain how our rQ,Rs “ 0 theorem matches
with the induction formula (5.39) when we apply it to both indicesQKpM,Sq
and QHpY,SY q.

Let LS be the determinant line bundle of the Spinc-bundle S. As LS »
K ˆH LS |Y we can choose an equivariant connection on LS such that the
corresponding moment map ΦS : M Ñ k˚, when restricted to Y , takes value
in h˚. The determinant line bundle LY of the Spinc-bundle SY is equal to
LS |Y b C´2ρC , and for the moment map ΦY , we have ΦY “ ΦS |Y ´ ρC .
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We can assume that there exists a Levi subalgebra l Ă h such that the
conjugacy class of generic stabilizer prhY , hY sq “ prkM , kM sq is equal to prl, lsq,
otherwise QKpM,Sq “ QHpY,SY q “ 0. We note Akpplqq (resp. Ahpplqq) the
set of K-admissible (resp. H-admissible) orbits belonging to the Dixmier
sheet k˚

pplqq (resp. h˚
pplqq).

For any orbit Hξ Ă h˚, we define the K-orbit tCpHξq :“ KpHξ ` ρCq “
Kpξ`ρCq. Let AhpplqqC be the subset of Ahpplqq formed by the H-coadjoint
orbit P 1 such that P 1 ` ρC is contained in h˚

0 . Let h
˚
plq Ă h˚ be the Dixmier

sheet of coadjoint orbits Hξ with Hξ conjugate to L.
We have the following basic fact.

Lemma 5.12 ‚ If P 1 P AhpplqqC , then tCpP 1q belongs to Akpplqq.
‚ For any P P Akpplqq we have

(5.40) P X h˚
plq “ P X h˚

plq “
ž

P 1

pP 1 ` ρCq

where the finite union runs over the orbits P 1 P AhpplqqC such that tCpP 1q “
P.

Proof. Let P 1 P AhpplqqC . Then P 1 “ Hµ with a H-admissible element
µ P h˚ such that Kµ “ L and µ ` ρC P h˚

0 . We have Kµ`ρC “ Hµ`ρC “
Hµ “ L and

(5.41) µ ` ρC ´ ρKpµ ` ρCq “ µ ´ ρHpµq ` ρC ´ ρC1

where C 1 is the connected compoent of h˚
0 containing a ` ρC . As ρC ´ ρC1

belongs to the weight lattice we see that µ ` ρC is K-admissible. The first
point is proved.

The inclusions
š

tCpP 1q“PpP 1 ` ρCq Ă P X h˚
plq Ă P X h˚

plq are obvious.

Consider now a H-orbit T contained in P X h˚
plq. We have T “ Hλ where λ

is K-admissible. As λ P h˚
plq the stabilizer Hλ is H-conjugated to a subgroup

containing L. In the other hand, the stabilizer sugroup Kλ is K-conjugate
to L. If we compare the dimension of the connectd subgroups Hλ and Kλ

we see that Kλ “ Hλ and then Hλ P P Xh˚
plq : the element λ can be choosen

so that Kλ “ Hλ “ L.
We consider µ “ λ ´ ρC so that tCpHµq “ P. We see first that Hµ “

Hλ “ L and (5.41) shows that µ is H-admissible. We have checked that
Hµ P Ahpplqq and T “ Hµ`ρC Ă P Xh˚

plq. The second point is also proved.
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For the H-manifold Y , our rQ,Rs “ 0 Theorem says that QHpY,SY q is
equal to

ř
P 1PAhpplqq Q

spinpYP 1qQspin
H pP 1q. If we apply the induction formula

proved in Proposition 3.22, we get that

QKpM,Sq “
ÿ

P 1PAhpplqq

QspinpYP 1qIndKH
´ ľ

qC b Qspin
H pP 1q

¯

“
ÿ

P 1PAhpplqqC

ǫP
1

C QspinpYP 1qQspin
K ptCpP 1qq

“
ÿ

PPAkpplqq

mPQspin
K pPq

with mP “ ř
tCpP 1q“P ǫP

1

C QspinpYP 1q. Here ǫP
1

C is the sign ǫC
1

C where C 1 is

the connected component of h˚
0 that contains P 1 ` ρC (see Section 3.5).

Finally, we recover the rQ,Rs “ 0 Theorem for the K-manifold M with
the help of the following

Proposition 5.13 For any P P Akpplqq, the term mP is equal to QspinpMPq.

Proof. Identity (5.40) and the fact that the image of ΦY is contained
in h˚

plq gives automatically that

Φ´1
S pPq “

ž

tCpP 1q“P

K ˆH Φ´1
Y pP 1q.

Hence the reduced space MP :“ Φ´1
S pPq{K decomposes as a disjoint sumš

tCpP 1q“P MP 1

P where MP 1

P “ pK ˆH Φ´1
Y pP 1qq{K is equal (as a set) to

YP 1 “ Φ´1
Y pP 1q{H.

Let P 1 P Akpplqq such that tCpP 1q “ P. The proposition will be proved
if we show that QspinpMP 1

P q “ ǫP
1

C QspinpYP 1q.
Consider µ such that P 1 “ Hµ and Hµ “ L. Take µ1 “ µ ` ρC : we

have P “ Kµ1 and Kµ1 “ L. Let B Ă l˚ be a small ball centered at µ, and
consider the slice Y :“ Φ´1

Y pBq : the set HY Ă Y is a H-invariant open
neighborhood of Φ´1

Y pP 1q diffeomorphic toHˆLY. Consider theK-invariant
open subset

MP 1
:“ K ˆH

´
HY

¯
Ă M

We note that MP 1 » K ˆL Y, and the reduction of MP 1
, equipped with the

moment map ΦS |MP1 , relatively to P is equal to MP 1

P .

By definition, the quantity QspinpMP 1

P q is equal to

rQLpY,SY b C´µ1`ρKpµ1q, t0uqsL
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where SY is the Spinc-bundle defined by relation S|Y “ Ź
Jµ1

k{l b SY .

On the other hand, the quantity QspinpYP 1q is equal to

rQLpY,S 1
Y b C´µ`ρHpµq, t0uqsL

where S 1
Y is the Spinc-bundle defined by relation SY |Y “ Ź

Jµ
l{hbS 1

Y . Now

if we use the fact that S|Y “ Ź
JC

k{h b SY , we can check that

SY b C´µ1`ρKpµ1q » ǫC
1

C S 1
Y b C´µ`ρHpµq

at the level of L-equivariant graded Spinc-bundles. The proof of the relation
QspinpMP 1

P q “ ǫP
1

C QspinpYP 1q then follows.

6 Examples

6.1 P1pCq

We consider the simplest case of the theory. Let P1 :“ P1pCq be the
projective space of (complex) dimension one. Consider the (ample) line
bundle L Ñ P1, dual of the tautological bundle. It is obtained as quo-
tient of the trivial line bundle C2ztp0, 0qu ˆ C on C2ztp0, 0qu by the action
u ¨ pz1, z2, zq “ puz1, uz2, uzq of C˚. We consider the action of T “ S1 on
L Ñ P1 defined by t ¨ rz1, z2, zs “ rt´1z1, z2, zs.

Let Spnq be the Spinc-bundle Ź
C
TP1bLbn. The character Qspin

T pM,Spnqq
is equal to H0pP1,Opnqq ´ H1pP1,Opnqq where Opnq is the sheaf of holo-
morphic sections of Lbn. Note that the holomorphic line bundle Lbn is not
ample if n ď 0. We have

• Qspin
T pM,Spnqq “ ´ ř´1

k“n`1 t
k when n ď ´2,

• Qspin
T pM,Sp´1qq “ 0,

• Qspin
T pM,Spnqq “ řn

k“0 t
k when n ě 0.

The determinant line bundle of Spnq is Ln “ rC´1sbLb2n`2 where rC´1s
is the trivial line bundle equipped with the representation t´1 on C.

Remark that P1 is homogeneous under Up2q, so there exists a unique
Up2q-invariant connection on Ln. The corresponding moment map ΦSpnq is
such that

(6.42) ΦSpnqprz1, z2sq “ pn ` 1q |z1|2
|z1|2 ` |z2|2 ´ 1

2
.

The image In “ ΦSpnqpMq is
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• the interval r´1
2
, n ` 1

2
s when n ě 0,

• a point t´1
2
u when n “ ´1,

• the interval rn ` 1
2
,´1

2
s when n ď ´2,

It is in agreement with our theorem. Indeed all characters occurring in
Qspin

T pM,Spnqq are the integral points in the relative interior of In, and all
reduced spaces are points.

If we consider simply the action of T on P1, the choice of connec-
tion may vary. In fact, given any smooth function f on R, we can mod-

ify the connection such that ΦSpnqprz1, z2sq “ ´1
2

` pn ` 1q |z1|2

|z1|2`|z2|2
`

fp |z1|2

|z1|2`|z2|2
q |z1|2

|z1|2`|z2|2
p1 ´ |z1|2

|z1|2`|z2|2
q. Let ΩL be the curvature of L, then

the Duistermaat-Heckman measure pΦSpnqq˚ΩL is independent of the choice
of the connection and is equal to the characteristic function of In.

Take for example

ΦSpnqprz1, z2sq “ ´1

2
`pn`1q |z1|2

|z1|2 ` |z2|2 ´15
|z1|2

|z1|2 ` |z2|2 p1´ |z1|2
|z1|2 ` |z2|2 q.

Figure 11 is the graph on ΦSpnq for n “ 4 in terms of x “ |z1|2

|z1|2`|z2|2

varying between 0 and 1. We see that the image of ΦSp4q is the interval

r´13
6
, 9
2
, s. But the image of the signed measure is still r´1

2
, 9
2
s. Above the

integral points in r´13
6
,´1

2
s, the reduced space is not connected, it consists

of two points giving opposite contributions to the index. So our theorem
holds.

Figure 11: The graph of ΦL
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6.2 The Hirzebruch surface

We consider M to be the Hirzebruch surface. Represent M as the quotient
of U “ C2 ´ tp0, 0qu ˆ C2 ´ tp0, 0qu by the free action of C˚ ˆ C˚ acting by

pu, vq ¨ pz1, z2, z3, z4q “ puz1, uz2, uvz3, vz4q

and we denote by rz1, z2, z3, z4s P M the equivalence class of pz1, z2, z3, z4q.
The map π : rz1, z2, z3, z4s Ñ rz1, z2s is a fibration of M on P1pCq with fiber
P1pCq.

Consider the line bundle Lpn1, n2q obtained as quotient of the trivial line
bundle U ˆ C on U by the action

pu, vq ¨ pz1, z2, z3, z4, zq “ puz1, uz2, uvz3, vz4, un1vn2zq

for pu, vq P C˚ ˆ C˚. The line bundle Lpn1, n2q is ample if and only if
n1 ą n2 ą 0.

We have a canonical action of the group K :“ Up2q on M : g ¨ rZ1, Z2s “
rgZ1, Z2s for Z1, Z2 P C2 ´ tp0, 0qu and the line bundle Lpn1, n2q with action
g ¨ rZ1, Z2, zs “ rgZ1, Z2, zs is K-equivariant.

We are interested in the (virtual) K-module

H0pM,Opn1, n2qq ´ H1pM,Opn1, n2qq ` H2pM,Opn1, n2qq

where Opn1, n2q be the sheaf of holomorphic sections of Lpn1, n2q.
In this case, it is in fact possible to compute directly individual cohomol-

ogy groups H ipM,Opn1, n2qq. However, we will describe here only results
on the alternate sum and relate them to the moment map.

Let T “ Up1q ˆ Up1q be the maximal torus of K. The set Y :“
trz1, z2, z3, z4s P M | z1 “ 0u is a T -invariant complex submanifold of M

(with trivial action of pt1, 1q). The map

Y Ñ P
1pCq, r0, z2, z3, z4s ÞÑ rpz2q´1z3, z4s

is a T -equivariant isomorphism and the map pg, yq P K ˆ Y ÞÑ g ¨ y P M

factorizes through an isomorphism K ˆT Y » M . Thus M is an induced
manifold.

For any pa, bq P Z2, we denote Ca,b the 1-dimensional representation
of T associated to the character pt1, t2q ÞÑ ta1t

b
2. We denote by e˚

1 , e
˚
2 the

canonical bases of t˚ » R2. The Weyl chamber is t˚ě0 “ txe˚
1 ` ye˚

2 , x ě yu.
The elements e˚

1 , e
˚
2 are conjugated by the Weyl group.

The line bundle Lpn1, n2q, when restricted to Y » P1pCq, is isomorphic
to Lbn2 b rC0,´n1

s.
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We consider Lκ “ Lp3, 2q the line bundle obtained from the reduction
of the trivial line bundle

Ź4
C4 with natural action of C˚ ˆ C˚. We denote

SM :“ Ź
C
TM (resp. SY :“ Ź

C
TY ) the Spinc-bundle associated to the

complex structure on M (resp. Y ).

We denote by ϕ : Y Ñ r0, 1s the map defined by ϕpyq “ |a1|2

|a1|2`|a2|2
if

y » ra1, a2s.

Proposition 6.1 ‚ Let Spn1, n2q be the spin bundle SM bLpn1, n2q on M .
Its determinant line bundle is

Ln1,n2
“ rCdets b Lκ b Lp2n1, 2n2q

where rCdets Ñ M is the trivial Up2q-equivariant line bundle associated to
the character det : Up2q Ñ C˚.

‚ There exists a connection on Ln1,n2
such that the corresponding mo-

ment map Φn1,n2
: K ˆT Y Ñ k˚ is defined by

Φn1,n2
prk, ysq “

´
´ pn1 ` 3

2
q ` pn2 ` 1qϕpyq

¯
k ¨ e˚

2 ` 1

2
pe˚

1 ` e˚
2q.

Proof. For the second point, we construct a Up2q-invariant connection
on Ln1,n2

by choosing the T -invariant connection on pLn1,n2
q|Y having mo-

ment map
`
´pn1 ` 3

2
q ` pn2 ` 1qϕpyq

˘
e˚
2 ` 1

2
pe˚

1 ` e˚
2q under the T -action

(see Equation (6.42)).

From Proposition 6.1, it is not difficult to describe the “Kirwan set”
∆pn1, n2q “ ImagepΦn1,n2

q X t˚ě0 for all cases of n1, n2. It depends of the
signs of n1 ` 3

2
, n2 ` 1, n1 ´ n2 ` 1

2
, that is, as we are working with integers,

the signs of n1 ` 1, n2 ` 1 and n1 ´ n2. We concentrate in the case where
n1 ` 1 ě 0, n2 ` 1 ě 0 (other cases are similarly treated). Then, we have
two cases:

‚ If n1 ě n2, then the Kirwan set ∆pn1, n2q is the interval

rpn1 ´ n2q ` 1

2
, n1 ` 3

2
sp´e˚

2q ` 1

2
pe˚

1 ` e˚
2q.

‚ If n2 ą n1, then the Kirwan set ∆pn1, n2q is the union of the intervals

r0, n2 ´ n1 ´ 1

2
se˚

1 ` 1

2
pe˚

1 ` e˚
2q

and

r0, n1 ` 3

2
sp´e˚

2q ` 1

2
pe˚

1 ` e˚
2q.
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If n1 ě n2 ě 0 the curvature of the corresponding connection on Ln1,n2
“

Lp2n1 ` 3, 2n2 ` 2q (which is an ample line bundle) is non degenerate, thus
the image is a convex subset of t˚ě0 (in agreement with Kirwan convexity
theorem) while for n2 ą n1 the image set is not convex.

The character QKpn1, n2q :“ QKpM,Spn1, n2qq is equal to the (virtual)
K-module H0pM,Opn1, n2qq ´H1pM,Opn1, n2qq `H2pM,Opn1, n2qq where
Opn1, n2q is the sheaf of holomorphic sections of Lpn1, n2q.

Let Λě0 “ tpλ1, λ2q;λ1 ě λ2u be the set of dominant weights for Up2q.
We index the representations of Up2q by ρ ` Λě0. Here ρ “ p1

2
, ´1

2
q and

λ1, λ2 are integers. We then have

πp 1

2
,´k´ 1

2
q “ Sk

the space of complex polynomials on C2 homogeneous of degree k.
If n2 ě 0, we know thatQT pY,SY bLbn2q “ řn2

k“0 t
k
2. From the induction

formula (3.17) (or direct computation via Cech cohomology !!) we obtain
‚ If n1 ě n2, then

QKpn1, n2q “
n1ÿ

k“n1´n2

πp 1

2
,´k´ 1

2
q.

‚ If n2 ą n1, then

QKpn1, n2q “
n1ÿ

k“0

πp 1

2
,´k´ 1

2
q ´

n2´n1´2ÿ

k“0

πpk` 3

2
, 1
2

q.

Let us checked how our theorem works in these cases. First, we notice
that we are in a multiplicity free case : all the non-empty reduced spaces
are points.

‚ Consider the case where n1 ě n2. We see that the parameter p1
2
,´k´ 1

2
q

belongs to the relative interior of the interval ∆pn1, n2q. In particular for
b “ p0, 0q, the unique point in the relative interior of the interval ∆p0, 0q is
ρ. This is in agreement to the fact that the representation QKp0, 0q is the
trivial representation of K.

‚ Consider the case where n2 ą n1. We see that the parameter p1
2
,´k´ 1

2
q

belongs to the relative interior of r´n1 ´ 3
2
, 0se˚

2 ` 1
2
pe˚

1 ` e˚
2q if and only if

k ď n1. Similarly, the parameter pk ` 3
2
, 1
2
q belongs to the relative interior

of r0, n2 ´ n1 ´ 1
2
se˚

1 ` 1
2
pe˚

1 ` e˚
2q if and only if k ď n2 ´ n1 ´ 2.

In Figures 6.2, 6.2, 13, we draw the Kirwan subsets of t˚ě0 corresponding
to the values a “ r8, 5s, c “ r3, 6s. The circle points on the red line repre-
sents the admissible points occurring with multiplicity 1 in QKpn1, n2q. The
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diamond points on the blue line represents the admissible points occurring
with multiplicity ´1 in QKpn1, n2q.

Figure 12: K-Multiplicities for QKp8, 5q

Figure 13: K-Multiplicities for QKp3, 6q

Consider now M as a T -manifold. Let ΦL : M Ñ t˚ be the moment map
relative to the action of T which is the composite of ΦL : M Ñ k˚ with the
projection k˚ Ñ t˚. Thus, the image is the convex hull of ∆pn1, n2q and‘its
symmetric image with respect to the diagonal.

Consider first the case where n1 “ n2 “ 0. Thus our determinant bundle
L0,0 “ Lp3, 2q is ample. The image of the moment map ΦT

0,0 : M Ñ t˚ is

equal to the convex polytope ∆ with vertices p0, 1
2
q, p1

2
, 0q, p1

2
,´1q, p´1, 1

2
q,
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the images of the 4 fixed points r1, 0, 1, 0s, r1, 0, 0, 1s,r0, 1, 1, 0s,r0, 1, 0, 1s.
The only integral point in the interior of the polytope is p0, 0q and the re-
duced space pΦT

0,0q´1pp0, 0qq{T is a point. The representation Qspin
T pM,Sp0, 0qq

is indeed the trivial representation of T .

Figure 14: T -multiplicities for QT p0, 0q

We now concentrate on the case pn1, n2q “ p3, 6q. The line bundle L :“
L3,6 is not an ample bundle, so that its curvature ΩL is degenerate, and the
Liouville form βL “ ΩL ^ ΩL is a signed measure on M . Let us draw the
Duistermaat measure pΦLq˚βL, a signed measure on t˚. In red the measure
is with value 1, in blue the measure is with value ´1.

We also verify that our theorem is true. Indeed the representation
QT pM,Sp3, 6qq “ QKpM,Sp3, 6qq|T is

1`t´1
1 `t´1

2 `t´2
1 `t´1

1 t´1
2 `t´2

2 `t´3
1 `t´2

1 t´1
2 `t´1

1 t´2
1 `t´3

2 ´t1t2´t1t
2
2´t21t2.

The λ P Z2 such that tλ occurs in QT pM,Sp3, 6qq are the integral points
in the interior of the image of ΦLpMq : they have multiplicity ˘1, and the
reduced space are points.

6.3 A SUp3q manifold

Consider C4 with its canonical basis te1, . . . , e4u. Let K » SUp3q be the
subgroup of SUp4q that fixes e4.

Let T “ SpUp1q ˆ Up1q ˆ Up1qq be the maximal torus of K with Lie
algebra t “ tpx1, x2, x3q,ř

i xi “ 0u, and Weyl chamber t˚ě0 :“ tξ1 ě ξ2 ě
ξ3,

ř
i ξi “ 0u. We choose the fundamental roots ω1, ω2 so that Kω1

“
SpUp2q ˆUp1qq and Kω2

“ SpUp1q ˆUp2qq. Recall that ω1, ω2 generates the
weight lattice Λ Ă t˚ so that Λě0 “ Nω1 ` Nω2. Note also that ρ “ ω1 `ω2.
For any λ P Λě0 ` ρ, we denote πλ the irreducible representation of K with
highest weight λ ´ ρ.

Let X “ t0 Ă L1 Ă L2 Ă C4, dimLi “ iu be the homogeneous partial
flag manifold under the action of SUp4q. We have two lines bundles over X:
L1pxq “ L1 and L2pxq “ L2{L1 for x “ pL1, L2q.
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Figure 15: T -multiplicities for non ample bundle on Hirzebruch surface

Our object of study is the complex submanifold

M “ tpL1, L2q P X | Ce4 Ă L2u.

The groupK acts onM , and the generic stabilizer of the action is rKω1
,Kω1

s »
SUp2q. We consider the family of lines bundles

Lpa, bq “ Lba
1 |M b Lb´b

2 |M , pa, bq P N
2.

Let SM :“ Ź
C
TM be the Spinc-bundle associated to the complex structure

on M . We compute the characters

QKpa, bq :“ QKpM,SM b Lpa, bqq P RpKq.

Again

QKpa, bq “
dimMÿ

i“0

p´1qiH ipM,OpLpa, bqqq.

We notice that Kω1
corresponds to the subgroup of K that fixes the

line Ce3. The set Y :“ tpL1, L2q P X |L2 “ Ce3 ‘ Ce4u is a Kω1
-invariant

complex submanifold of M such that the map pk, yq P K ˆ Y ÞÑ ky P M

factorizes through an isomorphism K ˆKω1
Y » M . Notice that rKω1

,Kω1
s
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acts trivially on Y . Thus we are in the “ideal”situation studied in Section
5.4.

If we take a ě 4 and b ě 1 we get that

(6.43) QKpa, bq “ ´
b´1ÿ

k“0

πkω1`ρ ´
a´4ÿ

j“0

πjω2`ρ.

In particular the multiplicity of πρ (the trivial representation) in QKpa, bq
is equal to ´2.

We now verify the formula (5.38) in our case. The Spinc-bundle SM is
equal to SKω1

b K ˆKω1
SY . The corresponding determinant line bundle

detpSM q satisfies

detpSM q “ K ˆKω1
C3ω1

b K ˆKω1
detpSY q

“ K ˆKω1
C2ω1

b Lb´2
1 .

Hence for the Spinc-bundle SM b Lpa, bq we have

detpSM b Lpa, bqq “ detpSM q b Lpa, bqb2

“ K ˆKω1
Cp2b`2qω1

b L
b2pa`b´1q
1 .

The line bundle detpSM b Lpa, bqq is equipped with a natural holomorphic
and hermitian connection ∇. To compute the corresponding moment map
Φa,b : M Ñ k˚, we notice that L1 “ K ˆKω1

L´1 where L Ñ P1 is the
prequantum line bundle over P1 (equipped with the Fubini-Study symplectic
form). If we denote ϕ : Y » P1 Ñ r0, 1s the function defined by ϕprz1, z2sq “

|z1|2

|z1|2`|z2|2
, we see that

Φa,bprk, ysq “ k rppb ` 1q ´ pa ` b ´ 1qϕpyqqω1s .

for rk, ys P M . In this case, the Kirwan set Φa,bpMq X t˚ě0 is the non convex
set r0, b ` 1sω1 Y r0, a ´ 2sω2.

We know (see Exemple 3.10) that the set Appkω1
qq is equal to the collec-

tion of orbits Kp1`2n
2

ωiq, n P N, i “ 1, 2, and we have QKpKp1
2
ωiqq “ 0 and

QKpKp3`2k
2

ωiqq “ πkωi`ρ when k ě 0.

If we apply (5.38), we see that πkω1`ρ occurs in QKpa, bq only if 3`2k
2

ă
b`1 : so k P t0, . . . , b´1u. Similarly πjω2`ρ occurs in QKpa, bq only if 3`2j

2
ă

a ´ 2 : so j P t0, . . . , a ´ 4u. For all this cases the corresponding reduced
spaces are points and one could check that the corresponding quantizations
are all equal to ´1 (see (5.35)).

Finally we have checked that (5.38) allows us to recover (6.43).
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salement elliptiques, Invent. Math. 124 (1996), 51–101.

[5] A. Cannas da Silva, Y. Karshon and S. Tolman, Quantization of presym-
plectic manifolds and circle actions, Trans. Amer. Math. Soc., 352, 2000, p.
525-552.

[6] M. Duflo, Construction de représentations unitaires d’un groupe de Lie,
CIME, Cortona (1980).

[7] J. J. Duistermaat, The heat equation and the Lefschetz fixed point formula
for the Spinc-Dirac operator, Progress in Nonlinear Differential Equation and
Their Applications, vol. 18, Birkhauser, Boston, 1996.

[8] M. Grossberg and Y. Karshon, Bott towers, complete integrability, and the
extended character of representations, Duke Mathematical Journal 76 (1994),
23-58.

[9] M. Grossberg and Y. Karshon, Equivariant index and the moment map
for completely integrable torus actions, Advances in Mathematics 133 (1998),
185-223.

[10] V. Guillemin and S. Sternberg, Geometric quantization and multiplicities
of group representations, Invent. Math. 67 (1982), 515–538.

[11] V. Guillemin and S. Sternberg, A normal form for the moment map,
Differential geometric methods in mathematical physics, 6 (1984), 161-175.

[12] Y. Karshon and S. Tolman, The moment map and line bundles over
presymplectic toric manifolds, J. Differential Geom 38 (1993), 465-484.

[13] A. Hattori Spinc-structures and S1-actions, Inventiones mathematicae 48
1978, 7–31.

[14] P. Hochs, and V. Mathai, Quantising proper actions on Spinc-manifolds,
arXiv:1408.0085

[15] T. Kawasaki, The index of elliptic operators over V-manifolds, Nagoya Math.
J., 84 (1981), 135–157.

73



[16] E. Lerman, E. Meinrenken, S. Tolman and C. Woodward, Non-Abelian
convexity by symplectic cuts, Topology 37 (1998), 245–259.

[17] E. Meinrenken, Symplectic surgery and the Spinc-Dirac operator, Advances
in Math. 134 (1998), 240–277.

[18] E. Meinrenken and R. Sjamaar, Singular reduction and quantization,
Topology 38 (1999), 699–762.

[19] P-E. Paradan, Formules de localisation en cohomologie quivariante, Compo-
sitio Mathematica 117 (1999), 243–293.

[20] P-E. Paradan, Localization of the Riemann-Roch character, J. Functional
Analysis 187 (2001), 442–509.

[21] P-E. Paradan, Spin quantization commutes with reduction, J. of Symplectic
Geometry 10 (2012), 389–422.

[22] P-E. Paradan and M. Vergne, Index of transversally elliptic operators,
Astérique 328 (2009), 297–338.

[23] P-E. Paradan and M. Vergne, The multiplicities of the equivariant index
of twisted Dirac operators, C. R. A. S., Volume 352, Issue 9, (2014), 673-677.

[24] P-E. Paradan and M. Vergne, Witten non abelian localization for equiv-
ariant K-theory

[25] R. Sjamaar, Symplectic reduction and Riemann-Roch formulas for multiplic-
ities, Bulletin of the A.M.S. 33 (1996), 327–338.

[26] A. Szenes and M. Vergne, rQ,Rs “ 0 and Kostant partition functions,
ArXiv:1006-4149.

[27] C. Teleman, The quantization conjecture revisited, Annals of Math., 152,
2000, p. 1-43.

[28] Y. Tian and W. Zhang, An analytic proof of the geometric quantization
conjecture of Guillemin-Sternberg, Invent. Math. 132 (1998), 229–259.

[29] M. Vergne, Multiplicity formula for geometric quantization, Part I, Part II,
and Part III, Duke Math. Journal, 82, 1996, p. 143-179, p 181-194, p 637-652.
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