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1 Introduction

Let M be a compact connected manifold. We assume that M is even dimen-
sional and oriented. We consider a spin® structure on M, and denote by S
the corresponding Spin® bundle. Let K be a compact connected Lie group
acting on M and S and we denote by D : I'(M,S1) — I'(M,S8™) the corre-
sponding K-equivariant Spin® Dirac operator. The equivariant index of D,
denoted Qi (M, S), belongs to the Grothendieck group of representations of
K:
Ok (M,S) = > m(m) .
ek

An important example is when M is a compact complex manifold, K
a compact group of holomorphic transformations of M, and £ any holo-
morphic K-equivariant line bundle on M, not necessarily ample. Then the
Dolbeaut operator twisted by £ can be realized as a Spin® Dirac opera-
tor D acting on sections of a Spin®bundle S. In this case Qx(M,S) =
>, (—1)THO (M, £).

Another example is when M is a compact even dimensional oriented
manifold with a K-invariant spin structure. Let Sgpin be the corresponding
canonical spin bundle, L be any K-equivariant line bundle, and take the
Spin® bundle Sgpin ® L. Then Qg (M, Sspin ® L) is the index of the Dirac
operator associated to the spin structure twisted by the line bundle L.



The aim of this article is to give a geometric description of the multiplic-
ity m(7) in the spirit of the Guillemin-Sternberg phenomenon [Q, R] = 0
[10, 17, 18, 28, 20]. After the remarkable results of Meinrenken-Sjamaar [18],
it was tempting to find in what way we can extend these results to other
situations. Consider the determinant line bundle L = det(S) of the spin®
structure. This is a K-equivariant complex line bundle on M. The choice of
a K-invariant hermitian metric and of a K-invariant hermitian connection
V on L determines a moment map

Ogs: M — t*

by the relation £(X) — Vx,, = 2i(®s, X), for all X € ¢. If M is spin and
S = Sepin ® L, then s is the “moment map” associated to a connection on
L.

We compute m() in term of the reduced “manifolds” ®5'(K¢)/K. This
formula extends the result of [21]. However, in this article, we do not assume
any hypothesis on the line bundle L, in particular we do not assume that the
curvature of the connection V is a symplectic form. In this pre-symplectic
setting, a partial answer to this question has been obtained by [12, 8, 9, 5]
when K is a torus.

In a recent preprint [14], Hochs and Mathai use our result to obtain a
[@, R] = 0 theorem in the case of an action of a connected Lie group G on a
Spin® manifold M. In their work, G or M are not necessarily compact but
the G-action on M is proper and co-compact : in this context they are able
to come back to the compact setting by Abel’s slice theorem.

Results obtained here have been announced in [23].

1.1 The result

We start to explain our result in the torus case. The general case reduces
(in spirit) to this case, using an appropriate slice for the K-action on M.

Let T be a torus acting effectively on M, and let S — M be a T-
equivariant Spin®-bundle (with connection) on M. In contrast to the sym-
plectic case, the image ®s(M) might not be convex and depends of the
choice of the connection. Let A ¢ t* be the lattice of weights. If u e A, we
denote by C,, the corresponding one dimensional representation of 7T". The
topological space M, = @gl(u) /T, which may not be connected, is an orb-
ifold provided with a Spin‘-structure when g in t* is a regular value of ®g.
In this case we define the integer Q*P"(M,,) as the index of the correspond-
ing Spin® Dirac operator on the orbifold M,,. We can define Q*P'"(M,,) even
if p is a singular value. Postponing this definition, our result states that



Figure 1: T-multiplicities for non ample bundle on Hirzebruch surface

Or(M,8)= > QP"(M,)C,.

HEAND (M)

Here is the definition of Q*P™(M,,) (see Section 5.1). We approach u by
a regular value p + €, and we define Q%P"(M),) as the index of a Spin® Dirac
operator on the orbifold M, ., and this is independent of the choice of €
sufficiently close. Remark here that p has to be an interior point of ®s(M)
in order for Q*""(M,,) to be non zero, as otherwise we can take y + € not in
the image. In a forthcoming article, we will give a more detailed description
of the function p — Q%P™(M,,) in terms of locally quasi-polynomial functions
on t*.

When M is a toric manifold, this result was obtained by Karshon-
Tolman. In Figure 1, we draw the picture of the function p — Q%P"(M,,)
for the Hirzebruch surface, and a non ample line bundle on it (we give the
details of this example in the last section). The image of ®s is the union
of the two large triangles in red and blue. The multiplicities are 1 on the
integral points of the interior of the red triangle, and —1 on the integral
points of the interior of the blue triangle.

Now consider the case of a compact connected Lie group K acting on M
and S. Before describing precisely the multiplicities of Qx (M, S), we first



give a vanishing result.

Let He be the set of conjugacy classes of the reductive algebras £, { € £*.
We group the coadjoint orbits according to the conjugacy class (h) € He of
the stabilizer, and we consider the Dixmier sheet £f,, of orbits K¢ with £
conjugated to h. We denote by H the connected subgroup of K with Lie
algebra h. If 3 is the center of b, let 37 be the set of £ € 3*, such that € = b.
We see then that the Dixmier sheet ‘E’(“b) is equal to K3;.

Let (ps) be the generic infinitesimal stabilizer of the K-action on M.
We prove the following vanishing result in Sections 4.5.1 and 4.5.2.

Theorem 1.1 If Qi (M,S) is non zero, then there exists a unique (h) € Hy
such that :

o ([tar, trr]) = ([b,b]),
e the pullback @gl(EZ‘h)) is open and dense in M.

A typical example of a couple (M, S) satisfying the conditions of Theo-
rem 1.1 if when M is equal to K x Y with Y a compact H/[H, H]-manifold
(see Subsection 5.4). The Spin®-bundle on M determines a Spin®-bundle Sy
on Y such that the moment map ®s, takes value in 3* (3 is the Lie algebra
of H/[H,H]). In this case, it is easy to compute Qi (M,S) in terms of
Qpu(Y,Sy) via an induction formula.

In spirit, we are in this situation. Indeed we can define the non-compact
“slice” Y = ®5'(34) which is a H/[H, H] submanifold of M such that K
is a dense open subset of M.

In order to study the K-multiplicities of Q (M, S), we need a geometric
parametrization of the dual K.

We say that a coadjoint orbit P < £* is admissible if P carries a Spin®-
bundle Sp such that the corresponding moment map ®s is the inclusion
P — t*. We denote simply by Q" (P) the element Qg (P,Sp) € R(K). It
is either 0 or an irreducible representation of K, and the map

O - 7o 1= QE™(O)

defines a bijection between the regular admissible orbits and the dual K.
Denote by A((h)) the set of admissible orbits contained in the Dixmier

sheet £f;). When O is a regular admissible orbit, a coadjoint orbit P € A((h))

is called a (h)-ancestor of O if Q?()in(P) = 7.
When (M, S) satisfy the conditions of Theorem 1.1, we can define the
Spin® index Q¥P™(Mp) € Z of the reduced space Mp = @51(73) /K, for any



P e A((h)). We use the slice ) and the deformation procedure, as explained
in the abelian case.

We obtain the following [@Q, R] = 0 theorem which is the main result of
the paper.

Theorem 1.2 Assume that ([€ar,€rr]) = ([b, b]) with (h) € He.
e The multiplicity of the representation mo in Qi (M,S) is equal to

> QP (Mp)

P

where the sum runs over the (h)-ancestor of O. In other words

Qk(M,S)= Y QF(Mp)QE™(P).
PeA((h))

e Furthermore, each term QP™(Mp) € Z does not depend on the choice
of the connection on the determinant line bundle det(S).

It may be useful to rephrase this theorem by describing the parametriza-
tion of admissible orbits by parameters belonging to the closed Weyl chamber
tLy. Let Axg := A ntf, be the set of dominant weights, and let p be the
half sum of the positive roots.

The set of regular admissible orbits is indexed by the set Asg + p: if
A € A>o + p, the coadjoint orbit K\ is regular admissible and 7gy is the
representation with highest weight A — p.

Denote by F the set of the relative interiors of the faces of t£,. Thus
tLy = [[,cro. The face t¥; is the open face in F.

Let 0 € F. The stabilizer K¢ of a point £ € o depends only of 0. We
denote it by K,, and by £, its Lie algebra. We choose on £, the system
of positive roots compatible with tf,, and let p%e be the corresponding
p. When p € o, the coadjoint orbit Ky is admissible if and only if A =
p—p+ploe A

The map F —> Hg, 0 — (&), is surjective but not injective. We denote
by F((h)) the set of faces of t, such that (£,) = (b).

Using the above parameters, we may rephrase Theorem 1.2 as follows.

Theorem 1.3 Assume that ([trr,€rr]) = ([b,b]) with (h) € He. Let X €
Aso + p and let my € Z be the multiplicity of the representation mgy in
Ok (M,S). We have

(1.1) my = Z QSpin(MK(,\pra))-
seF((h))
A—pKoeo



Figure 2: K-multiplicities and ancestors

More explicitly, the sum (1.1) is taken over the faces o of the Weyl
chamber such that

(1.2)  ([tar, tnr)) = ([65,85]), Ps(M)no # &, e {o+ pial.

In Section 6.3, we give an example of a SU(3)-manifold M with generic
stabilizer SU(2), and a Spin® bundle § where several o contribute to the
multiplicity of a representation 7 in Qx(M,S). On Figure 2, the picture
of the decomposition of Qf (M,S) is given in terms of the representations
Q" (P) associated to the SU(2)-ancestors P. All reduced spaces are points,
but the multiplicity Q*"(Mp) are equal to —1, following from the orien-
tation rule. On the picture, the links between admissible regular orbits O
and their ancestors P are indicated by segments. We see that the orbit
O(p) of p has two ancestors P; and Pa, so that the multiplicity of the trivial
representation is equal to

QSpin(Mpl) + QSpin(M’Pg) = _9
and comes from two different faces of the Weyl chamber.

If the generic stabilizer of the action of K in M is abelian, expression
(1.1) simplifies as follows. Consider the slice Y = &' (t%,) which is a T-
invariant submanifold. Let ®y be the restriction of &g to Y. If Qx(M,S)
is non zero, then KY is a dense open subset of M, and we have simply

(1.3) my = QP (Y3)



where Yy = ®,'(\)/T. In other words

Ok (M,S) = Z QP(Y)) Txea-

AeAzo+p

In particular, if the group K is the circle group, and A is a regular value
of the moment map ®, Identity (1.3) was obtained in [5].

1.2 Techniques of the proof

Consider the Kirwan vector field ks on M: at m € M, kg is the tangent
vector obtained by the infinitesimal action of —®g(m) at m € M (we have
identified £ and €*). We use a topological deformation o of the symbol o
of the Dirac operator D by pushing the zero section of T*M inside T*M
using the Kirwan vector field ks. We call this deformation the Witten
deformation, as it was used by Witten (in the symplectic setting) to show
that the computation of integrals of equivariant cohomology classes on M
reduces to the study of contributions coming from a neighborhood of Zg, the
set of zeroes of kg, leading to the so called non abelian localization formula.

Here we apply the same technique to compute the index Qg (M,S) as
a sum of equivariant indices of transversally elliptic operators associated
to connected components Z of Zs. We are able to identify them to some
basic transversally elliptic symbols whose indices were computed by Atiyah-
Singer (see [1]). Although these indices are infinite dimensional represen-
tations, they are easier to understand than the original finite dimensional
representation Qi (M,S) (an analogue, strongly related via the theory of
toric manifolds, is the Brianchon-Gram decomposition of the characteristic
function of a compact convex polytope P as an alternate sum of character-
istic functions of cones). We give an example of the decomposition of the
representation Qi (M,S) in Subsection 4.2.

All properties of the K-theory version of Witten deformation that we
use here were previously proved in [20]. However, we have written in [24] a
hopefully more readable description of the functorial properties of this non
abelian localization formula in K-theory.

To compute the multiplicity of 7o in Qx(M,S), we use the shifting
trick and compute the K-invariant part of the equivariant index Qp (P, Sp)
where P is the product manifold M x O*. Let Zp be the zero set of the
corresponding Kirwan vector field kp and o, the deformed symbol. The
computation of the equivariant index is thus reduced to the study of the
deformed symbol o, in a neighborhood of Zp. We have to single out the
components Z such that the trivial representation of K occurs with non



zero multiplicity. Here is where we discover that, for Qx(M,S) to be non
zero, it is necessary that the semi-simple part of the generic stabilizer €;; of
the action of K on M is equal to the semi-simple part of a Levi subalgebra
h of €. It follows that such a component Z is described rather simply as
an induced manifold K x g (Y x o(h)), with Y a H/[H, H] manifold, and
o(h) the [H, H]-orbit of the corresponding pl-#] element. Then we use the
fact that the quantization of the orbit of p is the trivial representation. In
fact, to determine the contributing components Z, we study a function dp :
Zp — R relating the representation of K,,, on T,, M and the norm of ®s(m).
Here K, is the stabilizer of m € M. It relies on the “magical inequality”
(Corollary 3.15) on distance of regular weights to faces of the Weyl chamber.
This step differs from the crucial step in the proof of [@, R] = 0 theorem in
the symplectic case. Both theorems are somewhat both magical, but each
one on its own. It maybe useful for the reader to read first [24], where we
recall the first author proof of [Q, R] = 0 in the Hamiltonian case, where
the strategy is straightforward. This strategy is also explained in more
combinatorial terms in Szenes-Vergne [26].

1.3 Outline of the article

Let us explain the contents of the different sections of the article, and their
main use in the final proof.

e In Section 2, we give the definition of the index of a Spin®-bundle.

e In Section 3, we describe the canonical Spin®-bundle on admissible
coadjoint orbits (see (3.12)). For a K-admissible coadjoint orbit P, we

spin

determine the regular admissible orbit O such that if Q" (7P) is not zero,
then Q2™ (P) = 7o (Proposition 3.8).

We prove the magical inequality (Corollary 3.15) on distance of the
shifted Weyl chamber p® + t%, to admissible 4 € t* (that is Kpu is an
admissible orbit). This inequality on Weyl chambers will be used over and
over again in this article.

e In Section 4, we define the Witten deformation and recall some of its
properties (proved in [20, 24]). It allows us to reduce the computation of
Qx(M,S) to indices gz of simpler transversally elliptic operators defined in
neighborhoods of connected components of Zs = {ks = 0}.

We introduce a function ds : Zs — R. If ds takes strictly positive values
on some component Z of Zg, then the K-invariant part of the (virtual)
representation gz is equal to 0 (Proposition 4.17). This is a very important
technical proposition.

If O is an admissible regular coadjoint orbit, the shifting trick leads us



to study the manifold M x O* with Spin®-bundle § ® Spx. We want to
select the component Z of Zsgs,, so that [gz]*
4.22 summarizes the geometric structure enjoyed by M and S when there
exists such a component. Although this theorem is natural (as we tried to
explain it in the introduction), we are able to obtain it only using Witten
deformation on M x O* (for all regular admissible orbits O) and a careful
study of the function dsgs,. -

We show that the components Z for which [¢z]® # 0 are contained
in the subsets ®5'(P) x O* of M x O* where P is a (h)-ancestor to O
(Proposition 4.24).

We then obtain that the multiplicity mp of 7o in Qx (M, S) is the sum
Y. pm); parametrized by the (h)-ancestors of O. In Proposition 4.25, we
prove that each term mg is independent of the choice of the connection.

e In Section 5, we prove that mg is equal to QP (Mp). Here we explain
how to define indices on singular reduced spaces. The main theorem is their
invariance under small deformation.

We then have done all the work needed to be able to prove the main
theorem.

We finally verify that (fortunately) the statement [@Q), R] = 0 in the Spin®
case is compatible with Spin® induction.

e The last section is dedicated to some examples.

is not zero. Theorem
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Notations
Throughout the paper :
e K denotes a compact connected Lie group with Lie algebra €.
e T is a maximal torus in K with Lie algebra t.

e A c t* is the weight lattice of T : every pu € A defines a 1-dimensional
T-representation, denoted C,, where t = exp(X) acts by tH := el X0,

e We fix a K-invariant inner product (-,-) on €. This allows us to identify
£ and £* when needed.

We denote by (-, -) the natural duality between ¢ and £*.

10



We denote by R(K) the representation ring of K : an element E €
R(K) can be represented as finite sum E = Zuef( m,m,, withm, € Z.
The multiplicity of the trivial representation is denoted [E]¥.

We denote by R(K) the space of Z-valued functions on K. An element
E € R(K) can be represented as an infinite sum E = Zuef( m(p)m,,

with m(u) € Z.

If H is a closed subgroup of K, the induction map md¥ : R(H) -
R(K) is the dual of the restriction morphism R(K) — R(H). In
particular [Ind® (E)]X = [E]".

When K acts on a set X, the stabilizer subgroup of z € X is denoted
K, :={ke K | k-x = z}. The Lie algebra of K, is denoted &,.

An element £ € £* is called regular if K¢ is a maximal torus of K.

When K acts on a manifold M, we denote Xpr(m) := 4|—ge™*¥ -m

the vector field generated by —X € £. Sometimes we will also use the
notation Xs(m) = —X - m. The set of zeroes of the vector field Xy,
is denoted M.

If V is a complex (ungraded) vector space, then the exterior space
AV = AT V® A~V will be Z/2Z graded in even and odd elements.

If By = Ef ®E; and By = Ey ® E, are two Z/2Z graded vector
spaces (or vector bundles), the tensor product Ey ® Fs is Z/27-graded
with (E1® E»)" = B By ®E] ® Ey and (E1®E»)™ = Ef By @
Ef®FE; . Similarly the spaces End(E;) are Z/2Z graded. The action of
End(F;)®End(FE2) on F1® Es obeys the usual sign rules: for example,
if f € End(E2)~, v1 € E] and vz € Es, then f(v; ® v2) = —v1 ® fus.

If E is a vector space and M a manifold, we denote by [E] the trivial
vector bundle on M with fiber E.

2 Spin¢ equivariant index

2.1 Spin° modules

Let V be an oriented Euclidean space of even dimension n = 2¢. We denote
by C1(V) its Clifford algebra. If eq, ..., e, is an oriented orthonormal frame
of V', we define the element

e:=(i)er ey e CIV)

11



that depends only of the orientation. We have €2 = 1 and ev = —wve for any
veV.

If £ is a Cl(V)-module, the Clifford map is denoted cg : Cl(V) —
End(E). We see then that the element of order two eg := cg(e) defines
a Z/27-graduation on E by defining E* := ker(Idg F €g). Moreover the
maps cg(v) : E — F for v € V interchange the subspaces Et and E~. This
graduation will be called the canonical graduation of the Clifford module E.

We follow the conventions of [3]. Recall the following fundamental fact.

Proposition 2.1 Let V be an even dimensional Euclidean space.

o There exists a complex CL(V')-module S such that the Clifford mor-
phism cg : CL(V)) — End(S) induces an isomorphism of complex alge-
bra C1(V) ® C ~ End(S).

o The Clifford module S is unique up to isomorphism. We call it the
spinor Cl(V')-module.

o Any complex CL(V')-module E has the following decomposition
(24) E~S @ homCl(V) (S, E)

where homgyy) (S, E) is the vector space spanned by the C1(V)-complex
linear maps from S to E. If V is oriented and the Clifford modules S
and E carry their canonical grading, then (2.4) is an isomorphism of

graded Clifford CL(V')-modules.

Let V = Vi1 @ V4 be an orthogonal decomposition of even dimensional
Euclidean spaces. We choose an orientation o(V;) on Vi. There is a one-
to-one correspondence between the graded Cl(V2)-modules and the graded
Cl(V)-modules defined as follows. Let S; be the spinor module for C1(V;).
If W is a Cl(V2)-module, the vector space E := S; ® W is a C1(V')-module
with the Clifford map defined by

CE(Ul (—sz) = cCg, (vl) ® Idw + €S, ®Cw(v2).

Here v; € V; and €g, € End(S7) defines the canonical graduation of S;. Con-
versely, if F is a graded Cl(V)-module, the vector space W :=
homg(v;)(S1, £) formed by the complex linear maps f : S1 — E com-
muting with the action of Cl(V;) has a natural structure of Cl(V2) graded
module and F ~ 51 ® W.

If we fix an orientation o(V') on V, it fixes an orientation o(V2) on V; by
the relation o(V') = o(V1)o(V2). Then the Clifford modules E and W carries

12



their canonical Z/27 graduation, and E ~ S; ® W becomes an identity of
graded Clifford modules.

Example 2.2 Let H be an FEuclidean vector space equipped with a complex
structure J € O(H): we denote by /\; H the exterior product of the space
H considered as a complex vector space with complex structure J. Denote
by m(v) the exterior multiplication by v. The action ¢ of H on )\ ; H given
by c(v) = m(v) —m(v)* satisfies c(v)?> = —|v|*Id. Thus, \; H, equipped
with the action c, is a realization of the spinor module for H. Note that the
group U(J) of unitary transformations of H acts naturally on )\ ; H. If one
choose the orientation on H induced by the complex structure, one sees that
the canonical grading is (\, H)* = N7 H.

Consider another complex structure J' € O(H) : the vector space )\ ;, H
is another spinor module for H. We denote by ejl the ratio between the
orientations defined by J and J'. One can check that

(2.5) /\H:eﬁICX®/\H,
J’ J

as a graded Cl(H)-module and also as a graded U(J") n U(J)-module. Here
C, is the 1-dimensional representation of U(J') n U(J) associated to the
unique character x defined by the relation x(g)? = dety(g) det(g)~!, Vg €
U(J'") nU(J).

Example 2.3 WhenV = Q®Q with Q an Fuclidean space, we can identify
V with Q¢ by (z,y) — x@ty. Thus Sg := /\ Qc is a realization of the
spinor module for V. It carries a natural action of the orthogonal group
O(Q) acting diagonally. If Q carries a complex structure J € O(Q), we
can consider the spin modules )\ ; Q and /\_;Q for Q. We have then the
isomorphism Sg ~ \;Q® A_;Q of graded CI(V)-modules (it is also an
isomorphism of U(J)-modules).

2.2 Spin‘ structures

Consider now the case of an Euclidean vector bundle V — M of even rank.
Let C1(V) — M be the associated Clifford algebra bundle. A complex vector
bundle &€ — M is a Cl(V)-module if there is a bundle algebra morphism
ce : Cl(V) — End(€).

13



Definition 2.4 Let S — M be a C1(V)-module such that the map cs induces
an isomorphism Cl(V) ®g C — End(S). Then we say that S is a Spin°-
bundle for V.

As in the linear case, an orientation on the vector bundle V determines a
Z/27 grading of the vector bundle S (called the canonical graduation) such
that for any v € V,,, the linear map! cs(m,v) : Sy, — Sy, is odd.

Example 2.5 When H — M is a Hermitian vector bundle, the complex
vector bundle /\ H is a Spin® bundle for H. If one choose the orientation
of the vector bundle H induced by the complex structure, one sees that the
canonical grading is (\H)E = AT H.

We assume that the vector bundle V is oriented, and we consider two
Spin®-bundles S, S’ for V, both with their canonical grading. We have the
following identity of graded Spin®-bundles : &’ ~ S® Ls s where Ls s is a
complex line bundle on M defined by the relation

(26) H—S,S’ = homCI(V) (S,S/)

Definition 2.6 Let V — M be an FEuclidean vector bundle of even rank.
The determinant line bundle of a Spin®-bundle S on V is the line bundle
Ls — M defined by the relation

Ls := homgyy)(S,S)

where S is the C1(V)-module with opposite complex structure. Sometimes
Ls is also denoted det(S).

Example 2.7 WhenH — M is a Hermitian vector bundle, the determinant
line bundle of the Spin®-bundle \ H is det(H) := A" H.

If S and S’ are two Spin®-bundles for V, we see that
Ls = Ls ® (Ls,s)®2

Assume that V = V; @ Vs is an orthogonal sum of Euclidean vector
bundles of even rank. We assume that V; is oriented, and let S1 be a Spin®-
bundle for V; that we equip with its canonical grading. If £ is a Clifford
bundle for V, then we have the following isomorphism?

(2.7) E~S QW

'The map cs(m, —) : Vim — End(S,,) will also be denoted by cs,, -
2The proof is identical to the linear case explained earlier.
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where W := homgy,) (81, €) is a Clifford bundle for V,. If V is oriented, it
fixes an orientation o(V3) on Vs by the relation o(V) = o(V1)o(V2). Then the
Clifford modules £ and W carries their canonical Z/27 grading, and (2.7)
becomes an identity of graded Clifford modules.

In the particular situation where S is a Spin®-bundle for V, then & ~
81 ® Sz where Sy := homcyy,)(S1,S) is a Spin“-bundle for Vs. At the level
of determinant line bundles we obtain Ls = Ls, ® Ls,.

Let us end this section by recalling the notion of Spin-structure and
Spin®-structure. Let ¥V — M be an oriented Euclidean vector bundle of
rank n, and let Pgo(V) be its orthogonal frame bundle : it is a principal
SO,, bundle over M.

Let us consider the spinor group Spin,, which is the double cover of the
group SO,,. The group Spin,, is a subgroup of the group Spin{, which covers
SO,, with fiber U(1).

A Spin structure on V is a Spin,-principal bundle Pgp;,(V) over M
together with a Spin,,- equivariant map P g,in (V) — Pso(V).

We assume now that V is of even rank n = 2¢. Let S,, be the irreducible
complex spin representation of Spin,,. Recall that S,, = S} @ S, inherits
a canonical Clifford action ¢ : R* — End(S,,) which is Spin,-equivariant,
and which interchanges the graduation: c(v) : S — SF. The spinor bundle
attached to the Spin-structure P gy, (V) is

S = PSpm(V) X Spin,, Sn.

A Spin®-bundle for V determines a Spin® structure, that is a principal
bundle over M with structure group Spin;,. When V admits a Spin-structure,
any Spin“-bundle for V is of the form S;, = Sgpin ® L where Sqpiy is the spinor
bundle attached to the Spin-structure and L is a line bundle on M. Then
the determinant line bundle for Sy, is L&?.

2.3 Moment maps and Kirwan vector field

In this section, we consider the case of a Riemannian manifold M acted on
by a compact Lie group K. Let S — M be a Spin®bundle on M. If the
K-action lifts to the Spin®-bundle S in such a way that the bundle map
¢s : CI(TM) — End(S) commutes with the K-action, we say that S defines
a K-equivariant Spin“-bundle on M. In this case, the K-action lifts also
to the determinant line bundle Ls. The choice of an invariant Hermitian
connection V on Lg determines an equivariant map ®s : M — ¢* and a
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2-form Qs on M by means of the Kostant relations
(2.8) L(X)~Vx,, =2i{ds,X) and V?=-2iQs

for every X € €. Here £(X) denotes the infinitesimal action of X € £ on the
sections of Ls. We will say that ®s is the moment map for S (it depends
however of the choice of a connection).

Via the equivariant Bianchi formula, Relations (2.8) induce the relations

(2.9) L(XM)QS = —d<q)5,X> and ng =0

for every X € ¢. It follows that ®s is a moment map, as defined in [24].
In particular the function m — (®s(m), X) is locally constant on M*X.

Remark 2.8 Letb e t and m € MP?, the set of zeroes of by;. We consider the
linear actions L(b)ls,, and L(D)|Lg, on the fibers at m of the Spin®-bundle
S and the line bundle Ls. Kostant relations imply L(b)|vg,, = 2i(Ps(m),b).
The irreducibility of S implies that

L(D)|s,, =i{Ps(m),b)Ids,,.
Furthermore the function m — (®g(m),b) is locally constant on MY

Note that the closed 2-form (s, which is half of the curvature of Lg,
is not (in general) a symplectic form. Furthermore, if we take any (real
valued) invariant 1-form A on M, V 444 is another connection on Ls. The
corresponding curvature and moment map will be modified in Qg — %dA
and &g — %@A where ®4 : M — ¢* is defined by the relation (®4,X) =
—u(Xar)A.

Let ® : M — ¢ be a K-equivariant map. We define the K-invariant
vector field kg on M by

(2.10) ke(m) := —®(m) - m,
and we call it the Kirwan vector field associated to ®. The set where k¢
vanishes is a K-invariant subset that we denote by Zo < M.

We identify €* to £ by our choice of K-invariant scalar product and we will
have a particular interest in the equivariant map ®s : M — €* ~ £ associated
to the Spin®-bundle S. In this case we may denote the K-invariant vector
field ko4 simply by ks (even if it depends of the choice of a connection):

ks(m) := —®dg(m) - m.

and we denote Zg by Zs.
As ®s is a moment map, we have the following basic description (see
[20, 24]).
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Lemma 2.9 If the manifold M is compact, the set ®s(Zs) is a finite col-
lection of coadjoint orbits. For any coadjoint orbit O = K, we have

Zs n d51(0) = K(MP n d51(B)).

Here we have identified B € €* to an element in € still denoted by (3.
Furthermore, any 3 in the image ®s(Zs) is such that |B||?> is a critical
value of the map ||®s|>.

Remark 2.10 Although the map ®s as well as the set Zs vary when we
vary the connection, we see that the image ®s(Zs) is contained in a finite
set of coadjoint orbits that does not depend of the connection (see [24]).

Figure 3 describes the set ®s(Zs) for the action of the diagonal torus of
K = SU(3) on the orbit Kp equipped with its canonical Spin®-bundle.

Figure 3: The set ®5(Zs)

2.4 Equivariant index

Assume in this section that the Riemannian K-manifold M is compact,
even dimensional, oriented, and equipped with a K-equivariant Spin“-bundle
S — M. The orientation induces a decomposition S = ST @ S~, and
the corresponding Spin® Dirac operator is a first order elliptic operator
Ds : T'(M,8") — I'(M,S87) [3, 7]. Its principal symbol is the bundle map
o(M,S) e I'(T* M, hom(p*S™,p*S™)) defined by the relation

o(M,S)(m,v) =cs,, (¥): S} — S,

Here v € T*M — U € TM is the identification defined by the Riemannian
structure.

If W — M is a complex K-vector bundle, we can define similarly the
twisted Dirac operator DY : T'(M, ST @ W) — I'(M, S~ @ W).
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Definition 2.11 Let S — M be an equivariant Spin®-bundle. We denote :
e Qi (M,S) e R(K) the equivariant index of the operator Ds,
e Ox(M,S®W) € R(K) the equivariant index of the operator DY’.

Let A(M)(X) be the equivariant A-genus class of M: it is an equivari-
ant analytic function from a neighborhood of 0 € £ with value in the alge-
bra of differential forms on M. Berline-Vergne equivariant index formula
[3][Theorem 8.2] asserts that

@1) QM S)(¥) = () [ et d0)(x)

2 M

for X € £ small enough. Here we write Qg (M,S)(eX) for the trace of the
element eX € K in the virtual representation Qg (M,S) of K. It shows in
particular that Qg (M, S) € R(K) is a topological invariant : it only depends
of the class of the equivariant form Qg + (s, X), which represents half of

the first equivariant Chern class of the line bundle Lg.

Example 2.12 We consider the simplest case of the theory. Let M :=
PY(C) be the projective space of (complex) dimension one. We write an
element of M as [z1, z2] in homogeneous coordinates. Consider the (ample)
line bundle £ — P, dual of the tautological bundle. Let S(n) be the Spin®-
bundle \e TM ® LO". The virtual representation Qr(M,S(n)) is equal to
HO(PY,O(n)) — HY(PY,O(n)). Then forn =0,

Qr(M,S(n)) = Y t*.
k=0
Here T = {t € C;|t| = 1} acts on [z1,22] via t - 21, 22] = [t 21, 22].

3 Coadjoint orbits and the magical inequality

In this section, we describe Spin®-bundles on admissible coadjoint orbits of
K and the equivariant indices of the associated Dirac operators.

3.1 Conjugacy classes of centralizers

For any ¢ € £*, the stabilizer K¢ is a connected subgroup of K with same
rank. We denote by £ its Lie algebra.

Let He be the set of conjugacy classes of the reductive algebras £¢, { € £*.
The set Hg contains the conjugacy class formed by the Cartan sub-algebras.
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It contains also € (stabilizer of 0). A coadjoint orbit O belongs to the Dixmier
sheet Ez"h), for (h) € He if (&) = (b) for (any) £ € O.

Remark 3.1 If b = &, then bc is the Levi subalgebra of the parabolic sub-
algebra determined by &. Parabolics are classified by subsets of simple roots.
However, different conjugacy classes of parabolics might give rise to the same
conjugacy class of Levi subalgebras (as seen immediately for type Ay,).

We denote by S the set of conjugacy classes of the semi-simple parts
[b, b] of the elements (h) € He.

Lemma 3.2 The map (h) — ([b,h]) induces a bijection between He and S

Proof. Assume that [h,h] = [b’,h'] = s. Consider n the normalizer of s.
Then h and h’ are both contained in n. Let t,t be Cartan subalgebras of
b,H’. Then t and t' are conjugated inside the normalizer of 5. As h =5 + t,
we see that b is conjugated to by’.

The connected Lie subgroup with Lie algebra h is denoted H, that is
if h = €, then H = K¢. We write b = 3 @ [h,bh] where 3 is the center
and [b, b] is the semi-simple part of h. Thus h* = 3* @ [h,h]* and 3* is
the set of elements in h* vanishing on the semi-simple part of . We write
t =0Hd[3 ¢, so we embed h* in £* as a H-invariant subspace, that is we
consider an element £ € h* also as an element of ¢* vanishing on [3, €].

3.2 Statement of results on admissible coadjoint orbits

We first define the p-orbit. Let T be a Cartan subgroup of K. Then t* is
imbedded in €* as the subspace of T-invariant elements. Choose a system
of positive roots AT < t*, and let p = %Za>0 a. The definition of pX
requires the choice of a Cartan subgroup 7" and of a positive root system.
However a different choice leads to a conjugate element. Thus we can make
the following definition.

Definition 3.3 We denote by o(€) the coadjoint orbit of p € €. We call
o(t) the p-orbit.
If K is abelian, then o(¢) is {0}.

The notion of admissible coadjoint orbit is defined in [6] for any real
Lie group G. When K is a compact connected Lie group, we adopt the
following equivalent definition: a coadjoint orbit O < ¢* is admissible if O
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carries a K-equivariant Spin®-bundle Sp, such that the associated moment
map is the injection O «— £*. If K¢ is an admissible orbit, we also say that
the element ¢ is admissible. An admissible coadjoint orbit O is oriented
by its symplectic structure, and we denote by Q2"(0) := Qg (0, Sp) the
corresponding equivariant spin® index.

We have (&, [, £]) = 0. The quotient space q = £/€ is equipped with
the symplectic form Q¢ (X,Y) := (£, [X,Y]), and with a unique Kg-invariant
complex structure Je such that Q¢(—, J¢—) is a scalar product. We denote
by g¢ the space t/t: considered as a complex vector space via the
complex structure Je. Any element X € £ defines a complex linear map
ad(X) : ¢¢ — gf.

Definition 3.4 e For any & € ¥, we denote by p(&) the element of e such

that X
(p(€). X) = 5;Treead(X), X € te.

We extend p(§) to an element of ¥*, that we still denote by p(§).

Thus, given a £ € t*, and H = K¢, we have written p% as sum of
pie + p(€), according to the decomposition € = & @ q.

If 10 : & — iR is the differential of a character of K¢, we denote by
Cg the corresponding 1-dimensional representation of K¢, and by [Cq| =
K xg, Cy the corresponding line bundle over the coadjoint orbit K¢ < £*.
The condition that K¢ is admissible means that there exists a Spin®-bundle
S on K¢ such that det(S) = [Cy¢] (2i€ needs to be the differential of a
character of Kg).

Lemma 3.5 1. {p(§), [, t]) = 0.

2. The coadjoint orbit K& is admissible if and only if i(§ — p(§)) is the
differential of a 1-dimensional representation of K.

Proof. Consider the character k — detge(k) of K¢. Its differential is

2ip(§). Thus (p(§), [t te]) = 0.
We can equip K¢ ~ K/K¢ with the Spin®-bundle

Se ::K><K£/\q£

with determinant line bundle det(S¢) = [Cqp(¢)]- Any other K-equivariant
Spin®-bundle on K¢ is of the form S ® [Cy] where 6 is the differential of
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a character of K¢. Then det(S¢ ® [Cy]) = [Co¢] if and only if £ — p(&) = 6.
The lemma then follows.

In particular the orbit o(£) is admissible. Indeed if ¢ = p&, then & —
p(&) = 0.

An admissible coadjoint orbit O = K¢ is then equipped with the Spin®-
bundle

(3.12) S5 =K xxe (N € @Ce i)

Its Spin® equivariant index is

(3.1) 7(0) = ndf, (A a€®Ceyig)) -

See [24].
The following proposition is well known. We will recall its proof in
Lemma 3.11 in the next subsection.

Proposition 3.6 e The map O — 7o = ?()in((/)) defines a bijection

~

between the set of reqular admissible orbits and K.

] Qi?in(O(E)) is the trivial representation of K.

We now describe the representation Q?()in(O) attached to any admissible
orbit in terms of regular admissible orbits.

Definition 3.7 To any coadjoint orbit O < ¥*, we associate the coadjoint
orbit s(O) < €* which is defined as follows : if O = Kp, take s(O) = K¢
with £ € p+ o(€,). We call s(O) the shift of the orbit O.

If O is regular, s(O) = O. If O = {0}, then s(O) = o(®).

The following proposition will be proved in the next subsection.
Proposition 3.8 Let P be an admissible orbit.

o P*:= —P is also admissible and Qi?in(P*) = ?gin(P)*.

o If s(P) is regular, then s(P) is also admissible.

e Conversely, if O is reqular and admissible, and P is such that s(P) =
O, then P is admissible.

21



e — Ifs(P) is not regular, then Q?;in(P) = 0.
— If s(P) is regular, then Qsl‘gin(P) = ?in(s(p)) = Ty(p)-

It is important to understand what are the admissible orbits P such that
s(P) is equal to a fixed regular admissible orbit O.

For the remaining part of this subsection, we fix a conjugacy class (h).
We denote by A((h)) the set of admissible orbits belonging to the Dixmier
sheet Ez"h).

Definition 3.9 Let O < ¢* be a K-orbit. A K-orbit P is called a (h)
ancestor of O is P < €, and s(P) = O.

We make the choice of a connected Lie subgroup H with Lie algebra b
and write h = 3 ® [h,h]. We denote by 3 the set of elements ¢ € 3* such
that K¢ = H. The orbit o(h) (the p-orbit for H) is contained in [b, h]*. The
orbit P is a (h)-ancestor to O, if and only if there exists p € 33 such that
Ku =P and pff € o(h) such that O = K(u + p?). If O is admissible then
P is admissible (see Lemma 3.16).

Given a regular admissible orbit O, there might be several (h)-ancestors
to O.

Example 3.10 Consider the group K = SU(3) and let () be the centralizer
class of a subregular element f € € with centralizer H = S(U(2) x U(1)).

We consider the Cartan subalgebra of diagonal matrices and choose a
Weyl chamber. Let wi,ws be the two fundamental weights. Let 01,09 be the
half lines R~ow1, Rsowa. The set A((h)) is equal to the collection of orbits
K- (H22w),n € Z (see Figure 4).

Figure 4: H-admissible orbits
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As —wy is conjugated to wa, we see that the set A((h)) is equal to the
collection of orbits K - (#wi),n € Zsp,% = 1,2. Here we have chosen the
representatives in the chosen closed Weyl chamber.

One has s(K - (122w;)) = K(p* + (n—1)w;). Thus the shifted orbit is a
reqular orbit if and only if n > 0. For n = 1, both admissible orbits K - %wl
and K - (F2w1) = K - 3wo are (h)-ancestors to the orbit Kp% = o().

Both admissible orbits P1 = K - %wl and Py, = K - %wg are such that

K (P) =0

In Figure 5, we draw the link between H-admissible orbits and their

respective shifts.

Figure 5: H-admissible orbits and their shifts

There might also be several classes of conjugacy (h) such that O admits
a (h)-ancestor P. For example, let O = o(t). Then, for any h € He, the
orbit K (p% — pf) is a (h)-ancestor to O. Here we have chosen a Cartan
subgroup T contained in H, H = K¢ and a positive root system such that
¢ is dominant to define p¥ and p*.

3.3 Admissible coadjoint orbits and Weyl chamber

In order to parameterize coadjoint orbits, we choose a Cartan subgroup T
of K with Lie algebra t. Let A c t* be the lattice of weights of T. Let W
be the Weyl group. Choose a system of positive roots AT < t*, and let

=Y

a>0
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If « € t* is a root, we denote by H, € t the corresponding coroot (so
(o, Hy) = 2). Then {p¥, H,) = 1 if and only if « is a simple root.
Define the positive closed Weyl chamber by

L0 =1{§ e t"; (, Hy) = 0 forall o > 0},

and we denote by A := Antf the set of dominant weights. Any coadjoint
orbit O of K is of the form O = K¢ with {{} = O n t&,.

We index the set K of classes of finite dimensional irreducible repre-
sentations of K by the set p + Asg. The irreducible representation
corresponding to A € p 4+ A>q is the irreducible representation with in-
finitesimal character . Its highest weight is A — p. The representation
w x is the trivial representation of K. The Weyl character formula for the

p
representation my is, for X € ¢,

Dwew €(w)e A
[Loog €KX — e—iaX)2"

Tr7r>\(eX) =

For any u € t*, we consider its element p(u) € £ (Definition 3.4).

Lemma 3.11 Let A € t{ be a regular admissible element of €*. Then
1. \e ,OK + A)O.
2. QPN (KN) = my.

Proof. Let A € t£, be regular and admissible, then p()) = P, s0 Xe {pf +
A} nt¥,. If o is a simple root, then the integer (A —p® H,) = (u, Hy)—1
is non negative, as (A, Ho) > 0. So A — p¥ is a dominant weight.
Atiyah-Bott fixed point for the trace of the representation Q™ (K ) is
Weyl character formula.
Thus we obtain Lemma 3.11 and Proposition 3.6.

If h € He, we denote by ||p”| the norm of any element in the coadjoint
orbit o(h)  b* for H.

The positive Weyl chamber is the simplicial cone determined by the
equations (A, Hy) = 0 for the simple roots a = 0. We denote by F¢ the set
of the relative interiors of the faces of t£). Thus t{;, = [[,cr, 0, and we
denote by t, € F¢ the interior of t%.

Let 0 € F¢. Thus Ro, the linear span of o, is the subspace determined
by (A, H,) = 0 where the « varies over a subset of the simple roots.
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The stabilizer K¢ does not depend of the choice of the point { € o : we
denote it by K,. The map o — £, induces a surjective map from F¢ to He.

For o € F¢, we have the decomposition ¢, = [¢,, ;] @ 3(t,) with dual
decomposition & = [¢,,¢,]* @ Ro. Let

pK”:zé Z o

a>0
(a,0)=0
be the p-element of the group K, associated to the positive root system
{a>0,(a,0) =0} for K,. Then

and for any € o, the element p(y) € £ is equal to p® — pv. In particular,
p — p¥e vanishes on [£,,,], so p — p7 € Ro, while p% € [t,,€,]*. The
decomposition p% = (p® — p&7) + p&7 is an orthogonal decomposition.

Figure 6 shows this orthogonal decomposition of p for the case SU(3).

Figure 6: Orthogonal decomposition of px

We start by proving some geometric properties of the Weyl chamber. The
subset pg +t% of the positive Weyl chamber will be called the shifted Weyl
chamber. It is determined by the inequalities (A, H,) = 1 for any simple
root @ = 0, and thus (A, Hy) > 1 for any positive root. The following
proposition is illustrated in Figure 7 in the case SU(

3).
Proposition 3.12 1. If A€ p& +t&, then (A, ) = (A, p%) = (p%, p&).
The equality (A, X) = (X, p&) holds only if X = p*.
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Figure 7: Distance of a singular element p to a strongly regular element A

2. Let 0 € Fg.
e The orthogonal projection of & € t%, onto Ro belongs to o.
o We have p — p%v e o for any o € F.

3. For any (h) € He, o] = "], and [p" | = |p"| only if H = K.

4. If xe pf + tLo and p e t*, then:

(3.14) A=nulP =5 3 (Aa) ="

a>0

(a,u)=0

N |

The equality
1
M-wlP=5 3 (o)

a>0
(o,p)=0
holds if and only if u belongs to t5,, and if p is the projection of A on
the face o of t£, containing p. In particular X — p(X) = p — p(p).

Proof. If A = pX + ¢, with ¢ € %, inequalities (A\,A) > (X, p¥) >
(p’, p¥) follows from the fact that (A, c) and (p¥,c) are non negative, as
the scalar product of two elements of t% is non negative.

The second point follows from the fact that the dual cone to t% is
generated by the simple roots oy, and (o, ;) <0, if @ # j.
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o + (p% — p%o): hence
€ t¥, on Ro, belongs to

We have the orthogonal decomposition p¥ =
p — pfo_ which is the orthogonal projection of p
.

p
K

For the third point, we might choose H conjugated to K,, so |[p%|? =
[% ] + % = po 2.

We now prove the last point.

Let €, be the centralizer of p and let 3 be the center of €,. Consider the
orthogonal decomposition t* = 3* @ a* where a is a Cartan subalgebra for
(€4, €., that is a = >, ) _oRHa. Let p%u € a* be the p element for the
system A} = {a > 0, (o, ) = 0} of [€,,€,].

Let us write A = p¥ + ¢, with ¢ dominant, and decompose p = pg + p1,
¢ = ¢y + c1, with pg, co € 3%, p1,c1 € a*. Thus A = Ag + A1, with X € 3* and
A1 = p1+c1. Now p; belongs to the shifted Weyl chamber in a*. Indeed, for
any a > 0 such that (a, i) = 0, we have (p1, Hy) = {p¥, H,) > 1. Similarly
c1 is dominant for the system Al.

As p € 3%, we have |A — u|? = |[Ao — pl* + [p1 + c1|*>. Using the first
point of 3.12, we obtain

IA=pl? = X0 = pl? + |p1 + c1* = (p1 + 1, p5#) = [ %]
As

Y (ha)

a>0

(e,p)=0

N | =

(p1 + c1, pf) =

we obtain Inequalities (3.14).

If the inequality |A — u|? = (p1 + c1, p#) is an equality, then ¢; = 0,
p1 = pfi, and A\g = p. Thus for roots v € AL, (pfu H,) = (p¥ H,). As
pXr takes value 1 on simple roots for K 1, it follows that the set S7 of simple
roots for the system Al is contained in the set of simple roots for AT. As
a = @ges; RHy, the orthogonal 3 of a is Ro for the face o of t* orthogonal
to the subset S7 of simple roots. We then have K, = K,. Furthermore,
A = g+ p%e. Thus p is the projection of A on Ro, so u € 0 < tLo. As
p(\) = p& and p(u) = p& — p&o, we obtain A — p(\) = u — p(u). So all
assertions are proved.

Corollary 3.13 Let o € F;. The distance between the shifted Weyl chamber
p' +1t, and the vector space Ro is equal to |p<||. Furthermore, if p™ + X,
with X' € t5 and X € Ro are at distance |p"7 |, then p + N = pfe + A,

Proof. Indeed, if u € Ro, and A € p + t%,, then Inequality (3.14)
implies that |\ — ] > o5 . As Ky < K, [p5] > o],
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Let us reformulate Inequalities (3.14) above independently of the choice
of a positive root system.

Definition 3.14 A regular element A € € determines a closed positive Weyl
chamber Cy  £5. We say that X is very regular if A € p(X) + C\.

Regular admissible elements are very regular.
Here is the magical inequality that we will use over and over again to
get vanishing results.

Corollary 3.15 (The magical inequality) Let A\, u be two elements of
t*. Assume that \ is very reqular, then

1

A—pul? =
1A= g 5

DT A =[P
(a,A)>0
(or,11)=0
If the equality

DeulP=1 Y (o)

holds, then pe Cyx and X — p(X) = p— p(p).

Let us now study the admissible coadjoint orbits and their shifts. The
following lemma just restate properties which follow directly from the pre-
ceding discussions.

Lemma 3.16 For any u € o,
o p(p) = p™ — p"o and p* — p*o e o,
o o(t,) = Kop"e,
o Ky is admissible if and only if pu + p%o € p& + A,

o s(Kpu)=K(u+p"e).

Proposition 3.17 below says that the shifts of admissible elements stay
in the closure of the Weyl chamber. Figure 8 illustrate this fact in the case
SU(3).

Proposition 3.17 Let o be a relative interior of a face of t£, and let ju be
an admissible element of t%.
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Figure 8: Shifts of admissible orbits

1. If p is reqular and 1 — p* € @, then u — po e o.
2. If e o and p+ p¥e is regular, then p+ p™o € pX + (Aso N 7).

3. If p e o, we have

Spin(K ) — 0 if p+ pK" is singular,
K H f Ko - 1
Tyt pKo 1 u+ p—9 1s regular.

Proof. The first point follows from the fact that p — p¥e e ¢.

We prove the second point. Let p € o such that A = p + p% is regular.
Thus |A — pf? = |p®#|2. Then X being regular and admissible, X is very
regular. We use Corollary 3.15. The equality |A — u[?> = [p%#|? implies
A=p(A) =p—p(p) = p—(p" —p"). Thus p(A) = p¥, s0 X € t5,. The
element A — p =y — (p — p&7) is in Ro. As it is dominant, it is in .

Let us prove the last point. Let g* be the complex space £/, equipped
with the complex structure J,. The equivariant index © of the Dirac oper-
ator associated to the Spin“-bundle Sk, = K xr, (Ag* ®C,_ x4 i) is
given by Atiyah-Bott fixed point formula: for X € t, ©(eX) =3, 1/ W, W

i1, X
o, X0)2 _g—Ha, Xy/2 *

0 Here W, the stabilizer of p in W, is equal to the
{o,up>0

Weyl group of the group K,. Using >}, . e(w)ewr™ = [To>01a,05=0 (2~

e~%/2), we obtain

Dwew e(w)eiwlu+po),X)
[L.oc@X 2 — ¢ TaX2

(3.15) O(e™) =
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If u + p%e is singular, © is equal to zero. If u + p%= is regular, thanks

to the second point, i + pf< is in p + A, s0 © = Tyt pKo -

Remark that pv itself is not dominant, so it is not true that any element
@+ pXe | with p € o, is dominant. Thus the integrality conditions on u are
needed to obtain Proposition 3.17.

Let us prove Proposition 3.8.

We choose a Cartan subgroup 7T and a positive root system, and let
P = Kp be an admissible orbit, with p € t5,. Let o be the face (interior)
of t%, where p belongs. By Lemma 3.16, s(P) = K(u + p™<). Thus the
two first points of Proposition 3.8 as well as the last point are consequence
of Proposition 3.17. From the Atiyah-Bott fixed point formula, we obtain
Tr(Q" (P*))(9) = Tr(QR"(P))(g71), so Q™ (P*) = Q¥™(P)*.

3.4 Complex structures

We often will use complex structures and normalized traces on real vector
spaces defined by the following procedure.

Definition 3.18 Let N be a real vector space and b : N — N a linear
transformation, such that —b* is diagonalizable with non negative eigenval-
ues. Define

e the diagonalizable transformation |b| of N by |b| = v/—b2,

o the complex structure J, = blb|~! on N/ker(b)

e we denote by nTry|b| = %'I‘I‘N|b|, that is half of the trace of the action
of |b| in the real vector space N. We call nTry|b| the normalized trace of b.

If N has a Hermitian structure invariant by b, 3Try/|b| is the trace of |b|
considered as a Hermitian matrix. The interest of our notation is that we
do not need complex structures to define nTry|b|.

If N is an Euclidean space and b a skew-symmetric transformation of IV,
then —b? is diagonalizable with non negative eigenvalues. By definition of .Jj,
the transformation b of N determines a complex diagonalizable transforma-
tion of N/ ker(b), and the list of its complex eigenvalues is [ia1, . . . , iay] where
the ay, are strictly positive real numbers. We have nTry|b| = Zi:l ag = 0.

Recall our identification ¢ = £* with the help of a scalar product. When
B € t*, denote by b the corresponding element of €. We have defined a
complex structure Jg on €/€3. On the other hand, b defines an invertible
transformation of €/€g. It can be checked that Jg = J,. If we choose a
Cartan subalgebra containing b, then nTr¢|b| = >}, [{c, b)|.
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For further use, we include a lemma. Let us consider £¢, the complexified
space of £. Consider the complex space A €c.

Lemma 3.19 Let be t. Let x € R be an eigenvalue for the action of% n
A tc. Then x = —nTr|b]

Proof. Indeed, consider a Cartan subalgebra t containing b, the system
of roots A and an order such that {«,b) > 0 for all & > 0. An eigenvalue
z on At is thus of the form Y ;- x{a,b). Thus we see that the lowest
eigenvalue is — ), (o, b) = —nTr¢|b|.

Assume now that N' — M is a real vector bundle equipped with an
action of a compact Lie group K. For any b € £, and any m € M such that
bar(m) = 0, we may consider the linear action £(b)|y;,, which is induced by
b on the fibers N,,. It is easy to check that (£(b)|;,,)? is diagonalizable with
eigenvalues which are negative or equal to zero. We denote by |L,,(b)| =

NSO

Definition 3.20 We denote by nTry, |b| = 3Tr|L,,(b)| that is half of the
trace of the real endomorphism |L,,(b)| on Ny,. We call nTry, |b| the nor-
malized trace of the action of b on Np,.

For further use, we rewrite Corollary 3.15 as an inequality on normalized
traces.

For any b € ¢ and pu € €* fixed by b, we may consider the action
ad(b) : £, — €, and the corresponding normalized trace nTre,|ad(b)| de-
noted simply by nTry,,[b].

Proposition 3.21 Let b € £ and denote by [ the corresponding element in
E*. Let A\, u be elements of €* fixed by b. Assume that X\ is very reqular and
that u — A = 8. Then

1
|12 > SnlTey o]
If the equality holds, then p belongs to the positive Weyl chamber Cy and
1. A=p(X\) = u—p(p), hence X is admissible if and only if u is admissible,
2. s(Kp) =K.

Proof. Indeed, as A is fixed by b, we see that 3 belong to £. We may
assume that £ = t*. Thus 8, A and u = A— 3 belong to t*. The element A is
a very regular element of t*. Proposition is thus a restatement of Corollary
3.15.
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3.5 Induced Spin® bundles

Let H c K be the stabilizer subgroup of some element in £*. We denote by
h the Lie algebra of H and we consider the open subset b := {{ € b* | K¢ <
H}. Equivalently, the element £, identified to an element of b, is such that
the transformation ad(&) is invertible on €/h, so it determines a complex
structure on €/h denoted Je. The complex structure Jg on €/h determined
by £ € b depends only of the connected component C' of h§ containing &.
Thus we denote by Jo the corresponding complex structure on q = /b, by
pc € 3* the element p® () — pH(€) for any ¢ € C and by q¢ the complex
vector space q equipped with Jo. If C and C” are two connected components,
we denote by €& the ratio of the orientation o(J¢) and o(Jcr) on g.

Consider a compact H-manifold Y and the manifold M = K xg Y.
Assume M is oriented and equipped with a K-equivariant Spin“~-bundle S.
At the level of tangent spaces we have TM |y ~ [q]®TY where [q] =Y xq.
We orient the manifold Y through the relation o(M) = o(Jc)o(Y). We
consider the Spin®-bundle Sy defined by

(3.16) Sly = [/\ qC] ® Sy

Here [\ q“] =Y x A q“ is a Spin®-bundle for the trivial bundle [g].

This gives a bijection (depending of C') between the K-equivariant Spin®-
bundles § on M and the H-equivariant Spin‘-bundles Sy on Y. If the
relation (3.16) holds, we say that S is the Spin®-bundle induced by Sy. In
this “induced setting”, we have

(3.17) Qi (M, 8) = ndfy ( A\ 0 ® Qu(¥,Sy)).

See [24].

We end this section by considering the particular case of an induced
manifold M := K x g Hp where Hyp is an admissible H-coadjoint orbit. Here
H i is equipped with its canonical Spin®-bundle S, and the representation
Qu(Hp,Sky) is simply denoted by Qgin(Hu).

The Spin® index on the manifold M = K x iy Hu is equal to the character

1€ := ndl§ (/\ € ® ngi“(Hu)) :
The following result will be used in Section 5.4.

Proposition 3.22 e If u+ pc ¢ b, then IE =0.
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o If i+ pc € by, then p + po is K-admissible, and
I = €6 QM (K (u + pe))
where C' is the connected component of b containing u + pc.
Proof. By definition Q™ (Hy) = Indjj, ( Ay, 00, ® q:u_pH(M)). We

assume first that p/ := p + pc € h§ : let C’ be the connected component of
by containing p + po. As K,y = H,y = H),, we have

IE = IDdKu, (/\ CIC ® /\ h/hu’ ® Cu’prpr(u’))‘
J s

o

Now we use the fact that the graded K, -module /A q¢ is equal to eg, A qC,®

Cpo—pr, (see Example 2.2). It gives that
C C K c’
1€ = Gmaf, (A\a® @ Ab/bw @ Cuppriin)
Iyt
= Gmaf (N ®Cu )
Iyt
= & ;?in(K//).
Assume now that I # 0. The equivariant index Q™ (Hp) must be
non zero. Hence we have Q" (Hpu) = Q" (Hfi) where fi € pu+ o(h,) is an

H-admissible and H-regular element.

Consider the maximal torus 7" := Hj, and the Weyl chamber C = t%, for
K containing fi. Let J¢ be the corresponding complex structure on £/t. Let
p be the p element associated to the choice of Weyl chamber. Let C’ be
the connected component of hi that contains the open face t%,. We check
that p = per + p(f1).

Like before one has

1~ il (Ad o)
Indg ( Aa®® Ab/te Cﬁ—pH(ﬂ))
I

€, Ind?(/\?/t@ C[Hpc,pk).
Je

We see then that IE # 0 only if X\ := i+ pc = ' + p™ is a K-regular
element.
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Here we have |p™«'|| = |\ — 1/|, and one the other hand by the magical
inequality we must have |[A— /| = o™ since X is K-regular and admissi-
ble. Tt forces ||p"#'| to be equal to |p™+'|, and then K, = H, : the element
1 = p+ pc belongs to b

The proof is completed.

Remark 3.23 This proposition is a particular case of the vanishing theorem
that we will prove later on in Section 4.5.1. Indeed the generic stabilizer of
the action of K on M ~ K/H,, is H,, and the moment map associated to
the induced bundle is k — k- p'. Our vanishing Theorem 4.19 says then that
for Qi (M,S) to be non zero, the subalgebras b, and €, have to be equal.

3.6 Slices

We assume here that M is a K-manifold and that ® : M — £* is a K-
equivariant map. If O is a coadjoint orbit, a neighborhood of ®~1(0) in
M can be identified with an induced manifold, and the restriction of Spin®-
bundles to a neighborhood of ®~1(0) can be identified to an induced bundle.
To this aim, let us recall the notion of slice [16].

Definition 3.24 Let M be a K-manifold and m € M with stabilizer sub-
group K. A submanifold Y < M containing m is a slice at m if Y 1is
K,,-itnvariant, KY is a neighborhood of m, and the map

K xg,, Y — M, [ky]— ky
s an isomorphism on KY .

Consider the coadjoint action of K on £*. Define U to be the connected
component of the open subset (£f)o := {C € ¢ | t; < &} of € containing &.
Then K x g, Us — KU is a diffeomorphism. We call Ug the maximal slice
at .

The following construction was used as a fundamental tool in the sym-
plectic setting [11].

Proposition 3.25 Let ® : M — €* be a K-invariant map. Let £ € €, and
let Ue be the maximal slice at §.

o YV =&Y (U;) is a K¢-invariant submanifold of M (perhaps empty).
e KY is an open neighborhood of ®~1(K¢) diffeomorphic to K X Y.
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The manifold Y, when is not empty, is called the slice (of M) at £ € €*.
Note that Y can be disconnected.

Proof. Let us consider the K¢-invariant decompositions ¢ = £ @ q,
t* =t ®q": we denote { — [€]q+ the corresponding projection to q*.

A point ( is in (EZ)O if and only if the map Y € q — Y'( is an isomorphism
from q to q*. Thus for any y € Y, the linear map II, := [—]qx 0T, ® : T,M —
q* is onto. Indeed, the tangent space to Ky projects onto the tangent
space to K®(y), which contains [q, ®(y)] = q*. Thus we obtain that Y is a
submanifold with tangent space ker(II,) and furthermore TyM = T, Y ®q-y.

The rest of the assertions follow from the fact that Uy is a slice at £ for
the coadjoint action.

4 Computing the multiplicities

4.1 Transversally elliptic operators

In this subsection, we recall the basic definitions from the theory of transver-
sally elliptic symbols (or operators) defined by Atiyah and Singer in [1]. We
refer to [4, 22] for more details.

Let M be a compact K-manifold with cotangent bundle T*M. Let
p: T*M — M be the projection. If £ is a vector bundle on M, we may
denote still by £ the vector bundle p*€ on the cotangent bundle T*M. If
ET, E™ are K-equivariant complex vector bundles over M, a K-equivariant
morphism ¢ € T'(T*M,hom(ET,E7)) is called a symbol on M. For z € M,
and v € TEM, thus o(z,v) : & — & is a linear map from & to & .
The subset of all (z,v) € T*M where the map o(x,v) is not invertible is
called the characteristic set of o, and is denoted by Char(c). A symbol
is elliptic if its characteristic set is compact. An elliptic symbol o on M
defines an element [o] in the equivariant K-theory of T*M with compact
support, which is denoted by K(}((T*M ). The index of o is a virtual finite
dimensional representation of K, that we denote by Index}! (¢) € R(K).

Recall the notion of transversally elliptic symbol. Let T7-M be the fol-
lowing K-invariant closed subset of T* M

TiM ={(z,v)e T*M, (v, X -2)=0 forall X €t}.

Its fiber over a point x € M is formed by all the cotangent vectors v € TE M
which vanish on the tangent space to the orbit of x under K, in the point
x. A symbol o is K-transversally elliptic if the restriction of o to T7 M
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is invertible outside a compact subset of T} M (i.e. Char(o) n T3 M is
compact).
A K-transversally elliptic symbol o defines an element of K9 (T% M),
and the index of ¢ defines an element Index! (¢) of R(K) defined in [1].
We will use the following obvious remark. Let o € I'(T* M, hom(E1,E7))
be a transversally elliptic symbol on M.

Lemma 4.1 Assume an element b € K acts trivially on M, and that £F
are K -equivariant vector bundles on M such that the subbundles [E¥]° fized
by b are equal to {0}. Then [Index} (0)]% =0

Proof. The space [Index! (¢)]¥ is constructed as the (virtual) subspace of
invariant C®-sections of the bundle £ which are solutions of a K-invariant
pseudo-differential operator on M with symbol o. But, as the action of b is
trivial on the basis, and [£¥]® = {0}, the space of b-invariant C®-sections
of the bundle £* is reduced to 0.

Any elliptic symbol is K-transversally elliptic, hence we have a restriction
map K% (T*M) — K% (T% M), and a commutative diagram

(4.18) K9 (T*M) — KO (T% M)
Index%l J{Index%
R(K) R(K) .

Using the excision property, one can easily show that the index map
Indexg : K% (T%U) — R(K) is still defined when U is a K-invariant rela-
tively compact open subset of a K-manifold (see [20][section 3.1]).

In the rest of this article, M will be a Riemannian manifold, and we
denote v € T*M — € TM the corresponding identification.

4.2 The Witten deformation

In this section M is an oriented K-manifold of even dimension (not neces-
sarily compact). Let ® : M — £* be a K-equivariant map. Let kg be the
Kirwan vector field associated to ® (see (2.10)). We denote by Zg the set
of zeroes of kg (clearly Zg contains the set of fixed points of the action of
K on M as well as ®1(0)).

Definition 4.2 Let o(M,S)(m,v) = cs,, (V) : S, — S, be the symbol of
the Dirac operator attached to the Spin®-bundle S, and let ® : M — €* be
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an equivariant map. The symbol o(M,S, ®) pushed by the vector field kg is
the symbol defined by

o(M,S,®)(m,v) =cs,, (7 — ke(m)): S — S,

for any (m,v) e TM.
Similarly if W — M is a K-equivariant vector bundle, we define

o(M,S@W,®)(m,v) =0c(M,S,®)(m,v)®Idw,,.

Note that o(M,S, ®)(m, v) is invertible except if 7 = kg (m). If further-
more (m, ) belongs to the subset T% M of cotangent vectors orthogonal to
the K-orbits, then v = 0 and kg(m) = 0. Indeed kg (m) is tangent to K -m
while 7 is orthogonal. So we note that (m,v) € Char(c(M,S, ®s)) n T3 M
if and only if » = 0 and Ke(m) = 0.

For any K-invariant open subset &/ — M such that U N Zg is compact in
M, we see that the restriction (M, S, ®)|y is a transversally elliptic symbol
on U, and so its equivariant index is a well defined element in R(K).

Thus we can define the following localized equivariant indices.

Definition 4.3 o A closed invariant subset Z < Zg is called a compo-
nent if it is a union of connected components of Zg.

o If Z c Zg is a compact component, and W is a K -equivariant vector
bundle over M, we denote by

Ok (M,SOW, Z,®) € R(K)

the equivariant index of o(M,S @ W, ®)|yy where U is an invariant
neighborhood of Z so thatU n Zg = Z.

o If we make the Witten deformation with the map ® = ®g, the term
Ok (M, S®W, Z,®g) is denoted simply by Qx (M, SQ®W, Z).

By definition, Z = & is a component and Qi (M, S @ W, &, ®) = 0.

When M is compact it is clear that the classes of the symbols o (M, S, @)
and o(M,S) are equal in K% (T% M), thus we get the first form of the
localization theorem.

Theorem 4.4 Assume that M is compact. If Zo = Z1]]...11Z, is a
decomposition into disjoint (compact) components, we have the following
equality in R(K) :

p

=1
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Remark 4.5 Write 5(Zs) = [ [; O; as a disjoint union of a finite set of
coadjoint orbits. Then we obtain the decomposition

Qk(M,S) =), Qo,
J

with Qo = O (M, S, 25" (0) N Zs). As in [20], this decomposition is the
main tool of our study. However, in this work, we will need to introduce a
further refinement of this decomposition.

Example 4.6 We return to our basic example (Example 2.12). Let p. =
[1,0] and p_ = [0, 1] be the fized points of the T-action on M = P1(C). The
determinant line bundle of S(n) is L, = [C_1] ® L2 where [C_1] is the
trivial line bundle equipped with the representation t=! on C. We choose the
moment map ®,, associated to a connection on the determinant bundle (see
more details in Section 6):
2
B ([21, 22]) = (n + 1),21‘2"1”@’2 - %

Then, forn =0, Z = {p.} v {p_} v @,1(0), thus ®,(Zs) = {—%} U {0} L
{n+ %} Remark that Zs is smooth: it has 3 connected components, the two
fized points, and ®,,(0) a circle with free action of T. Then we obtain the
associated decomposition Qp(M,S(n)) = Qfé + Qo + Q% with

—0 —0 o0
_ k _ k _ k
Qi=— >t Q=) t Q=- ) "
k=-1 k=—00 k=n+1
Example 4.7 Take the product N = P'(C) x PY(C), with Spin® bundle
S = 8(0) ® S§(0), moment map Py and we consider the diagonal action of
T with moment map ®(my,ma) = ®g(my) + ®g(m2). As Qr(P(C),S(0))
is the trivial representation of T, Qp(N,S) is still the trivial representation
of T.
We have ®(Zs) = {—1} u {0} U {1}. In this case D1 (£1) = {(p+,p+)},
and ®~1(0) is not smooth.
Consider the associated decomposition of Qp(N,S) = Q-1 + Qo + Q1.
We have
-2 —00
Q—l = Z (_k - 1>tk7 QO = Z (’k‘ - l)tk7 Ql =

k=—0o0 k=—0 k

(k — 1)t~

8

2

We see that indeed Q_1 + Qo + Q1 = t°. Figure 9 shows the corresponding
multiplicity functions.
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L/jﬁ

Figure 9: The graph of Q_1 + 1 and the graph of Qg

4.3 Some properties of the localized index

In this subsection, we recall the properties of the localized index
Qr(M,S,Z,®) that we will use in this article.

4.3.1 Fixed point submanifolds and Spin®~-bundles

Let S be a K-equivariant Spin®-bundle over the tangent bundle TM of a K-
manifold M (equipped with an invariant Riemannian metric). The manifold
M is oriented and the Clifford bundle S is equipped with its canonical Z/27-
grading. Let b € £ be a non-zero K-invariant element, and consider the
submanifold M? where the vector field by; vanishes. We have an orthogonal
decomposition
TM|yp =N @ TM.
The normal bundle N inherits a fibrewise linear endomorphism L£(b)

which is anti-symmetric relatively to the metric.

Definition 4.8 e We denote by Ny the vector bundle N over M® equipped
with the complex structure Jy, := L(b)|L(b)] 7.

o We take on N the orientation o(N') induced by the complex structure
—Jy. On M we take the orientation o(MP) defined by o(N)o(M?) = o(M).

Note that the endomorphism £(b) : Ny — N is C-linear, diagonalizable,
with eigenvalues iH}(, ...,i0% that depends of the connected component X
of M®. For further use, we note the following positivity result which follows
directly from the definition of Jp.

Lemma 4.9 The eigenvalues of the action of %E(b) on Ny are positive.

If we consider the complex line bundle det(N;) — M?, we see that +.£(b)
acts on the fibers of det(N,)|x by multiplication by the positive number

p
nTry; |, b] = Z 0.
j=1
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Proposition 4.10 Let Lg be the determinant line bundle of the Spin® bun-
dle §. There exists a equivariant Spin®-bundle dy(S) on the tangent bundle
TM with determinant line bundle equal to

(419) H—db(S) = |]_,5|Mb ®det(Nb)

Proof. The restriction S|z is a Spin®-bundle over the tangent bundle
TM|yp = N@TMP. We denote A, the vector bundle N with the complex
structure —.J,. Let A A be the Spin® bundle on AN with its canonical
grading : since o(N) = o(—J,) we have (AN, = AT NG,

Since /\ N} is a graded Spin“-bundle over N/, we know that there exists
an equivariant Spin¢ bundle dy(S) over the tangent bundle TM? (with its
canonical grading) such that

(4.20) Sl = \No@d(S).

is an isomorphism of graded Clifford modules. At the level of determinant
line bundle, we get det(S)| 5 = det(N,)@det(dy(S)). Identity (4.19) follows.

Consider the linear action £(b)|g,(s) of b on the fibers of the Spin“-bundle
o (S) — MP.

Lemma 4.11 We have L£(b)|g,s) = aldg,(s) where
1
a(m) = (dg(m),b) + §n’I‘rTmM]b]

is a locally constant function on MP.

Proof. Thanks to Remark 2.8, we know that a(m) is equal to (®g, (s)(m), b)
where @y, (5) is a moment map attached to the line bundle Ly, (s). Thanks to
(4.19) we see that (Pg,(s)(m),b) = (Ps(m),b) + 3T, [b]. But nTrp|b] =
Try;, |b| as well as and (®s(m),b) are locally constant on M?.

The localization formula of Atiyah-Segal can be expressed in the follow-
ing way (see [24]):

Theorem 4.12 Let b € £ be a non-zero K-invariant element and assume
that M is compact. For any complex K -vector bundle YW — M , we have the
following equalities in R(K) :

Qx(M,S®W) = Ok (Mb, 8 (S) @ W] 0 ® Sym(Nb)) .

Here Sym(Ny) is the symmetric algebra of the complex vector bundle Nj.
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4.3.2 The localization formula over a coadjoint orbit

Let ® : M — £* be an equivariant map. Let 5 € £*. We also consider 3 as an
element of ¢ that we denote by the same symbol. In this section we assume
that Zg = K(MP n®~1(3)) is a compact component of Z¢ = M. The study
of Q(M,SQ@W, Zs, ®) € R(K) is thus localized in a neighborhood of
®~1(Kp), an induced manifold. Let us recall the corresponding induction
formula.

The restriction of ® to M? is a K g-equivariant map taking value in EZ.

The subset Z’ﬁ = MPn®~1(B) is a compact component of Z(I)‘MB = ZonMP.
We may then define the localized index

QK,B (M/B7dﬁ(5) ®W’Mﬁa Z,/Bv (I)‘MB) € R(Kﬁ)

where dg(S) is the graded Spin®-bundle on M# defined in Proposition 4.10.

We consider the normal bundle N’ — M? of M? in M. Recall that N, 8
denotes the vector bundle N equipped with the complex Jg. The following
formula is proved in [20, 24]:

QK(Ma‘S@WvZﬁaq))
— ndf, (Que, (M7, ds(S) ® Wyys @ Sym(Np), 2, ®lar) @ /\(8/85)c)
Remark 4.13 When K is abelian, this gives

Qx (M, SQW,d1(3) n M”, ®)
= Qr(MP®,ds(S) @W| s ® Sym(Ng), @7 H(B) N MP, ®|56)

which shows that the Atiyah-Segal localization formula (4.12) still holds for
the Witten deformation.

Thus we obtain the following proposition.

Proposition 4.14 Let S be a K -equivariant Spin®-bundle over M, with its
canonical grading. Let ® : M — €* be an equivariant map. Let W — M be
an equivariant complex vector bundle. Assume that Zg = K(M? n ®~1(B))
s a compact component of Zg < M. Then

[Qx (M, S@W, Zs, ®)]¥ =

(121) [ Qx, (M7, 85(8) ® Wygs ® Sym(Ny). 25, Bls) © A\(E/85)c]|
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This proposition will be used to obtain vanishing results, by studying
the infinitesimal action of 3 on the vector bundle dg(S) @W| )5 ® Sym(N3p).

The formula (4.21) can be specialized to each connected component of
MP. For a connected component X < MP# intersecting ®~'(3), we define
the compact subset

Z5(X) = K (X n @7'(B)) < Zp.

First we note that Qg (M,SQW, Zg, ®) is equal to the sum ), Qg (M,S®
W, Zg(X), @) parameterized by the connected component of M # intersecting
®~1(B) (their are finite in number).

We have a localization formula for each term Qx(M,SQ®@W, Z3(X), ®)
separately (see [20, 24]) :

(4.22) [Qk(M,S®@W, Z5(X), @)~ =
PMMWA&M®WM®$mMm%%mm@m®/wadm

where Z5(X) = X' n o1(B) = Z.

4.3.3 Induction formula

For the Witten deformation, we proved in [24] the following variation on the
invariance of the index under direct images.

Let H be a closed subgroup of K, and consider a H-invariant decompo-
sition

tE=bdDqg.

Let By be an open ball in g, centered at 0 and H-invariant. Let N’ be a
H-manifold, and consider N = K x g (Bq x N'). Then N’ is a submanifold
of M, and the normal bundle of N’ in N is isomorphic to the trivial bundle
with fiber @ q. Let Sy be the Spin® module for @ q (we can take A qc as
realization of S;). Thus if £ is a K-equivariant graded Clifford bundle on
N, there exists a H-equivariant graded Clifford bundle £ on N’ such that

Eln = S, @&

Let ® : N’ — b* be a H-equivariant map, and let ® : N — £* be a
K-equivariant map. We assume that these maps are linked by the following
relations :

P[y =P,
(4.23) O([1; X,n']) e b* <= X =0,
(@([1; X, n']), X) =0,
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for (X,n’) € By x N'.
Under these conditions, we see that the critical sets Zp < N and Zg <
N’ are related by : Zg = K xp ({0} x Zg/).

Proposition 4.15 ([24]) Let Z be a compact component of Zg and Z' its
intersection with N'. Then Z' is a compact component of Zg' and

Ok (N,&,Z,@) = Indfy (Qu(N',€',2',9')) .

This leads to the relation [Qx (N, &, Z, )% = [Qu(N', &', 2/, )]

4.4 The function ds

Let M be a compact oriented even dimensional K-manifold, equipped with
a K-equivariant Spin® bundle S. Let ®s be the associated moment map on
M, and kg be the Kirwan vector field. Let Zs be the vanishing set of kg :

Zs ={me M | ds(m)-m =0} = JM’ n 25(6).
0

We now introduce a function ds : Zs — R which will localize our study of
[QK (M, S, Zs)]¥ to special components Z of Zs.

Define ds : Zs — R by the following relation
1
(4.24)  ds(m) = |0]? + 50 Trr, ar[0] = nTreld],  with 0 = Ds(m).

Lemma 4.16 e The function ds is a K-invariant locally constant func-
tion on Zs that takes a finite number of values.

o The subsets ZZ° = {ds > 0}, Z5° = {ds = 0}, Z5" = {ds < 0} are
components of Zs.

Proof. The K-invariance of dg is immediate.

The image ®s(Zs) is equal to a finite union Uj O; of coadjoint orbits.
For each coadjoint orbit O = K3, the set Zs n ®5*(0) is equal to a finite
disjoint union (J; K (X In®5'(B)) where (X7) are the connected components
of M¥ intersecting ®5'(8). Since m — nTrr,, r|0] is well defined and locally
constant on MY, the map ds is constant on each component K (X7 n®5'(3)).
This proves that dg is locally constant function that takes a finite number
of values.

The second point is a direct consequence of the first.

We now prove the following fundamental fact.
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Proposition 4.17 Let ZEO be the component of Zs where ds takes strictly
positive values. We have [QK(M,S, ZEO)]K =0.

Since QK(M, 8) = QK(M,S,ZEO) + QK(M,S,Z§O) + QK(M,S, ZEO)
by Theorem 4.4, note first the following immediate corollary.

Corollary 4.18 If ds takes non negative values on Zs, we have

[Qk (M, S)]* = [Qk (M, S, Z5")]".

We now prove Proposition 4.17.

Proof. Consider a coadjoint orbit K contained in ®g(Zs). Let X
be the connected component of M” and let Zy(X) = X n ®~1(B). Let
Zp(X) = KZp(X). Let us show that [Qx(M,S, Zs(X))]* = 0 if ds is
strictly positive on Zg(X).

As [Qk (M, S, Zg(X))]K is equal to

(125) [ Qre, (X, 85(8) ® Sym(N) L. Z4(X), @sl) ® A\ (¥/ts)c]

by the localization formula (4.22), it is sufficient to prove that the infinitesi-
mal action £(3) on the fibers of the vector bundles dg(S)|x ®Sym? (N3)|x ®
/\(¢/€s)c have only strictly positive eigenvalues. We establish this by mi-
norizing the possible eigenvalues : they are sums of eigenvalues on each
factor of the tensor product.

We have

1 \WHQ"'%UTTTM\XW on dg(S)|x,
e@)=1>0 on Sym’ (Nl
>—nTrg\B| on /\(E/EB)@.

In the first equality, we have used Lemma 4.11: the function m —
(®s(m),B) is constant on X, and as X’ contains a point projecting on f3,
LB gs(s)x = (BI* + 50Trpn 18]) Idg,(s)) -

In the second inequality, we used Lemma 4.9, so that the action of %E(,B )
on the graded piece Sym’(N3) is strictly positive for j > 0 or equal to 0 for
j=0.

In the last inequality, we have used Lemma 3.19.

If ds takes a strictly positive value on Zg(X), we see that $+£(3) > 0 on
dg(S)|x ® Sym? (Ng)|x ® A (8/ts)c : this forces (4.25) to be equal to zero.
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4.5 The Witten deformation on the product M x O*

In this section, M is a compact oriented even dimensional K-manifold,
equipped with a K-equivariant Spin® bundle S§. Let ®s be the associated
moment map on M. Our aim is to compute geometrically the multiplicities
of the equivariant index Qg (M, S).

4.5.1 Vanishing theorems

Let Hg be the set of conjugacy classes of the reductive algebras £, & € €.
We denote by Sg the set of conjugacy classes of the semi-simple parts [b, h]
of the elements () € Hs.

Recall that an orbit P is a (h)-ancestor of O if P belongs to the Dixmier
sheet &) and s(P) = O. Here s(P) is defined as follows : if P = Ky with

£, = b, then s(P) = K(n+ o(h)) (see Definition 3.7).

spin

Recall that the map O — 7o = Q5 (O) is a bijection between the
regular admissible orbits and K. IfOisa regular admissible orbit, then
O* := —QO is also admissible and wp* = (wp)*. If we apply the shifting
trick, we see that the multiplicity of 7o in Qi (M,S) is equal to

mo = [Qx(M,S)® (m0)*]"
(4.26) = [Qk(M x O, S8R So+)]" .

Let (€ps) be the generic infinitesimal stabilizer of the K-action on M. In
this section, we prove the following vanishing results.

Theorem 4.19 o If ([£nr, Err]) # ([B, b]) for any (b) € He, then
Qk(M,S8) =0
for any K -equivariant Spin-bundle S on M.
o Assume that ([tar,er]) = ([0, b]) for (b) € He. Then
me = 0
if there is no (h)-ancestor P to O contained in ®s(M).

We consider the product M x O* equipped with the Spin®-bundle S&SoHx .
The corresponding moment map is ®Psgs, . (Mm,§) = ®s(m) + & We use
the simplified notation ®» for Ps®S,xr KO for the corresponding Kirwan
vector field on M x O*, Zo := {ko = 0}, and do for the function dsgs,.
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on Zpn. Theorem 4.19 will result from a careful analysis of the function
do : Zo — R that was introduced in Section 4.4. Thanks to Proposition 4.17
and Corollary 4.18, Theorem 4.19 is a direct consequence of the following
theorem.

Theorem 4.20 Let O be a regular admissible orbit.
e The function dp is non negative on Zo.

o If the function dp is not strictly positive, then there exists a unique
() € He such that the following conditions are satisfied:

2. the orbit O has an (h)-ancestor P contained in ®s(M).

Proof. Let P = M x O* and let us compute the function dp on Zp.
Let m € M and A € O. The point p = (m,—\) € Zp < P if and only
Dpn(p)-p=0. Let § = Pp(p). This means that [ stabilizes m and A, and
if u=®g(m) € t*, then = p— A

We write T, _y)P = T, M @ T_\O* and, since O* is a regular orbit,
we have nTrr_, o«|8| = nTr¢|S|.

We consider a K,,-invariant decomposition T,,M = ¢-m @ F,, where
t-m ~ £/t,,, we obtain nTrr, r/|3] = nTrg, |5|+nTre|3|—nTre, |3|. Thus,

1
do(p) = [B]° + o Trr, , plA| — nTrelf]

1 1
= [B8]* + §anTmM\5| - 51’1’1‘1‘3‘5‘

1 1
18]% + §nﬂEm‘5| - §HTI‘EmW

1 1
|81 + 5nTrp,, | — S nTre, |6].

(4.27) > -

A\

In the last inequality, we used &, < £, as p = ®s(m). By Proposition
3.21, |B]? — inTre,|8] = 0 when 8 = p — A, as A is very regular (being
regular and admissible), and /3 € £, n €5. Then the first point follows.

Assume now that there exists a point p = (m,—\) € Zp such that
do(p) = 0. It implies then that |3]? = %nTrgM|ﬁ| and nTrg, || = 0. The
first equality implies, thanks to Proposition 3.21, that Ky is an admissible
orbit such that s(Ku) = O. Let us denote H = K, : the relation s(Ku) = O
implies that —3 € o(h) < [h,h]*. We write —3 = pf’. Now we have to
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explain why the condition nTrg, [p"| = 0 implies ([€rr,€r7]) = ([h, b]).
Since ®s(m) = p, we have

(4.28) (tar) < (Em) < ().

Consider Y = @gl (U,,) the H-invariant slice constructed in Proposition 3.25.
The product K'Y is an invariant neighborhood of m isomorphic to K xg Y.
The subspace E,, can be taken as the subspace T,,Y < T,,M. Now the
condition nTrg,, [p*| = 0 implies that pf acts trivially on the connected
component Yy, of Y containing m. Elements X € [h, h] such that Xy, =0
form an ideal in [h, h]. Since the ideal generated by p'? in [b, b] is equal to
[h, ], we have proved that [h, h] acts trivially on Y;,. Since K'Y, is an open
subset of M, we get

(4.29) ([0, b]) < (ear).

With (4.28) and (4.29) we get ([€ar,rs]) = ([, b]). Finally we have proven
that if dp vanishes at some point p, then ([¢rr,€rr]) = ([b,b]) for some
(h) € He, and there exists an admissible orbit Ku < Ez‘h) N ®gs(M) such that
s(Kp) = 0.

4.5.2 (Geometric properties

We summarize here some of the geometric properties enjoyed by (M, & =
®s), when Qg (M,S) is not zero.

Let (h) € He. We choose a representative h. Let H be the corresponding
group and Nk (H) be the normalizer of H in K. Consider the decomposition
h = [h,h] @3 where 3 is the center of h. Thus 3* < h*. Consider the open
set

ho = {€b™ |t < b}

of h*. Let 35 = b n 3™ be the corresponding open subset of 3;.
We first note the following basic proposition.

Proposition 4.21 Let M be a K-manifold such that ([€rr,€r7]) = ([H,H])
and let ® : M — €* be an equivariant map. Then

o O(M) c Kj3*.
o Assume Y := ®~1(b%) non empty, then

a) Y is a submanifold of M invariant by the action of Ni(H), and
[H, H] acts trivially on Y.
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b) The image ®(Y) is contained in 3§.
c¢) The open subset K is diffeomorphic to K Xy, (i) V-

Proof. Let us prove the first item. Using our K-invariant inner product,
we consider ¢ as a map ¢ : M — £. The condition on the infinitesimal
stabilizer (£17) gives that M = KMUH 1f m e MULH] the term ®(m)
belongs to the Lie algebra g of the centralizer subgroup G := Zg([H, H]).
But one can easily prove that 3 is a Cartan subalgebra of g: hence ®(m) is
conjugated to an element of 3. This proves the first item.

If Y is non empty, the proof that it is a submanifold follows the same
line than the proof of Proposition 3.25. The set K) is a non empty open
set in M : so on Y we have (£y/) = (¢,) on a dense open subset }’. The
condition ([tar,€rs]) = ([b,b]) implies that dim[h,h] = dim[¢,,€,] on V',
but since ¢, < £3(,) < b, we conclude that [h, h] = [€,,€,] = € on )’ : in
other words [H, H] acts trivially on Y, and [h, ] = [€,,€,] for any y € V.
Furthermore, if £ = ®(y), then [h, b] acts trivially on €. So £ is in the center
of b.

Let us prove that 7 : K x . () Y — KY is one to one. If y1 = kyz, we
have & = k& with &§ = ®(y;). As ®(Y) < 3§, the stabilizers of &, &, are
both equal to H. It follows that k£ belongs to the normalizer of H.

The following theorem results directly from Theorem 4.20 and Lemma
4.21. Indeed, in the case where Qi (M,S) # {0}, then ([¢r7, €rs]) = ([h, b])
for some (h) € He. Furthermore, there exists at least a regular admissible
orbit O such that me is non zero, and consequently there exists orbit P c

er N @s(M).

Theorem 4.22 Let M be a K-manifold and let S be an equivariant Spin®-
bundle on M with moment map ®g. Assume Qi (M,S) # {0}. Then

o There exists () € He such that ([€ar, tar]) = ([b,b])-

o [f 3 is the center of b, then ®s(M) < K3* and the open set q)gl(K;,E‘j)
1§ mon empty.

e The group [H, H]| acts trivially on the submanifold Y = @gl(g,g).

In the next sections, we consider a connected component C' of h. We
consider the H-invariant submanifold V¢ := <I>§1(C) of Y: here the open
subset K¢ is diffeomorphic to K x g Ye.
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We follow here the notations of Section 3.5. We denote q¢ the vector
space t/h equipped with the complex structure Jo. There exists a unique
H-equivariant Spin“-bundle Sy, on V¢ such that

(4.30) Slye = \ 1% @ Sy...
At the level of determinant line bundles we have det(Sy,) = det(S)|y, ®

C_2p, and the corresponding moment map satisfy the relation &y, =

Oslye — po-

We know already that the subgroup [H, H| acts trivially on the subman-
ifold Vo (see Theorem 4.22). It acts also trivially on the bundle Sy, since
the moment map @y, takes value in 3* (see Remark 2.8).

4.5.3 Localization on Zgo

Let O be a regular admissible orbit. By Theorem 4.20 and Corollary 4.18,
we know that our object of study

mo = [Qx(M x 0%, 8 ® Sp+)]"

is equal to [QK(M X O*,S@S@*,Zgo, @@)]K.

Let us give a description of the subset Zgo of Zn < M x OF where
do vanishes. We denote by ¢ : M x O* — £ @ £* the map given by
q(m, &) = (Ps(m), —§). If u belongs to a coadjoint orbit P, and £ € u+o(t,),
then P is an ancestor to the orbit O of &.

Definition 4.23 Let P be a coadjoint orbit.
e Define the following subset of £* @ €*:

R(P) = {(1,&);p e P;E € pn+ o(k)}.

e Define Zh = ¢ H(R(P)) « M x O*.

Proposition 4.24 Assume M is a K-manifold with ([€rr,€r]) = ([, b]).
Let S be a K-equivariant Spin®-bundle over M with moment map ®s. Let
O be a reqular admissible coadjoint. Then

750 =125
P

where the disjoint union is over the set of (h)-ancestors to O. Furthermore,
for P a (h)-ancestor to O, the set Z} is equal to (®5'(P) x O*) n Z5°.
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Proof. In the proof of Proposition 4.20, we have seen that, if dp(m, —\) =
0, then the element = ®s(m) is such that (¢,) = (h) and A = § + p with
B € o(ty). So Kpuisa (h) ancestor of O and g(m, =) € | | Zg. This proves
the first assertion.

Conversely take now (m,—¢) € Z} , define u = ®s(m). So Kpu is a
(h) ancestor of O and § = p 4+ 3 with 3 € o(¢,). By K-invariance, we may
assume f € 35, so m € Y. We have T,, M = ¢/¢,, ® T,,Y. So

1 1
do(m,—¢) = |B]* = nTre, |3 + SnTrr, y|A

As B € o(h) < [h,h] acts trivially on ) by Lemma 4.21, we have
do(m,—€) = [p"|> — 3nTre, |p"|. But since [h,h] < &, = b, and then
a0 Tre, [p"| = gnTry |p"| = "] : finally do(m, —€) = 0.

At this stage we have proved that

(4.31) mp = ng
P

where the sum runs over the (h)-ancestor of O and
K
m) = [Qx (M x 0%, S ® Sox, Z5, ®0)]

In the next section we will go into the computation of the terms mg We
end up this section with the following important fact.

Proposition 4.25 Fach individual term mg 1s independent of the choice

of the moment map Pg.

Proof. Let ®%,¢ € [0,1] be a family of moment maps for S. This gives a
family @, (m, &) := ®L(m) + £ for S Sp=.

Let k., be the Kirwan vector field associated to ®f,, and let Zp(t) :=
{rl, = 0}. We denote simply by o the symbol o(M x O*,§ ® Sp+, PL,).
For any t € [0,1], we consider the quantity Q5 (t) € R(K) which is the
equivariant index of o!|,, where Uy is a (small) neighborhood of

Z5(t) < Zo(t)

such that Uy n Zo(t) = Z5(t).

Let us prove that the multiplicity m},(¢) = [Q5(¢)]¥ is independent of
t. It is sufficient to prove that t — [Q5(¢)]¥ is locally constant : let us
show that it is constant in a neighborhood of 0. We follow the same line of
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proof that the proof of the independence of the connection of the local piece
QK (M,S,25'(0) N Zs) of Qx(M,S) in [24].
Let Uj be a neighborhood of ZJ(0) such that

(4.32) Uy N Zo(0) = 25(0).

The vector field ﬁ% does not vanish on dUj : there exist ¢ > 0 so that nﬁg
does not vanish on 0Uy for t € [0,¢]. The family ot|y,, t € [0,€] is then
an homotopy of transversally elliptic symbols : hence they have the same
equivariant index.

Lemma 4.26 For small t we have
Uon Z5°(t) = Z5(t).

Indeed, by Proposition 4.24, Zgo(t) projects by the first projection @g :
M x O* — M — #* to a finite union of coadjoint orbits (the (h)-ancestors
to O) and Zp(0) projects on P. So, for ¢ small, Uy n Z5"(t) is the subset
Z5(t) of Z5°(t) projecting on P.

So, for small ¢, we have the decomposition Uy N Zo(t) = Z5(t) U Z,
where Z; is a component contained in Z3%(¢). Finally, for small ¢, we have

QE(O) = IndexK(UO\UO)
= Indexx(c'|y,)
QL (1) + Qx (M x O*, S ® So, Zt, Bly).

Since [Qx (M x O*,8 ® Sox*, Zt, ®%,)]% = 0 by Proposition 4.17 the proof
of Proposition 4.25 is completed.

. P
4.5.4 Computation of m,

In this section we compute
K
mg = [QK(M X O*,S®So*, Zg,@o)]

Let C' be a connected component of b that intersects the orbit P. With
the help of Proposition 4.15, we will reduce the computation of mg to a

similar computation where the group K acting on M is replaced with the
torus Ay = H/[H, H] acting on the slice YV¢.

Let ue PnC: ¢, = bhand p — p(n) defines a character of H. Then
75 is equal to K(®5" () x (—u + o(h)*). Here o(h) is the p orbit for H, so
o(h) = o(h)* and Q" (o(h)*) is the trivial representation of H.
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Let Yo = ®5'(C) be the slice relative to the connected component C
(see Section 4.5.2). Thus KYc is an open neighborhood of ®5'(P) in M
diffeomorphic with K x g Vo. We see that

Z5 (K xpg Vo) x OF ~ K xy (Vo x O%).
We consider the H-manifold N’ := Yo x o(h)* and the K-manifold
N =K xp (Bgx N') = K xp (By x Yo x o(h)*),

where By is a small open ball in g, centered at 0 and H-invariant.

When B, is small enough, the map (X, &) — exp(X)(—p+¢), from By x
o(h)* into O*, defines a diffeomorphism into a H-invariant neighborhood of
the H-orbit —u + o(h)* in O*. Hence a K-invariant neighborhood of Z5 in
M x O* is diffeomorphic to IN. Under this isomorphism, the equivariant map
Pp = $s+ip+ defines amap ® on N. For ke K, X € By,y € Vo, € € o(h)*,
we have

O([k; X, y,€]) =k (Ps(y) + exp(X)(—p +§)).-

It restricts to N’ as the H-equivariant map ®'(y,&) = ®s(y) — p + £ with
value in h*. Furthermore, if By is small enough, ®([1; X, y,&]) belongs to
h* if and only X = 0. As X € q, we see also that (® ([1 X, y,¢]),X) =

(®5(y), X)+ (exp(X)(—p+§), X) = (Ps(y) —p+&, X) = 0forall (X,y,£) €
By x Yo x o(h)*. Conditions (4.23) are satisfied. Proposition 4.15 tells us
that
mp = [Qu(N', &, 2/, o")]"

where Z' := &' (1) x o(h)*.

Now we have to explain the nature of the Spin® bundle &’ over N’ =
Yo x o(h)*. Let S,p)+ be the canonical Spin“-bundle of the orbit o(h)*. Let
Sy, be the Spin®-bundle on V¢ defined by (4.30).

Proposition 4.27 We have 8’ = 8}, ®8,)+ where S, = Sy, ®@C_ 4 ()

is a Spin®-bundle on Yo. The determinant line bundle of 53730 s equal to

det(S)]y, ®C_a,, and the corresponding moment map is @50 = Dsly, —
The subgroup [H, H] acts trivially on ()}(;,ngc).

Proof. Let A be an element of the H-orbit Op := p + o(h). The Spin®
bundle Spx on O* = (K \)* induces a Spin® bundle S; over O} through the

relation SO*|(’)7"; ~ /\q70®51
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We can check that S; is the H-Spin® bundle on O% = (HA)* ~ o(h)*
equal to

Hxa, (AN C o) = (Hxm Ab/6)®C 0
—Jx —Jx
Soty* ® Cpurp()

0

since A — p(A) = p — p(p) € 3*.

As the Spin® bundle Sj is equal to the product AGCON q€ (see Example
2.3), we know then that &’ ~ Sy, ® S1 ~ Sy, ® Sy ® C_ 14 p(u)-

The relation det(Sg,Dc) = det(S)]y, ® C_o, comes from the fact that
det(Sy.) = det(S)|ye ® C_y,(,) since po = p(u).

We consider now the H-manifold Yo equipped with the Spin®-bundle
33750' Let

(4.33) Q1 (Yo, S5, {0}) € R(H)

be the equivariant index localized on the compact component {<I>7§C =0} =
{®s = p} = Vo. Let Ay be the torus H/[H, H]. Since [H, H] acts trivially
on (yc,ngC) we may also define the localized index Q4 (yC,ngC, {0}) €

R(Apg).
We can now prove the main result of this section.

Theorem 4.28 The multiplicity mg is equal to
H An
|Qn (e 5. (01| = Qan e, ST on]| .
Proof. Let Z' := ®5'(u) x o(h)*. The character Qu(N',S',Z',®') €
R(H) is equal to the equivariant index of o(N",S’, & )|,; where U < N’ is an

invariant open subset such that U N Zg = Z'. For (y,§) € N' = Vo x o(h)*
and (v,7) € T(y¢)N’, the endomorphism o(N', Sy, @), ¢)(v, ) is equal to

ci(v+ (s(y) —p+&) - y)®Ids ) +eaa@c2(n+ (Ps(y) —p+) - §).

Here c; acts on ngcly, cy acts on Syp)x|¢ and €1 is the canonical grading
operator on Sz,)c |y-

Since o(h)* is compact, we can replace the term co(n+ (®s(y) —p+£)-€)
simply by ca(n). Since [H, H] acts trivially on V¢, and & € [h, b], the vector
field y — (Ps(y) —pu+&) -y is equal to y — (Ps(y) — p)-y. Thus our symbol
is homotopic to the symbol

ci(v+ (Ps(y) —p) - y) @Ldg, ). + €1 @ ca(n).
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This last expression is the product symbol of the H-transversally elliptic
symbol ¢ (v + (Ps(y) — ) - y) on Yo and of the elliptic symbol ca(n) on
o(h)*. The equivariant indices multiply under the product (as one is elliptic)
([1],[22).

Now the H-equivariant index of c2(n) acting on Sy(y)+ is the trivial repre-
sentation of H. Thus we obtain our theorem. We have also to remark that

H An
the identity [QH(yc,sgic, {0})] - [Q an Ve, S5, {0})] follows from
the fact that [H, H]| acts trivially on ()¢, 837;0).

5 Multiplicities and reduced spaces

In this section, we interpret the multiplicity as an equivariant index on a
reduced space.

Let O < £* be a regular admissible orbit, and () € H, so that ([b,h]) =
([€ar, €ar]). In the previous section, we have proved that the multiplicity of
o in Qg (M,S) is equal to

mo =ng
P

where the sum runs over the K-orbits P which are (h)-ancestors of O. Fur-
A
thermore, we have proved that m); = [QAH (yc,ngc, {0})] "

The aim of this section is to prove the following theorem.

Theorem 5.1 The multiplicity mg is equal to the spin® index of the (pos-
sibly singular) reduced space Mp := ®5'(P)/K.

However, our first task is to give a meaning to a QP"(Mp) € Z even if
Mp is singular.

5.1 Spin® index on singular reduced spaces

We consider a connected oriented manifold N, equipped with a Spin®-bundle
S. We assume that a torus G acts on the data (/V,S). An invariant con-
nexion on the determinant line bundle L = det(S) defines a moment map
®: N — g*. We do not assume that N is compact, but we assume that
the map @ is proper®. For any ¢ € g*, the reduced space N¢ := ®~1(€)/G is
compact.

3We will use sometimes a slightly different hypothesis : ® is proper as a map from N
to an open subset of g*.
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The purpose of this subsection is to explain how we can define the spin®-
index, Q""(N,,) € Z, for any u in the weight lattice A of the torus G.

Let gn be the generic infinitesimal stabilizer of the G-action on N : the
image of N under the map ® leaves in an affine space I(IN) parallel to gy
If € € I(N) is a regular value of ® : N — I(N), the reduced space N¢
is a compact orbifold (as proved in [24]). We can define Spin°-bundles on
orbifolds, as well as Spin®-indices.

We start with the following basic fact.

Lemma 5.2 For any regular value § € I(N) of ® : N — I(N), the orbifold
N¢ is oriented and equipped with a family of Spin®-bundles Sg parameterized
by pe AnI(N).

Proof. Let Gy be the subtorus with Lie algebra gy. Let G’ = G/Gy.
The dual of the Lie algebra g’ of G’ is canonically identified with g3,

We assume that £ is a regular value of ® : N — I(N) : the fiber
Z = ®71(¢) is a submanifold equipped with a locally free action of G’. Let
N¢ := Z/G' be the corresponding “reduced” space, and let 7 : Z — N¢ be
the projection map. We can define the tangent (orbi)-bundle T'N¢ to Ng.

On Z, we obtain an exact sequence 0 — TZ — TN|z 42 [(g")*] —
0, and an orthogonal decomposition TZ = T Z @ [¢'] where [¢'] is the
trivial bundle on Z corresponding to the subspace of TZ formed by the
vector fields generated by the infinitesimal action of g’. So TN|; admits the
decomposition TN |z ~ T Z @ [¢'] @ [(¢')*]. We rewrite this as

(5.34) TN|z ~ TeZ @ [g¢]

with the convention g’ ~ ¢’ ® iR and (g')* ~ g’ ® R. Note that the bundle
T Z is naturally identified with 7*(TNg).

If we take on g¢ the orientation o(i) given by the complex structure,
there exists a unique orientation o(/N¢) on N¢ such that o(IN) = o(Ng)o(3).

Definition 5.3 Let §§ be the Spin® bundle on the vector bundle TenZ — Z
such that

S|z = 8 ®[/\ ot)
Here [\ 9¢) = Z x A g¢ is a Spin®-bundle on the bundle [g¢] = Z x g¢

The Kostant relation shows that for any X € gy, the element eX acts on
the fibers of S¢ as a multiplication by ¢**X” where v is any element of I(V).
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Hence, for any p e A n I(N), the action of Gy on the tensor 3’5 ®[C_,] is
trivial. We can then define a Spin®-bundle Sg on TN¢ by the relation

Se®[C ) =7 (st).
The proof of the following theorem is given in the next subsection.

Theorem 5.4 For any p € I(N)nA, consider the compact oriented orbifold
4 element € € gﬁ. Then the index

Q(Nywtes Sjive)

Nyt associated to a generic

1s independent of the choice of a generic and small enough €.

Thanks to the previous Theorem, one defines the spin¢ index of singular
reduced spaces as follows.

Definition 5.5 If u € A, the number QP™(N,,) is defined by the following
dichotomy

0 if p¢ I(N),
Qspin(N#) _ Q(N,U«+E?8;,LL+E) if ue I(N) and €€ g]lv is generic

and small enough.

The invariant Q**"(N,,) € Z vanishes if y does not belongs to the relative
interior of ®(N) in the affine space I(N). It is due to the fact that we can
then approach p by elements p + € that are not in the image ®(N).

Let us consider the particular case where p € I(N) N A is a regular value
of ® : N — I(N) such that the reduced space N, is reduced to a point. Let
me € ®1(p), and let T' = G’ be the stabilizer subgroup of m, (I is finite).
In this case (5.34) becomes T,, N ~ g¢, and o(N,,) is the quotient between
the orientation of NV and those of gi. At the level of graded Spin“-bundles
we have

Sm, > 0(N,) [\ g ® Ly

where IL%S is a one dimensional representation of I' such that
(LY2)®2 = ,,, . In this case Definition 5.5 gives that

(535)  QP(N,) = o(N,)dim [[L}gf@a:_u]r e {~1,0,1}.

4So that u + € is a regular value of ® : N — I(N).
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5.2 Proof of Theorem 5.4

In this subsection we consider a fixed p € I(N) n A. For any € € g(N)*, we

consider the moment map ®. = & — y —e.
We start with the fundamental Lemma

Lemma 5.6 The map € — [Qg(N, S, ®.1(0), &) ® C_,] is constant in a
neighborhood of 0.

Proof. Changing S to S® [C_,,], we might as well take p = 0.

Let 7 > 0 be smallest non-zero critical value of |®|?, and let U :=
dL({¢ | €]l < r/2}). Using Lemma 2.9, we have U n {kg = 0} = &~1(0).

We describe now {ke = 0} n U using a parametrization similar to those
introduced in [19][Section 6].

Let g;,7 € I be the finite collection of infinitesimal stabilizers for the
G-action on the compact set U. Let D be the subset of the collection of
subspaces gi- of g* such that ®~(0) n N% # .

Note that D is reduced to I(N) if 0 is regular value of ® : N — I(N).
If A= gil belongs to D, and € € I(N), write the orthogonal decomposition
€ =€ea + Ba with ea € A, and Sa € g;. Let

Be ={fan =€¢—en,AeD}
the set of 8 so obtained.

Figure 10: The point € and its projections ea

We denote by Z. the zero set of the vector field k. associated to ..
Thus, if € is sufficiently small (|le| < r/2),

(5.36) ZenU = | NP n @71 (B).
B€De
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With (5.36) in hands, we see easily that ¢ € [0,1] — (N, S, s )|y is an
homotopy of transversally elliptic symbols on ¢/. Hence they have the same
index

QcU,S,271(0),®)

QG(U7S7 Z€ N ua (I)e)

Y. Qa(N,8,0.1(8) n NP, ®,).
BeBe

The lemma will be proved if we check that [Qg (N, S, @1 (8)n NP, ®.)]¢ =0
for any non-zero 8 € Be.

If Ba € Beand n € ®71(BA) NP2, ®(n) = Ba+e = en. So{(P(n),Ba) =
{(en, Bay = 0. So the infinitesimal action, £(/3), on the fiber of the vector
bundle §,, is equal to 0.

The Atiyah-Segal localization formula for the Witten deformation (Re-
mark 4.13) gives

Qc(N,S, 2. 1(B) n NP @) = Qa(N” ds(S)® Sym(Vs), @71 (3), ®.)
= ) Qu(X,ds(S)|x ® Sym(Vy)|x, @ 1(8), Be)

XcNB

where Vg — N A is the normal bundle of N” in N and the sum runs over
the connected components X of N? that intersects ®71(3).

Let us look to the infinitesimal action of 3, denoted L£(/3), on the fibers
of the vector bundle dg(S)|x ® Sym(N3)|x. This action can be checked at a
point n € ®71(3) n NP.As the action of 8 on the fiber of the vector bundle
S, is equal to 0, we obtain

1 _ %TI‘TN|X(|5|) on dg(S)|x,
iﬁ(ﬁ) B {2 0 on Sym(N3)|x.

So we have checked that +£(3) > %'I‘I‘TN|X(|B|) on dg(S)|x ® Sym(N3)|x.
Now we remark that § does not acts trivially on NV, since S belongs to
the direction of the subspace I(N) = gy: this forces %TrTN|X(|ﬁ|) to be

strictly positive. Finally we see that %ﬁ(ﬁ) > 0 on dg(S)|x ® Sym(N3)|x,
and then

[Q6(X,85(S)]x ® Sym(Vs)|x, B2 (8), )] = 0.

if 8 # 0. The Lemma 5.6 is proved.
The proof of Theorem 5.4 will be completed with the following
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Lemma 5.7 If p + € is a regular value of ® : N — I(N), the invariant
[QG(N,Sn, ®.1(0), @) ® C_, ] is equal to the index Q( Nute,Shive)-

We assume that p + € is a regular value of ® : N — I(N) : the fiber
Z = ® Y + €) is a submanifold equipped with a locally free action of
G' = G/Gy. Let Nyqc := Z /G’ be the corresponding “reduced” space, and
let m: Z — N, be the projection map. We have the decomposition

(5.37) TN|z ~ 7*(TNu+e) @ [g¢]-

For any v € A n I(N), S

i+ is a the Spin® bundle on Ny defined by the
relation

SN|Z®C—V - ﬂ- /,L+e /\gC
The following result is proved in [24].

Proposition 5.8 We have the following equality in R(G)

Qa(N, SN, .1(0),®) = >, Q(Nuie,Siy) Co

veANI(N)

In particular [Qg(N, Sy, ®71(0), @) ® C_,]¢ is equal to O( Nute;Shite)-

53 [Q,R]=0

We come back to the setting of a compact K-manifold M, oriented and of
even dimension, that is equipped with a K-Spin® bundle §. Let Lgs be its
determinant bundle, and let &5 — £* be the moment map that is attached
to an invariant connection on Ls. We assume that there exists () € H such
that ([€ar, ar]) = ([b, b]). Let 3 be the center of b.

We consider an admissible element p € 3* such that K, = H : the
coadjoint orbit P := K is admissible and contained in the Dixmier sheet
szh). Let

Mp = o' (P)/K
In order to define QP (Mp) € Z we proceed as follows.
Let by = {¢ € b* |Ke < H} and let Y := &5'(h§). We recall that the
map & — p(&) is locally constant on hj. Let us fix a connected component
C of b : we denote pc = p(§) for any & € C. We consider Vo = q)gl(C’)

that is a H-submanifold of M equipped with a H-Spin® bundle Sy : the
associated moment map is @y, := Psly, — pc.
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For any admissible element u € C n 3* the element
fii=p—p(p) =p—pc

belongs to the weight lattice A of the torus Ay := H/[H, H], and the
reduced space My, is equal to

(Vo) == A{Pye = i}/An.

By definition, we take Q*P™ (M) := Q*P™((Vc)z) where the last term
is computed as explained in the previous section. More precisely, let us
decompose Yo into its connected components Vi, ...,),. For each j, let
3; C 3 be the generic infinitesimal stabilizer relative to the Ag-action on Y.
Then we take

QP (Mp) = QP™ (M) = D, Q7™ ((V))ite;)
j

where €; € 3]* are generic and small enough.

With this definition of quantization of reduced spaces Q*P"(Mp), we
obtain the main theorem of this article, inspired by the [@, R] = 0 theorem
of Meinrenken-Sjamaar.

Let M be a K-manifold and § be a K-equivariant Spin®-bundle over M.
Let () € He such that ([€ar, Ear]) = ([h,b]), and consider the set A((h)) of
admissible orbits contained in the Dixmier sheet {%Z‘h).

Theorem 5.9

(5.38) Qk(M,S) = > QF™(Mp)QE™(P).
PeA((h))

We end this section by giving yet another criterium for the vanishing of
Spin(M 8)
K 19 )
Consider the map &g : M — €*. At each point m € M, the differential
dm®s gives a map T,, M — €*. Let Erln c £*. From the Kostant relations,
we see that d,,,®s take value in E#L.

Proposition 5.10 If Qi (M,S) # 0, then there exists m € M\MX such
that Tmage(d,, ®s) = &
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Proof. If we consider the decomposition of the slice Yo = | J Y; in connected
components, for Qx(M,S) # 0, then for some j, ®(Y;) has non empty
interior in 3j‘. Here 3; is the infinitesimal stabilizer of the action of H/[H, H |
on Y;. Thus 3; is equal to £,, < b for generic m € Y;. So there exists a point
m € Y; such that the differential of ®s|y is surjective on 3]* c b*. Now if
we consider KY; © M, then Image(d,,®s) = b* (—Bg,f This is exactly &5.

When the action of K is abelian, we can always reduce ourselves to
an effective action with €3, = {0}. Then the support of decomposition of
Qi (M,S) is contained in the interior of ®5(M) n A. If this set has no
interior point, then Qg (M,S) = 0. This small remark implies the well-
known Atiyah-Hirzebruch vanishing theorem in the spin case [2], as well as
the variant of Hattori [13].

We also note another corollary.

Corollary 5.11 If the two form Qs is exact, and the K-action on M 1is
non-trivial then Qi (M,S) = 0.

It is due to the fact that if Qs = da, by modifying the connection on Lg by «,
our moment map is constant. So if the action is non trivial, Qg (M,S) = 0.

5.4 [Q,R] =0 on induced manifolds

Let H ¢ K be the stabilizer subgroup of some element in £*. We adopt the
notations of Section 3.5. Let C' be a choice of a connected component of b .

Assume that Y is a compact H-manifold, and consider the manifold M =
K xg Y. Assume that M is oriented and equipped with a K-equivariant
Spin“-bundle S§. We consider the Spin“-bundle Sy on Y such that S|y =
A q¢ ® Sy. The equivariant index Qg (M, S) verifies the equation

(5.39) Que(M,8) = Indfs ( /\a€ ® Qu(Y,Sy)).

The aim of this section is to explain how our [@Q), R] = 0 theorem matches
with the induction formula (5.39) when we apply it to both indices Qx (M, S)
and Qg (Y, Sy).

Let Ls be the determinant line bundle of the Spin®-bundle §. As Lg ~
K xp Lgly we can choose an equivariant connection on Lg such that the
corresponding moment map ®s : M — £*, when restricted to Y, takes value
in h*. The determinant line bundle Ly of the Spin®-bundle Sy is equal to
Lsly ® C_2,., and for the moment map Py, we have &y = ®sly — pc.
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We can assume that there exists a Levi subalgebra [ < h such that the
conjugacy class of generic stabilizer ([hy, by ]) = ([€arr, ar]) is equal to ([1,1]),
otherwise Qx (M,S) = Qu(Y,Sy) = 0. We note Ag((l)) (resp. Ay((l))) the
set of K-admissible (resp. H-admissible) orbits belonging to the Dixmier
sheet {%’(“([)) (resp. []E“([))).

For any orbit H¢ — h*, we define the K-orbit to(HE) := K(HE+ po) =
K(&+pc). Let Ay((l))c be the subset of Ay(([)) formed by the H-coadjoint
orbit P’ such that P’ + p¢ is contained in b. Let b{;y = b* be the Dixmier
sheet of coadjoint orbits H¢ with He conjugate to L.

We have the following basic fact.

Lemma 5.12 o If P' € Ay((l))c, then tc(P’) belongs to Ae((1)).
o For any P € A¢((I)) we have

(5.40) Pabiy =P bl =[P +r0)
7)/

where the finite union runs over the orbits P’ € Ay((1))c such that to(P') =
P.

Proof. Let P’ € Ay((l))c. Then P’ = Hyp with a H-admissible element
p € b* such that K, = L and p + pc € h§. We have K, 1, = H,yp, =
H, =L and

(5.41) p+po—p"(n+pe) = p—p™ (1) + po — per

where C is the connected compoent of h§ containing a + pc. As pc — per
belongs to the weight lattice we see that u + po is K-admissible. The first
point is proved. o

The inclusions Htc(P’):P(PI +pc) < P sl []E"[) cPn bz‘[) are obvious.
Consider now a H-orbit 7 contained in P n h?‘[). We have T = H\ where A

is K-admissible. As A € % the stabilizer H) is H-conjugated to a subgroup
containing L. In the other hand, the stabilizer sugroup K is K-conjugate
to L. If we compare the dimension of the connectd subgroups Hy and K
we see that K, = H) and then HA € P n f)z“[) : the element A can be choosen
so that Ky = Hy = L.

We consider p1 = A — pc so that to(Hp) = P. We see first that H,, =
H), = L and (5.41) shows that p is H-admissible. We have checked that
Hpe Ay((1)) and T = Hu+pc < P b{;)- The second point is also proved.
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For the H-manifold Y, our [@Q, R] = 0 Theorem says that Qp(Y,Sy) is
equal to > p/c Ay (1) QP (Yp )QE™ (P). If we apply the induction formula
proved in Proposition 3.22, we get that

Qk(M,S) = 3 QP (vp)md (A d @QE"(P")
PreAy((D)
_ Z 6703/ QSpin(Yp/) ?{)m (tC(P/))
PreAy((D)e
>, wlQE(P)

PeAe((1)

with m” = Ztc(P’):P eg/ Q" (Yp:). Here egl is the sign eg where C” is
the connected component of b that contains P’ + po (see Section 3.5).

Finally, we recover the [@, R] = 0 Theorem for the K-manifold M with
the help of the following

Proposition 5.13 For any P € A((1)), the term m” is equal to QP (Mp).

_Proof. Identity (5.40) and the fact that the image of ®y is contained
in [)E“[) gives automatically that

o' (P)= ] K xud (P
to(P)=P

Hence the reduced space Mp := ®5'(P)/K decomposes as a disjoint sum
[eopy—p ME where ME = (K xg ®,'(P'))/K is equal (as a set) to
Ypr = @ (P)/H.

Let P’ € A¢((I)) such that to(P’) = P. The proposition will be proved
if we show that QP"(ME') = & Q™ (V).

Consider p such that P’ = Hp and H, = L. Take ¢/ = p+ pc : we
have P = K/ and K,y = L. Let B c [* be a small ball centered at j, and
consider the slice YV := @;I(B) : the set HY < Y is a H-invariant open
neighborhood of @;1 (P’) diffeomorphic to H x ). Consider the K-invariant
open subset

MP = K xg (Hy) oM

We note that M ~ K x; Y, and the reduction of M, equipped with the
moment map ®s|,,», relatively to P is equal to Mg/.
By definition, the quantity QSpin(Mﬁ /) is equal to

[QL(y7 Sy ® Cf‘u’+pK(#’)v {0})]L
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where Sy is the Spin®bundle defined by relation S|y = A, , ¢/[® Sy.
. I
On the other hand, the quantity Q"™ (Yp/) is equal to

[QL(y’ 83} ® C—M+PH(H)’ {O})]L

where S), is the Spin“-bundle defined by relation Sy |y = A ; [/h®S3,. Now
if we use the fact that S|y = /\ ;_ /h ® Sy, we can check that

Sy @ C_yripiu) = €6 Sy ®C_ppipin(y

at the level of L-equivariant graded Spin®-bundles. The proof of the relation
QPn(ME) = el QP (Ypr) then follows.

6 Examples

6.1 P'(C)

We consider the simplest case of the theory. Let P! := P!(C) be the
projective space of (complex) dimension one. Consider the (ample) line
bundle £ — P!, dual of the tautological bundle. It is obtained as quo-
tient of the trivial line bundle C?\{(0,0)} x C on C?\{(0,0)} by the action
u - (21,22,2) = (uz1,uz9,uz) of C*. We consider the action of T = S! on
L — P! defined by t - [21, 22, 2] = [t 21, 22, 2]. .

Let S(n) be the Spin®bundle A TP!®LE". The character QX" (M, S(n))
is equal to HY(P!,0(n)) — HY(P!,O(n)) where O(n) is the sheaf of holo-
morphic sections of £L&". Note that the holomorphic line bundle £&" is not
ample if n < 0. We have

° Q;PIH(M,S(R)) = _lezln-‘rl tk when n S _27
o QP™(M,S(-1)) =0,
° QZPin(M,S(n)) =>7_ot* whenn > 0.

The determinant line bundle of S(n) is L, = [C_1]®L®?"*2 where [C_1]
is the trivial line bundle equipped with the representation ¢t~ on C.
Remark that P! is homogeneous under U(2), so there exists a unique
U(2)-invariant connection on L,. The corresponding moment map ® S(n) 18
such that
|21]? 1

42 P = 1)————— — —.
(6 ) S(n)<[217z2]) (TL+ )‘21|2_’_|22|2 2

The image I, = ®5¢,)(M) is
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1

e the interval [—3,

n+ 3] when n >0,
e a point {—% when n = —1,
e the interval [n + 3, —1] when n < -2,

It is in agreement with our theorem. Indeed all characters occurring in
(M, S(n)) are the integral points in the relative interior of I,,, and all
reduced spaces are points.
If we consider simply the action of T on P!, the choice of connec-
tion may vary. In fact, given any smooth function f on R, we can mod-

. . 2

ify the connection such that ®g(,([21,22]) = —5 + (n + 1)% +
21> 21> B

f(|21‘2jr|zz‘2)|z1‘2i|22|2(1 — |z1|2i|22|2). Let Q1 be the curvature of L, then

the Duistermaat-Heckman measure (®g(,,))«{2 is independent of the choice
of the connection and is equal to the characteristic function of I,,.
Take for example

E S ks P
|21]2 + |22/? 212 + |22 |21]? + |22

D5 ([21,22)) = —5 + (0 +1)

|21 2
21]2+]22]?
varying between 0 and 1. We see that the image of ®5(4) is the interval
[—%3, %,]. But the image of the signed measure is still [—%, %] Above the
integral points in [—%, —%], the reduced space is not connected, it consists
of two points giving opposite contributions to the index. So our theorem

holds.

Figure 11 is the graph on ®g(,) for n = 4 in terms of z =

T ]
ik 1

Figure 11: The graph of &
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6.2 The Hirzebruch surface

We consider M to be the Hirzebruch surface. Represent M as the quotient
of U = C%2 —{(0,0)} x C? — {(0,0)} by the free action of C* x C* acting by

(uvv) . (Zl7 22, 23, 24) = (u217U227U7)23,UZ4)

and we denote by [z1, 29, 23, 24] € M the equivalence class of (z1, 22, 23, 24).
The map 7 : [21, 22, 23, 24] — [21, 22] is a fibration of M on P;(C) with fiber
P (C).

Consider the line bundle L(n1,n2) obtained as quotient of the trivial line
bundle ¢4 x C on U by the action

(u,v) - (21, 22, 23, 24, 2) = (uz1, uz2, UVZ3, V24, U V"2 2)
for (u,v) € C* x C*. The line bundle L(nj,ng) is ample if and only if
ny > no > 0.

We have a canonical action of the group K :=U(2) on M : g-[Z1,Z2] =
(921, Z5] for Z1, Zo € C2 —{(0,0)} and the line bundle L(nj,ns) with action
921,22, 2] =921, Z2, z] is K-equivariant.

We are interested in the (virtual) K-module

HO(M,0(ny,ns)) — H' (M, O(ny,n2)) + H*(M, O(ny,n3))

where O(n1, na) be the sheaf of holomorphic sections of L(n1,n2).

In this case, it is in fact possible to compute directly individual cohomol-
ogy groups H'(M,O(n1,nz)). However, we will describe here only results
on the alternate sum and relate them to the moment map.

Let T = U(1) x U(1) be the maximal torus of K. The set Y :=
{[#1,22,23,24] € M|z = 0} is a T-invariant complex submanifold of M
(with trivial action of (¢1,1)). The map

Y — PYC), [0,z9,23,21] — [(22) '23, 24]

is a T-equivariant isomorphism and the map (g,y) € K xY — g-ye M
factorizes through an isomorphism K x7 Y ~ M. Thus M is an induced
manifold.

For any (a,b) € Z2, we denote C,; the 1-dimensional representation
of T associated to the character (t1,t2) — t¢t5. We denote by ef, e} the
canonical bases of t* ~ R2. The Weyl chamber is Ly = {zef +yel,z >y}
The elements e}, e5 are conjugated by the Weyl group.

The line bundle L(nj,n2), when restricted to Y ~ P1(C), is isomorphic
to L2 @ [Co.—n,]-

66



We consider L,, = L(3,2) the line bundle obtained from the reduction
of the trivial line bundle A* C* with natural action of C* x C*. We denote
Su = N TM (resp. Sy := ¢ TY) the Spin“bundle associated to the
complex structure on M (resp. Y).

We denote by ¢ : Y — [0,1] the map defined by ¢(y) = % if
y ~ [a1,a2].

Proposition 6.1 e Let S(ny,n2) be the spin bundle Spy ® L(ny,ng) on M.
Its determinant line bundle s

Loy ny = [Cet] ® Li ® L(211, 2n2)

where [Cyet] — M s the trivial U(2)-equivariant line bundle associated to
the character det : U(2) — C*.

o There exists a connection on Ly, n, such that the corresponding mo-
ment map ®p, n, : K x7Y — €* is defined by

3 1
usina [k y]) = (= (1 + 5) + (m2 + Diply) ) - €3 + 5 (e + ).
Proof. For the second point, we construct a U(2)-invariant connection
on Ly, n, by choosing the T-invariant connection on (L, »,)|y having mo-
ment map (—(n1 + 3) + (n2 + 1)¢(y)) €5 + 3(ef + e}) under the T-action
(see Equation (6.42)).

From Proposition 6.1, it is not difficult to describe the “Kirwan set”
A(ni,ng) = Image(®y, n,) N t5, for all cases of ny,na. It depends of the
signs of n1 + %, ng+1,n; —ng + %, that is, as we are working with integers,
the signs of n1 + 1, no + 1 and n; — ny. We concentrate in the case where
ny+ 1= 0,n9 +1 = 0 (other cases are similarly treated). Then, we have
two cases:

e If ny > ny, then the Kirwan set A(ny,ng) is the interval

1 3 1
[(n1 —n2) + 5 + 5](—63) + §(€T +e3).

e If ng > ny, then the Kirwan set A(ny,ng) is the union of the intervals

1 1
[0,n9 —nq — §]eT + §(€T +e3)

and 3 i
[0, + 5](—6;) + 5(6}‘ +e3).
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If ny = ng > 0 the curvature of the corresponding connection on L, 5, =
L(2n; + 3,2n2 + 2) (which is an ample line bundle) is non degenerate, thus
the image is a convex subset of t£, (in agreement with Kirwan convexity
theorem) while for ny > n; the image set is not convex.

The character Qg (ni,n2) := Ok (M,S(n1,n2)) is equal to the (virtual)
K-module HY(M,O(ny,n2)) — HY(M, O(n1,n2)) + H*(M, O(n1,ns)) where
O(n1,n2) is the sheaf of holomorphic sections of L(ni,n2).

Let A>o = {(A1,A2); A1 = X2} be the set of dominant weights for U(2).
We index the representations of U(2) by p + Aso. Here p = (3, 5") and
A1, Ao are integers. We then have

Tge-p = 5

the space of complex polynomials on C? homogeneous of degree k.

If ny = 0, we know that Q7 (Y, Sy@LO™2) = 0 t’g. From the induction
formula (3.17) (or direct computation via Cech cohomology !!) we obtain

e If n; > no, then

n1
Qtmm = 3wy
k=n1—no
e If ny > nq, then
ny no—ni—2
Qr(miyn) = X7 k)= 2, Tued )
k=0 k=0

Let us checked how our theorem works in these cases. First, we notice
that we are in a multiplicity free case : all the non-empty reduced spaces
are points.

¢ Consider the case where n; > ny. We see that the parameter (%, —kz—%)
belongs to the relative interior of the interval A(nj,ng). In particular for
b = (0,0), the unique point in the relative interior of the interval A(0,0) is
p. This is in agreement to the fact that the representation Qg (0,0) is the
trivial representation of K.

e Consider the case where no > n;. We see that the parameter (%, —k—%)
belongs to the relative interior of [—ny — 3,0]e3 + $(ef + €3) if and only if
k < mj. Similarly, the parameter (k + %, %2) belongs to the relative interior
of [0,np —ny — 3]ef + L(ef + %) if and only if k < ny —ny — 2.

In Figures 6.2, 6.2, 13, we draw the Kirwan subsets of t, corresponding
to the values a = [8,5],¢ = [3,6]. The circle points on the red line repre-

sents the admissible points occurring with multiplicity 1 in Qg (n1,n2). The
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diamond points on the blue line represents the admissible points occurring
with multiplicity —1 in Qg (n1,n2).

Figure 12: K-Multiplicities for Qx(8,5)

Figure 13: K-Multiplicities for Qg (3,6)

Consider now M as a T-manifold. Let & : M — t* be the moment map
relative to the action of T" which is the composite of & : M — £* with the
projection £* — t*. Thus, the image is the convex hull of A(ni,ny) and‘its
symmetric image with respect to the diagonal.

Consider first the case where n1 = ng = 0. Thus our determinant bundle
Loo = L(3,2) is ample. The image of the moment map <I>0T70 M — t* s
equal to the convex polytope A with vertices (0, %), (%,0), (%, —1), (-1, %),
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the images of the 4 fixed points [1,0,1,0], [1,0,0,1],[0,1,1,0],[0,1,0,1].
The only integral point in the interior of the polytope is (0,0) and the re-
duced space (9§ ) ~1((0,0))/T is a point. The representation Q" (M, S(0,0))
is indeed the trivial representation of 7T'.

/|

Figure 14: T-multiplicities for Q7 (0,0)

We now concentrate on the case (n1,m2) = (3,6). The line bundle L :=
3,6 is not an ample bundle, so that its curvature €1 is degenerate, and the
Liouville form £y = Qi A Qp is a signed measure on M. Let us draw the
Duistermaat measure (®y).[1, a signed measure on t*. In red the measure
is with value 1, in blue the measure is with value —1.

We also verify that our theorem is true. Indeed the representation

Qr(M,5(3,6)) = Qx(M,S5(3,6))|r is
Lty eyt 2 g ety 2t Ry ot M R — bt — 3 — .

The A € 72 such that t* occurs in Qr(M,S(3,6)) are the integral points
in the interior of the image of ® (M) : they have multiplicity +1, and the
reduced space are points.

6.3 A SU(3) manifold

Consider C* with its canonical basis {e1,...,e4}. Let K ~ SU(3) be the
subgroup of SU(4) that fixes e4.

Let T'= S(U(1) x U(1) x U(1)) be the maximal torus of K with Lie
algebra t = {(x1,2,23),>}; ; = 0}, and Weyl chamber t£, := {{1 > & >
£3,2,;& = 0}. We choose the fundamental roots wi,ws so that K., =
S(U(2)xU(1)) and K, = S(U(1) xU(2)). Recall that wy,ws generates the
weight lattice A < t* so that A>g = Nw; + Nwsy. Note also that p = wy + ws.
For any A € A>g + p, we denote 7 the irreducible representation of K with
highest weight A\ — p.

Let X ={0c L1 c Ly c <D4, dim L; = i} be the homogeneous partial
flag manifold under the action of SU(4). We have two lines bundles over X:
£1($) = L1 and £2(x) = Lg/Ll for x = (Ll,Lg).

70



Figure 15: T-multiplicities for non ample bundle on Hirzebruch surface

Our object of study is the complex submanifold
M = {(Ll,Lg) e X ‘ ([:64 c LQ}

The group K acts on M, and the generic stabilizer of the action is [ K, , K., | ~
SU(2). We consider the family of lines bundles

L(a,b) = Ly @ LSy, (a,b) € N2

Let Sas := /\¢ TM be the Spin®-bundle associated to the complex structure
on M. We compute the characters

Ok (a,b) == Qg (M,Sy ® L(a,b)) € R(K).

Again
dim M

Qrc(ab) = > (1) H'(M,0(£(a,1))).
i=0
We notice that K, corresponds to the subgroup of K that fixes the
line Ces. The set Y := {(L1,L2) € X | Ly = Ce3 @ Cey4} is a K, -invariant
complex submanifold of M such that the map (k,y) € K xY — kye M
factorizes through an isomorphism K xf,, Y =~ M. Notice that [K,,, K, |
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acts trivially on Y. Thus we are in the “ideal”situation studied in Section

5.4.
If we take @ > 4 and b > 1 we get that

b—1 a—4
(6.43) Qk(a,b) = — Z Thwi+p — Z T jwa+p-
k=0 §=0

In particular the multiplicity of 7, (the trivial representation) in Qg (a,b)
is equal to —2.

We now verify the formula (5.38) in our case. The Spin°-bundle Sy is
equal to Sk, ® K x Ko, Sy. The corresponding determinant line bundle
det(Sys) satisfies

det(Sy) = K X Koy Cawy ® K X Koy det(Sy)
= K xg,, Couw @LY
Hence for the Spin®-bundle Sy; ® L(a, b) we have

det(Sy ® L(a,b)) = det(Sy) ® L(a, b)®?
- K X Ko, C(2b+2)w1 ®£1®2(a+b—1).

The line bundle det(Sy ® L(a, b)) is equipped with a natural holomorphic
and hermitian connection V. To compute the corresponding moment map
Q. 0 M — €%, we notice that £; = K X Ko, L£~! where £ — P! is the
prequantum line bundle over Py (equipped with the Fubini-Study symplectic
form). If we denote ¢ : Y ~ P! — [0, 1] the function defined by ¢([z1, 22]) =

|11 that
., we see tha

[al? 422
Do p([k,y]) = k[((0+1) = (a+b—1)p(y)) wi].

for [k,y] € M. In this case, the Kirwan set ®, (M) N t% is the non convex
set [0,0+ 1|wy U [0, a — 2]ws.

We know (see Exemple 3.10) that the set A((£y,)) is equal to the collec-
tion of orbits K (12 w;),n € N,i = 1,2, and we have Q (K (3w;)) = 0 and
Ok (K (32£0)) = T +p when k = 0.

If we apply (5.38), we see that my, 4+, occurs in Qk(a,b) only if # <
b+1:soke{0,...,b—1}. Similarly mju,+, occurs in Qg (a, b) only if % <
a—2:80j€{0,...,a—4}. For all this cases the corresponding reduced

spaces are points and one could check that the corresponding quantizations
are all equal to —1 (see (5.35)).
Finally we have checked that (5.38) allows us to recover (6.43).
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