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The characteristic sequence of a subset E of the integers enable to generalize the factorial. The asymptotic limit of this sequence, called the valuative capacity, is actually related to the transfinite diameter of this set embedded into the set of p-adic integers. We use tools of potential theory to obtain formulas to compute this capacity. As an example, we provide a family of sets, invariant by a family of graph-directed iterated function systems, whose valuative capacities are algebraic numbers.

1. Introduction M. Bhargava [START_REF] Bhargava | P -orderings and polynomial functions on arbitrary subsets of Dedeking rings[END_REF], using the notion of integer-valued polynomial, gives a generalization of the notion of factorial. He associates, in an algebraic way, with each subset E of Z, a factorial sequence (n! E ) n∈N that preserves the properties of the classical one. This notion is linked to the notion of p-ordering sequence defined via the p-adic valuation v p for a prime number p: A sequence (a n ) n≥0 ⊂ E is a p-ordering if for any n ≥ 1, a n realizes the minimum min x∈E v p (a n-1x) • • • (xa 0 ) . An important property is that the value of this minima, possibly infinite, does not depend on the sequence (a n ) n , and is denoted w E (n, p). The factorial of Bhargava is then the value n! E := p p -w E (n,p) where the product is taken over all the prime numbers. One can show that the sequence (w E (n, p)) n is superadditive, so the limit lim n→∞ w E (n,p) n =: L p (E) exists when it is finite, it is called the valuative capacity of the set E [START_REF] Chabert | Generalized factorial ideals[END_REF].

An other way to study the set E is to consider its closure Ē into the p-adic integers Z p equipped with the p-adic metric and use potential theory and harmonic analysis. One can check that the valuative capacity L p (E) is related to the transfinite diameter d ∞ (E) p of E via the formula d ∞ (E) p = p -Lp(E) . This implies, in particular, the following variational equality:

L p (E) = inf µ∈P( Ē)
v p (xy)dµ(x)dµ(y), where P( Ē) denotes the set of probability measures with support in the set Ē. Classical results assert that there exists a measure (called an equilibrium measure) realizing the infimum. When the infimum is finite, this measure is unique and is invariant by any isometry of Ē.

These properties enable us to recover some existing results but proven in an algebraic way like in [START_REF] Johnson | Limits of characteristic sequences of integer-valued polynomials on homogeneous sets[END_REF] and to obtain new ones, e.g., any pordering sequence of E is distributed according to te equilibrium measure. Conversely the algebraic methods enable to perform explicit computation of the capacity.

We are mainly interested by the following problem: Given an infinite compact set E in Z p (or in C p ), invariant by some continuous map, can we explicitly compute the capacity of this set? L. DeMarco and R. Rumely give in [START_REF] Demarco | Transfinite diameter and the resultant[END_REF] the answer to this question for a compact set invariant by a polynomial map. In this paper, by using technics elaborated in [START_REF] Evrard | p-adic subsets whose factorials satisfy a generalized Legendre formula[END_REF][START_REF] Johnson | Limits of characteristic sequences of integer-valued polynomials on homogeneous sets[END_REF], we treat the case where the set E in Z p is invariant under a graph directed iterated function system coded by a subshift of finite type on an alphabet with at most p letters. We obtain that such capacities are always algebraic numbers. Surprisingly we get that the capacity associated with the Fibonacci subshift of finite type is √ 2 (see Section 5). Notice that the formula in [START_REF] Demarco | Transfinite diameter and the resultant[END_REF] implies that the valuative capacity of a set invariant by a polynomial is always rational. This paper is structured as follow: Section 2 and Section 3 are devoted to the necessary background on respectively p-ordering sequences and potential theory. We deduce in the next section an equidistribution result of p-ordering sequences. We also recover, using potential theory arguments, a formula to compute valuative capacities. Its original proof was given by K. Johnson in [START_REF] Johnson | Limits of characteristic sequences of integer-valued polynomials on homogeneous sets[END_REF], but with combinatorial arguments. Finally, Section 5 concerns the capacity computation of compact sets invariant by graph-directed iterated function systems.

p-ordering sequences

2.1. Backgrounds. Our interest will focus on subsets of the ring of p-adic rational numbers Q p where throughout the paper p denotes a prime number.

Recall that for a rational number x ∈ Q * , the p-adic valuation v p (x) = r ∈ Z if x may be written as p r a b with the integers a, b, p relatively prime, and we define v p (0) = +∞. The classical properties of this valuation are

v p (xy) = v p (x) + v p (y) for any x, y ∈ Q, v p (x + y) ≤ inf(v p (x), v p (y)) with equality if v p (x) = v p (y).
The p-adic norm of x is then |x| p = p -vp(x) and is an ultra-metric. The completions of Q and Z with this norm are respectively the p-adic field Q p and the p-adic ring Z p . The p-adic valutation, with its properties, extends to those sets. Note that any element x ∈ Q p can be written as x = +∞ k=vp(x) x k p k with x k ∈ {0, 1, . . . , p -1}. In order to study properties of a relatively compact subset E of Q p , we will use the notions of integer-valued polynomials on E and of pordering sequence. We denote, for N ∈ N ∪ {∞}, by Int N (E, Z p ) the ring of integer-valued polynomial on E with degree lesser than N, that is

Int N (E, Z p ) = {f ∈ Q p [X] | ∀x ∈ E, f (x) ∈ Z p , deg f ≤ N}. It is well known that Int ∞ (Z, Z p ) is a Z-module generated by the bino- mial polynomials X n = n-1 0 (X-k) n!
. It is also known, see [START_REF] Cahen | Integer valued polynomials[END_REF], that Int ∞ (E, Z p ) admits a regular basis (f n ) n∈N , i.e., a basis such that deg f n = n, for all n ∈ N. Such a basis can be given using a p-ordering sequence of E, defined as follows.

Definition 2.1. [3] Let N ∈ N ∪ {∞}. A sequence (a n ) 0≤n≤N ⊂ E is said to be a p-ordering of length N if for every 1 ≤ n ≤ N, one has v p ( n-1 k=0 (a n -a k )) ≤ v p ( n-1 k=0 (x -a k )) for every x ∈ E.
Notice because E is bounded and the valuation is discrete, for any point a ∈ E, there always exists a p-orderings sequence (a n ) 0≤n≤N ⊂ E with a 0 = a. More generally it is possible to complete a p-ordering sequence: if (a n ) 0≤n≤N is a p-ordering sequence, there exists an element a N +1 ∈ E such that (a n ) 0≤n≤N +1 is still a p-ordering sequence but of length N + 1. The next proposition is due to M. Bhargava.

Proposition 2.2. [3] The sequence (a n ) 0≤n≤N is a p-ordering of E if and only if the polynomials f n (X) = n-1 k=0 X-a k an-a k , 1 ≤ n ≤ N, form a basis of the Z p -module Int N (E, Z p ).
For a positive integer N, the N th -factorial ideal is the ideal

{y ∈ Z p | yInt N (E, Z p ) ⊆ Z p [X]}.
The Proposition 2.2 implies that this ideal is generated by the product N -1 k=0 (a N -a k ) for any p-ordering sequence (a n ) 0≤n≤N of E. We deduce the following characterization of p-ordering sequences. Proposition 2.3. Let E ⊂ Q p be a bounded set. Then for any pordering (a n ) 0≤n≤N of E, we have for any

0 < n ≤ N v p ( n-1 k=0 (a n -a k )) = sup b 0 ,...,b n-1 ∈E inf x∈E v p ( n-1 k=0 (x -b k )) =: w E (n, p). (1) 
In particular the value w E (n) is independent of the choice of the pordering sequence (a n ) 0<n≤N of E.

Conversely, any sequence (a n ) 0≤n≤N of E satisfying the equality (1) for any 0 < n ≤ N , is a p-ordering of E.

The integer sequence (w E (n, p)) n is called the characteristic sequence of the subset E. Notice that the first statement was already in [START_REF] Chabert | Generalized factorial ideals[END_REF], we propose here a more direct proof.

Proof. Assume first that (a n ) 0<n≤N is a p-ordering of E. The inequality

v p ( n-1 k=0 (a n -a k )) ≤ sup b 0 ,...,b n-1 ∈E inf x∈E v p ( n-1 k=0 (x -b k )). ( 2 
)
follows from the very definition of p-ordering sequence. Let us show the converse inequality. By the previous proposition, n-1

0 (a n -a k ) generates the n th -factorial ideal. Let b 0 , . . . , b n-1 , b n ∈ E realizing the extremal value, i.e., sup b 0 ,...,b n-1 ∈E inf x∈E v p ( n-1 k=0 (x -b k )) = v p ( n-1 k=0 (b n -b k )). Hence the polynomial n-1 k=0 X-b k bn-b k is in Int n (E, Z p ), and n-1 0 (a n - a k )/ n-1 0 (b n -b k ) is in Z p . Henceforth, n-1 0 (a n -a k ) is divisible by n-1 0 (b n -b k )
and this shows the converse of Inequality (2). Conversely, let (a n ) 0≤n≤N be a sequence of E satisfying Equation (1) for any 0 < n ≤ N. Let us show by induction on n it is a p-ordering.

For n = 1, let a 0 , ã1 be a p-ordering sequence, so by the first part of this proof, we have

v p (a 1 -a 0 ) = w E (1, p) = v p (ã 1 -a 0 ) = inf x∈E v p (x -a 0 ).
Hence, a 0 , a 1 is also a p-ordering sequence. Let us assume now that a 0 , . . . , a n-1 is a p-ordering sequence. Let ãn ∈ E such that a 0 , . . . , a n-1 , ãn is a p-ordering sequence. Then the first part of this proof implies

v p ( n-1 k=0 (a n -a k )) = w E (n, p) = v p ( n-1 k=0 (ã n -a k )) = inf x∈E v p ( n-1 k=0 (x -a k ))
. This shows that a 0 , . . . , a n-1 , a n is a p-ordering sequence.

Let us consider basic examples in this framework.

Example 1. For every prime p, Int ∞ (N, Z p ) is an Z p -module generated by the bi-

nomial polynomials X n = n-1 0 (X-k) n!
. Hence, the sequence 0, 1, 2, . . . , n, . . . is a p-ordering of N. Using the Legendre Formula, we get

w N (n, p) = v p n-1 0 (n -k) = v p (n!) = k≥1 n p k , where [•] denote the integer part. Example 2. A sequence (u n ) n of elements in Z p is said to be concordant if v p (u n -u m ) ≤ v p (u n+r -u m+r )
for every n, m, ∈ N. According to [START_REF] Pila | Entire functions having a concordant value sequence[END_REF]

, if (u n ) n is a concordant se- quence of elements of Z p , then the sequence (u n ) n is a p-ordering of E = {u n | n ∈ N}. Thus, for every polynomial f ∈ Z p [X] and every a ∈ Z p , the sequence (f n (a)) n≥0 (of iterated of a) is a p-ordering of its orbit {f n (a) | n ∈ N}.
In particular, for q ∈ Z p and E q the set {q

k | k ∈ N}, the sequence (q n ) n≥0 is a p-ordering of E q . Hence, w Eq (n) = v p n-1 0 (q n -q k )
or explicitely, we have, when v p (q) ≥ 1,

w Eq (n, p) = n(n -1) 2 v p (q).
2.2. Basic properties of the characteristic sequence. The following properties are obvious for bounded subsets E, F of Q p .

(1) If E is a finite subset of cardinality s, every p-ordering sequence of E of lenght s -1 is formed by the s elements of E and, for n ≥ s, we have

w E (n, p) = +∞. (2) If E ⊂ F then, for n ≥ 0, w F (n, p) ≤ w E (n, p). (3) If E ⊂ F and E = F , then a sequence (a n ) n of elements of E is a p-ordering of E if and only if it is a p-ordering of F . (4) If F = {as + b | s ∈ E} with a, b ∈ Z p , then we have w F (n, p) = w E (n, p) + nv p (a).
In particular, if a is a unit of Z p , then E and F share the same characteristic sequence.

Less obvious properties are the following Proposition 2.4. [8, Proposition 4] For any bounded set E ⊂ Q p and any p-ordering sequence (a i ) 0≤i≤n of E, we have

2 n k=1 w E (k, p) = v p    0≤j,k≤n-1 j =k (a k -a j )    = min x 0 ,...,xn∈E v p    0≤j,k≤n-1 j =k (x k -x j )    .
Proposition 2.5. For any bounded subset E of Q p , the sequence (w E (n, p)) n≥0 is superadditive, that is for any integers n, m ≥ 0,

w E (n + m, p) ≥ w E (n, p) + w E (m, p). Proof. Let m, n ∈ N. For every f ∈ Int n (E, Z p ) and g ∈ Int m (E, Z p ), the product f g is an element of Int n+m (E, Z p ).
In particular, for any element y in the (n + m) th factorial ideal, we have yf g ∈ Z p [X] and so

w E (n + m, p) ≥ w E (n, p) + w E (m, p)
The sequence (w E (n)) n is then superadditive, so by Fekete's lemma, its asymptotic limit, possibly infinite, exists.

Definition 2.6. The valuative capacity of a bounded subset

E of Q p is L p (E) = lim n→+∞ w E (n, p) n = sup n≥0 w E (n, p) n ∈ R * + ∪ {+∞}.
For instance, the explicit computations of the characteristic sequences in Subsection 2.1 provides:

Example 1: For E = N, we have L p (N) = L p (Z p ) = p p-1 .
Example 2: For q ∈ Z p with v p (q) ≥ 1 and the set E q = {q n | n ∈ N}, we get L p (E q ) = +∞. The next proposition follows directly from basic properties of characteristic sequences.

Proposition 2.7. Let a ∈ Q p and E be a bounded subset of Q p . Then (1) E + a et E have the same valuative capacity: L p (a + E) = L p (E); (2) L p (aE) = v p (a) + L p (E). In particular, L p (p r E) = r + L p (E) for every r ∈ Z; (3) L p (E) ≥ p p-1 , when E ⊂ Z p .
Let us also recall this theorem useful in the following. 

L p (E) = lim n 1 n(n -1) min x 0 ,...,x n-1 ∈E 0≤k,j≤n-1 k =j v p (x k -x j ).
2.3. Density and p-Ordering Sequence.

Proposition 2.9. For a fixed integer n ≥ 1, the map E → w E (n, p) is continuous for the Hausdorff topology on compact sets of Q p .

Proof. Actually, we will show that the map E → w E (n, p) is locally constant. Let a 0 , a 1 , . . . , a n be a p-ordering of a compact set E and let

N = 1 + max{v(a i -a j ) | 0 ≤ i < n}. Let F be a compact set F ⊂ Q p such that d Haus (E, F ) ≤ p -N , that is for any element x ∈ E there exists y ∈ F such that v(x -y) ≥ N.
In particular, there are b

0 , . . . b n ∈ F so that v(a k -b k ) ≥ N. Since b i -b j = b i -a i + a i -a j -b j , we get v(b i -b j ) = v(a i -a j ) and Proposition 2.3 implies w E (n, p) ≤ w F (n, p).
A symmetric argument gives us the converse inequality and this proves the proposition.

Let us mention also the following topological properties of p-ordering sequences.

Proposition 2.10. [START_REF] Fares | Factorial preservation[END_REF]. Let E be a bounded subset of Q p , then every p-ordering of E is dense in E.

Corollary 2.11. Let E and F two bounded subsets of Q p such that E ⊆ F . Then E is dense in F if and only if for every n ∈ N, w E (n, p) = w F (n, p).

Proof. Obviously if E is dense in F then for every n ∈ N, w F (n, p) = w E (n, p). Conversely, suppose that for every n ∈ N, w F (n, p) = w E (n, p). Let (a n ) n be a p-ordering sequence of E, then (a n ) n is also a p-ordering sequence of F (Proposition 2.3) and is dense in F . 2.4. Regular Subset. For a given infinite subset E of Z p , it is not easy, in general, to give explicitly a p-ordering sequence of E or to determine its characteristic sequence. In this subsection we recall the results obtained in [START_REF] Evrard | p-adic subsets whose factorials satisfy a generalized Legendre formula[END_REF] to compute the characteristic sequence for specific compact subsets, introduced in [1] and called regular. We start with the definitions and properties related to such subsets.

For every x ∈ E ⊂ Z p et r ∈ N * , we denote by:

E(x, r) = {z ∈ E | v p (x -z) ≥ r}
and E(x, r)/p r+1 the sets of all cosets of E(x, r) modulo p r+1 It is obvious that for every x, x ′ ∈ E, E(x, r)/p r+1 = E(x ′ , r)/p r+1 if and only if v p (xx ′ ) ≥ r + 1.

Proposition 2.12. The following assertions are equivalents:

(1) for every r ∈ N * and every x, x ′ ∈ E, card(E(x, r)/p r+1 ) = card(E(x ′ , r)/p r+1 ),

(2) for every r ∈ N * , there exists α r such that for every x of E, the ball E(x, r) is a disjoint union of α r bals of the form E(z, r + 1), z ∈ E.

The straightforward proof is left to the reader.

Definition 2.13. A subset E of Z p is said to be a regular subset if E verifies one of the conditions of the previous proposition.

When E is a regular subset, the sequence (q r (E)) r≥0 = (card(E mod p r )) r≥0 is called the structure sequence of E. When there is no confusion, we will write q r instead of q r (E). Obviously, the sequence (q r ) r≥0 is non-decreasing. By definition we have the following equality for any integer r ≥ 1 and x ∈ E, q r+1 = q r card(E(x, r)/p r+1 ).

We may represent a regular set E by a graph where any vertex is a class of E mod p r for some positive integer r and two classes mod p r and mod p r+1 are related if they are the same mod p r . For the structure sequence q 1 = 2, q 2 = 6, q 3 = 12, . . ., we get the graph: For instance, the set Z p is a regular set with structure sequence q r = p r for any r ≥ 0.

If E is a sub-group of (Z p , +) or (Z * p , ×) then E is a regular set. In particular, if q ∈ Z p et v p (q) = 0 then

E q = {q k | k ∈ N} is a regular set.
For a regular set, we have the following formula.

Proposition 2.14. [START_REF] Amice | Interpolation p-adique[END_REF][START_REF] Evrard | p-adic subsets whose factorials satisfy a generalized Legendre formula[END_REF] Let (q r ) r be a structure of a regular subset E. Then the characteristic sequence (w E (n, p)) n of E is given by:

∀n ∈ N, w E (n, p) = ∞ i=1 n q i ,
where [•] denotes the integer part.

In particular, if i≥1 1 q i converges, then the valuative capacity L p (E) of E, is finite.

Background on potential theory

We recall here the classical definitions and properties of the logarithmic capacity of a relatively compact subset E ⊂ Q p , we refer to [START_REF] Baker | Potential theory and dynamics on the Berkovich projective line[END_REF] for an introduction to potential Theory on Berkovich's spaces and the details of the proofs. The exposition is adapted to our context, and it can be extended to more general choices of potentials or compact spaces.

3.1. Equilibrium measure. Let P(E) be the set of probability measures µ with support contained in E, i.e., µ(F ) = 1 for any closed set F containing E. The energy associated with a measure µ ∈ P(E) is the integral

I(µ) = -log p d p (x, y)dµ(x)dµ(y) = v p (x -y)dµ(x)dµ(y),
where d p (x, y) = p -vp(x-y) denotes the p-adic distance.

For instance, for the Dirac measure δ x based on a point x ∈ E, the energy is

I(δ x ) = v p (x -x) = ∞.
It follows that a measure µ ∈ P(E) giving a positive weight to a point has an infinite energy.

Definition 3.1. The Robin constant of the set E is the value

V p (E) = inf µ∈P(E) v p (x -y)dµ(x)dµ(y),
and the logarithmic capacity C p (E) of the set E is the non negative scalar

C p (E) = p -Vp(E) , with the convention p -∞ = 0.
When E is a compact set, we can equip the set P(E) with the weak* topology. This is a metrizable topology such that a sequence (µ n ) n≥0 of P(E) converges to a measure µ ∈ P(E) if and only if for any continuous function f : E → R, lim n f dµ n = f dµ. For this topology, P(E) is a compact metric space, and the energy I : P(E) → R ∪ {∞} is lower semi-continuous. Thus the infimum in Definition 3.1 is a minimum, and a measure realizing this minimum is called an equilibrium measure.

A fundamental result, linked to the Maximum Principle, ensures the unicity of the equilibrium measure. Proposition 3.2. [START_REF] Baker | Potential theory and dynamics on the Berkovich projective line[END_REF] Let E ⊂ Q p be a compact subset with positive logarithmic capacity. Then the equilibrium measure is unique.

Hence, if E is invariant by some isometry f : Q p → Q p : that is f (E) = E,
then by the very definition, the image of any equilibrium measure µ of E by f , (i.e., the measure defined by f * µ(A) = µ(f -1 (A)) for any Borel set A) is also an equilibrium measure. So when the equilibrium measure is unique, it is f -invariant, i.e., f * µ = µ. Proposition 3.3. Let E ⊂ Q p be a compact subset with positive logarithmic capacity. Then the equilibrium measure is invariant by any isometry preserving E.

For instance, for E = Z p , any translation is an isometry, and the only invariant probability measure by any isometry is the Haar probability measure.

Notice, the map M r : z → p r z on Q p is a contraction for r > 0. A direct computation provides that if µ is an equilibrium measure of a set E, M r * µ is an equilibrium measure of the set M r (E).

3.2. Capacitary functions. In the classical theory, there are two important capacitary functions: the transfinite diameter and the Chebyshev constant.

To define the transfinite diameter, for any integer n ≥ 2, let us define for a compact set 1) .

E ⊂ Q p , d (n) (E) p := sup x 1 ,...,xn∈E i =j d p (x i , x j ) 1/n(n-
It is straightforward to check the sequence (d (n) (E) p ) n≥2 is monotone decreasing. Hence it converges to a constant d ∞ (E) p called the transfinite diameter of E.

In the same way the, to define the Chebyshev constant, let

P n (E, p) = inf x 1 ,...,xn∈E (sup x∈E n i=1 d p (x i , x)) 1/n .
Notice Property 2.3 gives us, for any positive integer n,

P n (E, p) = p -w E (n,p) n . (3) 
As n goes to infinity, the value P n (E, p) converges to a constant CH(E, p) called the algebraic Chebyshev constant. It follows by the very definitions and Relation (3), we have an identification between the algebraic Chebyshev constant and the valuative capacity:

CH(E, p) = p -Lp(E) .
Actually the notions of Chebyshev constant, transfinite diameter and Chebyshev algebraic constant coincide. Theorem 3.4. [START_REF] Baker | Potential theory and dynamics on the Berkovich projective line[END_REF] For any compact set E ⊂ Q p , the logarithmic capacity, the transfinite diameter and the Chebyshev constant are equal:

C p (E) = d ∞ (E) p = CH(E, p).
It follows from this theorem, we have the equality between the valuative capacity and the Robin constant:

V p (E) = L p (E).
In the next sections, we will use this relation and the next properties to deduce properties on the p-ordering sequences.

Basic properties. A first property concern the monotonicity of the logarithmic capacity

: if E 1 ⊂ E 2 , then C p (E 1 ) ≤ C p (E 2 ).
We can deduce the capacity depends continuously on the set E, in the following sense:

Proposition 3.5. [2] For any compact set E ⊂ Q p , C p (E) = sup F ⊂E F compact C p (F ), or equivalently, L p (E) = inf F ⊂E F compact L p (F ).
As a direct corollary from these formulas, the capacity does not change when we add a set of null capacity:

Proposition 3.6. [2] Let F ⊂ Q p be a set of null capacity, then for any compact set E ⊂ Q p , the logarithmic capacity of F ∪ E is C p (F ∪ E) = C p (E).

Application of potential theory to p-ordering sequences

The following result gives the equi-distribution of a p-ordering sequence of a compact set in Q p to the equilibrium measure on the set. It is a classical result and the proof comes form the analytical properties of an associated Green's function. We propose here a less elaborated proof, adapted to our context. Recall when the set E has a positive logarithmic capacity, the equilibrium measure µ is unique (Proposition 3.2). We deduce then any p-ordering sequence (a n ) n in E is distributed according to this measure µ, i.e., the sequence of measures ( 1n n-1 k=0 δ a k ) n≥1 converges to the measure µ for the weak-* topology.

Proof. Notice first, up to consider a set M r (E) for some map M r : z → p r z r ≥ 0, we can assume that E is a subset of Z p . By compacity of the set P(E), we can also assume, up to consider a subsequence, the probability measure 1 n n-1 k=0 δ a k converges, as n goes to infinity, to a measure µ ∈ P(E). We have to show that for any measure µ 1 ∈ P(E), I(µ 1 ) ≥ I(µ).

If the function (x, y) → v p (xy) is not µ 1 ⊗ µ 1 integrable then the result is trivial. We suppose then this function integrable. We will need the following lemma. Proof. It is enough to notice that

1 n(n -1) 0≤k,j≤n-1 k =j δ (x k ,x j ) = n 2 n(n -1) 1 n 2 n-1 k=0 δ x k n-1 j=0 δ x j - 1 n(n -1) n-1 k=0 δ (x k ,x k ) .
Then, by integrating a continuous function of E × E and passing through the limit in n, we obtain the claim.

To use the properties of weak-* topology, we need to consider only continuous functions but unfortunately, the function (x, y) → v p (xy) is not continuous. So we consider a truncation of it via the continuous function v p,N (•) = inf(v p (•), N) for an integer N ≥ 1. Of course we have v p,N → v p as N goes to infinity. Let (X i : Ω → E) i be a sequence of independent random variables defined on the same probability space (Ω, A, P) and with the same law µ (i.e., P(X i ∈ B) = µ 1 (B) for any Borel set B). By the Strong Law of Large Numbers, the sequence of measures ( 1 n n k=1 δ X k (ω) ) n converges to the measure µ 1 for P a.e. ω. Let us fix a sequence realizing this convergence.

Recall that the function v p is proper, so the map P(E × E) ∋ ν → v p (xy)dν(x, y) is lower semicontinuous. It follows from Lemma 4.2 that

I(µ) ≤ lim inf n 1 n(n -1) 0≤k,j≤n-1 k =j v p (a k -a j ), (4) 
= lim inf n 1 n(n -1) v p ( 0≤k,j≤n-1 k =j (a k -a j )). (5) 
Notice, for any x, y ∈ Z p , we have

v p,N (xy) ≤ v p,N (x) + v p,N (y).
Hence, from Property 2.4, we get

1 n(n -1) v p,N ( 0≤k,j≤n-1 k =j (a k -a j )) ≤ 1 n(n -1) 0≤k,j≤n-1 k =j v p,N (X k -X j ).
This inequality with Inequality (4) and again with Lemma 4.2, together imply

inf(I(µ), N) ≤ lim inf n 1 n(n -1) v p,N ( 0≤k,j≤n-1 k =j (a k -a j )) ≤ v p,N (x-y)dµ 1 dµ 1 .
As N goes to infinity, the dominated Lebesgue convergence theorem gives us that that v p,N (xy)dµ 1 dµ 1 tends to I(µ 1 ), so we get

I(µ) ≤ lim inf n 1 n(n -1) 0≤k,j≤n-1 k =j v p (a k -a j ) ≤ I(µ 1 ).
To obtain the point (2) of the statement, it is enough to consider the measure µ 1 = µ in the last inequality, and to conclude by Proposition 2.4 and Theorem 2.8.

The following result, of main importance for our work, is due to K. Johnson [START_REF] Johnson | Limits of characteristic sequences of integer-valued polynomials on homogeneous sets[END_REF]. We give here a proof by using tools of potential theory and, at the difference of [START_REF] Johnson | Limits of characteristic sequences of integer-valued polynomials on homogeneous sets[END_REF], we consider the case with infinite valuative capacity (or a null logarithmic capacity).

Theorem 4.3. [9] Let E 1 , . . . , E n be n compact sets in Q p such that ∀ 1 ≤ i < j ≤ n v(x i -x j ) = 0 ∀x i ∈ E i , x j ∈ E j .
Then the logarithmic capacity of the compact set E := n i=1 E i satisfies

1 log(C p (E)) = n i=1 1 log(C p (E i ))
,

with the convention 1/∞ = 0.

Notice this formula does not ensure if a set have a null logarithmic capacity (or an infinite valuative capacity).

Proof. Let us show this result first for n = 2. If the capacity of E 1 or E 2 is null then by Proposition 3.6, the equality is true. Otherwise, by the monotonicity of the capacity (Proposition 3.5), the set E has a measure µ of finite energy. Let µ E i be the induced measure of µ on E i , i.e., the null measure if µ(E i ) = 0 and otherwise

µ E i (A) := µ(A ∩ E i ) µ(E i ) , for any Borel set A ⊂ Q p , i = 1, 2.
We have then µ = µ(E 1 )µ E 1 + µ(E 2 )µ E 2 . Thus,

I(µ) = E 1 ∪E 2 v(x -y)dµdµ = E 1 E 1 v(x -y)dµdµ + E 1 E 2 + E 2 E 1 + E 2 E 2 = E 1 E 1 v(x -y)dµdµ + E 1 0µ(E 2 )dµ + E 2 0µ(E 1 )dµ + E 2 E 2 v(x -y)dµdµ = µ(E 1 ) 2 I(µ E 1 ) + (1 -µ(E 1 )) 2 I(µ E 2 ).
In an equivalent way, if µ 1 ∈ P(E 1 ), µ 2 ∈ P(E 2 ) have finite energy, then for any λ ∈ [0, 1], the measure λµ 1 + (1λ)µ 2 ∈ P(E) and

I(λµ 1 + (1 -λ)µ 2 ) = λ 2 I(µ 1 ) + (1 -λ) 2 I(µ 2 ).
Since for any non negative real x, y, x+y = 0, we have min λ∈

[0,1] λ 2 x+ (1 -λ) 2 y = xy
x+y , we deduce

I(λµ 1 + (1 -λ)µ 2 ) ≥ I(µ 1 )I(µ 2 ) I(µ 1 ) + I(µ 2 ) . Hence log C p (E 1 ∪ E 2 ) = log C p (E 1 )) log(C p (E 2 )) log(C p (E 1 )) + log(C p (E 2 ))
.

This shows the result for n = 2. We conclude the generalized case by a straightforward induction on n.

Corollary 4.4. Let r ≥ 1 and E 1 , . . . , E n be n compact sets of Q p such that (1) v p (x ix j ) = r for any

x i ∈ E i , x j ∈ E j , i = j (2) v p (x -y) ≥ r for any x, y ∈ E i .
Then the capacities of ∪ i E i and of the E i satisfy

1 log C p (∪ n i=1 E i ) -r = n i=1 1 log C p (E i ) -r . Proof. Let E denote ∪ n i=1 E i . We have 1 p r E = n i=1 1 p r E i .
Then by Theorem 4.3 and the basic formulas in Proposition 2.7, we obtain the conclusion.

Computation of the capacity of some sets

We give in this section explicit computations of the capacity of some compact sets of Z p . These sets will be defined by combinatorics.

For this, we need first to recall some basic notions and introduce some notation. Let A = {0, 1, . . . , d -1} be a finite alphabet. A word of length n ∈ N * is a finite sequence x 0 • • • x n-1 ∈ A n , and each x 0 , . . . , x n-1 ∈ A is called a letter. The concatenation of the two words

u = x 0 • • • x n , v = y 0 • • • y p , is the word uv = x 0 • • • x n y 0 • • • y p .
The word u is then called a factor of the word uv. The collection of infinite sequences x = (x n ) n≥0 with values in A, is denoted A N . Any finite word of the kind x i • • • x i+n-1 , for some integers i, n, is also called a factor of the sequence x. For the product topology, the set A N is topologically a Cantor set.

Let p ≥ d be a prime number. There exists a canonical embedding of A N into Z p through the continuous map

ϕ : A N → Z p (x n ) n≥0 → ∞ k=0 x k p k .
A first simple example of compact set is the following. Lemma 5.1. Let w 1 , w 2 , . . . , w s be s ≥ 2 words with the same length ℓ such that all the first letters are distinct. Let X ⊂ A N be the set of sequences such that any factor is a factor of a concatenation of the words w 1 , w 2 , . . . , w s . Then the set E := ϕ(X) ⊂ Z p verifies

E = s i=1 x i + p ℓ E, with x i = ϕ(w i 0 ∞ ). ( 6 
)
It is a regular compact set and its valuative capacity is

L p (ϕ(X)) = ℓ s -1 .
Notice this provides also examples of sets with empty interior but with positive capacities.

Proof. It is plain to check that the set ϕ(X) satisfies Relation [START_REF] Demarco | Transfinite diameter and the resultant[END_REF]. It is also straightforward to check ,with the definition of the set E, that for any

x ∈ E, r ≥ 1, card(E(x, r)/p r+1 ) = s [ r ℓ ]-[ r-1 ℓ ]
. So it is a regular set with a structure sequence q r = s [ r ℓ ] . Let L denote the valuative capacity of the set ϕ(X). It is finite by Propsition 2.14. From the corollary of Jonhson's theorem (Corollary 4.4) applied to the sets E i = x i +p ℓ E of Relation [START_REF] Demarco | Transfinite diameter and the resultant[END_REF], and basic formulas on valuative capacity (Proposition 2.7), we get

1 L = s i=1 1 L + ℓ = s L + ℓ .
This shows the lemma.

Let T denotes the shift map onto A N defined by T ((x n ) n≥0 ) = (x n+1 ) n≥0 . It is a continuous onto map for the product topology. A subshift Y ⊂ A N is a closed T invariant set (T (Y ) = Y ).

A typical example of subshift is a subshift of finite type (SFT fort short), that is, given a finite family of words F , we associate a subshift X F consisting in all the sequences (x n ) n≥0 ∈ A N such that any factor does not belong to F . Equivalently, we define

X F = {(x n ) n ; ∀n, i ≥ 0, x i • • • x i+n ∈ F }.
Notice that, up to add forbiden words in F , we can assume that all the words in F have the same length N ≥ 2 (so F ⊂ A N ). We can associate to the subshift X F a directed graph G = (V G , E G ) where the set of vertices V G is the collection of all words in A of length N -1. Two words

x 0 • • • x N -2 , y 0 • • • y N -2 of V G are related by a directed edge in E G if x 1 • • • x N -2 = y 0 • • • y N -3 and x 0 y 0 • • • y N -2 ∈ F .
The adjancy matrix M F associated with this graph, i.e., M F x,y = 1 if (x, y) ∈ E G and 0 otherwise, is called the associated matrix to the subshift X F . Any sequence (x n ) n in X F corresponds then to a non constant path in the graph G.

Let F be the map

F : Z p → Z p x = ∞ k=0 x k p k → x-x 0 p = ∞ k=0
x k+1 p k . This is a continuous, locally affine map, that extends the conjugation of the shift map by ϕ: ϕ • T • ϕ -1 . It follows that for any subshift Y ⊂ A N , the set ϕ(Y ) is F invariant. Lemma 5.2. For a set of forbidden words F ⊂ A N , let X F ⊂ A N and G = (V G , E G ) be respectively the associated SFT and the associated graph. For a word u

= u 0 • • • u N -2 ∈ A N -1 , let E u denote the set (ϕ(u0 ∞ ) + p N -1 Z p ) ∩ ϕ(X F ) and f u,v denotes the affine map z → ϕ(u 0 0 ∞ ) + pz.
Then, for any word u ∈ A N -1 we have

E u = v∈A N-1 ,(u,v)∈E G f u,v (E v ).
Notice this lemma shows the compact set ϕ(X F ) is the attractor of a graph-directed iterated functions system with affine maps.

Proof. For any

x = ∞ k=0 x k p k ∈ E u , we have u = x 0 • • • x N -2 , x = ϕ(x 0 0 ∞ ) + pF (x) and F (x) ∈ E v for some word v ∈ A N -1 . Thus we have (u, v) ∈ E G and finally E u ⊂ v,(u,v)∈E G f u,v (E v ). Conversely if x = ∞ k=0 x k p k ∈ f u,v (E v ) with (u, v) ∈ E G , then we have u = x 0 • • • x N -2 and v = x 1 • • • x N -1 and x n • • • x n+N -2 x n+N -1 ∈ F for all n ≥ 1. Hence x ∈ ϕ(X F ) ∩ (ϕ(u0 ∞ ) + p N Z p ) = E u and we get v,(u,v)∈E G f u,v (E v ) ⊂ E u .
Let us see first the example given by the Fibonacci subshift of finite type defined as X Fibo = {(x n ) n≥0 ; x n ∈ {0, 1}, x n x n+1 = 11 for any n}.

The associated matrix M equals M = 1 1 1 0 .

For any prime number p, by Lemma 5.2, the set E = ϕ(X Fibo ) satisfies 

E 0 =pE 1 ∪ pE 0 , E 1 =1 + pE 0, E i =∅, ∀i ≥ 2. Since E = E 0 ∪ E 1 , we get E = pE ∪ (1 + p 2 E).
L p (E) = 1 L p (E) -1 + 1 L p (E) -2 . (7) 
It is important to notice that the subshift X Fibo contains all the concatenations of the words 00 and 10. Hence Lemma 5.1 ensures the set ϕ(X Fibo ) has a finite valuative capacity. Finally, with Equation (7), we obtain L p (E) = √ 2, because L p (E) ≥ 0. We deduce there is no simple relation between classical dynamical invariant as the entropy of the Fibonacci SFT -which equals the logarithm of the golden mean-and the valuative capacity.

We can generalize the former computation to the general case.

Theorem 5.3. Let F ⊂ A N be a set of forbidden words. Let X F ⊂ A N and M denote the associated SFT and associated matrix. Let E = ϕ(X F ) ⊂ Z p for a prime number p ≥ d. For any word u of length ℓ, E u denotes the set (ϕ(u0 ∞ ) + p ℓ Z p ) ∩ E.

Then the valuative capacities of the sets E, E u , for words u ∈ A ℓ with 1 ≤ ℓ ≤ N -1, verify

1 L p (E u ) -N t u∈A N-1 = M 1 Lp(Eu) t u∈A N-1
, and (8)

1 L p (E v ) -ℓ -1 = a∈A 1 Lp(Eva)-ℓ-1 , ∀v ∈ A ℓ , (9) 
for some fixed order in A N -1 and with the convention 1/∞ = 0.

Moreover, if for some power n ≥ 1, the matrix M n = (M (n) i,j ) i,j∈A N-1 has a diagonal entry M (n) u,u ≥ 2, then the valuative capacity of E u is finite.

This theorem provides a way to compute the valuative capacity: start computing the valuative capacities of the sets E u for all the words u ∈ A N -1 (with N given by the SFT) by solving Equation [START_REF] Fares | Factorial preservation[END_REF]. Then, use these (supposed known) capacities to compute capacities of sets E v for any words of length smaller via Equation [START_REF] Johnson | Limits of characteristic sequences of integer-valued polynomials on homogeneous sets[END_REF]. Iterate this second step until the computation of the capacities of the sets E a for all the letters a ∈ A. Finally we obtain the capacity of the set E = a∈A E a via Jonhson's formula, explicitly:

1 L p (E) -1 = a∈A 1 L p (E a ) -1 .
Since the equations ( 8) and ( 9) are algebraic, the valuative capacity of the set E, when finite, is an algebraic number. When a set E u has a finite valuative capacity, the monocity of the capacity implies that the set E has also a finite capacity. Notice also, when the matrix M is primitive, i.e., the matrix M n has positive entries for some integer n, any set E u has a finite capacity.

Proof. Lemma 5.2 provides us the relation

E u = v∈A N-1 ,(u,v)∈E G f u,v (E v ).
If u is the word u 0 • • • u N -1 , any word v satisfying (u, v) ∈ E G is of the kind v = u 1 • • • u N -1 v N -1 for some letter v N -1 ∈ A. It follows that any element of f u,v (E v ) is of the form ϕ(uv N -1 • • • ). Thus we can apply Jonhson's formula (Corollary 4.4) and we obtain Equation [START_REF] Fares | Factorial preservation[END_REF]. Equation ( 9) also comes from Jonhson's Formula applied to the obvious equality E v = a∈A E va .

Let us assume now, that the matrix M n = (M (n) i,j ) i,j∈A N-1 admits a word i such that M (n) i,i ≥ 2. Standard graph theory tells us there exist at least two path of length n in the graph (V G , E G ) associated with the SFT X F starting and ending at the vertex i. Thus, there are two words u and v ∈ F , such that any concatenation of these two words is an allowed word in X F . Lemma 5.1 provides that the set E i contains a regular compact subset with finite valuative capacity. By Proposition 3.5, we conclude the valuative capacity of E i is finite.
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  Jonhson's theorem (Corollary 4.4) and basic calculus in Proposition 2.7 give us 1