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Abstract The modelling of diffusive terms in particle methods is a delicate mat-
ter and several models were proposed in the literature to take such terms into
account. The Diffusion Velocity Method (DVM), originally designed for the dif-
fusion of passive scalars, turns diffusive terms into convective ones by expressing
them as a divergence involving a so-called diffusion velocity. In this paper, DVM is
extended to the diffusion of vectorial quantities in the three-dimensional Navier-
Stokes equations, in their incompressible, velocity-vorticity formulation. The inte-
gration of a Large Eddy Simulation (LES) turbulence model is investigated and a
DVM general formulation is proposed. Either with or without LES, a novel expres-
sion of the diffusion velocity is derived, which makes it easier to approximate and
which highlights the analogy with the original formulation for scalar transport.
From this statement, DVM is then analysed in one dimension, both analytically
and numerically on test cases to point out its good behaviour.
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1 Introduction

Particle methods, such as vortex methods or Smoothed Particle Hydrodynamics,
generally consist of a Lagrangian transport, thanks to fluid dynamics equations,
of quantitative information carried by particles. The transport equations linked
to each particle (position, vortical intensity, passive scalar, etc.) are in fact par-
tial differential equations. Owing to the Lagrangian aspect of the method, it is
particularly well suited to flows where convective effects are dominant. However,
transport equations may involve terms that do not represent advection. This is the
case of the Navier-Stokes equations, which involve, for instance, a diffusion term.

The Diffusion Velocity Method (DVM) consists in writing the diffusive term,
with either uniform or variable diffusion coefficient, as a convective term. It was
first introduced by Fronteau and Combis (1984) and popularized by Mustieles
(1990); Degond and Mustieles (1990), Ogami and Akamatsu (1991) and Kempka
and Strickland (1993) in the early 1990s. This method was then largely anal-
ysed (Strickland et al 1996; Mas-Gallic 1999; Lacombe and Mas-Gallic 1999; La-
combe 1999; Lions and Mas-Gallic 2001), adapted to dispersion equations (Lions
and Mas-Gallic 2001; Chertock and Levy 2001, 2002), coupled with turbulence
models (Milane 2004) and extended to the diffusion of a vector field and to ax-
isymmetric flows (Rivoalen et al 1997; Grant and Marshall 2005; Rivoalen and
Huberson 1999).

DVM is particularly well suited to the resolution of diffusion or dispersion in
open media. Indeed, there is an adaptation of the convected and diffused support,
represented by the particles, in an extending domain. Applications concern for in-
stance, pollutant dispersion in porous media (Beaudoin et al 2003), heat-vortex in-
teraction (Ogami 1999), airfoil wake modelling (Guvernyuk and Dynnikova 2007),
as well as the modelling of the diffusive term in the Navier-Stokes (Rivoalen et al
1997), heat (Dynnikov and Dynnikova 2011) or Lotka-Volterra (Gambino et al
2009) equations.

Originally, the DVM scheme was designed for transport equations of passive
scalars. However, work has been initiated by Rivoalen et al (1997) to adapt this
scheme to a three-dimensional Vortex method modelling of the Navier-Stokes equa-
tions, which involve the diffusion of a vector field, namely the vorticity field. On the
other hand, for physical applications with turbulence, these equations usually need
to be complemented by a turbulence model. Depending on the application and on
implementation issues, different turbulence models may be chosen. Large Eddy
Simulation (LES) is a model based on scale invariance and consists in considering
that the flow quantities are filtered at a certain scale related to the problem dis-
cretisation. As a consequence, new terms appear in the modelled equations, which
represent the influence of the small (unresolved) scales on the resolved scales (see,
e.g., Sagaut (2006); Meneveau and Katz (2000)).

This paper intends to investigate a DVM formulation of the 3D Navier-Stokes
equations with a LES model. In section 2, the scalar DVMmethod is briefly recalled
and the vectorial formulation is then derived for the Direct Numerical Simulation
(DNS) and the Large Eddy Simulation (LES) of the 3D Navier-Stokes equations.
The main result is a novel expression of the diffusion velocity that eventually re-
duces to the scalar case. Section 3 is dedicated to the particle approximation of the
diffusion velocity in the scalar and vectorial case, which emphasises the fact that
both expressions are treated similarly. From this statement, the following sections
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are dedicated to unidimensional analyses of DVM, on the academic problem of
pure diffusion of a Gaussian patch. Section 4 then consists of theoretical consid-
erations resulting from a Fourier analysis. Analytic expressions of the diffusion
velocity error issuing from the continuous particle approximation are presented
on one-dimensional theoretical test cases. In particular, the well-known pure dif-
fusion of a Gaussian patch together with the use of Gaussian kernels allows us
to benefit from convenient Gaussian product properties. This is due to the fact
that the fundamental solution of Gaussian diffusion is a Gaussian itself. Finally,
section 5 focuses on the consequences of the discretisation and on the influence
of the overlapping parameter. The analytic results from the second part are com-
pared to numerical computations using DVM. A global overview of the numerical
behaviour of the method is presented. It must be stressed that, in order to study
the purely Lagrangian behaviour of the particles as well as the orders of approxi-
mation, remeshing techniques are not considered in this paper.

2 Formulation of a Diffusion-Velocity model for the 3D Navier-Stokes
equations

The original scalar Diffusion Velocity Method (DVM) has been largely described
in the literature (see, e.g., Fronteau and Combis (1984); Mustieles (1990); De-
gond and Mustieles (1990); Ogami and Akamatsu (1991); Kempka and Strickland
(1993)), and is briefly recalled here to highlight the analogy with the vectorial
model described in the sequel.

The transport equation associated to a passive scalar c(x, t), which depends
on the time t and the position x(t) can be written as follows:

∂c

∂t
+∇ · (u c) =∇ · (ν∇c). (1)

The last term∇·(ν∇c) basically reduces to ν∆ c when ν is assumed to be constant.
A transport equation for the velocity u(x, t) can be added to the previous equation
as well as boundary conditions. Depending on the studied media, the dispersion
or diffusion coefficient ν(x, t) can be represented either as a tensor in the case
of a soluté transport at a macroscopic level (Beaudoin et al 2003) or as a scalar
coefficient for the diffusion of a concentration c(x, t). The previous expression can
be written in a purely convective form:

∂c

∂t
+∇ ·

[
(u + ud)c

]
= 0, with ud(x, t) = −ν∇c

c
, (2)

The diffusion operator is, after a few mathematical manipulations, transformed
into an algebraic convection operator. ud is generally called the diffusion veloc-
ity (Ogami and Akamatsu 1991).

Particle methods formalism will be used to model this equation. The physical
domain S is discretised into N particles ξi of support Pi whose volume is σi, for i
going from 1 to N . For each particle ξi, a position vector Xi(t) and a weight Ci(t)
are defined as follows:

Xi(t) =

∫
Pi

x(t) dx∫
Pi
dx

and Ci(t) =

∫
Pi

c(x, t) dx ≈ c(Xi, t)σi. (3)
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Equations (2) and (3) then lead to the following particle transport equations:
dXi

dt
= ũ(Xi, t) + ũd(Xi, t)

dCi
dt

= 0 .

(4)

where ũd denotes the discrete particle approximation of ud, which will be detailed
in section 3.1. Generally speaking, q̃ will denote the discrete particle approxima-
tion of the (scalar or vectorial) quantity q, while 〈q〉 will denote its continuous
approximation (see section 3).

The convective aspect of the previous equations is then preserved. The diffusive
aspects are taken into account thanks to a modification in the particles trajectory
Xi(t), as in some stochastic models (Chorin 1973) although here, the diffusion
velocity calculation is deterministic (Lions and Mas-Gallic 2001).

Let us now investigate the modelling of the three-dimensional Navier-Stokes
equations. For an incompressible fluid, their velocity-vorticity formulation reads:

∂ω

∂t
+ (u ·∇)ω = (ω ·∇)u + ν∆ω (5)

∇ · u = 0, (6)

where ω =∇∧u and where (ω ·∇)u represents the stretching term. Note that in
two dimensions, ω = ωez and the stretching term vanishes, leading to the scalar
equation (1).

2.1 Direct Numerical Simulation (DNS) modelling

Under the incompressibility assumption given by equation (6) and since ν is uni-
form, the momentum equation (5) can be written as follows:

∂ω

∂t
+∇ · (u⊗ ω) = (ω ·∇)u +∇ · (ν∇⊗ ω) (7)

Now, let us find a diffusion velocity ud such that:

ν∇⊗ ω = −ud ⊗ ω + B (8)

where B is a tensor term with no prescribed form, which represents the part of
the diffusion term that cannot be modelled by the Diffusion Velocity Method. Let
A = ν∇ ⊗ ω, then let us find the components udi of the diffusion velocity that
minimise B = A + ud ⊗ ω in a least squares fashion:

udi = arg min
xi

3∑
j=1

(Aij + xiωj)
2 , i = 1, . . . , 3. (9)

By differentiating the objective function, one may find

udi = −
∑
j Aijωj

|ω|2 , i = 1, . . . , 3, (10)
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which finally leads to

ud = −ν (∇⊗ ω) · ω
|ω|2 , (11)

corresponding to the expression given by Rivoalen et al (1997). Differentiating the
objective function twice leads to 2|ω|2, which ensures that the critical point is a
minimum. In addition, noticing that (∇⊗ ω) · ω =∇|ω|2/2, one may express ud
in a more convenient form:

ud = −ν
2

∇ϕ2

ϕ2
= −ν∇ϕ

ϕ
, (12)

with ϕ ≡ |ω|. This novel expression is thus really close to the scalar one (see
equation (2)).

Let us now define the particle transport equations. Let Ωi denote the vortical
weight of particle ξi, defined by:

Ωi(t) =

∫
Pi

ω(x, t) dx ≈ ω(Xi, t)σi. (13)

The corresponding Lagrangian description is then given by:
dXi

dt
= ũ(Xi, t) + ũd(Xi, t)

dΩi

dt
= (Ωi(t) ·∇)ũ(Xi, t) + L̃i(t),

(14)

where L̃i is the discrete approximation of Li, which represents the remaining part
of diffusion that cannot be treated with DVM:

Li =

∫
Pi

∇ · (B(x, t)) dx. (15)

Now, denoting by e the unitary vector field aligned with ω defined by e =
ω/|ω|, B can be written as follows (see Appendix A):

B = ν|ω|(∇⊗ e), (16)

and, locally, one has

e(Xi) ≈
Ωi

|Ωi|
. (17)

The discrete approximation L̃i of Li is then obtained thanks to Degond and Mas-
Gallic’s PSE approach with non-uniform coefficient (Degond and Mas-Gallic 1989):

L̃i =
ν

2

N∑
j=1

(|Ωi|σj + |Ωj |σi)
(

Ωj

|Ωj |
− Ωi

|Ωi|

)
ηlap
ε (Xi −Xj), (18)

where ηlap
ε denotes the Laplacian approximation kernel (see, e.g., Eldredge et al

(2002)). The formulation and approximation of the remaining term B is convenient
and differs from those previously presented in the literature (Rivoalen et al 1997;
Lacombe and Mas-Gallic 1999).
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2.2 Large Eddy Simulation (LES) modelling

Large Eddy Simulation (see, e.g., Sagaut (2006); Meneveau and Katz (2000)), is a
turbulence model based on scale invariance, which consists in modelling the small
scales that are not resolved. New terms thus appear in the momentum equation (7)
in order to take those small scales into account (see Mansfield et al (1996, 1998)):

∂ω

∂t
+∇ · (u⊗ ω) = (ω ·∇)u +∇ · (ν∇⊗ ω) +∇ · {νt [(∇⊗ ω)− (∇⊗ ω)ᵀ]}

(19)

= (ω ·∇)u +∇ ·
[
ν∗(∇⊗ ω)− νt(∇⊗ ω)ᵀ

]
(20)

where νt is the so-called turbulent viscosity and ν∗ = ν + νt. It should be noted
that in this equation, ω represents the resolved vorticity field.

The last two terms of the right-hand side of equation (19) represent respec-
tively the molecular diffusion and the subgrid-scale (SGS) model. In particle-mesh
methods such as Vortex-in-Cell (Christiansen 1997; Cottet and Poncet 2004), the
vorticity field ω is projected on a mesh to perform several computations (in partic-
ular the velocity field evaluation), which enables to use classical methods such as
Finite Differences to evaluate the SGS term (see, e.g., Chatelain et al (2013)). In
meshless Vortex methods, the SGS term evaluation can be performed in different
ways. Usually, this term is treated together with molecular diffusion using Degond
and Mas-Gallic’s (Degond and Mas-Gallic 1989) Particle Strength Exchange (PSE)
method (see, e.g., Mansfield et al (1996, 1998); Winckelmans et al (2005); Pinon
et al (2012)). Milane and Nourazar (1995, 1997) used a diffusion velocity together
with Leonard’s (Leonard 1980) spreading core technique and Milane (2004) used
a full scalar DVM method to treat LES terms in 2D computations. In the sequel,
a vectorial formulation will be derived for treating 3D LES terms with DVM.

First, following the assumption that ∇ · [νt(∇⊗ ω)ᵀ] can be neglected (see
Mansfield (1997); Mansfield et al (1998)), the momentum equation becomes:

∂ω

∂t
+∇ · (u⊗ ω) = (ω ·∇)u +∇ ·

[
ν∗(∇⊗ ω)

]
. (21)

As mentioned above, the last term, which combines both the molecular diffusion
and the SGS model, is usually treated by means of PSE. However, noticing that
equation (21) is close to the DNS equation (7), except ν∗ = ν + νt is no longer
uniform and also models the influence of unresolved scales, one can similarly de-
rive a DVM formulation. Indeed, using the same DVM approach as for the DNS
equations (see section 2.1), the LES Lagrangian description then reads:

dXi

dt
= ũ(Xi, t) + ũ∗d(Xi, t)

dΩi

dt
= (Ωi(t) ·∇)ũ(Xi, t) + L̃∗i (t),

(22)

where u∗d = −ν∗∇ϕ/ϕ with ϕ ≡ |ω|, and where L̃∗i is the discrete approximation
of L∗i , defined by:

L∗i =

∫
Pi

∇ ·
(
B∗(x, t)

)
dx, with B∗ = ν∗|ω|(∇⊗ e). (23)
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Finally, L̃∗i is given by:

L̃∗i =
1

2

N∑
j=1

(
ν∗i |Ωi|σj + ν∗j |Ωj |σi

)( Ωj

|Ωj |
− Ωi

|Ωi|

)
ηlap
ε (Xi −Xj), (24)

since ν∗ is no longer uniform.
It should be noted that, due to the expression of ud = −ν∗∇ϕ/ϕ in both the

scalar and the vectorial case (i.e. with ϕ ≡ c or ϕ ≡ |ω|), with or without LES
(i.e. with ν∗ = ν or ν∗ = ν + νt), a singular behaviour is likely to occur when the
quantity to diffuse (either c or components of ω) crosses zero (changes sign). This
issue has been addressed in (Mycek et al 2013).

The new formulation combines two methods, namely DVM and PSE. While
only 3D experiments could clearly quantify the contribution of either method, one
can expect the DVM part to be preponderant, since ud is taken such that B, which
accounts for the PSE part, has minimum components (see equation (9)).

3 Particle approximation of the diffusion velocity

The continuous particle approximation 〈ϕ〉(x, t) of any scalar field ϕ(x, t) is ob-
tained from the following interpolation:

〈ϕ〉(x, t) =

∫
S
ϕ(y, t)ζε(x− y) dy, (25)

where ζε is a smoothing function which tends to the Dirac measure when ε tends
to 0 (Beale and Majda 1985). The discrete form ϕ̃ is then classically obtained
thanks to a midpoint quadrature:

ϕ̃(x, t) =
N∑
i=1

ϕ(Xi, t)σiζε(x−Xi). (26)

The discretised form of the concentration gradient intervening in the diffusion
velocity may be basically obtained by derivation of equation (25), which eventually
only involves the kernel gradient, ∇ζε:

〈∇ϕ〉(x, t) =

∫
S
ϕ(y, t)∇ζε(x− y) dy, ∇̃ϕ(x, t) =

N∑
i=1

ϕ(Xi, t)σi∇ζε(x−Xi).

(27)
The interpolation kernel ζε is related to the radially symmetric function ζ as

follows:
ζε(x) =

1

εd
ζ
(x

ε

)
, (28)

where d is the physical dimension (x ∈ S ⊂ Rd). The expressions of ζ are built so as
to meet some moment properties, directly connected to the order of approximation
r (Beale and Majda 1985; Liu et al 1995, 1996; Eldredge et al 2002). As mentioned
previously, the field∇ζε is basically the gradient of ζε. It follows from equation (28)
that a similar relation between ∇ζε and ∇ζ is given by:

∇ζε(x) =
1

εd+1
∇ζ

(x
ε

)
. (29)
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Finally, in particle methods, the smoothing parameter ε is related to the space
discretisation step h thanks to the so-called overlapping parameter κ as follows:

ε = κh. (30)

The particle volumes σi(t) are not constant over time when using DVM, due to the
fact that the diffusion velocity is not divergence-free. They are thus updated after
each time step using the approximation σi(t) ≈ Ci(t)/c(Xi, t) (see equation (3)).
Once the volumes are updated, the ε parameter is updated accordingly using
equation (30), where h stands for the largest inter-particle distance. Nevertheless,
should one want to keep ε a constant, frequent remeshing can be applied to keep
particles aligned on a fixed grid. As stated previously in the introduction, this
option will not be further investigated in this paper.

3.1 Scalar diffusion velocity

Using these approximations to discretise equation (2), the most largely spread
formulation of the scalar diffusion velocity reads (Degond and Mustieles 1990;
Ogami and Akamatsu 1991):

〈ud〉(Xi, t) = −ν 〈∇c〉(Xi, t)

〈c〉(Xi, t)
= −ν

∫
S
c(y, t)∇ζε(Xi − y) dy∫
S
c(y, t)ζε(Xi − y) dy

, (31)

whose corresponding discrete form is:

ũd(Xi, t) = −ν

N∑
j=1

Cj(t)∇ζε(Xi −Xj)

N∑
j=1

Cj(t)ζε(Xi −Xj)

. (32)

3.2 Vectorial diffusion velocity

From equations (14) (or equivalently (22)) and the approach used in the scalar
case, the discrete approximation ũd of the vectorial diffusion velocity basically
reads:

ũd(Xi, t) = −ν

N∑
j=1

|Ωj |(t)∇ζε(Xi −Xj)

N∑
j=1

|Ωj |(t) ζε(Xi −Xj)

, (33)

where ν can basically be replaced by ν∗ = ν + νt if one wants to include a LES
turbulence model (see section 2.2). One can thus see that this formulation simply
reduces to a scalar approximation. On the other hand, the behaviour of interpola-
tion kernels should be similar whatever the physical dimension d. In addition, as



A diffusion-velocity particle model for transport-dispersion equations 9

mentioned previously, the diffusion velocity part is expected to be preponderant
as compared to the remaining, PSE-treated part. The desirable consequence of
this is that most of the diffusion is expected to be treated in a convective way.
In either one or higher dimensions, the behaviour of the numerical scheme is ex-
pected to be good, since Lagrangian particle schemes such as vortex methods are
extremely well-suited to the modelling of convection. Nevertheless, the behaviour
of such methods also strongly depends on the spatial arrangement of the particles,
which is why additional techniques such as remeshing may be required to maintain
a decent particle arrangement.

In light of the previous comments, the diffusion velocity method is now going
to be analysed in one dimension (d = 1).

4 Analytic results

In the sequel, Gaussian kernels are considered, built from ζ(x) = P (x)e−x
2

were P
is a polynomial. However, it is clear that any other family of kernels (e.g., splines)
may be suitable. With an approach inspired from Liu et al (1996), presented
later on by Eldredge et al (2002) with a particle method formalism, and thanks to
convenient properties of Gaussian functions, an explicit expression can be given for
1D Gaussian kernels ζ of any order without solving any system of linear equations.
One may refer to Appendix B for details. For notation purposes, the kernel gradient
will be denoted by η

(1)
ε = ∇ζε = dζε/dx in one dimension. The concentration

gradient will be denoted by ∇c = ∂c/∂x.

4.1 Fourier analysis

One interesting feature of formulation (31) is that it can be written so as to
involve convolution products of c with the appropriate kernels. In one dimension,
equation (31) can thus be written as follows:

〈ud〉(x, t) = −ν c ∗ η
(1)
ε

c ∗ ζε
(x, t), (34)

where ∗ denotes the spatial convolution product (i.e. with regard to x). In terms
of Fourier transform, this means that

〈ud〉(x, t) = −ν
F−1

[
ĉ(k, t) η̂

(1)
ε (k)

]
F−1

[
ĉ(k, t) ζ̂ε(k)

] (x, t) = −ν
F−1

[
ik ĉ(k, t) ζ̂ε(k)

]
F−1

[
ĉ(k, t) ζ̂ε(k)

] (x, t), (35)

where ·̂ and F(·) denote the Fourier transform. The following convention is used
for the Fourier transform pair:

f̂(k) =

∫
f(x)e−ikx dx (36)

f(x) =
1

2π

∫
f̂(k)eikx dk (37)
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The right-hand side of equation (35) is obtained by recalling that η(1)ε is the
gradient of ζε and by using the following property of the Fourier transform:

F
[
dn

dxn
f(x)

]
(k) = (ik)nf̂(k). (38)

Equations (34) and (35) thus encourages to consider the interpolation kernel ζ as
a filter applied to c.

Analytic expressions of ζ̂, for Gaussian ζ functions can be computed whatever
the kernel order r = 2(m+ 1) :

ζ̂(k) = e−(k/2)2
m∑
n=0

1

n!

(
k

2

)2n

, (39)

One may refer to Appendix B for details. The Fourier transform of ζε is basically
derived from ζ̂ as follows:

ζ̂ε(k) = ζ̂(εk), (40)

where ζ̂(εk) stands for the Fourier transform of ζ evaluated at εk. It is striking
to see from expression (39) that, unlike ζ, its Fourier transform ζ̂ can be directly
inducted from the previous order expression without modifying it. This only re-
quires the addition of one single new term. This relation is much simpler than the
more general relations presented in the literature (see, e.g., Cortez (1997)) to the
authors’ knowledge, though one should keep in mind that it is restricted to the
particular case of Gaussian kernels.

Figure 1 depicts the representation of ζ̂ε(k) as a function of the non-dimensional
wave number kh/π. It is well known that interpolation kernels act as a low-pass
filters (see, e.g., Liu et al (1996)), that is to say that short waves (high wave
numbers) are filtered in the signal c(x, t). This can clearly be observed on Figure 1.
Moreover, it shows that higher order kernels get closer to rectangular shaped filters
in the Fourier space. This implies that signals (consisting of the combination of
several wave lengths) are globally better reconstructed with higher order kernels
(cf. equation (35)). In terms of convolution (cf. equations (31) and (34)), this
means that the interpolation process is more accurate.

Examples of pure diffusion are now presented. The one-dimensional pure dif-
fusion equation reads:

∂c

∂t
= ν

∂2c

∂x2
, (41)

which corresponds to equation (1) in one dimension without any convection, i.e.
with u = 0. The diffusion of a propagative wave (single wave number), inspired
from (Eldredge et al 2002), and of a Gaussian patch (endless number of wave
numbers) is now considered.

4.2 Propagative wave

A propagative wave signal with wave number k0 is defined by:

c(x, t, k0, ω0) = exp i(k0x− ω0t). (42)
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Fig. 1: Representation of ζ̂ε(k) function of the non-dimensional wave number kh/π
for different orders of approximation, with κ = 2.0.

Injected into the pure diffusion equation (41), it must verify the following disper-
sion equation:

ω0 = −iνk20. (43)

In that case, the exact solution of the velocity diffusion is ud = −iνk0. From
equations (25) and (27), and using equation (38), the following identities hold:

〈c〉
c

(k0) = ζ̂ε(k0) and
〈∇c〉
∇c (k0) = − i

k0
η̂(1)ε (k0) = ζ̂ε(k0). (44)

A purely theoretical diffusion velocity for this propagative wave would then satisfy:

〈ud〉
ud

(k0) = 1 ∀k0, (45)

which means that the continuous approximation of the diffusion velocity would be
infinitely accurate, whatever the kernel order and whatever the wave number k0,
as long as ω0 satisfies the dispersion equation.

In the sequel, the relative error Eq′ committed on the approximation q′, may
it be continuous or discrete, with regard to the exact value of quantity q will be
defined by:

Eq′ =

∣∣∣∣q′ − qq

∣∣∣∣ . (46)

In terms of relative error, equation (45) means:

E〈ud〉 = 0 ∀k0. (47)
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4.3 Gaussian patch

The elementary solution of the diffusion equation, i.e. for initial condition c(x, 0) =
δ(x), is given by:

c(x, t) =
1√

4πν t
exp

(
− x2

4ν t

)
, ∀t > 0. (48)

The analytic Fourier transform of c is then given by:

ĉ(k, t) = e−νk
2t, ∀t > 0. (49)

From this expression and the expressions of the kernel Fourier transform (39)
and (40), one can compute the analytic error induced by the continuous approxi-
mations 〈c〉, 〈∇c〉 and 〈ud〉, defined either in the function domain, or in the Fourier
domain. One can refer to Appendix B for details. In particular, when using a 2nd

order approximation, the initial diffusion velocity continuous error does not depend
upon x and reads:

E〈ud〉 =
ε2

ε2 + σ2
, for order 2. (50)

with σ =
√

4νt for time t > 0. The generic expressions of E〈c〉, E〈∇c〉 and E〈ud〉 for
any order of approximation can be found in Appendix B.

Figure 2 shows the initial distribution of the squared relative error committed
on the continuous approximation of ud as computed in Appendix B. Except at the
domain boundaries, the accuracy is globally better with higher order kernels. The
higher error observed at the domain limits can be interpreted thanks to the Fourier
analysis carried out on the kernels previously. Indeed, the Gaussian patch c(x, t0) at
the domain boundaries correspond to a part of the signal that is mostly composed
of short waves. As a consequence, these short waves are cut off by the filter (i.e. the
interpolation kernel ζε) and this part of the signal is thus badly reconstructed (i.e.
the interpolation is less accurate). However, increasing the kernel order improves
the overall accuracy. The sharp peaks observed in the error correspond to a change
of sign in the difference (〈ud〉 − ud), which is concealed by the raising to the power
of 2. Finally, one can observe that the 2nd order error on ud remains constant over
the domain, which is consistent with equation (50).

As for the Fourier transform of the kernel, the influence of κ and the conse-
quence of the discretisation will be addressed in the following section 5.

5 Numerical behaviour

In order to test the numerical implementation of the different approximations, the
resolution of the one-dimensional pure diffusion equation (41) is now considered.

5.1 Diffusion velocity

The transport equations associated to the particles are then presented in a sim-
plified and one-dimensional version of equations system (4), where the convection
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Fig. 2: Initial spatial distribution of the analytic error on ud at t0 = 2.5 for different
orders of approximation, with ε = 0.2.

velocity u(x, t) is assumed to be null:
dXi
dt

= ũd(Xi, t), with ũd(Xi, t) = −ν ∇̃c
c̃

∣∣∣∣∣
i

dCi
dt

= 0

(51)

The choice of setting the convective velocity to zero was made in order to give a
better insight into the effects of diffusion, more importantly because it is treated
here in a convective way by means of the diffusion velocity. However, DVM can
easily be used with a convective velocity u, simply by adding its discrete form ũ
in the convective part of the transport equations.

The elementary solution of the pure diffusion equation is considered. An ini-
tial time t0 is chosen for the computation and the initial concentration c(x, t0)
is initialised thanks to equation (48) on a 2L-long segment centred around the
origin. The segment is discretised into N particles, whose volume (length in 1D) is
basically given by σ = 2L/N . Each particle weight is initialised as Ci = c(Xi, t0)σ
with Xi = −L + (i − 0.5)σ. From then, t∗ = t − t0 will denote the time elapsed
since the initial time t0. All the results shown in the sequel were obtained using
the parameter values presented in Table 1.

Parameter Value
t0 2.5
ν 0.25
δt 0.001
L 10
N from 50 to 334
κ from 1.1 to 3.0

Table 1: Summary of the parameter values.
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Owing to the elementary solution (48) of the diffusion equation, the analytic
diffusion velocity is given by:

ud(x, t) =
x

2t
(52)

5.2 Influence of the overlapping parameter

Figure 3 shows the initial distribution at t∗ = 0 of the squared relative error
committed on the continuous approximation of 〈ud〉, for different values of κ. Both
the analytic error E〈·〉 (cf. B) and the discrete particle error E·̃ (cf. equation (32))
are shown. The x axis was slightly enlarged so as to distinguish the two kinds of
curves.
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Fig. 3: Initial spatial distribution of both the continous analytic and the discrete
error on ud at t0 = 2.5 for different orders of approximation and three values of
κ, with N = 200 and the parameters given in Table 1.



A diffusion-velocity particle model for transport-dispersion equations 15

First of all, one can observe an almost exact agreement between the analytic
and the numerical error for κ = 2 or 3 (Figures 3a and 3b), whatever the kernel
order. However, higher error on ud is observed at the very limit of the numerical
domain (i.e. x ≈ ±10) on the numerical curves. This problem is caused by the
fact that the approximation suffer from a lack of particles at the boundaries. The
infinite domain condition, which ensures the correct interpolation and approxi-
mation of the differential operators (cf. moment conditions), is then critically not
respected. Actually, the approximation behaves as though the concentration were
null in zones that are not discretised (i.e. beyond the domain limits). The use
of “one-sided” kernels, which satisfy moment properties on half the domain only,
was proposed to deal with this issue (Eldredge et al 2002). However, this solu-
tion implies a special explicit treatment at the boundaries, which may strongly
depend upon κ, and does not give fully satisfying results. Similarly, Schrader et al
(2010) recently suggested to build the kernel so as to correct the discrete error
by introducing the concept of discrete moments. Unfortunately, for non-uniformly
distributed particles, this requires to re-compute the kernel for each particle at
each time step, which is extremely time consuming and thus prohibitive. Another
technique to correct this flaw, which is commonly used in SPH, consists in renor-
malising the kernel (Bonet and Lok 1999) and its gradient (Oger et al 2007).
Although it may correct the bad approximation of c and of its gradient, the ud
approximation, which involves the ratio between those two approximations, should
thus already include some kind of renormalisation.

The other observation that can be drawn from these first two figures (Figures 3a
and 3b) is that, whatever the order of approximation, the ud error is globally higher
with κ = 3 than it is with κ = 2. This seems to indicate that lower values of κ
make the approximation more accurate.

However, the last figure (Figure 3c) indicates that for κ = 1.4, the numerical
error is dramatically higher at the domain centre for 6th and 8th orders compu-
tations. In addition, it appears that they really differ from the analytic curves.
Indeed, analytic curves show that, whatever the order of approximation, the ap-
proximation keeps improving as κ decreases.

Both behaviours, as well as the difference between them, are a direct con-
sequence of the discretisation and can be explained in the Fourier domain by
studying the kernel Fourier transform. As a matter of fact, one should recall that
ζε can be seen as a filter. It is well know that a convolution in the function do-
main is equivalent to a product of the Fourier transforms in the Fourier domain
(cf. equations (34) and (35)). At this point, the continuous and the discrete case
must be considered differently. While in the continuous Fourier domain, the “ideal”
filter would be a function identically equal to one (it can be seen as the identity
element), the discrete ideal filter, on the other hand, would be a rectangular func-
tion. As a matter of fact, the discretisation process, which is referred to as the
sampling process in signal processing, introduces high frequency replicas in the
discrete Fourier spectrum. Thus, the famous Nyquist-Shannon sampling theorem
states that the cut-off frequency of a filter, i.e. the frequency beyond which its
Fourier spectrum is about null, should correspond to the sampling frequency – or
equivalently the wave number.

The discretisation step being h, the sampling wave number is then π/h, and the
discrete spectrum of ζ̂ε should therefore tend to zero for wave numbers beyond this
value. Figure 4 shows the representation of ζ̂ε(k) function of the non-dimensional
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Fig. 4: Representation of ζ̂ε(k) function of the non-dimensional wave number kh/π
for different orders of approximation, and different values of κ. The continuous
analytic curves are compared to the corresponding FFT approximations computed
with 220 points in order to highlight the consequences of discretisation.

wave number kh/π for the values of κ previously studied. The continuous analytic
curves are compared to the corresponding discrete Fast Fourier Transform (FFT)
approximations computed with 220 points. First, one can observe that for κ ≥
2, there is a fairly good agreement between the analytic and the FFT Fourier
transforms. On the contrary, with κ = 1.4, the curves differ in the higher frequency
zone, especially for higher order approximations. This is due to the fact that the
discretisation step of ζε actually only depends on κ. Low values of κ correspond to
a coarse discretisation and thus to undersampling, which induces aliasing: there is
a mix in high frequencies which leads to an erroneous calculation of the spectrum
in this area.

In addition, Figure 4 also shows that for κ = 1.4 and high order kernels, the
value of the Fourier transform at k = π/h is far from being null. This problem
is even emphasized in the discrete case by the undersampling of ζε mentioned in



A diffusion-velocity particle model for transport-dispersion equations 17

the previous paragraph. As a consequence, the Nyquist-Shannon conditions are
not respected and the reconstruction is very erroneous in the numerical compu-
tations. On the contrary, the analytical error keeps decreasing since the analytic
Fourier transform get closer to the continuous ideal filter, identically equal to one
(whatever k).

Finally, the improvement observed on Figures 3a and 3b with κ = 2 as com-
pared to κ = 3 is explained by the fact that in the first case, fewer high frequencies
are cut-off by the filter (cf. Figure 4b).

In order to evaluate the overall error at a given time t on the whole domain,
the L2 error on quantity q is now introduced. It is denoted ‖E‖q̃ and defined by:

‖E‖q̃ =

√√√√∑N
j=1 [q̃(Xj)− q(Xj)]2∑N

j=1 q
2(Xj)

. (53)

Note that ‖E‖q̃ is not the norm of Eq̃ previously introduced in equation (46).
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Fig. 5: Concentration L2 error ‖E‖c̃ at t∗ = 0 and t∗ = 15 as a function of the
overlapping parameter κ for different orders of approximation, with N = 200 and
the parameters given in Table 1.

The influence of the overlapping parameter κ on the L2 concentration error is
illustrated on Figure 5. These results show that the optimal choice of κ depends
on the order of approximation. More precisely, except for a 2nd order approxima-
tion, the optimum value of κ increases together with the order of approximation.
This behaviour is explained in the Fourier domain as described previously in this
section (Figures 3 and 4). Besides, the optimal value of κ with regard to the fi-
nal concentration error appears to increase as the computations get longer. This
might be explained by the stabilising effect of higher values of κ, in particular at
the domain limits (cf. Figure 3b as compared to Figure 3a).

As a matter of comparison, in the SPH community, small values of κ such as
κ = 1.33 are commonly used (Colagrossi and Landrini 2003). This is justified by



18 Paul Mycek et al.

the fact that 2nd order kernels are used. However, values of κ should be carefully
chosen for higher order kernels.

5.3 Trajectories

By a simple integration of equation (52), the analytic trajectory Xi(t) of particle
ξi is obtained as a function of its initial position X0

i at initial time t0:

Xi(t) = X0
i

√
t

t0
. (54)
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Fig. 6: Evolution of the trajectory error on particlesX0
i = 4.95 (left) andX0

i = 9.95
(right) as a function of time for different orders of approximation, with κ = 2,
N = 200 and the parameters given in Table 1.

The results of Figure 6 illustrate one of the main advantages of DVM, that is to
say its Lagrangian aspect. Comparisons between the analytic trajectory and their
approximations for different orders are shown in terms of the position squared
relative error E2Xi

as compared to the analytic trajectory x. They indicate that the
particle really follows its own trajectory with an increasing precision as the kernel
order raises, as shows Figure 6a.

However, the trajectory is not as accurately reproduced for particles located
near the boundaries, as shows the trajectory of the “last” particle presented on
Figure 6b. This was predictable given the ud high numerical error observed for the
particles at the very limit of the discretised domain (cf. Figure 3b). In addition,
the accuracy on these particles trajectory is no longer related to the approximation
order. On the contrary, the 2nd order approximation seems to be more robust and
stable.
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5.4 Evolution of the concentration

Figure 7 depicts the well known diffusion of a Gaussian patch of a passive scalar
c(x, t). Theoretical and numerical results are superimposed. It shows the particles
spreading owing to the diffusion velocity ũd(Xi, t) as time evolves thanks to equa-
tion (51). The use of the logarithmic scale shows that the concentration evolution
is well resolved even for very small concentration (less than 10−10). This result is
an additional proof the the precision of the present method.
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Fig. 7: Concentration and particles position evolution over different instants t∗.
Continuous lines stand for theoretical results and points represent 6th order ap-
proximation with κ = 2, N = 200 and the parameters given in Table 1.

It has to be mentioned that the trajectory error pointed out on Figure 6b has
no visible effect on the concentration approximation, which remains fairly accurate
even after a long simulation time t∗ = 60. It only means that the analytic trajectory
due to diffusion is not correctly respected. In addition, one can see that the error
previously observed at the domain boundaries on Figure 3 is actually not that
high, in the sense that it is hardly noticeable, even in a logarithmic scale. This is
due to the fact that the errors depicted on these figures are actually relative errors.
Since the concentration at the domain boundaries is very small, the concentration
approximation remains decent in the absolute error sense.

5.5 Convergence analysis

A convergence analysis was performed for different space discretisations h with
the present approximation (32) according to the order of approximation. Figure 8
shows the result for four orders of approximation.

The results are very clean at t∗ = 5 and the related linear regression slopes
are 2.2 for 2nd order, 4.0 for 4th order, 5.9 for 6th order, and finally 7.8 for 8th

order. For later times t∗, the 8th order error stabilizes around 10−11 even if the
discretisation is refined, which is most likely caused by the boundary errors.
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Fig. 8: Concentration L2 error ‖E‖c̃ at t∗ = 5 and t∗ = 15 as a function of
space discretisations h for different orders of approximation, with κ = 2 and the
parameters given in Table 1.

These results are very interesting especially concerning the choice of the ap-
proximation order: for a given space discretisation, h = 0.1 for instance, one really
earns two decades of precision for the result between the 2nd and the 4th order
approximation for only a small increase of CPU time consumption. Similarly, if
one wants to reach a given precision without increasing the space discretisation,
it might be useful to chose higher order kernels.

6 Conclusion

A novel formulation of a diffusion-velocity particle model was derived for the three-
dimensional Navier-Stokes equations. This formulation can be easily extended to
account for small turbulence scales with a LES model. However, it should be
noted that the (LES or DNS) three-dimensional Navier-Stokes equations cannot
generally be entirely re-written with advective terms. As a matter of fact, there
is a remaining term, expected to be small, that still needs to be modelled by
means of another technique, e.g. here PSE. This new vectorial diffusion model
can be integrated into various numerical methods, such as the well-known vortex
method, but also emerging methods such as the dipole domains method currently
developed by Dynnikova (2011). In addition, one crucial advantage of these novel
diffusion-velocity expressions is that they reduce to scalar approximations, which
enables analogy with the original method for scalar transport.

As a consequence, the scalar Diffusion Velocity Method was then analysed
on uni-dimensional cases. Kernel construction was briefly investigated, more par-
ticularly in the Fourier domain, and thus related to the notion of filter in signal
processing. The effect of the discrete parameters on the shape of the kernel Fourier
transform was presented. By analogy with the filtering process in signal processing,
general recommendations on the choice of the overlapping parameter were given
in order to obtain a kernel (or filter) with satisfying reconstruction properties.
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To complement analytic results, numerical simulations were run using DVM
for the pure diffusion of a Gaussian patch. A very clean and accurate diffusion was
observed over long simulation times and the convective behaviour of the method
was verified. Error analyses were performed and showed that the diffusion veloc-
ity ud was accurately approximated. As a result, the particles trajectories were
also correctly reproduced, thus ensuring a correct diffusion through advection. In
addition, it was shown that a poor approximation of the diffusion velocity at the
domain boundaries hardly affect the diffusion process, even in the long run.

The presented analysis holds for the uni-dimensional transport of a passive
scalar such as a concentration. Such quantities are generally non-negative by def-
inition, which ensures the good behaviour of the method. The method straight-
forwardly extends to the transport of a passive scalar in two or three dimensions,
as demonstrates the general description of the original DVM presented in the in-
troduction of section 2. However, the extension to the 3D Navier-Stokes equations
arises one important issue. Indeed, the spatial distribution of the vorticity field ω
may cross zero with steep gradients. For instance, this is the case of the diffusion
of counter-rotative Gaussian vortices. In such cases, DVM suffers from a severe
singularity problem and shows dramatically unstable behaviours – computations
are likely to collapse. This issue has been discussed for the original DVM scheme
in one dimension, and a weighted self-regularising DVM-PSE hybrid model was
proposed to overcome such problems by Mycek et al (2013). This hybrid model
should be straightforwardly extendable to the 3D diffusion of a vector field. Ongo-
ing work focuses on using this vectorial DVM formulation in 3D simulations, such
as marine current turbine wake and performance modelling (Pinon et al 2012).
Such simulations will be used to quantify the relative contributions of DVM and
PSE.

A Vectorial DVM developments

The aim of this appendix is to show that B can be expressed as in equation (16). First, from
the definition (8), it follows that:

Bij = ν
∂ωj

∂xi
− ν

∂ωp

∂xi

ωpωj

|ω|2
(55)

were repeated indices (here p) indicate a sum over those indices. Using the unit vector e =
ω/|ω|, the previous equation becomes

Bij = ν
∂ωj

∂xi
− ν

∂ωp

∂xi
epej (56)

One can then make the following transformations:

∂ωp

∂xi
epej =

∂ωpepej

∂xi
− ωp

∂epej

∂xi
=
∂ωjepep

∂xi
− ωpep

∂ej

∂xi
− ωpej

∂ep

∂xi
(57)

=
∂ωj

∂xi
− |ω|

∂ej

∂xi
− ωjep

∂ep

∂xi
, (58)

whose last term vanishes since ep∂ep/∂xi = 1
2
∂(epep)/∂xi = 0. Finally, Bij becomes:

Bij = ν|ω|
∂ej

∂xi
. (59)
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B Analytic expressions of the Gaussian kernel and its Fourier
transform

The purpose of this appendix is to determine the explicit expressions of the one-dimensional
Gaussian kernel and its Fourier transform, for any order of accuracy. The approach is mostly
inspired by Reproducing Kernel Particle Method (RKPM) techniques (see for example Liu et al
(1995, 1996)). One should remember that the following derivation is restricted to Gaussian
kernels, and aims at providing expressions that are explicit and simpler than the more general
recurrence relations proposed in the existing literature.

Notations

Let ζm,ε be the interpolation kernel of order r = 2(m + 1), where ε is the mollifying param-
eter, issuing from the function ζm (cf. equation (28)). Since the kernel ζm,ε (resp. its Fourier
transform ζ̂m,ε) can easily be deduced from ζm (resp. ζ̂m), whose expression is much simpler,
the proof will be performed on ζm and ζ̂m. The 2nd order function ζ0 is defined by:

ζ0(x) =
1
√
π
e−x

2
. (60)

It follows that
ζ̂0(k) = e−k

2/4. (61)

Hermite polynomials

Let Hn be the n-th Hermite polynomial, whose degree is n, n ≥ 0. Hn is classically defined
by:

dn

dxn
e−x

2
= (−1)ne−x

2
Hn(x), ∀n ≥ 0. (62)

These polynomials have an explicit expression, which is here split up according to the parity
of n:

H2n(x) = (2n)!

n∑
p=0

(−1)n−p

(2p)!(n− p)!
(2x)2p, ∀n ≥ 0. (63a)

H2n+1(x) = (2n+ 1)!

n∑
p=0

(−1)n−p

(2p+ 1)!(n− p)!
(2x)2p+1, ∀n ≥ 0. (63b)

Hermite polynomials with parameter a

Hermite polynomials can easily be generalized to Gaussian functions with scaling parameter
a > 0. Let H∗n(x, a) be the n-th generalized Hermite function of parameter a, defined by:

dn

dxn
e−ax

2
= (−1)ne−ax

2
H∗n(x, a), ∀n ≥ 0, ∀a > 0. (64)

It is related to Hn by the following relation:

H∗n(x, a) = an/2Hn(
√
ax), ∀n ≥ 0, ∀a > 0. (65)
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Hermitian linear combination

The rth order function ζm is built from a Gaussian template as follows (Eldredge et al 2002):

ζm(x) =
e−x

2

√
π

m∑
n=0

γ
[m]
n x2n. (66)

where the γ[m]
n are m related coefficients determined by the moment conditions. This means

that ζm is the product of e
−x2

√
π

with an even polynomial (i.e. of even powers only) of degree
2m. The proof relies on the fact that ζm can be written as a linear combination of the m+ 1
first even derivatives of ζ0 (including the zero-th derivative):

ζm(x) =

m∑
n=0

cnζ
(2n)
0 (x). (67)

As a matter of fact, ζ(2n)0 are even polynomials of degree 2n multiplied by the Gaussian

function e−x2

√
π

. It can be easily shown that any family of m+ 1 even polynomials of degrees 0

to 2m forms a basis for the 2m-th degree even polynomials.
By taking the Fourier transform of (67), one obtains:

ζ̂m(k) =

m∑
n=0

cnF
(
d2n

dx2n
ζ0(x)

)
= ζ̂0(k)

m∑
n=0

(−1)ncnk2n. (68)

Moment conditions

The moment conditions (cf., amongst others, Beale and Majda (1985); Liu et al (1995); El-
dredge et al (2002)) are: ∫

ζm(y) dy = 1, (69a)∫
ypζm(y) dy = 0, ∀1 ≤ p ≤ r − 1. (69b)

However, thanks to the choice of even functions (cf. equation (66)), odd moment conditions
are naturally respected. Moment conditions (69b) thus reduce to:∫

y2pζm(y) dy = 0, ∀1 ≤ p ≤ m. (70)

In the Fourier domain, those conditions are respectively equivalent to:

ζ̂m(0) = 1, (71a)

ζ̂
(2p)
m (0) = 0, ∀1 ≤ p ≤ m. (71b)

Expression of the cn

Using (68) evaluated at k = 0, it follows directly from (71a) that c0 = 1.
In addition, for 1 ≤ p ≤ m, ζ̂(2p)m (k) is given by:

ζ̂
(2p)
m (k) =

m∑
n=0

(−1)ncnφ̂p,n(k), with φ̂p,n(k) =
d2p

dk2p

(
k2nζ̂0(k)

)
. (72)
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– If n > p, φ̂p,n(0) = 0 and thus

ζ̂
(2p)
m (0) =

p∑
n=0

(−1)ncnφ̂p,n(0). (73)

– If n ≤ p, using Leibniz rule,

φ̂p,n(k) =

2p∑
j=0

(2p
j

) dj
dkj

(
k2n
) d2p−j

dk2p−j

(
ζ̂0(k)

)
, (74)

which, evaluated at k = 0, reduces to

φ̂p,n(0) =
(2p
2n

)
(2n)! ζ̂

(2(p−n))
0 (0) =

(2p)!

[2(p− n)]!
ζ̂
(2(p−n))
0 (0). (75)

Thanks to Hermite polynomials, it follows that, for any q > 0,

ζ̂2q0 (0) =

(
d2q

dk2q
e−k

2/4

)
k=0

=

(
1

22q
e−k

2/4H2n(k)

)
k=0

=
(−1)q

22q
(2q)!

q!
(76)

and, combined with equations (75) and (76), equation (73) becomes

ζ̂
(2p)
m (0) =

(−1)p(2p)!
22p

p∑
n=0

22n

(p− n)!
cn. (77)

Condition (71b) implies

p∑
n=0

22n

(p− n)!
cn = 0, ∀1 ≤ p ≤ m, (78)

which eventually leads to the following recursive relation:

cp = −
1

22p

p−1∑
n=0

22n

(p− n)!
cn, ∀1 ≤ p ≤ m. (79)

By a simple recursive induction, it can be shown that the sequence (cn)n≥0 has the following
explicit definition:

cn =
(−1)n

22nn!
, ∀0 ≤ n ≤ m. (80)

Consequences on the kernel and its Fourier transform

Injecting (80) into (67) leads to

ζm(x) =
m∑
n=0

(−1)n

22nn!
ζ
(2n)
0 (x), (81)

and, using Hermite polynomials to explicitly express ζ(2n)0 (x), a general analytic expression
for a Gaussian kernel of any order r is obtained:

ζm(x) =
e−x

2

√
π

m∑
p=0

(−1)p m∑
n=p

β
[n]
p

x2p, (82)

where
β
[n]
p =

(2n)!

(2p)!

1

22(n−p) n!(n− p)!
∈ Q, ∀p = 0, . . . ,m. (83)
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This explicit expression is not very helpful as such. However, it follows from (81) that ζm is
defined from ζm−1 and the 2m-th derivative of ζ0:

ζm(x) = ζm−1(x) +
(−1)m

22mm!
ζ
(2m)
0 (x). (84)

Using again Hermite polynomials to explicitly express ζ(2m)
0 (x), the values of the γ[m]

n ∈ Q,
which entirely define ζm, can thus be incrementally induced from the previous order kernel:

γ
[m]
n = γ

[m−1]
n + (−1)nβ[m]

n ∀n = 0, . . . ,m− 1

γ
[m]
m = (−1)mβ[m]

m =
(−1)m

m!
.

(85)

In fact, the explicit expression (82) is more interesting and useful in the Fourier domain.
By injecting (80) into (68), one obtains:

ζ̂m(k) = e−k
2/4

m∑
n=0

k2n

22nn!
. (86)

and thus

ζ̂m,ε(k) = e−ε
2k2/4

m∑
n=0

1

n!

( ε
2

)2n
k2n. (87)

Those results are very interesting in the sense that they provide explicit expressions of
Gaussian kernels of any order of accuracy. In addition, their Fourier transform have an in-
cremental explicit definition and satisfy the condition ζ̂m(k) ≤ ζ̂m(0), which is the condition
required by Cortez (1997) for stability.

Particle approximation

In the sequel, the particle approximation of the Gaussian patch c(x, t) = exp
(
−x2/(4ν t)

)
/
√
4πν t,

presented in section 4, is analysed.
In an effort to simplify notations, the time dependence of some functions may be omitted

in the sequel, although it should be present both in the function and the Fourier domains. Let
σ =
√
4νt and α =

√
ε2 + σ2. Then

ζ̂m,εĉ(k) = e−α
2k2/4

m∑
n=0

1

n!

( ε
2

)2n
k2n, (88)

and thus

〈c〉(x) = F−1
[
ζ̂m,εĉ

]
=

m∑
n=0

1

n!

( ε
2

)2n
F−1

[
k2ne−α

2k2/4
]

(89)

=
1

α
√
π

m∑
n=0

(−1)n

n!

( ε
2

)2n d2n

dx2n
e−x

2/α2
. (90)

Using Hermite polynomials,

〈c〉(x) =
1

α
√
π
e−x

2/α2
Pm(x), (91)

with

Pm(x) =
m∑
p=0

(−1)p

(2p)!

 m∑
n=p

(2n)! ε2n

22(n−p)n! (n− p)!α2(n+p)

x2p. (92)
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Likewise, since 〈∇c〉 = F−1
[
ikζ̂m,εĉ

]
it follows that:

〈∇c〉(x) =
−2x
α3
√
π
e−x

2/α2
Qm(x), (93)

with

Qm(x) =

m∑
p=0

(−1)p

(2p+ 1)!

 m∑
n=p

(2n+ 1)! ε2n

22(n−p)n! (n− p)!α2(n+p)

x2p. (94)

Consequences on the error

The analytic exact expressions of c, ∇c and ud are given by:

c(x) =
1

σ
√
π
e−x

2/σ2
, (95)

∇c(x) =
−2x
σ3
√
π
e−x

2/σ2
, (96)

and
ud(x) =

x

2t
. (97)

It follows that
〈c〉
c

(x) =
σ

α
eε

2x2/α2
Pm(x), (98)

〈∇c〉
∇c

(x) =
σ3

α3
eε

2x2/α2
Qm(x), (99)

and
〈ud〉
ud

(x) =
σ2

α2

Qm

Pm
(x). (100)

Expressing E〈c〉, E〈∇c〉 and E〈ud〉 from these last three expressions is straightforward.
It should be noted that Pm and Qm being polynomials with degree 2m, the error E〈ud〉 is

spatially constant for the 2nd order (r = 2 and thus m = 0) approximation, at any given time
t > 0.
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