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1 Proof of the lemma

Lemma 1.1 Given set of nL independent observations (t1, t2, ..., tnL), the
log-likelihood function log(LSSPSC) has no critical points in R2.

Proof Given nL independent values t = (t1, t2, ..., tnL), the likelihood is:

LSSPSC(α, T ) =

nL∏
i=1

Lti(T, α),

and taking the log:

log(LSSPSC(α, T )) =

nL∑
i=1

log(Lti(α, T )), (1)

where

Lti(T, α) =
1

α
e−T−

1
α
(ti−T )IT≤ti + e−tiIT>ti (2)

First note that:

• For T > ti, Lti(α, T ) = e−ti is constant (with respect to (α, T )).

• If α 6= 1 (α = 1 means there is no change in the population’s size) then
Lti(T, α) has a discontinuity at T = ti.

As we are interested in the case α 6= 1, the log-likelihood function has
discontinuities at each ti, i = 1 . . . nL.

For i ∈ {0, 1, ..., nL + 1}, let Ci = {(α, T ) ∈ R+ ×R+, ti < T < ti+1}
with t0 = 0 and tnL+1 = +∞.

Now let be C =
⋃nL
i=0Ci (Figure 1). We can see that LSSPSC(α, T ) is

continuously differentiable in the interior of C.
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Figure 1: Cutting the parameter space, taking into account the discontinu-
ities of the log-likelihood function in R2
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Given that we do not consider negative values for α or T , we split the
parameter space into two subsets C and R2

+ \ C. If (α, T ) ∈ C, taking the
log and the derivative with respect to T in equation (2) gives:

∂

∂T
Lti(α, T ) =

{
−1 + 1

α
if T < ti

0 otherwise.

As we can see, if α < 1 then ∂
∂T

Lti(α, T ) > 0 for all i and if α > 1 then
∂
∂T

Lti(α, T ) < 0 for all i. A consequence, ∇LSSPSC(α, T ) will never be zero
in the interior of C if α 6= 1. �

This fact suggests that the min and max values of LSSPSC (if they exist)
have the form (α, ti).

Let’s find the critical points of LSSPSC over the lines (α, ti) with ti ∈
{t1, t2, ..., tnL}. When we fix the value of T the function becomes a function
of the single variable α. If T = ta for a ∈ {1, ..., nL} it follows from (1) that:

log(LSSPSC(α, ta)) = log

(
1

α

)
−ta−

nL∑
i=1

[
log

(
1

α

)
− ta −

1

α
(ti − ta)

]
Ita<ti−

nL∑
i=1

tiIta>ti .

Denoting K =

nL∑
i=1

Iti<ta , we then have:

log(LSSPSC(α, ta)) = (K+1)

(
log

(
1

α

)
− ta

)
− 1

α

nL∑
i=1

(ti−ta)Ita<ti−
nL∑
i=1

tiIta>ti .

Let us find the zeros of the derivative in α:

log(LSSPSC(α, ta)) = 0⇔− (K + 1)
1

α
+

1

α2

nL∑
i=1

(ti − ta)Ita<ti = 0

⇔− α(K + 1) +

nL∑
i=1

(ti − ta)Ita<ti = 0

⇔α =

nL∑
i=1

tiIta<ti −Kta

K + 1
.

Hence, the maximum value of the log-likelihood function (if it exists) is
of the form:
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ma =


nL∑
i=1

tiIta<ti −Kta

K + 1
, ta

, a ∈ {1, 2, ..., nL}.

We then take (α̂, T̂ ) = argmaxa∈{1,...,nL}{log(LSSPSC(ma))} as the Maxi-
mum Likelihood Estimation.

Remark: Note that the function LSSPSC does not have an upper bound.
Let’s say (T1, T2, ..., TnL) are the nL observations of T2 sorted form the lower
value to the higher value.

For T = TnL we have from (1) and (2):

LSSPSC(α, TnL) = log(
1

α
)− TnL −

nL−1∑
i=1

Ti

which clearly goes to +∞ as α goes to zero. The same problem is present
for every T ∈]TnL−1, TnL ]

Nevertheless, in practice, our ma is a good estimate for the parameters.
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2 Proportion of rejections

Figure 2: Proportion of rejected data sets simulated under the SSPSC model.
Left panels: the reference model is the StSI model (the wrong model). Right
panels: the reference model is the SSPSC (the right model), i.e. the model
under which the data were simulated. Note that for the abscissa we used
2nL instead of nL because in order to perform the KS test it is necessary to
first estimate the parameters using nL loci and then an independent set of
nL values of T2.
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Figure 3: Proportion of rejected data sets simulated under the StSI model.
Left panels: the reference model is the SSPSC (the wrong model). Right
panels: the reference model is the StSI model (the right model), i.e. the
model under which the data were simulated. Note that for the abscissa we
used 2nL instead of nL because in order to perform the KS test it is necessary
to first estimate the parameters using nL loci and then an independent set
of nL values of T2.
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3 Estimation accuracy

All the scripts used in the simulations are available from http://github.

com/willyrv/SSPSC_vs_StSI

Figures 4, 5, 6, 7, 8 and 9 show the results of the estimation of α for all
the values of T and all the sample sizes, under the SSPSC model. The
values where α = (2, 4, 10, 20, 50, 100), T = (0.1, 0.2, 0.5, 1, 2, 5) and nL =
(20, 50, 100, 200, 500, 1000, 10000)

Figure 4: Estimations of α (real value α = 2.0)
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Figure 5: Estimations of α (real value α = 4.0)

8



Figure 6: Estimations of α (real value α = 10.0)
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Figure 7: Estimations of α (real value α = 20.0)
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Figure 8: Estimations of α (real value α = 50.0)
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Figure 9: Estimations of α (real value α = 100.0)

12



Figures 10, 11, 12, 13, 14 and 15 show the results of the estimation of
T for all the values of α and all the sample sizes, under the SSPSC model.
The values where α = (2, 4, 10, 20, 50, 100), T = (0.1, 0.2, 0.5, 1, 2, 5) and
nL = (20, 50, 100, 200, 500, 1000, 10000)

Figure 10: Estimations of T (real value T = 0.1)
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Figure 11: Estimations of T (real value T = 0.2)

14



Figure 12: Estimations of T (real value T = 0.5)
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Figure 13: Estimations of T (real value T = 1.0)
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Figure 14: Estimations of T (real value T = 2.0)
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Figure 15: Estimations of T (real value T = 5.0)
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Figures 16, 17, 18, 19, 21, 22, 23 and 24 show the results of the estimation
of M for all the values of n and all the sample sizes, under the StSI model.
The values where M = (0.1, 0.2, 0.5, 1, 5, 10, 20, 50), n = (2, 4, 10, 20, 50, 100)
and nL = (20, 50, 100, 200, 500, 1000, 10000)

(0.1, 0.2, 0.5, 1, 5, 10, 20, 50) and (2, 4, 10, 20, 50, 100)

Figure 16: Estimations of M (real value M = 0.1)
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Figure 17: Estimations of M (real value M = 0.2)
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Figure 18: Estimations of M (real value M = 0.5)
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Figure 19: Estimations of M (real value M = 1.0)
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Figure 20: Estimations of M (real value M = 2.0)
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Figure 21: Estimations of M (real value M = 5.0)
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Figure 22: Estimations of M (real value M = 10.0)
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Figure 23: Estimations of M (real value M = 20.0)
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Figure 24: Estimations of M (real value M = 50.0)
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Figures 25, 26, 27, 28, 29 and 30 show the results of the estimation of n
for all the values of M and all the sample sizes, under the StSI model. The
values where M = (0.1, 0.2, 0.5, 1, 5, 10, 20, 50), n = (2, 4, 10, 20, 50, 100) and
nL = (20, 50, 100, 200, 500, 1000, 10000)

Figure 25: Estimations of n (real value n = 2.0)
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Figure 26: Estimations of n (real value n = 4.0)
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Figure 27: Estimations of n (real value n = 10.0)
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Figure 28: Estimations of n (real value n = 20.0)
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Figure 29: Estimations of n (real value n = 50.0)
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Figure 30: Estimations of n (real value n = 100.0)
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