Supplementary Materials

Mazet Olivier, Rodríguez Valcarce Willy, Chikhi Lounès

1 Proof of the lemma

Lemma 1.1 Given set of n_{L} independent observations $\left(t_{1}, t_{2}, \ldots, t_{n_{L}}\right)$, the log-likelihood function $\log \left(\mathbb{L}_{\text {SSPSC }}\right)$ has no critical points in \mathbb{R}^{2}.

Proof Given n_{L} independent values $t=\left(t_{1}, t_{2}, \ldots, t_{n_{L}}\right)$, the likelihood is:

$$
\mathbb{L}_{S S P S C}(\alpha, T)=\prod_{i=1}^{n_{L}} \mathbb{L}_{t_{i}}(T, \alpha),
$$

and taking the log:

$$
\begin{equation*}
\log \left(\mathbb{L}_{S S P S C}(\alpha, T)\right)=\sum_{i=1}^{n_{L}} \log \left(\mathbb{L}_{t_{i}}(\alpha, T)\right), \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbb{L}_{t_{i}}(T, \alpha)=\frac{1}{\alpha} e^{-T-\frac{1}{\alpha}\left(t_{i}-T\right)} \mathbb{I}_{T \leq t_{i}}+e^{-t_{i}} \mathbb{I}_{T>t_{i}} \tag{2}
\end{equation*}
$$

First note that:

- For $T>t_{i}, \mathbb{L}_{t_{i}}(\alpha, T)=e^{-t_{i}}$ is constant (with respect to (α, T)).
- If $\alpha \neq 1$ ($\alpha=1$ means there is no change in the population's size) then $\mathbb{L}_{t_{i}}(T, \alpha)$ has a discontinuity at $T=t_{i}$.

As we are interested in the case $\alpha \neq 1$, the log-likelihood function has discontinuities at each $t_{i}, i=1 \ldots n_{L}$.

For $i \in\left\{0,1, \ldots, n_{L}+1\right\}$, let $C_{i}=\left\{(\alpha, T) \in R^{+} \times R^{+}, t_{i}<T<t_{i+1}\right\}$ with $t_{0}=0$ and $t_{n_{L}+1}=+\infty$.

Now let be $C=\bigcup_{i=0}^{n_{L}} C_{i}$ (Figure 1). We can see that $\mathbb{L}_{S S P S C}(\alpha, T)$ is continuously differentiable in the interior of C.

Figure 1: Cutting the parameter space, taking into account the discontinuities of the log-likelihood function in \mathbb{R}^{2}

Given that we do not consider negative values for α or T, we split the parameter space into two subsets C and $\mathbb{R}_{+}^{2} \backslash C$. If $(\alpha, T) \in C$, taking the \log and the derivative with respect to T in equation (2) gives:

$$
\frac{\partial}{\partial T} \mathbb{L}_{t_{i}}(\alpha, T)= \begin{cases}-1+\frac{1}{\alpha} & \text { if } T<t_{i} \\ 0 & \text { otherwise }\end{cases}
$$

As we can see, if $\alpha<1$ then $\frac{\partial}{\partial T} \mathbb{L}_{t_{i}}(\alpha, T)>0$ for all i and if $\alpha>1$ then $\frac{\partial}{\partial T} \mathbb{L}_{t_{i}}(\alpha, T)<0$ for all i. A consequence, $\nabla \mathbb{L}_{S S P S C}(\alpha, T)$ will never be zero in the interior of C if $\alpha \neq 1$.

This fact suggests that the min and max values of $\mathbb{L}_{S S P S C}$ (if they exist) have the form $\left(\alpha, t_{i}\right)$.

Let's find the critical points of $\mathbb{L}_{S S P S C}$ over the lines $\left(\alpha, t_{i}\right)$ with $t_{i} \in$ $\left\{t_{1}, t_{2}, \ldots, t_{n_{L}}\right\}$. When we fix the value of T the function becomes a function of the single variable α. If $T=t_{a}$ for $a \in\left\{1, \ldots, n_{L}\right\}$ it follows from (11) that:

$$
\log \left(\mathbb{L}_{S S P S C}\left(\alpha, t_{a}\right)\right)=\log \left(\frac{1}{\alpha}\right)-t_{a}-\sum_{i=1}^{n_{L}}\left[\log \left(\frac{1}{\alpha}\right)-t_{a}-\frac{1}{\alpha}\left(t_{i}-t_{a}\right)\right] \mathbb{I}_{t_{a}<t_{i}}-\sum_{i=1}^{n_{L}} t_{i} \mathbb{I}_{t_{a}>t_{i}} .
$$

Denoting $K=\sum_{i=1}^{n_{L}} \mathbb{I}_{t_{i}<t_{a}}$, we then have:
$\log \left(\mathbb{L}_{S S P S C}\left(\alpha, t_{a}\right)\right)=(K+1)\left(\log \left(\frac{1}{\alpha}\right)-t_{a}\right)-\frac{1}{\alpha} \sum_{i=1}^{n_{L}}\left(t_{i}-t_{a}\right) \mathbb{I}_{t_{a}<t_{i}}-\sum_{i=1}^{n_{L}} t_{i} \mathbb{I}_{t_{a}>t_{i}}$.
Let us find the zeros of the derivative in α :

$$
\begin{gathered}
\log \left(\mathbb{L}_{S S P S C}\left(\alpha, t_{a}\right)\right)=0 \Leftrightarrow-(K+1) \frac{1}{\alpha}+\frac{1}{\alpha^{2}} \sum_{i=1}^{n_{L}}\left(t_{i}-t_{a}\right) \mathbb{I}_{t_{a}<t_{i}}=0 \\
\Leftrightarrow-\alpha(K+1)+\sum_{i=1}^{n_{L}}\left(t_{i}-t_{a}\right) \mathbb{I}_{t_{a}<t_{i}}=0 \\
\Leftrightarrow \alpha=\frac{\sum_{i=1}^{n_{L}} t_{i} \mathbb{I}_{t_{a}<t_{i}}-K t_{a}}{K+1}
\end{gathered}
$$

Hence, the maximum value of the log-likelihood function (if it exists) is of the form:

$$
m_{a}=\left(\frac{\sum_{i=1}^{n_{L}} t_{i} \mathbb{I}_{t_{a}<t_{i}}-K t_{a}}{K+1}, t_{a}\right), a \in\left\{1,2, \ldots, n_{L}\right\} .
$$

We then take $(\hat{\alpha}, \hat{T})=\operatorname{argmax}_{a \in\left\{1, \ldots, n_{L}\right\}}\left\{\log \left(\mathbb{L}_{S S P S C}\left(m_{a}\right)\right)\right\}$ as the Maximum Likelihood Estimation.

Remark: Note that the function $\mathbb{L}_{S S P S C}$ does not have an upper bound. Let's say $\left(T_{1}, T_{2}, \ldots, T_{n_{L}}\right)$ are the n_{L} observations of T_{2} sorted form the lower value to the higher value.

For $T=T_{n_{L}}$ we have from (1) and (2):

$$
\mathbb{L}_{S S P S C}\left(\alpha, T_{n_{L}}\right)=\log \left(\frac{1}{\alpha}\right)-T_{n_{L}}-\sum_{i=1}^{n_{L}-1} T_{i}
$$

which clearly goes to $+\infty$ as α goes to zero. The same problem is present for every $\left.T \in] T_{n_{L}-1}, T_{n_{L}}\right]$

Nevertheless, in practice, our m_{a} is a good estimate for the parameters.

2 Proportion of rejections

Figure 2: Proportion of rejected data sets simulated under the SSPSC model. Left panels: the reference model is the StSI model (the wrong model). Right panels: the reference model is the SSPSC (the right model), i.e. the model under which the data were simulated. Note that for the abscissa we used $2 n_{L}$ instead of n_{L} because in order to perform the $K S$ test it is necessary to first estimate the parameters using n_{L} loci and then an independent set of n_{L} values of T_{2}.

Figure 3: Proportion of rejected data sets simulated under the StSI model. Left panels: the reference model is the SSPSC (the wrong model). Right panels: the reference model is the StSI model (the right model), i.e. the model under which the data were simulated. Note that for the abscissa we used $2 n_{L}$ instead of n_{L} because in order to perform the $K S$ test it is necessary to first estimate the parameters using n_{L} loci and then an independent set of n_{L} values of T_{2}.

3 Estimation accuracy

All the scripts used in the simulations are available from http://github. com/willyrv/SSPSC_vs_StSI
Figures 4, 5, 6, 7, 8 and 9 show the results of the estimation of α for all the values of T and all the sample sizes, under the SSPSC model. The values where $\alpha=(2,4,10,20,50,100), T=(0.1,0.2,0.5,1,2,5)$ and $n_{L}=$ (20, 50, 100, 200, 500, 1000, 10000)

Figure 4: Estimations of α (real value $\alpha=2.0$)

Figure 5: Estimations of α (real value $\alpha=4.0$)

Figure 6: Estimations of α (real value $\alpha=10.0$)

Figure 7: Estimations of α (real value $\alpha=20.0$)

Figure 8: Estimations of α (real value $\alpha=50.0$)

Figure 9: Estimations of α (real value $\alpha=100.0$)

Figures 10, 11, 12, 13, 14 and 15 show the results of the estimation of T for all the values of α and all the sample sizes, under the SSPSC model. The values where $\alpha=(2,4,10,20,50,100), T=(0.1,0.2,0.5,1,2,5)$ and $n_{L}=(20,50,100,200,500,1000,10000)$

Figure 10: Estimations of T (real value $T=0.1$)

Figure 11: Estimations of T (real value $T=0.2$)

Figure 12: Estimations of T (real value $T=0.5$)

Figure 13: Estimations of T (real value $T=1.0$)

Figure 14: Estimations of T (real value $T=2.0$)

Figure 15: Estimations of T (real value $T=5.0$)

Figures 16, 17, 18, 19, 21, 22, 23, and 24 show the results of the estimation of M for all the values of n and all the sample sizes, under the StSI model. The values where $M=(0.1,0.2,0.5,1,5,10,20,50), n=(2,4,10,20,50,100)$ and $n_{L}=(20,50,100,200,500,1000,10000)$

$$
(0.1,0.2,0.5,1,5,10,20,50) \text { and }(2,4,10,20,50,100)
$$

Figure 16: Estimations of M (real value $M=0.1$)

Figure 17: Estimations of M (real value $M=0.2$)

Figure 18: Estimations of M (real value $M=0.5$)

Figure 19: Estimations of M (real value $M=1.0$)

Figure 20: Estimations of M (real value $M=2.0$)

Figure 21: Estimations of M (real value $M=5.0$)

Figure 22: Estimations of M (real value $M=10.0$)

Figure 23: Estimations of M (real value $M=20.0$)

Figure 24: Estimations of M (real value $M=50.0$)

Figures 25, 26, 27, 28, 29 and 30 show the results of the estimation of n for all the values of M and all the sample sizes, under the StSI model. The values where $M=(0.1,0.2,0.5,1,5,10,20,50), n=(2,4,10,20,50,100)$ and $n_{L}=(20,50,100,200,500,1000,10000)$

$\mathrm{n}=2.0, \mathrm{M}=0.5$

Figure 25: Estimations of n (real value $n=2.0$)

Figure 26: Estimations of n (real value $n=4.0$)

Figure 27: Estimations of n (real value $n=10.0$)

Figure 28: Estimations of n (real value $n=20.0$)

Figure 29: Estimations of n (real value $n=50.0$)

Figure 30: Estimations of n (real value $n=100.0$)

