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Abstract1

The rapid development of sequencing technologies represents new opportunities for pop-2

ulation genetics research. It is expected that genomic data will increase our ability to re-3

construct the history of populations. While this increase in genetic information will likely4

help biologists and anthropologists to reconstruct the demographic history of populations,5

it also represents new challenges. Recent work has shown that structured populations gen-6

erate signals of population size change. As a consequence it is often difficult to determine7

whether demographic events such as expansions or contractions (bottlenecks) inferred from8

genetic data are real or due to the fact that populations are structured in nature. Given9

that few inferential methods allow us to account for that structure, and that genomic data10

will necessarily increase the precision of parameter estimates, it is important to develop new11

approaches. In the present study we analyse two demographic models. The first is a model12

of instantaneous population size change whereas the second is the classical symmetric island13

model. We (i) re-derive the distribution of coalescence times under the two models for a sam-14

ple of size two, (ii) use a maximum likelihood approach to estimate the parameters of these15

models (iii) validate this estimation procedure under a wide array of parameter combina-16

tions, (iv) implement and validate a model choice procedure by using a Kolmogorov-Smirnov17

test. Altogether we show that it is possible to estimate parameters under several models and18

perform efficient model choice using genetic data from a single diploid individual.19
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INTRODUCTION20

The sheer amount of genomic data that is becoming available for many organisms with the21

rapid development of sequencing technologies represents new opportunities for population22

genetics research. It is hoped that genomic data will increase our ability to reconstruct the23

history of populations (Li and Durbin 2011) and detect, identify and quantify selection24

(Vitti et al. 2013). While this increase in genetic information will likely help biologists25

and anthropologists to reconstruct the demographic history of populations, it also exposes26

old challenges in the field of population genetics. In particular, it becomes increasingly27

necessary to understand how genetic data observed in present-day populations are influenced28

by a variety of factors such as population size changes, population structure and gene flow29

(Nielsen and Beaumont 2009). Indeed, the use of genomic data does not necessary30

lead to an improvement of statistical inference. If the model assumed to make statistical31

inference is fundamentally mis-specified, then increasing the amount of data will lead to32

increased precision for perhaps misleading if not meaningless parameters and will not reveal33

new insights (Nielsen and Beaumont 2009; Chikhi et al. 2010; Heller et al. 2013).34

For instance, several recent studies have shown that the genealogy of genes sampled from35

a deme in an island model is similar to that of genes sampled from a non structured isolated36

population submitted to a demographic bottleneck (Peter et al. 2010; Chikhi et al. 2010;37

Heller et al. 2013). As a consequence, using a model of population size change for a38

spatially structured population may falsely lead to the inference of major population size39

changes (Städler et al. 2009; Peter et al. 2010; Chikhi et al. 2010; Heller et al. 2013;40

Paz-Vinas et al. 2013). Conversely, assuming a structured model to estimate rates of gene41

flow when a population has been submitted to a population size change, may also generate42

misleading conclusions, even though the latter case has been much less documented. More43

generally, previous studies have shown that spatial processes can mimic selection (Currat44

et al. 2006), population size changes (Chikhi et al. 2010; Heller et al. 2013) or that changes45

in gene flow patterns can mimic changes in population size (Wakeley 1999; Broquet et al.46
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2010). The fact that such dissimilar processes can generate similar coalescent trees poses47

exciting challenges (Nielsen and Beaumont 2009). One key issue here is that it may48

be crucial to identify the kind of model (or family of models) that should be used before49

estimating and interpreting parameters.50

One solution to this problem is to identify the ”best” model among a set of compet-51

ing models. This research program has been facilitated by the development of approximate52

Bayesian computation (ABC) methods (Pritchard et al. 2000; Beaumont et al. 2002;53

Cornuet et al. 2008; Beaumont 2010). For instance, using an ABC approach, Peter54

et al. (2010) showed that data sets produced under population structure can be discrim-55

inated from those produced under a population size change by using up to two hundred56

microsatellite loci genotyped for 25 individual. In some cases, relatively few loci may be57

sufficient to identify the most likely model (Sousa et al. 2012; Peter et al. 2010), but in58

others, tens or hundreds of loci may be necessary (Peter et al. 2010). ABC approaches are59

thus potentially very powerful but it may still be important to improve our understanding60

of the coalescent under structured models.61

In the present study we are interested in describing the properties of the coalescent62

under two models of population size change and population structure, respectively, and in63

devising a new statistical test and estimation procedures. More specifically we re-derive the64

full distribution of T2, the time to the most recent common ancestor for a sample of size65

two for a model of sudden population size change and for the n-island model. We then66

use a maximum likelihood approach to estimate the parameters of interest for each model67

(timing and ratio of population size change former and rate of gene flow and deme size for68

the latter). We develop a statistical test that identifies data sets generated under the two69

models. Finally, we discuss how these results may apply to genomic data and how they could70

be extended to real data sets (since T2 is not usually known) and other demographic models.71

In particular we discuss how our results are relevant in the context of the PSMC (Pairwise72

Sequentially Markovian Coalescent) method (Li and Durbin 2011), which has been now73
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extensively used on genomic data and also uses a sample size of two.74
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METHODS75

Demographic models76

Population size change: We consider a simple model of population size change, where N(t)77

represents the population size (N , in units of genes or haploid genomes) as a function of78

time (t) expressed in generations scaled by N , the population size, and where t = 0 is the79

present, and positive values represent the past (Figure 1 (a)). More specifically we assume a80

sudden change in population size at time T in the past, where N changes instantaneously by81

a factor α. This can be summarized as N(t) = N(0) = N0 for t ∈ [0, T [, N(t) = N(T ) = αN082

for t ∈ [T,+∞[. If α > 1 the population went through a bottleneck (Figure 1) whereas if83

α < 1 it expanded. Since N represents the population size in terms of haploid genomes,84

the number of individuals will therefore be N/2 for diploid species. Note also that for a85

population of constant size the expected coalescence time of two genes is N generations,86

which therefore corresponds to t = 1. We call this model the SSPSC, which stands for Single87

Step Population Size Change.88

[Figure 1 about here.]89

Structured population: Here we consider the classical symmetric n-island model (Wright90

1931), see Figure 1 (b), where we have a set of n islands (or demes) of constant size N ,91

interconnected by gene flow with a migration rate m, where M = Nm is the number of im-92

migrants (genes) in each island every generation. The whole metapopulation size is therefore93

nN (this is the total number of genes, not the effective size). Again, N is the number of94

haploid genomes, and N/2 the number of diploid individuals. We call this model the StSI,95

which stands for Structured Symmetrical Island model.96
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The distribution of coalescence times: qualitative and quantitative analyses97

In this section we used previous results (Herbots 1994; Donnelly and Tavare 1995)98

to derive the distribution of coalescent times for the two models of interest. We show99

that even though they are different, these distributions can be similar under an indefinitely100

large number of parameter values (Figures 2 and 3). Moreover we show that even when the101

distributions are distinguishable, their first moments may not be. In particular, we show that102

the first two moments (mean and variance) are near identical for a large number of parameter103

combinations. Before doing that we start by providing a simple intuitive rationale explaining104

why and how a model of population structure can be mistaken for a model of population105

size change. This intuitive approach is important because it allows us to understand how106

the parameters of the two models ((T , α) and (M , n), respectively) are linked.107

Intuitive and qualitative rationale: We start by taking two genes sampled in the present-day108

population under the Single Step Population Size Change (SSPSC) model. If we assume that109

α > 1 (population bottleneck from an ancient population of size N1 to a current population110

of size N0, with N1 = αN0) the probability that the two genes coalesce will vary with time111

as a function of N0, N1 and T . If T is very small, then most genes will coalesce at a rate112

determined by N1, whereas if T is very large the coalescence rate will be mostly determined113

by N0. If we now take two genes sampled from the same island in the Structured Symmetrical114

Island (StSI) model, we can also see that their coalescence rate will depend on N , the size115

of the island and on m, the migration rate. If m is very low, the coalescence rate should116

mostly depend on N . If m is high, the two genes may see their lineages in different islands117

before they coalesce. As a consequence the coalescence rate will depend on the whole set of118

islands and therefore on the product nN , where n is the total number of islands.119

This intuitive description suggests that there is an intrinsic relationship between T and120

1/M , and between α and n. The reason why structured populations exhibit signals of121
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bottlenecks is because in the recent past the coalescence rate depends on the local island size122

N , whereas in a more distant past it depends on nN . In other words, it is as if the population123

size had been reduced by a factor of n. As we will see this rationale is only qualitatively124

correct, but it suggests that if we want to distinguish them it may be necessary to derive125

the full distribution of the coalescence times under the two models. We shall denote these126

coalescence times T SSPSC2 and T StSI2 , respectively.127

Derivation of the distribution of coalescence times:128

The distribution of T SSPSC2 : The generalisation of the coalescent in populations of vari-129

able size was first rigorously treated in Donnelly and Tavare (1995)), and is clearly130

exposed in Tavaré (2004)). If we denote by λ(t) the ratio N(t)
N(0)

where t is the time scaled by131

the number of genes (i.e. units of coalescence time, corresponding to bN(0)tc generations),132

we can compute the probability density function (pdf) fSSPSCT2
(t) of the coalescence time133

T SSPSC2 of two genes sampled in the present-day population. Indeed, the probability that134

two genes will coalesce at a time greater than t is135

P(T SSPSC2 > t) = e−
∫ t
0

1
λ(x)

dx , (1)

where

λ(x) = I[0,T [(x) + αI[T,+∞[(x),

and I[a,b[(x) is the Kronecker index such that

I[a,b[(x) =


1 for x ∈ [a, b[

0 otherwise.

Given that the pdf is

fSSPSCT2
(t) = (1− P(T SSPSC2 > t))′
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Equation (1) can be rewritten as

P(T SSPSC2 > t) = e−tI[0,T [ + e−T−
1
α
(t−T )I[T,+∞[.

This leads to the following pdf136

fSSPSCT2
(t) = e−tI[0,T [(t) +

1

α
e−T−

1
α
(t−T )I[T,+∞[(t). (2)

The distribution of T StSI2 : Following Herbots (1994)), an easy way to derive the dis-137

tribution of the coalescence time T StSI2 of two genes for our structured model, is to compute138

the probability that two genes are identical by descent when they are sampled from the same139

or from different populations. These two probabilities are respectively denoted by ps(θ) and140

pd(θ), where θ = 2uN is the scaled mutation rate, u being the per locus mutation rate.141

Indeed, using a classical scaling argument (see for instance Tavaré (2004), page 34), we

can note that

ps(θ) = E(e−θT
StSI
2 )

In other words ps(θ) is the Laplace transform of T StSI2 .142

We can compute this probability as follows. Taking two genes from the same island and143

going back in time, there are three events that may occur: a coalescence event (with rate 1),144

a mutation event (with rate θ) and a migration event (with rate M). Taking now two genes145

from different islands, they cannot coalesce and therefore only a mutation or a migration146

event may occur. Migration events can then bring the lineages in the same island with147

probability 1
n−1 , and in different islands with probability n−2

n−1 . We thus obtain the following148

coupled equations:149

ps(θ) =
1

1 +M + θ
+

M

1 +M + θ
pd(θ),

and

pd(θ) =
M/(n− 1)

M + θ
ps(θ) +

M(n− 2)/(n− 1)

M + θ
pd(θ).
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By solving them, we obtain

ps(θ) =
θ + γ

D
and pd(θ) =

γ

D

with

γ =
M

n− 1
and D = θ2 + θ(1 + nγ) + γ.

We can then obtain the full distribution through the Laplace transform formula, if we note

that

ps(θ) =
θ + γ

(θ + α)(θ + β)
=

a

θ + α
+

1− a
θ + β

with

a =
γ − α
β − α

=
1

2
+

1 + (n− 2)γ

2
√

∆
,

where150

α =
1

2

(
1 + nγ +

√
∆
)

and

β =
1

2

(
1 + nγ −

√
∆
)
.

Noting now that for any θ and any α we have∫ +∞

0

e−αse−θs ds =
1

θ + α
,

it is straightforward to see that the pdf of T StSI2 is an exponential mixture:151

fStSIT2
(t) = ae−αt + (1− a)e−βt. (3)

First moments: Equations 2 and 3 are different hence showing that it is in principle possible152

to identify genetic data produced under the two demographic models of interest. The two153

equations can be used to derive the expectation and variance of the two random variables154

of interest, T SSPSC2 and T StSI2 . Their analytic values can be easily expressed as functions of155

the model parameters:156
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E
(
T SSPSC2

)
=1 + e−T (α− 1),

V ar
(
T SSPSC2

)
=1 + 2Te−T (α− 1) + 2αe−T (α− 1)− (α− 1)2e−2T ,

E(T StSI2 ) =n,

V ar(T StSI2 ) =n2 +
2(n− 1)2

M
.

It is interesting to note that the expected time in the StSI model is n and does not depend157

on the migration rate (Durrett 2008). The variance is however, and as expected, a function158

of both n and M . For the SSPSC model, the expected coalescence time is a function of both159

T and α. We note that it is close to 1 when T is very large and to α when T is close to zero.160

Indeed, when the population size change is very ancient, even if α is very large the expected161

coalescence time will mostly depend on the present-day population size, N0. Similarly, when162

T is small it will mostly depend on N1. The relationship that we mentioned above between163

n and α (and between M and 1/T ) can be seen by noting that when T is close to zero164

(and M is large), the expectations under the two models are α and n, and the variances are165

V ar
(
T SSPSC2

)
≈ 1 + 2α(α− 1)− (α− 1)2 = α2 and V ar(T StSI2 ) ≈ n2. This exemplifies the166

intuitive rationale presented above. This relationship is approximate and will be explored167

below, but can be illustrated in more general terms by identifying scenarios with similar168

moments.169

As figure 2 shows, the two models provide near-identical pairs of values for (E(T2), V ar(T2))170

for “well chosen” parameters (T, α) and (M,n). Here by setting T to 0.1 (and M to 9, i.e.171

1/M ≈ 0.11) whereas α and n were allowed to vary from 1 to 100, and from 2 to 100,172

respectively, we see that the two models exhibit very similar behaviours. We also plotted a173

second example obtained by setting M to 0.5 and T to 1.09, and varying n and α as above.174

These examples ilustrate how n and α (respectively, M and 1/T ) are intimately related.175

[Figure 2 about here.]176

The near-identical values obtained for the expectation and variance under the two models177
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explains why it may be difficult to separate models of population size change from models of178

population structure when the number of independent genetic markers is limited. However,179

the differences between the distributions of coalescence times under the two models suggest180

that we can probably go further and identify one model from another. For instance, figure181

3 shows that even in cases where the first two moments are near-identical (T = 0.1 and182

α = 10 versus M = 7 and n = 9), it should be theoretically possible to distinguish them.183

This is exactly what we aim to do in the next section. In practice, we will assume that184

we have a sample of nL independent T2 values (corresponding to nL independent loci) and185

will use these T2 values to (i) estimate the parameter values that best explain this empirical186

distribution under the two models of interest, (ii) use a statistical test to compare the187

empirical distribution with the expected distribution for the ML estimates and reject (or188

not) one or both of the models. For simplicity, and to make it easier to read, we will often189

use the term loci in the rest of the manuscript when we want to mention the number of190

independent T2 values.191

[Figure 3 about here.]192
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Model choice and parameter estimation193

General principle and parameter combinations: Given a sample (t1, ..., tnL) of nL independent194

observations of the random variable T2, we propose a parameter estimation procedure and195

a goodness-of-fit test to determine whether the observed distribution of the T2 values is196

significantly different from that expected from the theoretical T SSPSC2 or T StSI2 distributions.197

This sample can be seen as a set of T2 values obtained or estimated from nL independent loci.198

We took a Maximum Likelihood (ML) approach to estimate the parameters (T, α) and (M,n)199

under the hypothesis that the nL-sample was generated under the T SSPSC2 and the T StSI2200

distributions, respectively (see Supplementary materials for the details of the estimation201

procedure). The ML estimates (T̂ , α̂) and (M̂, n̂) were then used to define T SSPSC2 or T StSI2202

reference distributions. The Kolmogorov-Smirnov (KS) test which allows to compare a203

sample with a reference distribution was then used to determine whether the observed nL204

sample could have been generated by the respective demographic models. In other words205

this allowed us to reject (or not) the hypothesis that the (t1, ..., tnL) sample was a realization206

of the reference distributions (T StSI2 or T SSPSC2 ). Note that the estimation procedure and207

the KS test were performed on independent sets of T2 values. We thus simulated twice as208

many T2 values as needed (2nL instead of nL). With real data that would require that half209

of the loci be used to estimate (T̂ , α̂) and (M̂, n̂), whereas the other half would be used to210

perform the KS test.211

We expect that if the estimation procedure is accurate and if the KS test is performing212

well we should reject the SSPSC (respectively, the StSI) model when the data were simu-213

lated under the StSI (resp., the SSPSC) model. On the contrary we should not reject data214

simulated under the SSPSC (resp., the StSI) model when they were indeed simulated under215

that model. To validate our approach we used (t1, ..., t2nL) data sampled from the two T2216

distributions and quantified how the estimation procedure and the KS test performed. In217

order to do that, we varied the parameter values ((T, α) and (M,n)) for various 2nL values218
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as follows. For T and α we used all 36 pairwise combinations between these two sets of219

values (0.1, 0.2, 0.5, 1, 2, 5), and (2, 4, 10, 20, 50, 100), respectively. For M and n we used220

all the 48 combinations between the following values (0.1, 0.2, 0.5, 1, 5, 10, 20, 50) and (2,221

4, 10, 20, 50, 100), respectively. For 2nL we used the following values (40, 100, 200, 400,222

1000, 2000, 20000). Altogether we tested 588 combinations of parameters and number of223

loci. For each 2nL value and for each parameter combination (T, α) (or (M,n)) we realized224

100 independent repetitions of the following process. We first simulated a sample of 2nL225

values using the pdfs of the SSPSC (resp. StSI) model with (T, α) (resp. (M,n)). We then226

used the first nL values to obtain the ML estimates (T̂ , α̂) for the SSPSC model and (M̂, n̂)227

for the StSI model. Then, we performed a KS test using a 0.05 threshold on the second half228

of the simulated data (i.e. nL values) with each of the theoretical distributions defined by229

the estimated parameters. Finally, after having repeated this process 100 times we recorded230

all estimated parameters and counted the number of times we rejected the SSPSC and StSI231

models for each parameter combination and each 2nL value.232

Maximum likelihood estimation in the SSPSC case: We know from section the pdf of the233

coalescence time in the SSPSC model of two genes. We can thus write the likelihood function234

for any couple of parameters (α, T ), given one observation ti as:235

Lti(α, T ) =
1

α
e−T−

1
α
(ti−T )I[0,ti[(T ) + e−tiI]ti,+∞[(T ).

Given nL independent values t = (t1, t2, ..., tnL), the likelihood is:236

LSSPSC(α, T ) =

nL∏
i=1

Lti(T, α),

and taking the log it gives:237

log(LSSPSC(α, T )) =

nL∑
i=1

log(Lti(α, T )).

15



Lemma 0.1 Given a set of nL independent observations {t1, t2, ..., tnL}, the log-likelihood238

function log(LSSPSC) has no critical points in R2.239

For the proof and some comments, see Supplementary Materials.240

As a consequence of this lemma, we take (α̂, T̂ ) = argmaxa∈{1,...,nL}{log(LSSPSC(ma))}241

as the Maximum Likelihood estimates, where242

ma =


nL∑
i=1

tiIta<ti −Kta

K + 1
, ta

, a ∈ {1, 2, ..., nL}.
with243

K =

nL∑
i=1

Iti<ta

Maximum likelihood estimation in the StSI case: Under the StSI model the expression of244

the critical points is not analytically derived. We know from section the pdf of coalescence245

times for two genes. Given nL independent values t = (t1, t2, ..., tnL) we can compute the246

log-likelihood function for any set of parameters (n,M) as:247

log(LStSI(n,M)) =

nL∑
i=1

log(ae−αt + (1− a)e−βt))

We used the Nelder-Mead method (Nelder and Mead 1965) implementation of scipy248

(Jones et al. 2001) to find numerically an approximation to the maximum of the likelihood249

function. This method returns a pair of real numbers (n̂, M̂). Since n should be an integer250

we kept either bn̂c or bn̂c+ 1, depending on which had the largest log-likelihood value.251
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RESULTS252

Figure 4 shows, for various values of nL, the results of the estimation of α (panels (a), (c), and253

(e), for simulations assuming α = 10 and T = (0.1, 1, 2), respectively ; see Supplementary254

Material for the other values) and the estimation of n (panels (b), (d), and (f) for simulations255

with n = 10 and M = (10, 1, 0.5), respectively; see Supplementary Material for the other256

values, corresponding to 26 figures and 168 panels). The first thing to notice is that both257

α and n are increasingly well estimated as nL increases. This is what we expect since nL258

represents the amount of information (the number of T2 values or independent loci.) The259

second thing to note is that the two parameters are very well estimated when we use 10, 000260

values of T2. This is particularly obvious for n compared to α, probably because n must be261

an integer, whereas α is allowed to vary continuously. For instance, for most simulations we262

find the exact n value (without error) as soon as we have more than 1000 loci. However, we263

should be careful in drawing very general rules. Indeed, when fewer T2 values are available264

(i.e. fewer independent loci), the estimation precision of both parameters depends also on265

T and M , respectively. Interestingly, the estimation of α and n are remarkable even when266

these parameters are small. This means that even “mild” bottlenecks may be very well267

quantified (see for instance the Supplementary materials for α = 2, T values between 0.1268

and 1 when we use only 1000 loci). We should also note that when the bottleneck is very269

old (T = 5) the estimation of the parameters is rather poor and only starts to be reasonable270

and unbiased for nL = 10, 000. This is not surprising since the expected TMRCA is 1. Under271

the SSPSC model most genes will have coalesced by t = 5, and should therefore exhibit T2272

values sampled from a stationary population (i.e. α = 1). As the number of loci increases,273

a small proportion will not have coalesced yet and will then provide information on α. The274

expected proportion of genes that have coalesced by T = 5 is 0.993.275

Figure 5 shows for various values of nL the results of the estimation of T (panels (a), (c),276

and (e), for simulations assuming T = 0.2 and α = (2, 20, 100), respectively; see Supplemen-277

tary Material for the other values) and the estimation of M (panels (b), (d), and (f), for278
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simulations with M = 20 and n = (2, 20, 100), respectively; see Supplementary Material for279

the other values). As expected again, the estimates are getting better as nL increases. For280

the values shown here we can see that T , the age of the bottleneck is very well estimated281

even when α = 2 (for nL = 10, 000). In other words, even a limited bottleneck can be very282

precisely dated. For stronger bottlenecks fewer loci (between 500 and 1000) are needed to283

still reach a high precision. This is particularly striking given that studies suggest that it284

is hard to identify bottlenecks with low α values (Girod et al. 2011). Interestingly, the285

panels (b), (d) and (f) seem to suggest that it may be more difficult to estimate M than286

T . As we noted above this observation should be taken with care. Indeed, T and M are287

not equivalent in the same way as α and n. This is why we chose to represent a value of288

M such that M = 1/T , and why one should be cautious in drawing general conclusions289

here. Altogether this and the previous figure show that it is possible to estimate with a290

high precision the parameters of the two models by using only 500 or 1000 loci from a single291

diploid individual. There are also parameter combinations for which much fewer loci could292

be sufficient (between 50 and 100).293

In Figure 6 we show some results of the KS test for the two cases (See the Supplementary294

Materials for the other parameter combinations). In the left-hand panels ((a), (c), and (e))295

the data were simulated under the SSPSC model and we used the StSI model as a reference296

(i.e. we ask whether we can reject the hypothesis that genetic data were generated under297

a structured model when they were actually generated under a model of population size298

change). In the right-hand panels ((b), (d) and (f)) the same data were compared using the299

SSPSC model as reference and we computed how often we rejected them using a 5% rejection300

threshold. The left-hand panels exhibit several important features. The first is that, with301

the exception of T2 = 5 we were able to reject the wrong hypothesis in 100% of the cases302

when we used 10, 000 independent T2 values.303

This shows that our estimation procedure (as we saw above in figures 4 and 5) and the304

KS test are very powerful. The second feature is that for T = 5, the test performs badly305
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whatever the number of independent loci (at least up to 10, 000). This is expected since the306

expected TMRCA of two genes is t = 1, and 99.3% of the loci will have coalesced by t = 5.307

This means that out of the 10, 000, only c.a. 70 loci are actually informative regarding the308

pre-bottleneck population size. Another important feature of the left-hand panels is that309

the best results are generally obtained for T = 1, 0.5 and 2, whichever the value of α. This310

is in agreement with Girod et al. (2011) in that very recent population size changes are311

difficult to detect and quantify. The observation is valid for ancient population size changes312

as well. The right-hand panels are nearly identical, whichever α value we used (see also313

Supplementary Materials), and whichever number of T2 values we use. They all show that314

the KS test always rejects a rather constant proportion of data sets. This proportion varies315

between 3 and 15%, with a global average of 8.9%. Altogether our KS test seems to be316

conservative. This is expected because for low nL values the estimation of the parameters317

will tend to be poor. Since the KS test uses a reference distribution based on the estimated318

rather than the true values, it will reject the simulated data more often than the expected319

value of 5%.320

Figure 7 is similar to Figure 6 but the data were simulated under the StSI model and321

the KS test was performed first using the SSPSC model as a reference ((a), (c), (e)) and322

then using the StSI model as a reference ((b), (d), (f)). The left-hand panels ((a), (c), and323

(e)) show results when we ask whether we can reject the hypothesis that genetic data were324

generated under a population size change model when they were actually generated under325

a model of population structure. In the right-hand panels ((b), (d), and (f)) we computed326

how often we rejected the hypothesis that genetic data were generated under the StSI model327

when they were indeed generated under that model of population structure. Altogether,328

the left-hand panels suggest that the results are generally best when M = (0.1, 0.2, 1), but329

that we get very good results for most values of M when we have 10, 000 loci and can reject330

the SSPSC when they were actually generated under the StSI model. The right-hand panels331

show, as in Figure 6, that for all the values of nL and n we reject a rather constant proportion332
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of data sets (between 5 and 10%). Altogether the two previous figures (figures 6 and 7) show333

that it is possible to identify the model under which genetic data were generated by using334

genetic data from a single diploid individual.335

Figure 8 is divided in four panels showing the relationships between T and M (panels336

(b) and (d), for various values of α and n) and between α and n (panels (a) and (c),337

for various values of T and M). In each of the panels we simulated data under a model for338

specific parameter values represented on the x-axis, and estimated parameters from the other339

model, and represented the estimated value on the y-axis. Since we were interested in the340

relationship between parameters (not in the quality of the estimation, see above), we used the341

largest nL value and plotted the average of 100 independent estimation procedures. In panel342

(a) we simulated a population size change (SSPSC) for various T values (represented each by343

a different symbol) and several values of α on the x-axis. We then plotted the estimated value344

of n̂ for each case (i.e. when we assume that the data were generated under the StSI model).345

We find a striking linear relationship between these two parameters conditional on a fixed T346

value. For instance, a population bottleneck by a factor 50 that happened N0 generations ago347

(T = 1) is equivalent to a structured population with n̂ ≈ 22 islands (and M̂ ≈ 0.71). Panel348

(c) is similar and shows how data simulated under a structured population generates specific349

parameters of population bottlenecks. Panels (b) and (d) show the relationship between T350

and M . We have plotted as a reference the curve corresponding to y = 1/x. As noted above351

and shown on this graph, this relationship is only approximate and depends on the value352

of α and n. Altogether, this figure exhibits the profound relationships between the model353

parameters. They show that the qualitative relationships between α and n, and between T354

and 1/M discussed above are indeed real but only correct up to a correcting factor. Still this355

allows us to identify profound relationships between population structure and population356

size change.357

[Figure 4 about here.]358
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[Figure 5 about here.]359

[Figure 6 about here.]360

[Figure 7 about here.]361

[Figure 8 about here.]362
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DISCUSSION363

In this study we have analysed the distribution of coalescence times under two simple demo-364

graphic models. We have shown that even though these demographic models are strikingly365

different (Figure 1) there is always a way to find parameter values for which both models366

will have the same first two moments (Figure 2). We have also shown that there are intrin-367

sic relationships between the parameters of the two models (Figure 8). However, and this368

is a crucial point, we showed that the distributions were different and could therefore be369

distinguished. Using these distributions we developed a ML estimation procedure for the370

parameters of both models (T̂ , α̂) and (M̂, n̂) and showed that the estimates are accurate,371

given enough genetic markers. Finally, we showed that by applying a simple KS test we were372

able to identify the model under which specific data sets were generated. In other words, we373

were able to determine whether a bottleneck signal detected in a particular data set could374

actually be caused by population structure using genetic data from a single individual. The375

fact that a single individual provides enough information to estimate demographic param-376

eters is in itself striking (see in particular the landmark paper by Li and Durbin (2011)),377

but the fact that one individual (or rather sometimes as few as 500 or 1000 loci from that378

one individual) potentially provides us with the ability to identify the best of two (or more)379

models is even more remarkable. The PSMC (pairwise sequentially markovian coalescent)380

method developed by Li and Durbin (2011) reconstructs a theoretical demographic history381

characterized by population size changes, assuming a single non structured population. Our382

study goes further and shows that it could be possible to test whether the signal identified383

by the PSMC is due to actual population size changes or to population structure. However,384

models putting together these two scenarios have being proposed. In Wakeley (1999), a385

model considering a structured population who went through a bottleneck in the past is386

developed, allowing to estimate the time and the ratio of the bottleneck. Moreover, Wake-387

ley (1999) discussed the idea that, in structured populations, changes in the migration rate388

and/or the number of islands (demes) can shape the observed data in the same way that389
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effective population size changes do. Hence, we think that our work could be helpful to the390

aim of setting these two scenarios apart in order to detect (for example) false bottleneck391

signals. Nevertheless, while our study provides several new results, there are still several392

important issues that need to be discussed and much progress that can still be made.393

T2 and molecular data394

The first thing to note is that we assume, throughout our study, that we have access to the395

coalescence times T2. In real data sets, this is never the case and the T2 are rarely estimated396

from molecular data. While this may seem as a limitation, we should note that the recent397

method of Li and Durbin (2011), that uses the genome sequence of a single individual to398

infer the demographic history of the population it was sampled from, actually estimates the399

distribution of T2 values. In its current implementation the PSMC software does not output400

this distribution but it could be modified to do it. Note however, that the PSMC should401

only be able to provides a discretized distribution in the form of a histogram with classes402

defined by the number of time periods for which population size estimates are computed.403

In any case, this suggests that it is in theory possible to use the theoretical work of Li and404

Durbin to generate T2 distributions, which could then be used with our general approach.405

Moreover, it should be possible to use the theory developed here to compute, conditional406

of the T2 distribution, the distribution of several measures of molecular polymorphism. For407

instance, under an infinite site mutation model it is in principle possible to compute the408

distribution of the number of differences between pairs of non recombining sequences for409

the two demographic models analysed here. Similarly, assuming a single stepwise mutation410

model it should be possible to compute the distribution of the number of repeat differences411

between two alleles conditional on T2. However, we must add here that while it is easy to use412

these distributions to simulate genetic data (rather than T2 values) it is not straightforward413

to then use the genetic data to estimate the models’ parameters and apply a test to identify414
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the model under which the data were simulated. This would probably require a Khi-2 test415

since discrete rather continuous distributions would be compared. This is an issue that would416

deserve a full and independent study.417

Demographic models418

In our study we limited ourselves to two simple but widely used models. It would thus be419

important to determine the extent to which our approach could apply to other demographic420

models. The n-island or StSI model is a widely used model and it was justified to use it421

here. One of its strongest assumptions is that migration is identical between all demes.422

This is likely to be problematic for species with limited vagility. In fact, for many species a423

model where migration occurs between neighbouring populations such as the stepping-stone424

is going to be more likely. At this stage it is unclear whether one could derive analytically425

the pdf of T2 for a stepping-stone model. The work by Herbots (1994) suggests that it426

may be possible to compute it numerically by inversing the Laplace transform derived by427

this author. This work has not been done to our knowledge and would still need to be done.428

Interestingly, this author has also shown that it is in principle possible to derive analytically429

the pdf of T2 in the case of a two-island model with populations of different sizes. Again,430

this still needs to be done.431

The SSPSC model has also been widely used (Rogers and Harpending 1992) and432

represents a first step towards using more complex models of population size change. For433

instance, the widely used method of Beaumont (1999) to detect, date and quantify pop-434

ulation size changes (Goossens et al. 2006; Quéméré et al. 2012; Salmona et al. 2012)435

assumes either an exponential or a linear population size change. It should be straightfor-436

ward to compute the pdf of T2 under these two models because, as we explained above, the437

coalescent theory for populations with variable size has been very well studied (Donnelly438

and Tavare 1995; Tavaré 2004) and it is possible to write the pdf of T2 for any demo-439
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graphic history involving any type of population size changes. To go even further one could440

in principle use the history reconstructed by the PSMC (Li and Durbin 2011) as the ref-441

erence model of population size change and compare that particular demographic history to442

an n-island model using our results, and our general approach. At the same time, we should443

note that for complex models of population size change, including relatively simple ones such444

as the exponential model of Beaumont (1999), it is not straightforward to compute the445

number of differences between non recombining sequences. Significant work would probably446

be needed to apply the general approach outlined in our study to specific demographic mod-447

els. But we believe that the possibilities opened by our study are rather wide and should448

provide our community with new interesting problems to solve in the next few years.449

Comparison with previous work and generality our of results450

The present work is part of a set of studies aimed at understanding how population451

structure can be mistaken for population size change and at determining whether studies452

identifying population size change are mistaken or valid (Chikhi et al. 2010; Heller et al.453

2013; Paz-Vinas et al. 2013). It is also part of a wider set of studies that have recognised in454

the last decade the importance of population structure as potential factor biasing inference455

of demographic (Leblois et al. 2006; Städler et al. 2009; Peter et al. 2010; Chikhi456

et al. 2010; Heller et al. 2013; Paz-Vinas et al. 2013) or selective processes (Currat457

et al. 2006). Here we demonstrated that it is indeed possible to separate the SSPSC and458

StSI models. While we believe that it is an important result, we also want to stress that459

we should be cautious before extending these results to any set of models, particularly460

given that we only use the information from T2. Much work is still needed to devise new461

tests and estimation procedures for a wider set of demographic models and using more462

genomic information, including recombination patterns as in the PSMC method (Li and463

Durbin 2011). Beyond the general approach outlined here we would like to mention the464
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study of Peter et al. (2010) who also managed to separate one structure and one PSC465

(Population Size Change) model. These authors used an ABC approach to separate a model466

of exponential PSC from a model of population structure similar to the StSI model. Their467

structured model differs from ours by the fact that it is not an equilibrium model. They468

assumed that the population was behaving like an n-island model in the recent past, until T469

generations in the past, but that before that time, the ancestral population from which all470

the demes derived was not structured. When T is very large their model is identical to the471

StSI, but otherwise it may be quite different. The fact that they managed to separate the two472

models using an ABC approach is promising as it suggests that there is indeed information473

in the genetic data for models beyond those that we studied here. We can therefore expect474

that our approach may be applied to a wider set of models. We should also add that in their475

study these authors use a much larger sample size (25 diploid individuals corresponding to 50476

genes). They used a maximum of 200 microsatellites which corresponds therefore to 10,000477

genotypes, a number very close to the maximum number we used here. Altogether our study478

provides new results and opens up new avenues of research for the distribution of coalescent479

times under complex models.480

Sampling and population expansions481

Recent years have also seen an increasing recognition of the fact that the sampling scheme482

together with population structure may significantly influence demographic inference (Wakeley483

1999; Städler et al. 2009; Chikhi et al. 2010; Heller et al. 2013). For instance, Wake-484

ley (1999) showed that in the n-island model genes sampled in different demes will exhibit485

a genealogical tree similar to that expected under a stationary Wright-Fisher model. Since486

our work was focused on T2 we mostly presented our results under the assumption that the487

two genes of interest were sampled in the same deme. For diploids this is of course a most488

reasonable assumption. However, we should note that the results presented above also allow489
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us to express the distribution of T2 when the genes are sampled in different demes. We did490

not explore this issue further here, but it would be important to study the results under such491

conditions. Interestingly we find that if we assume that the two genes are sampled in two492

distinct demes, we can detect population expansions rather than bottlenecks. This could493

happen if we considered a diploid individual whose parents came from different demes. In494

that case, considering the two genes sampled in the deme where the individual was sampled495

would be similar to sampling his two parental genes in two different demes. Interestingly,496

this has also been described by Peter et al. (2010) who found that when the 25 individ-497

uals were sampled in different demes, they would detect population size expansions rather498

than bottlenecks. Our results are therefore in agreement with theirs. Similarly Heller499

et al. (2013) also found that some signals of population expansion could be detected under500

scattered sampling schemes.501

Conclusion: islands within individuals502

To conclude, our results provide a general framework that can in theory be applied to whole503

families of models. We showed for the first time that genomic data from a single individual504

could be used to estimate parameters that have to our knowledge never been estimated. In505

particular we showed that we were able to estimate the number of islands (and the number506

of migrants) in the StSI model. This means that one can in principle use genomic data from507

non model organisms to determine how many islands make up the metapopulation from508

which one single individual was sampled. This is of course true as well for model organisms509

but it is particularly meaningful for species for which the number of individuals with genomic510

data is limited. Our ability to estimate n is one of the most powerful results of our study.511

While such estimates should not be taken at face value, they surely should be obtained across512

species for comparative analyses. Also, during the last decade there has been a major effort513

to use programs such as STRUCTURE (Pritchard et al. 2000) to estimate the number of514
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”subpopulations” within a particular sample. Our work suggests that we might in principle515

provide additional results with only one individual. It is important to stress though that the516

answer provided here is very different from those obtained with STRUCTURE and similar517

methods and programs (Pritchard et al. 2000; Guillot et al. 2005; Chen et al. 2007;518

Corander et al. 2004). We do not aim at identifying the populations from which a set519

of individuals come. Rather we show that his/her genome informs us on the whole set of520

populations. In other words, even though we assume that there are n populations linked by521

gene flow, we show that each individual, is somehow a genomic patchwork from this (poorly)522

sampled metapopulation. We find these results reassuring, in an era where genomic data are523

used to confine individuals to one population and where division rather than connectivity is524

stressed.525
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List of Figures623

1 Demographic models. (a): Single step population size change (SSPSC) model.624

The x-axis represents t, the time to the past in units of generations scaled by625

the number of genes. At time t = T , the population size changes instanta-626

neously from N1 to N0 by a factor α. The y-axis represents the population627

sizes in units of N0 (i.e. N(t)/N(0)). (b): Structured symmetrical island628

(StSI) model for n = 5 islands. Each circle represents a deme of size N . All629

demes are connected to each other by symmetrical gene flow, represented by630

the edges. In this example the total number of genes is 5N . . . . . . . . . . . 36631

2 Expected value and Variance of T2 under the SSPSC and StSI models. This632

figure ilustrates how both models can have the same pair of values (E(T2), V ar(T2))633

for many sets of parameters. For the SSPSC model the time at which the pop-634

ulation size change occured was fixed to T = 0.1 whereas α varied from 1 to635

100 in one case, and T = 1.09, whereas α varied from 1 to 200 in the other636

case. For the StSI model the migration rate was fixed to M = 9 and M = 0.5,637

whereas n varies from 2 to 100. . . . . . . . . . . . . . . . . . . . . . . . . . 37638

3 Density of T2 under the SSPSC and StSI models. Two sets of parameter values639

(panels (a) and (b), respectively) were chosen on the basis that expectations640

and variances were close. Panel (a): Density for the SSPSC model with641

T = 0.1 and α = 10.94, and for the StSI model with M = 9 and n = 10.642

For this set of parameters we have E
(
T SSPSC2

)
= 9.994, and E

(
T StSI2

)
= 10,643

V ar
(
T SSPSC2

)
= 118.7 and V ar

(
T StSI2

)
= 118.0. Panel (b): The same, but644

for T = 1.09 and α = 125.91, and for M = 0.5 and n = 43. The corresponding645

expectations and variances are E
(
T SSPSC2

)
= 42.997, and E
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Figure 1: Demographic models. (a): Single step population size change (SSPSC) model.
The x-axis represents t, the time to the past in units of generations scaled by the number
of genes. At time t = T , the population size changes instantaneously from N1 to N0 by a
factor α. The y-axis represents the population sizes in units of N0 (i.e. N(t)/N(0)). (b):
Structured symmetrical island (StSI) model for n = 5 islands. Each circle represents a deme
of size N . All demes are connected to each other by symmetrical gene flow, represented by
the edges. In this example the total number of genes is 5N .
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Figure 2: Expected value and Variance of T2 under the SSPSC and StSI models. This figure
ilustrates how both models can have the same pair of values (E(T2), V ar(T2)) for many sets
of parameters. For the SSPSC model the time at which the population size change occured
was fixed to T = 0.1 whereas α varied from 1 to 100 in one case, and T = 1.09, whereas α
varied from 1 to 200 in the other case. For the StSI model the migration rate was fixed to
M = 9 and M = 0.5, whereas n varies from 2 to 100.
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Figure 3: Density of T2 under the SSPSC and StSI models. Two sets of parameter values
(panels (a) and (b), respectively) were chosen on the basis that expectations and variances
were close. Panel (a): Density for the SSPSC model with T = 0.1 and α = 10.94, and for the
StSI model with M = 9 and n = 10. For this set of parameters we have E

(
T SSPSC2

)
= 9.994,

and E
(
T StSI2

)
= 10, V ar

(
T SSPSC2

)
= 118.7 and V ar

(
T StSI2

)
= 118.0. Panel (b): The same,

but for T = 1.09 and α = 125.91, and for M = 0.5 and n = 43. The corresponding
expectations and variances are E

(
T SSPSC2

)
= 42.997, and E

(
T StSI2

)
= 43, V ar

(
T SSPSC2

)
=

8905 and V ar
(
T StSI2

)
= 8905.
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Figure 4: Estimation of α and n. Panels (a), (c) and (e): Estimation of α under the SSPSC
model for different sample sizes and T values. Simulations performed with α = 10 and
T = (0.1, 1, 2). Panels (b), (d) and (f): Estimation of n under the StSI model for different
sample sizes and M values. Simulations performed with n = 10 and M = (10, 1, 0.5).
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Figure 5: Estimation of T and M . Panels (a), (c), (e)): Estimation of T under the SSPSC
model for different sample sizes and values of α. Simulations performed with α = (2, 20, 100)
and T = 0.2. Panels (b), (d), (f): Estimation of M under the StSI model for different sample
sizes and values of n. Simulations performed with n = (2, 20, 100) and M = 5.
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Figure 6: Proportion of rejected data sets simulated under the SSPSC model. Panels (a),
(c) and (e): the reference model is the StSI model. Panels (b), (d), and (f): the reference
model is the SSPSC, i.e. the model under which the data were simulated. Note that for the
abscissa we used 2nL instead of nL because in order to perform the KS test it is necessary
to first estimate the parameters using nL loci and then an independent set of nL values of
T2.
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Figure 7: Proportion of rejected data sets simulated under the StSI model. Panels (a), (c),
and (e): the reference model is the SSPSC. Panels (b), (d), and (f): the reference model
is the StSI model, i.e. the model under which the data were simulated. Note that for the
abscissa we used 2nL instead of nL because in order to perform the KS test it is necessary
to first estimate the parameters using nL loci and then an independent set of nL values of
T2.
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Figure 8: Relationships between parameters of the models
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