
HAL Id: hal-01087844
https://hal.science/hal-01087844

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explanation-Based Large Neighborhood Search
Xavier Lorca, Charles Prud’Homme, Narendra Jussien

To cite this version:
Xavier Lorca, Charles Prud’Homme, Narendra Jussien. Explanation-Based Large Neighborhood
Search. Constraints, 2014, 19 (4), pp.339-379. �10.1007/s10601-014-9166-6�. �hal-01087844�

https://hal.science/hal-01087844
https://hal.archives-ouvertes.fr

Noname manuscript No.

(will be inserted by the editor)

Explanation-Based Large Neighborhood Search

Charles Prud’homme · Xavier Lorca ·

Narendra Jussien

Received: date / Accepted: date

Abstract One of the most well-known and widely used local search techniques
for solving optimization problems in Constraint Programming is the Large Neigh-
borhood Search (LNS) algorithm. Such a technique is, by nature, very flexible
and can be easily integrated within standard backtracking procedures. One of its
drawbacks is that the relaxation process is quite often problem dependent. Several
works have been dedicated to overcome this issue through problem independent
parameters. Nevertheless, such generic approaches need to be carefully parameter-
ized at the instance level. In this paper, we demonstrate that the issue of finding a
problem independent neighborhood generation technique for LNS can be addressed
using explanation-based neighborhoods. An explanation is a subset of constraints
and decisions which justifies a solver event such as a domain modification or a
conflict. We evaluate our proposal for a set of optimization problems. We show
that our approach is at least competitive with or even better than state-of-the-art
algorithms and can be easily combined with state-of-the-art neighborhoods. Such
results pave the way to a new use of explanation-based approaches for improving
search.

C. Prud’homme
EMNantes, INRIA TASC, CNRS LINA,
FR-44307 Nantes Cedex 3, France
Tel.: +33-251-858-368
E-mail: Charles.Prudhomme@mines-nantes.fr

X. Lorca
EMNantes, INRIA TASC, CNRS LINA,
FR-44307 Nantes Cedex 3, France
Tel.: +33-251-858-232
E-mail: Xavier.Lorca@mines-nantes.fr

N. Jussien
Télécom Lille
FR-59653 Villeneuve d’Ascq Cedex, France
Tel.: +33-320.335.585
E-mail: Narendra.Jussien@telecom-lille.fr

2 Charles Prud’homme et al.

1 Introduction

Local search techniques are very effective to solve hard optimization problems.
Most of them are, by nature, incomplete. In the context of constraint programming
(CP) for optimization problems, one of the most well-known and widely used local
search techniques is the Large Neighborhood Search (LNS) algorithm [25,31]. The
basic idea is to iteratively relax a part of the problem, then to use constraint
programming to evaluate and bound the new solution. A generic and common
way to reinforce diversification of LNS is to introduce restart during the search
process. This technique has proven to be very flexible and to be easily integrated
within standard backtracking procedures [22]. Various generic techniques have
been studied in [23], but only one of them appear to be efficient in practice, which
was defined by the authors as “accepting equivalent intermediate solutions in a
search iteration instead of requiring a strictly better one”. One drawback of LNS
is that the relaxation process is quite often problem dependent. Some works have
been dedicated to the selection of variables to relax through general concept not
related to the class of the problem treated [5,24]. However, in conjunction with CP,
only one generic approach, namely Propagation-Guided LNS [24], has been shown
to be very competitive with dedicated ones on a variation of the Car Sequencing
Problem. Nevertheless, such generic approaches have been evaluated on a single
class of problem and need to be thoroughly parametrized at the instance level,
which may be a tedious task to do. It must, in a way, automatically detect the
problem structure in order to be efficient.

During the last decade, explanation-based techniques have regained attention
in CP. Explanations, in a nutshell, can be seen as an explicit trace of the propa-
gation mechanism making it possible to identify a set of constraints and decisions
(variable assignments, cuts) responsible for the current state of the domain of a
variable [21,33]. Explanations have been used to identify hidden structures in prob-
lem instances [2] and to improve search [12,14]. However, explanations are quite
intrusive when computed and quite space consuming when explicitly maintained
during search.

In this paper, we show that the issue of finding a problem independent neigh-
borhood generation technique for LNS can be addressed using explanations. A
first contribution relies on generic, configuration-free approaches to choose vari-
ables to relax. One is based on an explanation of the inability to repair a solution,
the other is based on an explanation of the non-optimal nature of the current
solution. For this purpose we will show how classical explanation-based search
techniques can be modified and simplified to be efficiently integrated within a
standard backtrack-based algorithm. A second contribution is the operational im-
plementation of those neighborhoods for further selecting variables to fix in a
partial solution. We suggest three combinations of neighborhoods based on ex-
planations and evaluate them on a set of optimization problems extracted from
the MiniZinc distribution.1 We show that our approaches are competitive with or
even better than state-of-the-art generic neighborhoods paving the way to a new
use of explanation-based approaches for improving search. Finally, we evaluate an
ultimate combination made of explanation-based neighborhoods and propagation-

1 http://www.minizinc.org/

http://www.minizinc.org/

Explanation-Based Large Neighborhood Search 3

guided ones. This last combination performs slightly better than the individual
approaches.

The paper is organized as follows: First, Section 2 introduces the required
concepts to present our approach; Next, Section 3 details the explanation-based
neighborhoods for LNS; Finally, Section 4 shows the improvements brought by our
proposal with respect to the state-of-the-art CP approaches for LNS.

2 Background

Constraint programming is based on relations between variables, which are stated
by constraints. A Constraint Satisfaction Problem (CSP) is defined by a triplet
〈V,D, C〉 and consists in a set of n variables V, their associated domains D, and
a collection of s constraints C. The domain domv ∈ D associated with a variable
v ∈ V defines a finite set of integer values v can be assigned to. lowv (respectively,
uppv) denotes the lower bound (respectively, upper bound) of domv. The initial
domain of v, its lower bound and its upper bound are denoted respectively Domv,
Lowv and Uppv. An assignment, or instantiation, of a variable v to a value x is the
reduction of its domain to a singleton, domv = {x}; v∗ denotes the value assigned
to a variable v.

A constraint c ∈ C on k variables (v1, . . . , vk) is a logic formula that defines
allowed combinations of values for the variables (v1, . . . , vk). A constraint c is
equipped with a (set of) filtering algorithm(s), named propagator(s). A propagator
removes, from the domains of (v1, . . . , vk), values that cannot correspond to a valid
combination of values. A solution of a CSP is an assignment of all its variables
simultaneously verifying the constraints in C.

Solving a CSP is usually performed with a tree-based search, basically, a depth
first search algorithm. A branching decision for a CSP (a decision in the following)
δ is a triplet 〈v, o, x〉 composed of a variable v ∈ V (not yet assigned), an operator
o (most of the time “=”) and a value x ∈ domv. This triplet can be considered as
a unary constraint over domv.

Each time a decision is applied or negated, its impact is propagated through
the constraint network of the CSP. After the propagation step, if the domain
of a variable becomes empty (domain wipe out) or if no valid combination of
values can be got for at least one constraint (inconsistency), there is no feasible
solution within the current branch of the search tree. A classical search algorithm
backtracks to a previous decision to negate it, if any, or eventually stops. If all
the domains are reduced to singletons, a solution of a constraint network is found.
Finally, if at least one domain is not reduced to a singleton, another decision
is selected and applied. A decision path is a chronologically ordered sequence of
decisions.

A Constraint Optimization Problem (COP) is a CSP augmented with a cost
function over an objective variable o. The aim of a COP is to find a solution for
which o is maximized or minimized. When a solution S is found for a COP, a cut

CS is posted on the objective variable. A cut states that the next solution should be
better than the current one until the optimal value of the objective is reached. Most
of the time, the initial domain of the objective variable is unbounded. Nevertheless,
a convenient way to represent it is to store its bounds.

4 Charles Prud’homme et al.

2.1 Large Neighborhood Search

The Large Neighborhood Search metaheuristic was proposed in [25,31] . It was
initially designed to compute moves for the Vehicle Routing Problem whose eval-
uation and validation were made thanks to a tree-based search [31]. LNS is a
two-phase algorithm which partially relaxes a given solution and repairs it. Given
a solution as input, the relaxation phase builds a partial solution (or neighbor-

hood) by choosing a set of variables to reset to their initial domain; The remaining
ones are assigned to their value in the solution. This phase is directly inspired
from the classical Local Search techniques [25]. Even though there are various
ways to repair the partial solution, we focus on the original technique, proposed
by [31], in which Constraint Programming is used to bound the objective vari-
able and to assign a value to variables not yet instantiated. These two phases are
repeated until the search stops (optimality proven or limit reached). While the
implementation of LNS is straightforward, the main difficulty lies in the design of
neighborhoods able to move the search further. Indeed, the balance between diver-
sification (i.e., evaluating unexplored sub-tree) and intensification (i.e., exploring
them exhaustively) should be well-distributed. The general behavior of LNS is
described by Algorithm 1.

Algorithm 1 Large Neighborhood Search
Require: an initial solution S
1: procedure LNS
2: while Optimal solution not found and a stop criterion is not encountered do

3: relax(S)
4: S′ ← findSolution() ⊲ The cut CS is automatically posted
5: if S′ 6= NULL then ⊲ An improving solution has been found
6: S = S′

7: end if

8: end while

9: end procedure

Starting from an initial solution S, LNS selects and relaxes a subset of variables
(relax, line 3). The current partial solution is then repaired in order to improve
the current solution S (line 4). If such a solution S′ is found (line 5), it is stored
(line 6). These operations are executed until the optimal solution is found or a
stopping criterion (for instance a time limit) is encountered (line 2). Note that
proving the optimality of a solution is not what LNS is designed for.

Selecting the variables to relax is the tricky part of the algorithm. A random
selection of the variables to unfix may be considered first [10,31]. But, problem
dedicated neighborhoods tend to be more efficient in practice. In [31], the authors
solved Vehicle Routing Problems by selecting the set of customer visits to remove
and re-insert. On the Network Design Problem, the structure of the problem is
exploited to define accurate neighborhoods [3]. On the Job Shop Scheduling Prob-
lem, a neighborhood that deals with the objective function has been studied [5];
the sub-problems were solved with MIP. Another approach relies on a portfolio of
neighborhoods and Machine Learning techniques to converge on the most efficient
neighborhoods: it has been successfully evaluated on scheduling problems with
specific neighborhoods [17]. In [23], the authors have tested several techniques to
improve the global behavior of their LNS solver while solving the Car Sequencing

Explanation-Based Large Neighborhood Search 5

Problem. The most remarkable technique, named walking, consists in accepting
equivalent intermediate solutions. In [18], the authors use Reinforcement Learning
to dynamically configure the size of the partial solution, the search limit and the se-
lection of the neighborhoods. They compare various configuration and conclude on
the selection of the two former parameters but the dedicated neighborhood of [23]
still betters the class of problem treated (the Modified Car Sequencing Problem).
Other classes of problem have been tackled using LNS in the last decade: the
Service Technician Routing and Scheduling Problems [16], the Pollution-Routing
Problem [7], the Founder Sequence Reconstruction Problem [29], Strategic Sup-
ply Chain Management Problem [4], the Machine Reassignment Problem [20], to
name the most recent ones.

Another approach is to design generic neighborhoods. In [24], sophisticated
neighborhoods, based on the graph of variable dependencies, have been proposed.
The authors introduced propagation-guided neighborhoods in which the volume of
domain reduced, thanks to the propagation, helps to link variables together in-
side or outside partial solutions. Hence, they suggest three neighborhoods which,
combined together, tackle a modified version of the Car Sequencing Problem.
Even though it is not problem-dedicated, such an approach relies on an accu-
rate parametrization of the heuristics: the initial size of the partial solution, its
evolution during the resolution, number of variables “close” to the selected one.
However, this approach is the reference while dealing with generic neighborhoods
design. Most recently, a generic calculations of neighborhoods has been published
in a workshop on Local Search Techniques [19]. The authors suggest generic ap-
proaches to automatically choose the subset of variables to fix, they obtain inter-
esting results in comparison with the standard random choice. But no comparison
with [24] has been done and there has been no further action on this preliminary
work.

Another point to consider while designing neighborhoods is the size of the
partial solution. If the relaxed part of the solution is very large, LNS relies too
much on the tree-based search: finding a new solution depends more on the search
strategy than on the neighborhoods, and finally suffers from poor diversification.
On the contrary, if the size is too small, the tree-based search may not have enough
space to explore and may have trouble finding solutions. Thus, in [31], the authors
proposed to gradually increase the part of the solution to reconsider: it reinforces
the diversification (it may also bring completeness to the search process).

In order to improve the robustness of LNS, the authors of [22] have shown that
it is worth imposing a small search limit (for instance, a fail limit) during the repa-
ration phase. If the search reaches the limit with no solution, a new neighborhood is
generated and the search is launched again. Indeed, it is worth diversifying search
by quickly computing a new neighborhood instead of trying to repair a unique
one, without limitation nor guarantee of success. This method limits the trashing
and reduces the tradeoff between diversification and intensification. Evaluations
have shown that it helps finding better quality solutions.

In summary, the issues in LNS are twofold. The first one is to maintain a fair
tradeoff between diversification and intensification in neighborhoods computation.
This is commonly addressed by introducing randomization in the neighborhoods or
alternating random neighborhoods with more sophisticated ones, combined with a
fast restart policy. The second one is to design generic yet efficient neighborhoods.

6 Charles Prud’homme et al.

2.2 Explanations

Nogoods and explanations have long been used in various paradigms for improv-
ing search [9,30,27,12,33]. An explanation records some sufficient information to
justify an inference made by the solver (domain reduction, contradiction, etc.). It
is made of a subset of the original propagators of the problem and a subset of
decisions applied during search. Explanations represent the logical chain of infer-
ences made by the solver during propagation in an efficient and usable manner.
In a way, they provide some kind of a trace of the behavior of the solver as any
operation needs to be explained [6].

Explanations have been successfully used for improving constraint program-
ming search process. Both complete (as the mac-dbt algorithm [14]) and incom-
plete (as the decision-repair algorithm [12,26]) techniques have been proposed.
Those techniques follow a similar pattern: learning from failures by recording each
domain modification with its associated explanation (provided by the solver) and
taking advantage of the information gathered to be able to react upon failure
by directly pointing to relevant decisions to be undone. Complete techniques, in
this context, follow a most-recent based pattern while incomplete technique design
heuristics to be used to focus on decisions more prone to allow a fast recovery upon
failure.

Example 1 Let consider the following COP = 〈V,D, C〉:

– V = 〈x1, x2, x3, x4, x5, x6, o〉,
– D = 〈[0, 4], [0, 4], [−1, 3], [−1, 3], [0, 4], [0, 4], [0, 10]〉 and
– C = 〈C1 ≡

∑

6

i=1
xi = o, C2 ≡ x1 ≥ x2, C3 ≡ x3 ≥ x4 and C4 ≡ x5 + x6 > 3〉.

– where the objective is to minimize o.

The initial solution S1 = 〈0, 0, 2, 0, 2, 2, 6〉 is found by applying the following de-
cision path PS1

= (δ1, δ2, δ3, δ4, δ5), where δ1 : 〈x1,=, 0〉, δ2 : 〈x4,=, 0〉, δ3 : 〈x3,=
, 2〉, δ4 : 〈x5,=, 2〉 and δ5 : 〈x6,=, 2〉. Table 1 depicts the search trace.

Table 1 The trace of the search of the COP defined in Example 1.

Step Cause Consequences

1.a δ1 x1 = [0,0]
1.b x1 ∧ C2 x2 = [0,0]
2.a δ2 x4 = [0,0]
2.b x4 ∧ C3 x3 = [0, 3]
3.a δ3 x3 = [2,2]
3.b x3 ∧ C1 o = [2, 10]
4.a δ4 x5 = [2,2]
4.b x5 ∧ C4 x6 = [2, 4]
4.c x5 ∧ x6 ∧ C1 o = [6,8]
5.a δ5 x6 = [2,2]
5.b x6 ∧ C1 o = [6,6]

The first step (Step 1.a) describes the effect of the application of δ1: x1 is
instantiated to 0, and thanks to C2, x2 is also instantiated to 0 (Step 1.b). Then,
the application of δ2 instantiates x4 to 0 (Step 2.a); It triggers the execution of

Explanation-Based Large Neighborhood Search 7

the propagator of C3 which updates the lower bound of x3 to 0 (Step 2.b). The
application of δ3 instantiates x3 to 2 (Step 3.a), the lower bound of o is then
updated to 2 because of C1 (Step 3.b). The application of δ4 instantiates x5 to
2 (Step 4.a), it triggers the execution of the propagator of C4 which updates the
lower bound of x6 to 2 (Step 4.b); Then, the update of the domain of o stems
from those two previous modifications (Step 4.c). Finally, the application of δ5
instantiates x6 to 2 (Step 5.a). This events instantiates o to 6 by executing the
propagator of C1 (Step 5.b).

Table 2 shows the explanations per value removals computed during the res-
olution of the COP when reaching solution S1. A line separates the explanations
of each variable, and a dash line separates groups of explanations, i.e., equivalent
explanations for various value removals from the same variable. In that exam-

Table 2 Explanations per value removals for all variables of the COP.

Variable {removed value} ← Explanation

x1 {1} ← δ1,
{2} ← δ1,
{3} ← δ1,
{4} ← δ1;

x2 {1} ← (δ1 ∧ C2),
{2} ← (δ1 ∧ C2),
{3} ← (δ1 ∧ C2),
{4} ← (δ1 ∧ C2);

x3 {-1} ← (δ2 ∧ C3),
{0} ← δ3,
{1} ← δ3,
{3} ← δ3,
{4} ← δ3;

x4 {-1} ← δ2,
{1} ← δ2,
{2} ← δ2,
{3} ← δ2,
{4} ← δ2;

x5 {0} ← δ4,
{1} ← δ4,
{3} ← δ4,
{4} ← δ4;

x6 {0} ← (δ4 ∧ C4),
{1} ← (δ4 ∧ C4),
{3} ← δ5,
{4} ← δ5;

o {0} ← (δ3 ∧ C1),
{1} ← (δ3 ∧ C1),
{2} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),
{3} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),
{4} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),
{5} ← (δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C3 ∧ C4),
{7} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ δ5 ∧ C1 ∧ C2),
{8} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ δ5 ∧ C1 ∧ C2),
{9} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C2),
{10} ← (δ1 ∧ δ2 ∧ δ3 ∧ δ4 ∧ C1 ∧ C2);

8 Charles Prud’homme et al.

ple, some variables are uniformly explained, e.g., every value removal from x1 is
explained by δ1. That is also the case for x2, x4 and x5. Explanations may not be
as obvious. Concerning o, all value removals are implied by propagation (e.g., 0
is explained by δ3 ∧ C1), some of them are explained by a several decisions and
constraints. For instance, the explanation of the removal of 2 from o is not trivial
to recover. Retrospectively, the increase of the lower bound of o is related to the
sum constraint (C1) and the lower bounds of the variables involved, more precisely
the lower bounds of x3, x5 and x6. The lower bounds of x5 and x6 depends on
the application of δ4 through C4 and C1. The lower bound of x3 depends on the
application of δ2, C3 and δ3. ♦

Key components of an explanation system. Adding explanations capabilities to a
constraint solver requires addressing several aspects:

– computing explanations: domain reductions are usually associated with a cause:
the propagator that actually performed the modification. This information can
be used to compute an explanation. This can be done synchronously during
propagation (by intrusive modification of the propagation algorithm) or asyn-
chronously post propagation (by accessing an explanation service provided by
propagators).

– storing explanations: a data structure needs to be defined to be able to store
decisions made by the solver, domain reductions and their associated explana-
tions. There exist several ways for storing explanations: a flattened storage of
the domain modifications and their explanations composed of propagators and
previously made decisions, or a unflattened storage of the domain modifica-
tions and their explanations expressed through previous domain modifications
[6]. The data structure is referred to as explanation store in the following.

– accessing explanations: the data structure used to store explanations needs to
provide access not only to domain modification explanations but also to current
upper and lower bounds of the domains, current domain as a whole, etc.

In [13], the authors give an overview of techniques used to compute explanations
and to handle them in a constraint solver. Despite being possibly very efficient,
explanations suffer from several drawbacks:

– memory: storing explanations requires storing a way or another, variable mod-
ifications;

– cpu: computing explanations usually comes with a cost even though the prop-
agation algorithm can be partially used for that;

– software engineering: implementing explanations can be quite intrusive within
a constraint solver.

Finally, explanations were initially designed to deal with satisfaction problems.
Generally, an optimization problem is processed as a sequence of satisfaction prob-
lems, in which cuts are added along with resolution to handle the optimization
criterion. Regarding the explanation store, addition of cuts renders some explana-
tions obsolete. Indeed, cuts cause modifications over domains that were previously
achieved thanks to propagators.

Explanation-Based Large Neighborhood Search 9

Fig. 1 Illustration of exp-cft.

ROOT

S

CS
ROOT

X

3 Explanation-Based LNS

In this section we introduce two new neighborhood computation techniques based
on explanations for LNS. Those neighborhoods are referred to as exp-cft and
exp-obj. Basically, we introduce implementations of the RELAX(S) method of
Algorithm 1. For sake of simplicity, the following descriptions are stated in a
minimization context; but, straightforward modifications adapt them to a maxi-
mization context.

3.1 Explaining the cut: exp-cft

Historically, explanations have been used to explicate and repair a conflict. It is
therefore only natural that we suggest a first neighborhood based on conflicts.
But, instead of explaining each conflict occurring during the resolution process,
we will force a conflict to be thrown when a solution is found. Indeed, we assume
that there are far less solutions than failures and, thus, such a choice limits the
overhead induces by plugging explanations in. A solution never leads to a conflict,
though, so it needs to be prompted. When solving a COP, every new solution
should be better than the previous one, until the optimum is reached. This is
dynamically achieved by posting cuts. Given a solution S, PS the decision path
that leads to S and CS the cut induces by S, it is not pertinent to entirely impose
PS together with the CS in a standard resolution, because it necessarily leads to
a useless and trivial conflict. However, provoking the generation of such a conflict
with explanations plugged-in will enable to point out which decisions of PS cannot
be applied together with the cut. And then, the variables associated with these
decisions may be helpful to compute partial solutions more able to be repaired.
This serves as a basis for the first neighborhood, named exp-cft. Figure 1 depicts
the main operations driven by exp-cft.

First, the conflict is provoked by imposing anew the decisions of P together
with the cut. Once the conflict occurs, conflict-related decisions are retrieved from

10 Charles Prud’homme et al.

the explanation store. Second, neighborhoods are built on the basis of variables
associated with the decisions explaining the cut. Since the application of the en-
tire decision path led to build a solution e.g., an assignment of all its variables,
a relaxation of the decision path will necessarily leave some variables uninstan-
tiated, thereby building a partial solution. The complete method is described in
Algorithm 2; The entry method is relax exp-cft.

Algorithm 2 Cut-guided neighborhood (in a minimization context)
Require: o: the objective variable
Require: k: an integer
Require: Dc: set of decisions related to the conflict provoked by the cut
1: procedure relax exp-cft(S)
2: P ←pathTo(S) ⊲ Retrieves the decision path to S
3: if a new solution has been found then

4: E ← explainCut(S, o)
5: Dc ←extractDecision(E) ⊲ Extracts decisions from explanations
6: end if

7: R←random(Dc) ⊲ Randomly selects decisions in Dc

8: apply(P \ R) ⊲ Applies P minus R
9: end procedure

10: procedure explainCut(S, o)
11: P ← pathTo(S)
12: Domo \ o

∗ ⊲ Posts the cut
13: F ← ∅ ⊲ Propagation return status
14: repeat

15: δ ←pollFirst(P)
16: F ← apply(δ) ⊲ δ is applied and propagated
17: until F 6= ∅ ⊲ A conflict is thrown by propagation
18: return explainConflict(F)
19: end procedure

20: procedure explainConflict(F)
21: E ← ∅ ⊲ Explanation of the conflict
22: if F is domain wipe out then

23: for x ∈ d do

24: E ← E
⋃
explainRemoval(d, x) ⊲ Explains the removal of x from d.

25: end for

26: else if F is constraint inconsistency then

27: E ←explainConstraint(c) ⊲ Constraint-specific method
28: end if

29: return E
30: end procedure

Each time a new solution is found (line 3), the method explainCut (lines 4)
is called. It returns the explanation of the conflict from which conflict-related
decisions are extracted (line 5). Then, some of these decisions are randomly selected
(line 7) and removed from the original decision path P . Finally, the relaxed path
is imposed (line 8).

The explainCut method (line 10-19) works as follow: first the decision path
P of a solution S is retrieved (line 11), and the cut is posted (line 12). Then, all
decisions of P are imposed and propagated one by one, with respect to the original
(i.e., chronological) order (line 14-17). When the problem becomes unsatisfiable
(line 17), the loop ends and the set of decisions related to the conflict is queried
from the explanation store (line 18) by a call to the explainConflict method.

The explainConflict method (line 20-30) queries the explanation store and
returns the set of decisions and constraints that explains the conflict. The type
of conflict thrown conditions the way the explanation is built. If a domain wipe

Explanation-Based Large Neighborhood Search 11

out occurs (line 22), the resulting explanation is the conjunction of the explana-
tion of each value removal (a call to the explainRemoval method, line 24). If
a constraint inconstency is detected (line 26), the explainConstraint method
is called to retrieve an explanation (line 27). The default implementation calls
the explainRemoval method for all values removed from the variables of the
constraint; but constraint-specific implementations of the explainConstraint
method provide more accurate explanations. At the end, both explainRemoval
and explainConstraint query the explanation store .

Let Dc be the set of decisions related to the conflict provoked by the cut , there
are 2|Dc|−1 subsets of Dc, each of them corresponding to a possible relaxation of
P . Enumerating all the subsets of Dc is not polynomial, and there is no guarantee
that small neighborhoods are more able to build better solutions than bigger ones.
Hence, to enforce the diversification of exp-cft and to test neighborhoods of
various sizes, we choose to randomly select α decisions to relax, where α is also
randomly chosen in [1, |Dc| − 1].

Example 2 On a call to explainCut of the exp-cft neighborhood (Algorithm 2,
Line 4), the first instruction is to post the cut (here, CS1

≡ o < 6), then PS1
is

imposed. The trace of the execution is reported in Table 3.

Table 3 The trace of the search of the COP defined in Example 1 with the
exp-cft neighborhood.

Step Cause Consequences

1’ CS1
o = [0,5]

2’.a δ1 x1 = [0,0]
2’.b x1 ∧ C2 x2 = [0,0]

3’.a δ2 x4 = [0,0]
3’.b x4 ∧ C3 x3 = [0, 3]
4’.a δ3 x3 = [2,2]
4’.b x3 ∧ C1 x5 = [0,3], x6 = [0,3], o = [2, 5]
4’.c x5 ∧ x6 ∧ C4 x5 = [1, 3], x6 = [1, 3]
4’.d x5 ∧ x6 ∧ C1 x5 = [1,2], x6 = [1,2], o = [4, 5]
4’.e x5 ∧ x6 ∧ C4 x5 = [2, 2], x6 = [2, 2]
4’.f x5 ∧ x6 ∧ C1 inconsistency

The application of the cut removes values greater than 5 from the domain of
o (Line 1’). The application of δ1 (Line 2’.a and Line 2’.b) and δ2 (Line 3’.a and
Line 3’.b) have the same effect with or without the cut. However, the application of
δ3 (step 4’.a), together with CS1

, triggers more reductions and a conflict is detected
by the propagator of C1 (Line 4’.f). The domains of xi and o are such that it is
impossible to find a valid assignment for o. Indeed, in [11], the authors established
that if

∑n
i=1

uppxi
− lowo > 0 then the constraint is unsatisfiable. In our case,

∑n
i=1

uppxi
− lowo = 2, hence, the inconsistency is explained by the current upper

bounds of xi and the lower bound of o which, themselves, are explained by the
decisions δ1, δ2 and δ3. The conflict-related decisions are: Dc = {δ1, δ2, δ3}. The
decisions δ4 and δ5 have not been applied before the conflict occurs. Thus, those
decisions cannot be part of the conflict-related decisions set.

12 Charles Prud’homme et al.

Fig. 2 Illustration of exp-obj.

ROOT

S

ROOT

domo

On a call to relax exp-cft, δ4 and δ5 will be imposed by default, together
with two or less randomly selected decisions from Dc. ♦

The explanation of a conflict may not be unique nor minimal [13]. There may
be no neighborhood of exp-cft that leads to a new solution. However, when
the application of the cut directly throws a conflict, then Dc is empty and the
resolution can be interrupted: the optimal solution has been found and proven
(Algorithm 2, Line 2). This explains why such a method can be complete [12,26].

3.2 Explaining the domain of the objective variable: exp-obj

The previous method defines neighborhoods based on conflicts, which is a common
way to exploit explanations. We now present an alternative based on the non

optimal nature of the best solution found so far. At a certain point of a COP
resolution, one may wonder what prevents the solver from finding a better solution
than a given one. The explanation store helps to determine which decisions prevent
the objective variable from taking better values (in a minimization context, values
strictly smaller than the current one, o∗). The variables involved in these decisions
may be helpful to compute partial solutions more able to improve the best solution
known so far. This serves as a basis for the second neighborhood, named exp-obj.
Figure 2 depicts the main operations driven by exp-obj.

First, the explanation store is queried to retrieve decisions which are related to
the removals of values below o∗. Second, neighborhoods are built on the basis of
the variables associated with those decisions. Since, we aim at finding the optimal
solution, it starts by relaxing decisions related to the smallest values first. The com-
plete method is described in Algorithm 3; The entry point is the relax exp-obj

method.
Each time a new solution is found (line 3), the method explainDomain (line 4)

is called. It returns the set of decisions related to the removal of values smaller
than o∗ from the objective variable. Then, some decisions are removed from the

Explanation-Based Large Neighborhood Search 13

Algorithm 3 Domain-guided neighborhood (in a minimization context)
Require: o: the objective variable
Require: k: an integer
Require: Dd: ordered set of decisions related to the domain of o
Require: I: array of integers
1: procedure relax exp-obj(S)
2: P ←pathTo(S) ⊲ Retrieves the decision path to S
3: if a new solution has been found then

4: explainDomain(S, o)
5: k ← 0
6: end if

7: k ← k + 1
8: R← ∅
9: if k ≤ length(I) then

10: R←
I[k]⋃

j=1
Dd[j]

11: else

12: R←random(Dd) ⊲ Randomly selects decisions in Dd

13: end if

14: apply(P \ R) ⊲ Applies P minus R
15: end procedure

16: procedure explainDomain(S, o)
17: n← (o∗ − Lowo) ⊲ Gets the number of removed values
18: Dd ← []; I ← [];
19: for k ∈ [1, n] do
20: E ← explainRemoval(do, Lowo + k − 1)
21: Dd ← Dd

⋃
extractDecision(E) ⊲ Queries the explanation store

22: I[k]← |Dd|
23: end for

24: end procedure

decision path P (lines 8-13), and the relaxed decision path is imposed (line 14).
The way decisions are selected to be relaxed is conditioned by the number of
relaxation tries. First of all, some decisions are selected to be relaxed according to
the removal order (lines 9-10): those implying the removal of i from o are relaxed
prior to the ones implying the removal of i + 1. When there is no more decisions
to remove (line 11), the decisions are randomly selected (line 12). The random
method is the same method as the one called in Algorithm 2 (line 6).

The method explainDomain (lines 16-24) works as follows: first, the total
number of removed values is computed (line 17). Then, an iteration over the values,
from Lowo to o∗ − 1, is achieved in order to explain each value removal (lines 19-
23). Explanations of the value removals are queried from the explanation store
(call to explainRemoval, line 20), and the decisions are extracted (line 21).
Each value removal is explained by one or more decisions thanks to Dd and I

(lines 19-22). Dd is an ordered set of decisions; On a value removal, decisions
not already related to previous value removals are added into it. I is an array
of indices; When the kth value removed from o is explained, the size of Dd is
stored in I. The relaxation operations (line 10) state that, as long as k is less than
length(I) (line 9), only decisions related to the removal of values less or equal
to Lowo + k are removed from the decision path. Such a guarantee is afforded
by the way Dd and I are computed. In [15], it has been shown that, for a given
variable, the explanations related to a value removal depends on, by construction,
the explanations of previously removed values. In our context, this observation
provides the following property on the objective variable.

14 Charles Prud’homme et al.

Property 1 Given a solution S of cost o∗ ∈ [Lowo, Uppo] and a decision path P

associated with S. For all x, x′ ∈ [Lowo, o
∗[, x ≤ x′, let D{x} be the set of decisions

that explains the removal of x from o, we have:

D{x} ⊆ D{x′}

The for-loop depicted in Algorithm 3, line 19-23, relies on Property 1; It incremen-
tally builds the set of decisions candidate for relaxation together with the array of
indices, by iterating over removed values from Lowo to o∗ − 1. Hence, when deci-
sions related to the removals of the k first values of o have to be relaxed (line 10),
one only has to remove the I[k] first decisions of the ordered set Dd from P . Note
that the novelty of the approach remains on the fact that explanation are accessed
not on a conflict, as it is commonly done, but on a solution.

Example 3 In the Example 1, the objective variable o is instantiated to 6 in the
solution. The explanations of each value removed from o during the resolution of
the COP are reported in Table 2. On the one hand, values below o∗ are explained by
δ2, δ3 and δ4. The removal of the values 0 and 1 from the domain of o are explained
by the application of δ3, through the propagation of C1 (Table 1, line 3.b). The
removal of values from 2 to 5 is related to the execution of the constraint C1: the
lower bound of the variables x3, x5 and x6 enable to deduce that o cannot take a
value lower than 6 (Table 1, line 4.c). The decisions δ2 and δ3 are related to the
current lower bound of x3; The decision δ4 is related to the current lower bounds
of x5 and x6.

On the other hand, removed values above o∗ are explained by δ4 and δ5. The
removal of the values 9 and 10 from the domain of o stems from the application of
δ4. The application of δ5 triggers the removal of values 7 and 8, which reduce the
domain of o to a singleton. As we are interested in improving the value of the best
solution found so far, we only care about removal of values below o∗ = 6. Hence, δ5
will not considered as being part of Dd, and the execution of the explainDomain
method ends with Dd = {δ3, δ2, δ4} and I = {1, 1, 3, 3, 3, 3}. Actually, I can be
more compact, this is discussed after.

On a call to relax exp-obj, δ1 and δ5 have to be imposed, because they do
not explained any removal of value below o∗ from the domain of o. Then, the two
first neighborhoods impose δ3 and relax δ2 and δ4; the four following ones relax all
decisions from Dd. Finally, any new call to relax exp-obj will randomly select
decisions from Dd to be imposed with δ1 and δ5, until a new solution is found. ♦

In the example 3, δ3 (respectively, δ2∧δ4) manages to remove two (respectively,
four) consecutive values from o. As a consequence, even though Dd is properly
sized, 1 appears twice in I, and 3 appears four times, and some of the first neigh-
borhoods of exp-obj will be redundant. By considering removals of consecutive
values (intervals), instead of value removals, we can easily reduce the size of I and
get a more efficient relaxation of the decisions path. In the previous example, the
loop will consider the removal of two intervals, [0, 1] and [2, 5], instead of six value
removals; The resulting decisions array and indices array will be Dd = {δ3, δ2, δ4}
and I = {1, 3}; The two first neighborhoods will be: {δ1, δ3; δ5} and {δ1, δ5}, and
then it switches to the random selection. Managing interval removals is used in
our implementation.

Explanation-Based Large Neighborhood Search 15

These neighborhoods could be seen as an unnecessary complicated version
of the round-robin process in which one or more top-level decisions would be
questioned from the decision path. As shown in Example 3, not all (top-)decisions
are related to (lower) value removals from the objective variable, some of them do
not question the quality of the best solution found so far. Moreover, the choice of
decisions to relax is not made aimlessly and is directed by the objective variable
though explanations.

3.3 Additional information and further improvements

This section details the method to relax the decision path and techniques adopted
to improve the efficiency of the approaches described in this paper.

Relaxing the decision path. In this paragraph, we describe how the decision path
is effectively updated (Algorithm 2, line 7 and Algorithm 3, line 14). The method
apply(P \R) aims at removing a set of decisions R from a decision path P . First, all
decisions from R are removed from P . Then, negated decisions must be considered
too, even though they do not appear in R. Indeed, a decision δ is negated when
the search process closes the sub-tree induced by δ, i.e., the entire sub-tree has
been explored. A decision which becomes negated is explained by higher decisions
in the search tree. So, if one decision which explains the negation of another one is
removed, then keeping the negated decision is not justified anymore, and it should
be removed too. For example, let P = {δ1, δ2, δ3,¬δ4} be a decision path and
R = {δ2} be the set of decisions to remove from P ; The relaxed decision path
P ′ is equal to {δ1, δ3}. ¬δ4 is automatically removed because it is explained by
δ1 ∧ δ2 ∧ δ3. More details about the explanation of negated decisions are given
in [13].

Lazy explanation recording. Conflict-based searches access to explanations on each
conflict [9,27,12]. Our approaches, on the contrary, only requires access on solu-
tions. Consequently, it is not worth computing and storing explanations while
solving. To avoid computing and storing useless information related to domain re-
duction, we implement a lazy and asynchronous fashion way to compute and store
domain modifications, like described in [8]. Minimal data related to events gener-
ated during the resolution (i.e., the variable, the modification and the cause) is
stored into a queue all resolution long. This queue is backtrackable to store relevant
information and to reduce non relevant one upon backtracking. When a solution
is found, the explanation store have to be queried, but is empty at that point.
A computation routine is then executed: datas stored in the queue are popped
one by one (w.r.t. the chronological order), the explanations are computed and
stored. Once the queue is empty, the explanation store is up to date and ready for
queries. Even though storing minimal data in the queue comes with a cost, it is
negligible in comparison with maintaining the explanation store during the search
and it significantly reduces both memory and cpu consumptions. Plugging lazy
and asynchronous explanations in without querying the explanation store (nor
computing explanations) only slows down the resolution process by less than 10%.

16 Charles Prud’homme et al.

Explaining interval removals. Most of the time, domain reduction is treated as a
sequence of value removals. For instance, a lower bound modification from i to
k− 1 is explained by the removal of all the values j from i to k− 1. Such behavior
becomes pathological when variables have large domains, which is often the case
for the objective variable. Thus, it is mandatory to explain interval removals in-
stead of value removals: it prevents from storing and computing a large amount
of information and saves both and memory consumption. Our approach adapts
the technique described in [15], originally proposed for numeric CSP, to integer
domains represented as intervals. Note that Lazy Clause Generation solvers handle
interval removals natively [32]. In LCG solvers, every value of the domain of an
integer variable is represented using boolean variables [[v = x]] and [[v ≤ x]]. For
instance, the variable [[v = x]] is true if v takes the value x and false if v takes a
value different from x.

Dealing with enumerated domain objective variables. Generally, the objective vari-
able is bounded, that is, its domain is an interval of integers. An alternative is to
define the domain as on ordered set of integers, the domain is said to be enumer-

ated. Due to the size of the objective variable domain, which is generally very large,
a bounded domain is often preferred to an enumerated one. In some cases, it is
worth representing all values, though. Such a choice does not call into question the
validity of the property 1 nor the behavior of exp-obj. But, it may build different
neighborhoods.

Example 4 Given a COP with an objective variable o, its enumerated domain
domo = {0, 1, 2, 3, 4}, a solution S with o∗ = 4 and PS = (δ1, δ2, δ3, δ4), a decision
path to S; Table 4 reports explanations for objective variable domain modifica-
tions.

Table 4 Explanations of an enumerated domain objective variable.

Variable {removed value} ← Explanation
o {0} ← (δ4 ∧ δ2),

{1} ← δ3,
{2} ← δ1,
{3} ← (δ2 ∧ δ3),
{4} ← δ2

An enumerated domain not only enables to update bounds but also to make
holes (i.e., to remove a value in the middle of the domain). On S, the application of
the method relax exp-obj will compute Dd = {δ4, δ2, δ3, δ1}, I = {2, 3, 4, 4, 4}.
Then, the first partial solution will relax δ4 and δ2, which will restore the values 0
and 4 from domo. If this partial solution cannot lead to a new solution, a second
partial solution will relax δ4, δ2 and δ3, which restore the values 0, 1, 3 and 4 from
domo.

♦

When dealing with an objective variable with an enumerated domain, the
execution of relax exp-obj may end with a weaker relaxed decision path, that

Explanation-Based Large Neighborhood Search 17

is, values from o will be relaxed without necessarily respecting the lexical ordering
of the domain.

Reconsidering the number of selected decisions. In Section 3.1, we explained how
the random selection of decisions to relax works: we select randomly α decisions to
relax, where α is also randomly selected. However, the parameter α is not computed
on each call to the random method, but every θ = minimum(

(

|D|−1

α

)

, 200) calls,
where D is either equal to Dc or Dd. This gives the opportunity to test a wide
range of the possible combinations when

(

|D|−1

α

)

is small enough, and to test only a
small subpart of them when the number is big. Various neighborhoods of the same
size are tested before a new value for α is picked. We evaluate other approaches,
and this one brings more robustness and improves the overall resolution process.

4 Evaluation

The central objective of the exp-cft and exp-obj algorithms are to build better
neighborhoods in order to explore more appropriate parts of the search space and
to speed up the LNS process. This section demonstrates the benefits of combining
exp-obj and exp-cft together.

4.1 Implementation of LNS

Propagation-Guided Large Neighborhood Search. Neither instance dependent but
relying on global parameters, this combination of three neighborhoods has been
proven to be very efficient on a modified version of the Car Sequencing Prob-
lem [23]. On each call to the propagation-guided neighborhood (or pgn), a first
variable is selected randomly to be part of the partial solution and is assigned
to its value in the previous solution. This assignment is propagated through the
constraint network and the graph of dependencies is build: variables modified by
propagation are marked. Every marked variable not instantiated is then stored
in priority list, where variables are sorted by the domain reduction that occurred
on their domain. The top priority variable in the list is selected to be fixed. The
selection stops when the sum of the logarithm of the domain of all variables is
below a given constant. The desired partial solution size is updated by adding a
multiplicative correction factor epsilon. Two alternatives have been defined: The
reverse propagation-guided neighborhood (or repgn) is built by expansion instead
of by reduction; The random propagation-guided neighborhood (or rapgn) is im-
plemented with a list of size 0. Hence, the first contender is made of a sequential
application of pgn, repgn and rapgn. We use the default parameters defined in [23]:
the size of the list is set to 10, the constant is valued to 30 and the way epsilon
evolves is dynamic. As we consider LNS as a black-box strategy here, we do not
try to adapt the parameters to the problem treated and we focus on the genericity
of the approach. This contender is called PGLNS.

Explanation-Based LNS. We evaluate various combinations of the explanation-
based neighborhoods presented in Section 3. The first combination is made of
exp-obj and a random neighborhood, named ran. The latter will have to bring

18 Charles Prud’homme et al.

diversification by providing neighborhoods which are not related to the problem
structure. Indeed, in [23], the authors “obtained better results by interleaving purely

random neighborhoods with more advanced ones”. Thus, ran relaxes ζ variables
randomly selected on each call to the Relax method; the remaining ones are
obviously instantiated to their value in the best solution known so far. ζ is set to
|V|
3

on a solution; and is incremented once every 200 calls to the neighborhood
computation. Such parameters enable a strong diversification. The first contender
is named objLNS. A second combination, named cftLNS, groups together exp-cft
and ran. As exp-obj and exp-cft exploit explanations in two different ways, we
suggest a third combination, named EBLNS, made of exp-obj, exp-cft and ran.
We hope EBLNS will improve the overall behavior of each neighborhood used
individually.

In every contenders, each neighborhood is then applied fairly, in sequence, until
a new solution is found.

Fast restarts. All contenders are evaluated with a fast restart strategy [22] plugged
in: we limit the reparation step to 30 fails. Such a strategy is commonly associated
with LNS and has been proven to improve its efficiency.

Random LNS. A purely random neighborhood, made exclusively of ran, easy to
implement and configuration-free has been evaluated too. Due to its poor efficiency
in practice (it was never competitive with any other approaches evaluated here),
the results are not reported here, though.2

4.2 Benchmark protocol

Propagation-Guided LNS and Explanation-Based LNS were implemented in Choco-
3.1.0 [28], a Java library for constraint programming. All the experiments were
done on a Macbook Pro with a 6-core Intel Xeon at 2.93Ghz running on MacOS
10.6.8, and Java 1.7. Each run had one core and a 15 minutes time limit. Due
to randomness, the evaluations were run ten times and the arithmetic mean of
the objective value (obj), its range3 (rng) and the standard deviation (stddev) are
reported. The range gives indication about the stability of an approach. Note that
the first solution of each run of the same problem is always the same one, whatever
versions of LNS is plugged in.

4.3 Benchmark description

The evaluation proposed here is based on ten problems composed of 49 instances.
There are nine optimization problems extracted from the MiniZinc distribution
and one additional problem, the Optimized Car Sequencing Problem.4 The latter
one has been added to facilitate the comparison with PGLNS.

2 The complete results of purely random contender are available on request.
3 The range: 100 ∗ highest−lowest

mean
.

4 The Optimized Car Sequencing Problem (5 instances) is a modified version of the Car
Sequencing Problem in which an additional option-free configuration has been added (as de-
scribed in [23]). The objective is to schedule the cars requiring this configuration at the end,
in such a way that a solution to the original satisfaction problem is found.

Explanation-Based Large Neighborhood Search 19

We kept instances for which classic backtrack algorithm finds at least one solu-
tion within a 15 minutes time limit: LNS needs an initial solution to be activated.

There are five minimization problems: the Modified Car Sequencing Problem
(car cars), the Restaurant Assignment Problem (fastfood), the League Model
Problem (league model), the Resource-Constrained Project Scheduling Problem
(rcpsp) and the Vehicle Routing Problem (vrp). There are five maximization prob-
lems: the Maximum Profit Subpath Problem (mario), the Itemset Mining Prob-
lem (pattern set mining), the Prize Collecting Problem (pc), the Ship Scheduling
Problem (ship schedule) and the Still Life Problem (still life). Thereafter, the
results will be presented by type. Obviously, there is no fundamental differences
between the two classes of problems, and we did not except the behavior of LNS
to be different.

The details of the models are reported in Table 5. As global constraints re-

Table 5 Descriptions of the problems treated.

Problem Constraints Search

car cars array int element, bool2int,
int eq, int eq reif, int lin eq,
int lin le

{input order, indomain max}

fastfood int abs, int lin eq, int lt,
int min, set in

{input order, indomain min}

league model array bool or, bool2int, bool le,
int eq reif, int le, int le reif,
int lin eq

{first fail, indomain max} ∧
{first fail, indomain min}

rcpsp array bool and, bool2int,
bool eq reif, bool le,
int le reif, int lin le,
int lin le reif

{smallest, indomain min} ∧
{input order, indomain min}

vrp int le, int lin eq, int lin le {first fail, indomain min}
mario array bool and, array bool or,

array int element,
array var bool element,
array var int element,
bool2int, bool eq reif, bool le,
bool le reif, int eq, int eq reif,
int lin eq, int lt reif, int min,
int ne, int ne reif

{first fail, indomain min} ∧
{input order, indomain max}

pattern set mining bool2int, bool eq, int lin eq,
int lin le reif

{input order, indomain max}

pc array bool and,
array int element,
array var int element, bool2int,
bool le, int eq, int eq reif,
int lin eq, int lin le,
int lt reif

{largest, indomain max} ∧
{largest, indomain max} ∧
{input order, indomain max}

ship schedule array bool and, array bool or,
array int element, bool2int,
bool le, int eq, int eq reif,
int le reif, int lin eq,
int lin le, int lin le reif,
int lt reif, int times

{input order, indomain max} ∧
{input order, indomain min}

still life array bool and, bool le, int eq,
int eq reif, int le reif,
int lin eq, int lin le,
int lin le reif, int lin ne reif,
int times

{input order, indomain max}

20 Charles Prud’homme et al.

quire implementation of specific explanation schemas, whose evaluation is not the
purpose of the paper, the problems are modeled with built-in constraints, which
are natively explained. The following problems were initially modeled with global
constraints: the Modified Car Sequencing Problem, the League Model Problem,
the Resource-Constrained Project Scheduling Problem, the Maximum Profit Sub-
path Problem and the Itemset Mining Problem. Moreover, in half of the classes of
problem, the search strategies are static: input order.

4.4 Evaluation of objLNS, cftLNS and EBLNS

The main motivation of this paper is twofold. First, we suggest two generic neigh-
borhoods based on explanations for the LNS framework. They require neither
accurate parameterization nor need to be adapted to the instance treated. Sec-
ond, we show that they define neighborhoods more able to build new solutions,
and thus improve the resolution of optimization problems. In this section, we com-
pare various contenders based on explanations, objLNS, cftLNS and EBLNS, with
the propagation-guided one, PGLNS.

Various pairwise comparisons between contenders are done. The results are
presented in tables which report the arithmetic mean of the objective variable and
its range of the approaches evaluated. Bold number highlights the best objective
value per instances; Italic numbers denote equality. We also use plots to display
the multiplying factor over the objective value obtained by using one approach
instead of the other. The horizontal axis represents the instances treated, sorted
with respect of the difference between the solution found using the first approach
h1 and the one using the second one h2, in increasing order. The vertical axis
reports the multiplying factors, ρ(hi, hj) = max(hi

hj
, 1). A mark on the left side of

the plot (light gray area) reports ρ(h1, h2) for an instance better solved with h1,
it measures the loss of using h2 instead of h1. A mark on the right side of the plot
(dark gray area) reports ρ(h2, h1) for an instance better solved with h2, it measures
the gain of using h2 instead of h1. The plots also report the approximated area
A5 of the gain and loss. The larger the dark gray (respectively light gray) area is,
the bigger the improvement (respectively, the loss) related to EBLNS.

4.4.1 Comparative evaluation of PGLNS and objLNS

Table 6 reports the results obtained with PGLNS and objLNS on the ten problems.
On 19 out of 49 instances, PGLNS is the best approach, whereas, on 26 instances
objLNS is the more efficient. In about one-third of the cases (6 out of 9 for PGLNS
and 8 out of 26 for objLNS) the range is almost 0. That means all resolutions
treated by the same contender lead to in the same last solution. Besides, there are
four instances where the two approaches are equivalent.

On the one hand, objLNS finds the best solutions for the Restaurant Assign-
ment problem (fastfood), the League Model problem (league), the Prize Col-
lecting problem (pc) and the Still Life problem (still life). objLNS is more
stable than PGLNS on instances of the Restaurant Assignment problem and the
Prize Collecting problem. That is not true for the other instances. This contender

5 The approximation is computed with the Trapezoidal rule [1].

Explanation-Based Large Neighborhood Search 21

Table 6 Comparative evaluation of PGLNS and objLNS.

PGLNS objLNS
Instance obj rng(%) stddev obj rng(%) stddev

MINIMIZATION PROBLEMS
cars cars 4 72.fzn 109.3 5.49 1.85 116.9 4.28 1.51
cars cars 16 81.fzn 121.2 2.48 1.17 119.5 6.69 3.41
cars cars 26 82.fzn 127.5 5.49 2.20 136.6 6.59 2.29
cars cars 41 66.fzn 108.8 1.84 0.98 109.8 5.46 1.40
cars cars 90 05.fzn 300.8 11.97 9.93 319.3 2.82 3.41
fastfood ff3.fzn 3883.4 90.64 967.10 1331 0.45 2.05
fastfood ff58.fzn 8882.7 101.78 2955.56 1399.2 10.58 46.12
fastfood ff59.fzn 871 0.00 0.00 294.6 32.59 25.00
fastfood ff61.fzn 221.7 24.81 16.41 189.6 29.54 16.50
fastfood ff63.fzn 146.9 40.16 17.70 120.1 47.46 16.69
league model20-3-5.fzn 49984 0.00 0.00 49984 0.00 0.00
league model30-4-6.fzn 79973 0.00 0.00 79973 0.00 0.00
league model50-4-4.fzn 99971 0.00 0.00 99971 0.00 0.00
league model55-3-12.fzn 139949 35.73 18439.09 109949.7 0.00 0.46
league model90-18-20.fzn 1922916 7.28 35228.00 1117921 39.36 137823.82
league model100-21-12.fzn 3139911.9 0.00 2.17 2486918.6 85.65 818388.45
rcpsp 11.fzn 81 3.70 1.10 83.6 2.39 0.66
rcpsp 12.fzn 38.3 2.61 0.46 39.9 5.01 0.54
rcpsp 13.fzn 78 0.00 0.00 79 0.00 0.00
rcpsp 14.fzn 140.9 0.71 0.30 141 0.00 0.00
vrp A-n38-k5.vrp.fzn 2341.6 22.16 155.59 2322.2 18.30 116.17
vrp A-n62-k8.vrp.fzn 6318.1 6.66 127.92 6104 29.26 454.38
vrp B-n51-k7.vrp.fzn 4291.8 15.87 189.12 4355.8 19.74 246.86
vrp P-n20-k2.vrp.fzn 402.1 41.28 43.70 358.9 21.73 22.50
vrp P-n60-k15.vrp.fzn 2271.9 12.28 91.15 2424 20.30 135.45

MAXIMIZATION PROBLEMS
mario mario easy 2.fzn 628 0.00 0.00 628 0.00 0.00
mario mario easy 4.fzn 506 8.70 13.05 517.6 8.50 19.05
mario mario n medium 2.fzn 719.9 31.95 61.85 774.7 22.85 59.38
mario mario n medium 4.fzn 576.6 52.90 110.30 555.1 37.29 72.76
mario mario t hard 1.fzn 4783 0.00 0.00 3199.9 148.00 1947.09
pattern set mining k1 ionosphere.fzn 16.9 130.18 7.12 11 100.00 3.46
pattern set mining k2 audiology.fzn 53.6 1.87 0.49 52.7 18.98 3.03
pattern set mining k2 german-credit.fzn 3 0.00 0.00 3.8 131.58 1.54
pattern set mining k2 segment.fzn 11.8 8.47 0.40 11 0.00 0.00
pc 25-5-5-9.fzn 62.8 3.18 0.98 64 0.00 0.00
pc 28-4-7-4.fzn 47.7 12.58 2.72 58 0.00 0.00
pc 30-5-6-7.fzn 60 0.00 0.00 60.9 6.57 1.14
pc 32-4-8-0.fzn 104.7 14.33 4.38 109.7 8.20 3.41
pc 32-4-8-2.fzn 84.9 15.31 6.14 89.8 6.68 2.75
ship-schedule.cp 5Ships.fzn 483645.5 0.01 13.50 452157 19.40 37368.74
ship-schedule.cp 6ShipsMixed.fzn 300185 4.86 4378.36 248822.5 43.45 41741.68
ship-schedule.cp 7ShipsMixed.fzn 396137 20.40 23645.31 279396 89.34 84364.24
ship-schedule.cp 7ShipsMixedUnconst.fzn 364141.5 21.01 26324.16 285652.5 87.13 80181.40
ship-schedule.cp 8ShipsUnconst.fzn 782516 20.51 53704.49 584308.5 48.27 89265.47
still-life 09.fzn 37.6 13.30 1.50 42 0.00 0.00
still-life 10.fzn 49.8 4.02 0.87 51.9 5.78 0.94
still-life 11.fzn 59 0.00 0.00 61.3 1.63 0.46
still-life 12.fzn 63.3 4.74 0.90 66.5 21.05 4.57
still-life 13.fzn 79.7 2.51 0.78 81.7 9.79 2.79

seems also appropriate to solve the Vehicle Routing problem (vrp), but the two
approaches provide unstable results on these instances. One can suppose that ran-
dom neighborhoods play an important role in the resolution of those instances.
On the other hand, PGLNS is the best approach to solve the Resouce-Constrained
Project Scheduling problem (rcpsp), it also more stable than objLNS on these in-
stances. This contender is also appropriate to treat the Modified Car Sequencing

22 Charles Prud’homme et al.

problem (car cars), the Itemset Mining problem (pattern set mining) and the
Ship Scheduling problem (ship schedule), where it is also more stable. More gen-
erally, PGLNS is more stable (16.4%), in average, than objLNS (24.54%).

Every approach seems more adapted to solve some kinds of problems, but
objLNS appears to be the one with the broadest range of resolutions. Besides, the
contribution of one approach over the other is quite hard to evaluate exactly just
by reading the table. That is why we also plot the results, in Figure 3.

Fig. 3 Multiplying factor between PGLNS and objLNS, per instance.

1 1

6.5 6.5

2 2

3 3

4 4

5 5

6 6

25 instances

(A ≈ 0.3451)

Loss

(A ≈ 8.3743)

Gain

(a) Minimization problems.

1 1

2 22 2

24 instances

(A ≈ 2.1993)

Loss

(A ≈ 0.8617)

Gain

(b) Maximization problems.

On minimization problems (Figure 3(a)), objLNS is more interesting: the dark
gray area (A ≈ 8.3743) is larger than the light gray one (A ≈ 0.3451). This means
that objLNS enables to find better solutions than PGLNS, up to 6.34 times. Such
a gap is due to the instances of the Restaurant Assignment problem (fastfood)
where objLNS find far superior results.

On maximization problems (Figure 3(b)), PGLNS is more interesting. The light
gray area (A ≈ 2.1993) is larger than the dark gray one (A ≈ 0.8617). The gap
is less important than on minimization problems, and comes from the results in
favor of PGLNS on the Ship Scheduling problem (ship schedule) and the Itemset
Mining problem (pattern set mining).

In conclusion, objLNS is more attractive in average, its contribution to good
quality solutions is valuable concerning minimization problems. On maximization
problems, the gain does not seem to be interesting, but objLNS better solves more
instances than PGLNS (15 out of 24).

Explanation-Based Large Neighborhood Search 23

4.4.2 Comparative evaluation of PGLNS and cftLNS

Table 7 reports results obtained with PGLNS and cftLNS on the 49 instances.
In comparison with PGLNS, cftLNS better treats 29 out of 49 instances, whereas

Table 7 Comparative evaluation of PGLNS and cftLNS.

PGLNS cftLNS
Instance obj rng(%) stddev obj rng(%) stddev

MINIMIZATION PROBLEMS
cars cars 4 72.fzn 109.3 5.49 1.85 117.1 4.27 1.51
cars cars 16 81.fzn 121.2 2.48 1.17 119.9 6.67 3.30
cars cars 26 82.fzn 127.5 5.49 2.20 136.8 5.85 2.64
cars cars 41 66.fzn 108.8 1.84 0.98 109.8 5.46 1.40
cars cars 90 05.fzn 300.8 11.97 9.93 319.5 2.50 3.01
fastfood ff3.fzn 3883.4 90.64 967.10 1330 0.00 0.00
fastfood ff58.fzn 8882.7 101.78 2955.56 1329.2 16.48 87.60
fastfood ff59.fzn 871 0.00 0.00 279.6 16.81 18.80
fastfood ff61.fzn 221.7 24.81 16.41 157.2 18.45 10.49
fastfood ff63.fzn 146.9 40.16 17.70 103.9 0.96 0.30
league model20-3-5.fzn 49984 0.00 0.00 49984 0.00 0.00
league model30-4-6.fzn 79973 0.00 0.00 79973 0.00 0.00
league model50-4-4.fzn 99971 0.00 0.00 99971 0.00 0.00
league model55-3-12.fzn 139949 35.73 18439.09 109949.9 0.00 0.30
league model90-18-20.fzn 1922916 7.28 35228.00 1730925.5 26.58 132319.46
league model100-21-12.fzn 3139911.9 0.00 2.17 3103922.1 2.58 23747.70
rcpsp 11.fzn 81 3.70 1.10 81.9 1.22 0.30
rcpsp 12.fzn 38.3 2.61 0.46 39.3 5.09 0.64
rcpsp 13.fzn 78 0.00 0.00 78 0.00 0.00
rcpsp 14.fzn 140.9 0.71 0.30 141 0.00 0.00
vrp A-n38-k5.vrp.fzn 2341.6 22.16 155.59 2106.2 44.44 261.66
vrp A-n62-k8.vrp.fzn 6318.1 6.66 127.92 6117.2 16.30 310.67
vrp B-n51-k7.vrp.fzn 4291.8 15.87 189.12 4019.1 29.83 353.93
vrp P-n20-k2.vrp.fzn 402.1 41.28 43.70 336.8 23.46 26.14
vrp P-n60-k15.vrp.fzn 2271.9 12.28 91.15 2317.8 29.99 224.26

MAXIMIZATION PROBLEMS
mario mario easy 2.fzn 628 0.00 0.00 628 0.00 0.00
mario mario easy 4.fzn 506 8.70 13.05 510.1 8.63 17.47
mario mario n medium 2.fzn 719.9 31.95 61.85 889 25.20 63.14
mario mario n medium 4.fzn 576.6 52.90 110.30 723.9 28.60 74.47
mario mario t hard 1.fzn 4783 0.00 0.00 3039.4 157.37 1679.16
pattern set mining k1 ionosphere.fzn 16.9 130.18 7.12 26.6 150.38 15.94
pattern set mining k2 audiology.fzn 53.6 1.87 0.49 54 0.00 0.00
pattern set mining k2 german-credit.fzn 3 0.00 0.00 4.9 81.63 1.30
pattern set mining k2 segment.fzn 11.8 8.47 0.40 11 0.00 0.00
pc 25-5-5-9.fzn 62.8 3.18 0.98 64.2 1.56 0.40
pc 28-4-7-4.fzn 47.7 12.58 2.72 57.2 13.99 2.40
pc 30-5-6-7.fzn 60 0.00 0.00 62.7 6.38 1.62
pc 32-4-8-0.fzn 104.7 14.33 4.38 111.2 8.09 3.60
pc 32-4-8-2.fzn 84.9 15.31 6.14 91.6 4.37 1.20
ship-schedule.cp 5Ships.fzn 483645.5 0.01 13.50 483602.5 0.02 47.50
ship-schedule.cp 6ShipsMixed.fzn 300185 4.86 4378.36 251359.5 68.71 63750.63
ship-schedule.cp 7ShipsMixed.fzn 396137 20.40 23645.31 302325.5 10.34 10123.47
ship-schedule.cp 7ShipsMixedUnconst.fzn 364141.5 21.01 26324.16 318492.5 23.42 27619.44
ship-schedule.cp 8ShipsUnconst.fzn 782516 20.51 53704.49 470266.5 22.39 31509.21
still-life 09.fzn 37.6 13.30 1.50 42 0.00 0.00
still-life 10.fzn 49.8 4.02 0.87 53.6 3.73 0.66
still-life 11.fzn 59 0.00 0.00 61.2 1.63 0.40
still-life 12.fzn 63.3 4.74 0.90 75.1 2.66 0.54
still-life 13.fzn 79.7 2.51 0.78 87.2 3.44 0.87

PGLNS is the most efficient on 15 cases. There are 6 equalities. In about one-third

24 Charles Prud’homme et al.

of the cases (5 out of 15 for PGLNS, 8 out of 29 for cftLNS), the range is equal to
0, which indicates a good stability of the approaches.

The distribution is very similar to the one observed with objLNS: cftLNS is
suitable for the Restaurant Assignment problem (fastfood), the League Model
problem (league), the Prize Collecting problem (pc) and the Still Life problem
(still life). cftLNS does not bring more stability in comparison with objLNS,
though. Besides, cftLNS seems to be appropriate to deal with the Vehicle Rout-
ing problem (vrp), the Maximum Profit Subpath (mario) and the Itemset Mining
problem (pattern set mining) with respect to PGLNS. But, it is less obvious
to conclude regarding its stability. We observe larger gaps, in particular on in-
stances of the Itemset Mining problem (pattern set mining). PGLNS remains
the best approach to solve efficiently instances of the Ship Scheduling problem
(ship schedule) and the Modified Car Sequencing problem (car cars). On this
last problem, one may see that one instance is better solved with cftLNS. In gen-
eral, PGLNS is a little more stable than cftLNS (16.4% for PGLNS, 17.94% for
cftLNS).

Figure 4 reports the loss and gain of using cftLNS instead of PGLNS. On min-

Fig. 4 Multiplying factor between PGLNS and cftLNS, per instance.

1 1

7 7

2 2

3 3

4 4

5 5

6 6

7 7

25 instances

(A ≈ 0.2373)

Loss

(A ≈ 8.5131)

Gain

(a) Minimization problems.

1 1

2 22 2

24 instances

(A ≈ 1.6263)

Loss

(A ≈ 2.3151)

Gain

(b) Maximization problems.

imization problems (Figure 4(a)), the plot is comparable with one about objLNS:
the dark gray area (A ≈ 8.5131) is larger than the light gray one (A ≈ 0.2373).
cftLNS brings few loss and significant gain on those instances. Once again, the
instances of the Restaurant Assignment problem (fastfood) are much better
treated with cftLNS (corresponding to left peak). On maximization problems (Fig-
ure 4(b)), the trend continues: cftLNS seems to be more efficient. One may note

Explanation-Based Large Neighborhood Search 25

that not only the dark gray area (A ≈ 2.31.51) is larger than the light gray one
(A ≈ 1.6263), which means that cftLNS builds better quality solutions in average,
but also that it betters more instances (16 out 24 for cftLNS, 7 for PGLNS).

In conclusion, cftLNS appears to be a good alternative to PGLNS, not only in
term of the number of instances better solved, but also in term of gain regarding
the neighborhoods guided by propagation.

4.4.3 Comparative evaluation of objLNS and cftLNS

Results of cftLNS and objLNS seem to be very similar, in comparison with PGLNS.
Now, we compare these two approaches and report the results in the Table 8. The
cftLNS approach dominates: it betters 28 out of 49 instances, whereas objLNS
finds better solution in 13 cases. There are eight equalities. In addition, cftLNS is
more stable in average (17.94% for cftLNS, 24.54% for objLNS). objLNS is the best
approach to solve instances of the Modified Car Sequencing problem (car cars)
and the League Model problem (league model), though. Regarding cftLNS, it is
more suitable to solve instances of the Restaurant Assignment problem (fastfood),
the Resource-Constrained Project Scheduling problem (rcpsp), and, even less so,
the Vehicle Routing problem (vrp), the Itemset Mining (pattern set mining) and
the Still Life problem (still life). Only a few instances of the Maximum Profit
Subpath problem (mario) are hard to decide between the two contenders.

Nevertheless, this must be balanced with the gain cftLNS brings. Figure 5
reports this information. On minimization problems (Figure 5(a)), the gain and

Fig. 5 Multiplying factor between cftLNS and objLNS, per instance.

1 1

2 22 2

25 instances

(A ≈ 0.5316)

Loss

(A ≈ 0.7126)

Gain

(a) Minimization problems.

1 1

2.5 2.5

2 2

24 instances

(A ≈ 0.2044)

Loss

(A ≈ 2.047)

Gain

(b) Maximization problems.

loss are equivalent, both approaches are comparable. The light gray area (A ≈
0.5316) is smaller than the dark gray one (A ≈ 0.7126), but the latter is wider than

26 Charles Prud’homme et al.

Table 8 Comparative evaluation of objLNS and cftLNS.

objLNS cftLNS
Instance obj rng(%) stddev obj rng(%) stddev

Problmes de minimisation
cars cars 4 72.fzn 116.9 4.28 1.51 117.1 4.27 1.51
cars cars 16 81.fzn 119.5 6.69 3.41 119.9 6.67 3.30
cars cars 26 82.fzn 136.6 6.59 2.29 136.8 5.85 2.64
cars cars 41 66.fzn 109.8 5.46 1.40 109.8 5.46 1.40
cars cars 90 05.fzn 319.3 2.82 3.41 319.5 2.50 3.01
fastfood ff3.fzn 1331 0.45 2.05 1330 0.00 0.00
fastfood ff58.fzn 1399.2 10.58 46.12 1329.2 16.48 87.60
fastfood ff59.fzn 294.6 32.59 25.00 279.6 16.81 18.80
fastfood ff61.fzn 189.6 29.54 16.50 157.2 18.45 10.49
fastfood ff63.fzn 120.1 47.46 16.69 103.9 0.96 0.30
league model20-3-5.fzn 49984 0.00 0.00 49984 0.00 0.00
league model30-4-6.fzn 79973 0.00 0.00 79973 0.00 0.00
league model50-4-4.fzn 99971 0.00 0.00 99971 0.00 0.00
league model55-3-12.fzn 109949.7 0.00 0.46 109949.9 0.00 0.30
league model90-18-20.fzn 1117921 39.36 137823.82 1730925.5 26.58 132319.46
league model100-21-12.fzn 2486918.6 85.65 818388.45 3103922.1 2.58 23747.70
rcpsp 11.fzn 83.6 2.39 0.66 81.9 1.22 0.30
rcpsp 12.fzn 39.9 5.01 0.54 39.3 5.09 0.64
rcpsp 13.fzn 79 0.00 0.00 78 0.00 0.00
rcpsp 14.fzn 141 0.00 0.00 141 0.00 0.00
vrp A-n38-k5.vrp.fzn 2322.2 18.30 116.17 2106.2 44.44 261.66
vrp A-n62-k8.vrp.fzn 6104 29.26 454.38 6117.2 16.30 310.67
vrp B-n51-k7.vrp.fzn 4355.8 19.74 246.86 4019.1 29.83 353.93
vrp P-n20-k2.vrp.fzn 358.9 21.73 22.50 336.8 23.46 26.14
vrp P-n60-k15.vrp.fzn 2424 20.30 135.45 2317.8 29.99 224.26

Problmes de maximisation
mario mario easy 2.fzn 628 0.00 0.00 628 0.00 0.00
mario mario easy 4.fzn 517.6 8.50 19.05 510.1 8.63 17.47
mario mario n medium 2.fzn 774.7 22.85 59.38 889 25.20 63.14
mario mario n medium 4.fzn 555.1 37.29 72.76 723.9 28.60 74.47
mario mario t hard 1.fzn 3199.9 148.00 1947.09 3039.4 157.37 1679.16
pattern set mining k1 ionosphere.fzn 11 100.00 3.46 26.6 150.38 15.94
pattern set mining k2 audiology.fzn 52.7 18.98 3.03 54 0.00 0.00
pattern set mining k2 german-credit.fzn 3.8 131.58 1.54 4.9 81.63 1.30
pattern set mining k2 segment.fzn 11 0.00 0.00 11 0.00 0.00
pc 25-5-5-9.fzn 64 0.00 0.00 64.2 1.56 0.40
pc 28-4-7-4.fzn 58 0.00 0.00 57.2 13.99 2.40
pc 30-5-6-7.fzn 60.9 6.57 1.14 62.7 6.38 1.62
pc 32-4-8-0.fzn 109.7 8.20 3.41 111.2 8.09 3.60
pc 32-4-8-2.fzn 89.8 6.68 2.75 91.6 4.37 1.20
ship-schedule.cp 5Ships.fzn 452157 19.40 37368.74 483602.5 0.02 47.50
ship-schedule.cp 6ShipsMixed.fzn 248822.5 43.45 41741.68 251359.5 68.71 63750.63
ship-schedule.cp 7ShipsMixed.fzn 279396 89.34 84364.24 302325.5 10.34 10123.47
ship-schedule.cp 7ShipsMixedUnconst.fzn 285652.5 87.13 80181.40 318492.5 23.42 27619.44
ship-schedule.cp 8ShipsUnconst.fzn 584308.5 48.27 89265.47 470266.5 22.39 31509.21
still-life 09.fzn 42 0.00 0.00 42 0.00 0.00
still-life 10.fzn 51.9 5.78 0.94 53.6 3.73 0.66
still-life 11.fzn 61.3 1.63 0.46 61.2 1.63 0.40
still-life 12.fzn 66.5 21.05 4.57 75.1 2.66 0.54
still-life 13.fzn 81.7 9.79 2.79 87.2 3.44 0.87

it is tall. This confirms that cftLNS better solves more instances than objLNS but
that the gain is low. By contrast, objLNS brings more gain but on fewer instances.
On maximization problems (Figure 5(b)), the results are clearly in favor of cftLNS.

Explanation-Based Large Neighborhood Search 27

4.4.4 Comparative evaluation of EBLNS and PGLNS

One strength of LNS is the capacity it offers to combine various neighborhoods
together. We now evaluate PGLNS and EBLNS, a contender which combines the
two explanation-based neighborhoods together with a purely random one. The
results are reported in Table 9. The results are well distributed among PGLNS

Table 9 Comparative evaluation of PGLNS and EBLNS.

PGLNS EBLNS
Example obj rng(%) stddev obj rng(%) stddev

MINIMIZATION PROBLEMS
cars cars 4 72.fzn 109.3 5.49 1.85 118 2.54 0.77
cars cars 16 81.fzn 121.2 2.48 1.17 117.1 11.10 5.84
cars cars 26 82.fzn 127.5 5.49 2.20 139.5 3.58 1.96
cars cars 41 66.fzn 108.8 1.84 0.98 110 0.00 0.00
cars cars 90 05.fzn 300.8 11.97 9.93 321 0.00 0.00
fastfood ff3.fzn 3883.4 90.64 967.10 1330 0.00 0.00
fastfood ff58.fzn 8882.7 101.78 2955.56 1373 0.00 0.00
fastfood ff59.fzn 871 0.00 0.00 319.2 21.30 28.09
fastfood ff61.fzn 221.7 24.81 16.41 355 0.00 0.00
fastfood ff63.fzn 146.9 40.16 17.70 331 0.00 0.00
league model20-3-5.fzn 49984 0.00 0.00 49984 0.00 0.00
league model30-4-6.fzn 79973 0.00 0.00 85974 23.26 7999.63
league model50-4-4.fzn 99971 0.00 0.00 118971.7 33.62 11357.44
league model55-3-12.fzn 139949 35.73 18439.09 136950.5 29.21 14865.70
league model90-18-20.fzn 1922916 7.28 35228.00 1152924.8 26.89 88209.56
league model100-21-12.fzn 3139911.9 0.00 2.17 2651923.1 80.70 716448.11
rcpsp 11.fzn 81 3.70 1.10 81.8 1.22 0.40
rcpsp 12.fzn 38.3 2.61 0.46 39.3 2.54 0.46
rcpsp 13.fzn 78 0.00 0.00 78 0.00 0.00
rcpsp 14.fzn 140.9 0.71 0.30 141 0.00 0.00
vrp A-n38-k5.vrp.fzn 2341.6 22.16 155.59 2114 36.94 225.73
vrp A-n62-k8.vrp.fzn 6318.1 6.66 127.92 5840.4 27.87 497.94
vrp B-n51-k7.vrp.fzn 4291.8 15.87 189.12 3950.8 30.42 301.98
vrp P-n20-k2.vrp.fzn 402.1 41.28 43.70 364.2 17.57 21.89
vrp P-n60-k15.vrp.fzn 2271.9 12.28 91.15 2316.3 24.87 175.33

MAXIMIZATION PROBLEMS
mario mario easy 2.fzn 628 0.00 0.00 628 0.00 0.00
mario mario easy 4.fzn 506 8.70 13.05 502.7 3.38 5.10
mario mario n medium 2.fzn 719.9 31.95 61.85 610.5 125.31 274.10
mario mario n medium 4.fzn 576.6 52.90 110.30 711.9 30.90 87.26
mario mario t hard 1.fzn 4783 0.00 0.00 1426.1 282.87 1507.46
pattern set mining k1 ionosphere.fzn 16.9 130.18 7.12 29.2 89.04 11.91
pattern set mining k2 audiology.fzn 53.6 1.87 0.49 38.2 2.62 0.40
pattern set mining k2 german-credit.fzn 3 0.00 0.00 7.1 169.01 4.61
pattern set mining k2 segment.fzn 11.8 8.47 0.40 28 0.00 0.00
pc 25-5-5-9.fzn 62.8 3.18 0.98 64.1 3.12 0.54
pc 28-4-7-4.fzn 47.7 12.58 2.72 49 46.94 5.53
pc 30-5-6-7.fzn 60 0.00 0.00 58.7 13.63 2.65
pc 32-4-8-0.fzn 104.7 14.33 4.38 108.8 10.11 2.96
pc 32-4-8-2.fzn 84.9 15.31 6.14 91.4 6.56 1.80
ship-schedule.cp 5Ships.fzn 483645.5 0.01 13.50 483239 0.24 442.84
ship-schedule.cp 6ShipsMixed.fzn 300185 4.86 4378.36 253749 41.92 38561.83
ship-schedule.cp 7ShipsMixed.fzn 396137 20.40 23645.31 254441.5 102.45 79454.31
ship-schedule.cp 7ShipsMixedUnconst.fzn 364141.5 21.01 26324.16 269851 41.39 44658.25
ship-schedule.cp 8ShipsUnconst.fzn 782516 20.51 53704.49 539091 35.92 77158.01
still-life 09.fzn 37.6 13.30 1.50 42 0.00 0.00
still-life 10.fzn 49.8 4.02 0.87 53.2 3.76 0.60
still-life 11.fzn 59 0.00 0.00 61.7 1.62 0.46
still-life 12.fzn 63.3 4.74 0.90 74.6 5.36 1.20
still-life 13.fzn 79.7 2.51 0.78 86.4 6.94 2.01

28 Charles Prud’homme et al.

and EBLNS: in 22 out of 49 examples, PGLNS found the best solutions, whereas
EBLNS found the best solutions on 24 examples. In about one third of the cases
(7 out of 22 for PGLNS, 7 out of 24 for EBLNS), the range is equal to 0, which
means that all runs meet the same last solution.

On the one hand, EBLNS finds the best results for the Still Life Problem
(still life), and is more stable than PGLNS, on these instances. It is also very
appropriate to treat the Vehicle Routing Problem (vrp), the Itemset Mining Prob-
lem (pattern set minning) and the Price Collecting Problem (pc). However, the
two approaches provide unstable results on theses instances, particularly on the
Itemset Mining Problem ones where we can observe the largest ranges. On the
Resource-Constrained Project Scheduling Problem (rcpsp), the results are very
comparable, even though they are mildly in favor of PGLNS, and both approaches
are very stable. On the Restaurant Assignment Problem (fast food) and the
League Model Problem (league model), EBLNS finds equivalent or better solu-
tions in more cases (7 out of 11 instances), and it tends to be more stable on
average (27.3% for PGLNS vs. 19.5% for EBLNS).

On the other hand, PGLNS finds the best results for the Ship Scheduling
Problem (ship schedule), and is more stable than EBLNS, on these instances.
PGLNS is also a good approach to solve the Maximum Profit Subpath Problem
(mario) and the Modified Car Sequencing Problem (car cars), the problem it has
originally been designed for. On those instances, the stability is again in favor of
PGLNS; EBLNS is not stable at all on the Maximum Profit Subpath Problem
instances.

Generally, each approach seems to be appropriate to some classes of problems.
Such a trend is questioned by the stability: it varies from one instance to the other
of the same class of problems. From now on, it is almost impossible to conclude
on the quality of the neighborhoods build per approach. Because EBLNS relies on
explanations, the overall process is slowed down, and this approach certainly suffers
from that point of view, even if explanations help building good neighborhoods.

We now measure the gain of using EBLNS instead of PGLNS. The plots on
Figure 7 displays the multiplying factor over the objective value by using one
approach instead of the other. On minimization instances, each approach beats
the other one in almost half of the instances treated, but the gain of using EBLNS
instead of PGLNS is considerable. The dark gray area (A ≈ 7.6719) is clearly
greater than the light gray one (A ≈ 1.8011). EBLNS significantly improves the
objective value, and degrades it in a lesser extent. On maximization instances, the
gain is less marked and is mildly in favor of EBLNS. The area are comparable, but
EBLNS betters objective values, sometimes by a short head, on more instances
than PGLNS: the dark gray area (A ≈ 3.6728) is wider than it is tall.

By combining explanation-based neighborhoods together in EBLNS we were
expecting to get the most from each of them and to globally improve the results and
the stability. But, the results are mixed. On the one hand, we observe a poor gain
regarding PGLNS on minimization problems: the dark gray area is smaller than
the ones observed previously with objLNS and cftLNS. We even observe a bigger
loss. On maximization problems, we observe a significant improvement concerning
the gain, though. One may conclude that there might be too many explanation-
based neighborhoods with respect to the total number of neighborhoods, which
certainly slows down the overall process.

Explanation-Based Large Neighborhood Search 29

Fig. 6 Multiplying factor between PGLNS and EBLNS, per instances.

1 1

6.5 6.5

2 2

3 3

4 4

5 5

6 6

25 instances

(A ≈ 1.8011)

Loss

(A ≈ 7.6719)

Gain

(a) Minimization instances.

1 1

3.5 3.5

2 2

3 3

24 instances

(A ≈ 3.3296)

Loss

(A ≈ 3.6728)

Gain

(b) Maximization instances.

Thus, the two techniques are not comparable but they certainly are compati-
ble. It is therefore natural to combine the neighborhoods of PGLNS and EBLNS
together to address the defects of both approaches, and to improve the overall
stability: we evaluate such approach in the next section.

4.5 Combining EBLNS and PGLNS

One of the strength of LNS is its ability to combine various neighborhoods together.
In this Section, we combine the neighborhoods of EBLNS and PGLNS in a new
contender and evaluate their efficiency.

Propagation and Explanation Guided LNS. This contender is a combination of (1)
exp-obj, (2) exp-cft, (3) pgn, (4) repgn and (5) rapgn. We simply concatenate
the approaches and rapgn is preferred to ran because it brings robustness [23].
Each of the neighborhood is applied sequentially until a new solution is found.
This contender is called PaEGLNS. We have also evaluated an adaptive version of
PaEGLNS, which applies a neighborhood with respect to its ability to build new
solution, but we have not reported its evaluation here as it was not competitive
with the sequential approach.

Table 10 shows the evaluation of PaEGLNS. It reports the arithmetic mean
of the objective value (obj), its range (rng) and the standard deviation (stddev)

30 Charles Prud’homme et al.

Table 10 Evaluation of PaEGLNS in comparison with PGLNS and EBLNS.

PaEGLNS PGLNS EBLNS
Example obj rng(%) stddev obj rng(%) stddev obj rng(%) stddev

MINIMIZATION
cars cars 4 72.fzn 109.3 4.57 1.42 109.3 5.49 1.85 118 2.54 0.77
cars cars 16 81.fzn 119.6 9.20 3.72 121.2 2.48 1.17 117.1 11.10 5.84
cars cars 26 82.fzn 127.8 4.69 2.48 127.5 5.49 2.20 139.5 3.58 1.96
cars cars 41 66.fzn 108.8 1.84 0.98 108.8 1.84 0.98 110 0.00 0.00
cars cars 90 05.fzn 299.9 11.34 9.16 300.8 11.97 9.93 321 0.00 0.00
fastfood ff3.fzn 1573.4 31.78 207.55 3883.4 90.64 967.10 1330 0.00 0.00
fastfood ff58.fzn 1185 9.28 30.19 8882.7 101.78 2955.56 1373 0.00 0.00
fastfood ff59.fzn 242 0.00 0.00 871 0.00 0.00 319.2 21.30 28.09
fastfood ff61.fzn 153.9 12.35 5.70 221.7 24.81 16.41 355 0.00 0.00
fastfood ff63.fzn 110 34.55 10.74 146.9 40.16 17.70 331 0.00 0.00
league model20-3-5.fzn 49984 0.00 0.00 49984 0.00 0.00 49984 0.00 0.00
league model30-4-6.fzn 79973 0.00 0.00 79973 0.00 0.00 85974 23.26 7999.63
league model50-4-4.fzn 99971 0.00 0.00 99971 0.00 0.00 118971.7 33.62 11357.44
league model55-3-12.fzn 110949.2 9.01 2999.93 139949 35.73 18439.09 136950.5 29.21 14865.70
league model90-18-20.fzn 1169916.1 8.55 30000.07 1922916 7.28 35228.00 1152924.8 26.89 88209.56
league model100-21-12.fzn 3086911.2 4.54 36069.51 3139911.9 0.00 2.17 2651923.1 80.70 716448.11
rcpsp 11.fzn 80 3.75 1.00 81 3.70 1.10 81.8 1.22 0.40
rcpsp 12.fzn 38.5 2.60 0.50 38.3 2.61 0.46 39.3 2.54 0.46
rcpsp 13.fzn 78 0.00 0.00 78 0.00 0.00 78 0.00 0.00
rcpsp 14.fzn 140.9 0.71 0.30 140.9 0.71 0.30 141 0.00 0.00
vrp A-n38-k5.vrp.fzn 1901.1 22.36 102.44 2341.6 22.16 155.59 2114 36.94 225.73
vrp A-n62-k8.vrp.fzn 5879.8 15.36 232.56 6318.1 6.66 127.92 5840.4 27.87 497.94
vrp B-n51-k7.vrp.fzn 4072.4 30.13 330.49 4291.8 15.87 189.12 3950.8 30.42 301.98
vrp P-n20-k2.vrp.fzn 299.9 38.68 33.94 402.1 41.28 43.70 364.2 17.57 21.89
vrp P-n60-k15.vrp.fzn 2262.7 13.66 77.94 2271.9 12.28 91.15 2316.3 24.87 175.33

MAXIMIZATION
mario mario easy 2.fzn 628 0.00 0.00 628 0.00 0.00 628 0.00 0.00
mario mario easy 4.fzn 507.6 15.96 22.58 506 8.70 13.05 502.7 3.38 5.10
mario mario n medium 2.fzn 806.9 42.76 104.25 719.9 31.95 61.85 610.5 125.31 274.10
mario mario n medium 4.fzn 693.9 31.56 67.92 576.6 52.90 110.30 711.9 30.90 87.26
mario mario t hard 1.fzn 4783 0.00 0.00 4783 0.00 0.00 1426.1 282.87 1507.46
pattern set mining k1 ionosphere.fzn 36.6 87.43 8.89 16.9 130.18 7.12 29.2 89.04 11.91
pattern set mining k2 audiology.fzn 53.8 1.86 0.40 53.6 1.87 0.49 38.2 2.62 0.40
pattern set mining k2 german-credit.fzn 6.4 93.75 1.69 3 0.00 0.00 7.1 169.01 4.61
pattern set mining k2 segment.fzn 22.2 72.07 5.08 11.8 8.47 0.40 28 0.00 0.00
pc 25-5-5-9.fzn 64.2 1.56 0.40 62.8 3.18 0.98 64.1 3.12 0.54
pc 28-4-7-4.fzn 54.5 23.85 4.39 47.7 12.58 2.72 49 46.94 5.53
pc 30-5-6-7.fzn 60.8 13.16 2.14 60 0.00 0.00 58.7 13.63 2.65
pc 32-4-8-0.fzn 109.8 20.04 6.19 104.7 14.33 4.38 108.8 10.11 2.96
pc 32-4-8-2.fzn 88.7 23.68 6.42 84.9 15.31 6.14 91.4 6.56 1.80
ship-schedule.cp 5Ships.fzn 483650 0.00 0.00 483645.5 0.01 13.50 483239 0.24 442.84
ship-schedule.cp 6ShipsMixed.fzn 300664 1.47 1737.49 300185 4.86 4378.36 253749 41.92 38561.83
ship-schedule.cp 7ShipsMixed.fzn 399832 3.15 5710.21 396137 20.40 23645.31 254441.5 102.45 79454.31
ship-schedule.cp 7ShipsMixedUnconst.fzn 385896 3.11 3492.69 364141.5 21.01 26324.16 269851 41.39 44658.25
ship-schedule.cp 8ShipsUnconst.fzn 833724 0.19 590.87 782516 20.51 53704.49 539091 35.92 77158.01
still-life 09.fzn 42 0.00 0.00 37.6 13.30 1.50 42 0.00 0.00
still-life 10.fzn 53.3 3.75 0.64 49.8 4.02 0.87 53.2 3.76 0.60
still-life 11.fzn 61.3 4.89 0.90 59 0.00 0.00 61.7 1.62 0.46
still-life 12.fzn 74.4 5.38 1.28 63.3 4.74 0.90 74.6 5.36 1.20
still-life 13.fzn 85.9 4.66 1.37 79.7 2.51 0.78 86.4 6.94 2.01

for PaEGLNS, PGLNS and EBLNS. PaEGLNS finds equivalent or better solu-
tions in 69.4% of the problems treated (34 out of 49). On the 16 other problems,
PaEGLNS is always ranked second and EBLNS is almost always ranked first.
Moreover, PaEGLNS overcomes PGLNS in about 77.5% of the instances treated,
and outperforms EBLNS in about 65.3% of the instances treated. In general, com-
bining the neighborhoods of PGLNS and EBLNS is profitable in term of quality

Explanation-Based Large Neighborhood Search 31

of the solutions but also in stability. In 58,8% of the instances better solved with
PaEGLNS the range is less than 5%, which means that almost all runs find the
same last solution.

We now measure the gains and losses of using PaEGLNS instead of PGLNS or
EBLNS. Figure 7 reports multiplying factor between PGLNS and PaEGLNS. The
findings are unquestionable: PaEGLNS is clearly the most interesting approach
with respect to PGLNS. There is almost no degradation, only those linked to
rcpsp 12 and car cars 26 82, reflected in the plot by the non-zero light gray area
(Figure 7(a)). The comparison with EBLNS (Figure 8) is mildly less advanta-

Fig. 7 Multiplying factor between PGLNS and PaEGLNS, per instance.

1 1

8 8

2 2

3 3

4 4

5 5

6 6

7 7

8 8

25 instances

(A ≈ 0.0049)

Loss

(A ≈ 9.7473)

Gain

(a) Minimization problems.

1 1

2.5 2.5

2 2

24 instances

(A ≈ 0)

Loss

(A ≈ 3.8159)

Gain

(b) Maximization problems.

geous, even though always widely in favor of PaEGLNS. There is no question that
PaEGLNS is the best choice.

These two generic approaches are complementary: on the one hand, PGLNS
builds the graph of dependencies between variables and detects closely linked sub-
parts of the problem treated. On the other hand, EBLNS helps to focus on easy-to-
repair and easy-to-improve neighborhoods by revealing the relationships existing
between the objective variable and the decision variables. Combining PGLNS and
EBLNS benefits from the advantages of the two approaches: exploiting the struc-
ture of the problems solved thank to both propagation and explanations, and bring
more stability in the solutions found.

32 Charles Prud’homme et al.

Fig. 8 Multiplying factor between EBLNS and PaEGLNS, per instance.

1 1

3 3

2 2

3 3

25 instances

(A ≈ 0.3291)

Loss

(A ≈ 3.9349)

Gain

(a) Minimization problems.

1 1

3.5 3.5

2 2

3 3

24 instances

(A ≈ 0.3114)

Loss

(A ≈ 4.0646)

Gain

(b) Maximization problems.

4.6 A deeper analysis

In the Section, we highlight some results that corroborate the previous ones found
so far. A figure is made of a plot and an histogram. The plot depicts the evolution
of the objective value along with the resolution time (in log scale) for the ten
runs of the same approach (PGLNS, objLNS, cftLNS, EBLNS and PaEGLNS).
The histogram reports the average repartition of the neighborhoods used to solve
a given instance. The color coding is the following: exp-obj is in cross-patterned
style, exp-cft is in slash-patterned style, ran is in plain white, pgn is in light gray,
repgn is in dark gray and rapgn is in black.

On the Vehicle Routing Problem (Figure 9), the histograms indicate that a
great part of the intermediary solutions are found with the help of a pure random
neighborhood. Its proportion varies from 54% up to 83%. Regarding PaEGLNS,
which finds the better solution, we observe the same phenomenon: even if its con-
tribution is reduced, the random neighborhood helps finding almost half of the
new solutions. A comment is that random neighborhoods bring strong diversifica-
tion and help solving the Vehicle Routing Problem but other neighborhoods play
also a role, such as exp-obj and pgn.

On the Restaurant Assignment Problem (Figure 10), where EBLNS works
fine, the portion of ran (< 1%) is negligible in comparison with exp-obj (34.2%)
and exp-cft (65.7%). The stability of EBLNS on this instance is visible on the
plot (Figure 10(d)). We roughly observe a similar phenomenon about cftLNS.
objLNS, on the other hand, relies much more on randomness (54.7%). PaEGLNS
not only betters the objective in comparison with PGLNS and EBLNS but also

Explanation-Based Large Neighborhood Search 33

Fig. 9 Solving vrp P-n60-k15.vrp instance with the five approaches.

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(a) PGLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(b) objLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(c) cftLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(d) EBLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(e) PaEGLNS

Fig. 10 Solving fastfood ff58 instance with the five approaches.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(a) PGLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(b) objLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(c) cftLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(d) EBLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(e) PaEGLNS

34 Charles Prud’homme et al.

finds it quickly (see Table 9 and Table 10), and the distribution of neighborhoods
is well balanced. Surprisingly, the contribution of exp-cft is significantly reduced
in PaEGLNS in comparison with EBLNS, which is not the case for exp-obj whose
portion remains stable (about 35%). Another comment is that the best solutions
are found faster when combining various neighborhoods.

Fig. 11 Solving pc 30-5-6-7 instance with the five approaches.

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(a) PGLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(b) objLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(c) cftLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(d) EBLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(e) PaEGLNS

On the Prize Collecting Problem (Figure 11), we observe that the resolution re-
lies only on rapgn for PGLNS. Concerning the other combinations, on the contrary,
the contribution of purely random neighborhoods to the solution discovery is lower.
Another remarkable point is the proportion of exp-obj and exp-cft in EBLNS
and PaEGLNS: more than 60% of the solutions found by the two contenders relies
on these neighborhoods. However, the combination of different neighborhoods of
PaEGLNS overcomes both EBLNS and PGLNS, and confirms the importance of
combining various neighborhoods in the same contender.

Finally, on the Still Life Problem (Figure 12), using exp-obj and exp-cft is the
key to success. However, an alteration of the performances can be observed when
other neighborhoods are added (Figure 12(e)). This shows the risk of combining
various and different neighborhoods together, it may also break the semantic of
each of them. Such a result appears to be marginal in our evaluation, though, and
does not enable to disconfirm the benefit of combining neighborhoods together.

All the plots are given in the Appendix. One can see that, on the Restaurant
Assignment Problem and the Itemset Mining Problem and, albeit to a lesser extent,
on the Price Collecting Problem and the Still Life Problem, EBLNS is very stable.

Explanation-Based Large Neighborhood Search 35

Fig. 12 Solving still-life 11 instance with the five approaches.

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(a) PGLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(b) objLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(c) cftLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(d) EBLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

(e) PaEGLNS

Moreover, these are problems that are well solved with our approach. Except the
Vehicle Routing Problem, the portion of RLNS in EBLNS is marginal.

In this Section, we evaluated the exp-obj and exp-cft, two neighborhoods for
LNS based on explanations. We limited the evaluation to models without global
constraints, and none of the approaches evaluated here have benefited from possi-
bly better filtering rules and explanations schemas. We show that objLNS, cftLNS
and EBLNS are competitive with PGLNS on a wide range of optimization prob-
lems. Even if they are globally less stable and mildly slower, they enable to tackle
some class of problems PGLNS poorly solved. In general, those combinations bring
more gain than loss. In addition, we confront those first results with a combination
of the propagation-guided neighborhoods and explanation-based ones, and show
that such a combination improves the results, brings more stability and exploits
advantageous every neighborhoods. Such a conclusion confirms previous studies: a
strong diversification contributes to LNS and combining different neighborhoods
is the key to efficiency.

5 Conclusion and future work

In this paper, we show that the issue of finding a problem independent neighbor-
hood generation technique for LNS can be addressed using a lazy variation of expla-
nations. The contributions are twofold. Firstly, we propose generic, configuration-
free approaches to compute neighborhoods in a LNS, based on explanations. The
first neighborhood is based on the conflict implied by the application of the cut,
the second one is based on the non optimal nature of the current solution. We

36 Charles Prud’homme et al.

address the diversification issues thanks to a set of heuristics for further selecting
variables mixing random approaches and explanation-based ones and show that
our approach is competitive with or even better than state-of-the-art algorithms,
on a set of optimization problems. Secondly, we scheme explanation-based neigh-
borhoods and propagation-guided ones, hoping that their behavior would be com-
plementary. Finally, we assess the new contender on the same range of problems,
and validate the combination to be very efficient and more stable.

Our results are encouraging and should be validated on a larger set of prob-
lems. Moreover, we have to put things in perspective and analyze the influence of
the model on the results, specifically on the Modified Car Sequencing Problem,
where the results of PGLNS are quite surprising. Both the search strategy (how
decisions are selected) and the propagation engine (how events are relayed in the
constraint network) influence explanation-based neighborhoods and propagation-
guided-ones. But, since the explanation of a domain reduction is not unique, our
approach would benefit from more concise explanations, e.g., by enabling global
constraints. Future works should focus on the diversification procedure, more par-
ticularly plugging NoGoods in should be the key combination to speed up the
exploration of nested search spaces. Finally, the lazy and asynchronous way to
store and compute explanations may be improved using incrementallity. It would
also be interesting to implement and evaluate such neighborhoods within a LCG
solver.

References

1. Kendall E. Atkins. An introduction to numerical analysis, 1989.
2. Hadrien Cambazard and Narendra Jussien. Identifying and exploiting problem structures

using explanation-based constraint programming. Constraints, 11(4):295–313, 2006.
3. Alain Chabrier, Emilie Danna, Claude Le Pape, and Laurent Perron. Solving a network

design problem. Annals of Operations Research, 130(1-4):217–239, 2004.
4. Pedro J Copado-Méndez, Christian Blum, Gonzalo Guillén-Gosálbez, and Laureano

Jiménez. Application of large neighborhood search to strategic supply chain management
in the chemical industry. In Hybrid Metaheuristics, pages 335–352. Springer, 2013.

5. Emilie Danna and Laurent Perron. Structured vs. unstructured large neighborhood search:
A case study on job-shop scheduling problems with earliness and tardiness costs. In
Francesca Rossi, editor, Principles and Practice of Constraint Programming CP 2003,
volume 2833 of Lecture Notes in Computer Science, pages 817–821. Springer Berlin Hei-
delberg, 2003.

6. Romuald Debruyne, Gérard Ferrand, Narendra Jussien, Willy Lesaint, Samir Ouis, and
Alexandre Tessier. Correctness of constraint retraction algorithms. In FLAIRS’03: Six-
teenth international Florida Artificial Intelligence Research Society conference, pages 172–
176, St. Augustine, Florida, USA, May 2003. AAAI press.

7. Emrah Demir, Tolga Bektaş, and Gilbert Laporte. An adaptive large neighborhood search
heuristic for the pollution-routing problem. European Journal of Operational Research,
2012.

8. Ian P. Gent, Ian Miguel, and NeilC.A. Moore. Lazy explanations for constraint prop-
agators. In Manuel Carro and Ricardo Pea, editors, Practical Aspects of Declarative
Languages, volume 5937 of Lecture Notes in Computer Science, pages 217–233. Springer
Berlin Heidelberg, 2010.

9. M. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence Research, 1:25–46,
1993.

10. Daniel Godard, Philippe Laborie, and Wim Nuijten. Randomized large neighborhood
search for cumulative scheduling. In ICAPS, volume 5, pages 81–89, 2005.

11. Warwick Harvey and Joachim Schimpf. Bounds consistency techniques for long linear
constraints, 2002.

Explanation-Based Large Neighborhood Search 37

12. N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-based
heuristics. Artificial Intelligence, 139(1):21–45, July 2002.

13. Narendra Jussien. The versatility of using explanations within constraint programming.
Technical Report 03-04-INFO, 2003.

14. Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Principles and Practice of Constraint Pro-
gramming (CP 2000), number 1894 in Lecture Notes in Computer Science, pages 249–261,
Singapore, September 2000. Springer-Verlag.

15. Narendra Jussien and Olivier Lhomme. Dynamic domain splitting for numeric csps. In
European Conference on Artificial Intelligence (ECAI’98), pages 224–228, 1998.

16. Attila A Kovacs, Sophie N Parragh, Karl F Doerner, and Richard F Hartl. Adaptive large
neighborhood search for service technician routing and scheduling problems. Journal of
scheduling, 15(5):579–600, 2012.

17. P. Laborie and D. Godard. Self-adapting large neighborhood search:application to single-
mode scheduling problems. In P. Baptiste, G. Kendall, A. Munier-Kordon, and F. Sourd,
editors, In proceedings of the 3rd Multidisciplinary International Conference on Scheduling
: Theory and Applications (MISTA 2007), 28 -31 August 2007, Paris, France, pages 276–
284, 2007. Paper.

18. Jean-Baptiste Mairy, Yves Deville, and Pascal Van Hentenryck. Reinforced adaptive large
neighborhood search. In 8th Workshop on Local Search techniques in Constraint Satis-
faction (LSCS2011), 2011.

19. Jean-Baptiste Mairy, Pierre Schaus, and Yves Deville. Generic adaptive heuristics for
large neighborhood search. In 7th Workshop on Local Search Techniques in Constraint
Satisfaction (LSCS2010), 2010.

20. Yuri Malitsky, Deepak Mehta, Barry O’Sullivan, and Helmut Simonis. Tuning parame-
ters of large neighborhood search for the machine reassignment problem. In Integration
of AI and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, pages 176–192. Springer, 2013.

21. Olga Ohrimenko, Peter J. Stuckey, and Michael Codish. Propagation via lazy clause
generation. Constraints, 14(3):357–391, 2009.

22. Laurent Perron. Fast restart policies and large neighborhood search. In Francesca Rossi,
editor, Principles and Practice of Constraint Programming at CP 2003, volume 2833 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003.

23. Laurent Perron and Paul Shaw. Combining forces to solve the car sequencing problem.
In Jean-Charles Régin and Michel Rueher, editors, Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization Problems, volume 3011 of
Lecture Notes in Computer Science, pages 225–239. Springer Berlin Heidelberg, 2004.

24. Laurent Perron, Paul Shaw, and Vincent Furnon. Propagation guided large neighborhood
search. In CP’04, pages 468–481, 2004.

25. David Pisinger and Stefan Ropke. Large neighborhood search. In Handbook of meta-
heuristics, pages 399–419. Springer, 2010.

26. Cédric Pralet and Gérard Verfaillie. Travelling in the world of local searches in the space of
partial assignments. In Jean-Charles Régin and Michel Rueher, editors, CPAIOR, volume
3011 of Lecture Notes in Computer Science, pages 240–255. Springer, 2004.

27. P. Prosser. MAC-CBJ: maintaining arc consistency with conflict-directed backjumping.
Technical Report Research Report/95/177, Dept. of Computer Science, University of
Strathclyde, 1995.

28. Charles Prud’homme and Jean-Guillaume Fages. Introduction to choco3. In 1st Work-
shop on CPSolvers: Modeling, Applications, Integration, and Standardization, CP 2013,
http://choco.emn.fr, 2013.

29. Andrea Roli, Stefano Benedettini, Thomas Stützle, and Christian Blum. Large neighbour-
hood search algorithms for the founder sequence reconstruction problem. Computers &
operations research, 39(2):213–224, 2012.

30. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint satisfaction
problem. IJAIT, 3(2):187–207, 1994.

31. Paul Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Michael Maher and Jean-Francois Puget, editors, Principles and
Practice of Constraint Programming, CP98, volume 1520 of Lecture Notes in Computer
Science, pages 417–431. Springer Berlin Heidelberg, 1998.

32. Peter J. Stuckey. Lazy clause generation: Combining the power of sat and cp (and mip?)
solving. In CPAIOR, pages 5–9, 2010.

38 Charles Prud’homme et al.

33. Gérard Verfaillie and Narendra Jussien. Constraint solving in uncertain and dynamic
environments – a survey. Constraints, 10(3):253–281, 2005.

Explanation-Based Large Neighborhood Search 39

Plots and histograms per instances and contenders

In this section we report information related to the resolution of the instances solved in Sec-
tion 4. The contenders reported are PGLNS, EBLNS and PaEGLNS. A figure is made of a
plot and an histogram. The plot depicts the evolution of the objective value along with the
resolution time for the ten runs of the same approach (PGLNS, EBLNS and PaEGLNS); The
histogram reports the average repartition of the neighborhoods used to solve a given instance.
The color coding is the following: exp-obj is in cross-patterned style, exp-cft is in slash-
patterned style, ran is in plain white, pgn is in light gray, repgn is in dark gray and rapgn is
in black.

Fig. 13 cars cars 4 72.

 106

 108

 110

 112

 114

 116

 118

 120

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

14.1 PGLNS

 106

 108

 110

 112

 114

 116

 118

 120

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

14.2 objLNS

 106

 108

 110

 112

 114

 116

 118

 120
 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

14.3 cftLNS

 106

 108

 110

 112

 114

 116

 118

 120

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

14.4 EBLNS

 106

 108

 110

 112

 114

 116

 118

 120

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

14.5 PaEGLNS

40 Charles Prud’homme et al.

Fig. 14 cars cars 16 81.

 110

 112

 114

 116

 118

 120

 122

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

15.1 PGLNS

 110

 112

 114

 116

 118

 120

 122

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

15.2 objLNS

 110

 112

 114

 116

 118

 120

 122

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

15.3 cftLNS

 110

 112

 114

 116

 118

 120

 122

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

15.4 EBLNS

 110

 112

 114

 116

 118

 120

 122

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

15.5 PaEGLNS

Fig. 15 cars cars 26 82.

 124

 126

 128

 130

 132

 134

 136

 138

 140

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

16.1 PGLNS

 124

 126

 128

 130

 132

 134

 136

 138

 140

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

16.2 objLNS

 124

 126

 128

 130

 132

 134

 136

 138

 140

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

16.3 cftLNS

 124

 126

 128

 130

 132

 134

 136

 138

 140

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

16.4 EBLNS

 124

 126

 128

 130

 132

 134

 136

 138

 140

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

16.5 PaEGLNS

Explanation-Based Large Neighborhood Search 41

Fig. 16 cars cars 41 66.

 106

 107

 108

 109

 110

 111

 112

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

17.1 PGLNS

 106

 107

 108

 109

 110

 111

 112

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

17.2 objLNS

 106

 107

 108

 109

 110

 111

 112

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

17.3 cftLNS

 106

 107

 108

 109

 110

 111

 112

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

17.4 EBLNS

 106

 107

 108

 109

 110

 111

 112

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

17.5 PaEGLNS

Fig. 17 cars cars 90 05.

 280

 285

 290

 295

 300

 305

 310

 315

 320

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

18.1 PGLNS

 280

 285

 290

 295

 300

 305

 310

 315

 320

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

18.2 objLNS

 280

 285

 290

 295

 300

 305

 310

 315

 320

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

18.3 cftLNS

 280

 285

 290

 295

 300

 305

 310

 315

 320

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)

18.4 EBLNS

 280

 285

 290

 295

 300

 305

 310

 315

 320

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

18.5 PaEGLNS

42 Charles Prud’homme et al.

Fig. 18 fastfood ff3.

 2000

 3000

 4000

 5000

 6000

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

19.1 PGLNS

 2000

 3000

 4000

 5000

 6000

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

19.2 objLNS

 2000

 3000

 4000

 5000

 6000

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

19.3 cftLNS

 2000

 3000

 4000

 5000

 6000

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

19.4 EBLNS

 2000

 3000

 4000

 5000

 6000

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

19.5 PaEGLNS

Fig. 19 fastfood ff58.

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

20.1 PGLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

20.2 objLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

20.3 cftLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

20.4 EBLNS

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

20.5 PaEGLNS

Explanation-Based Large Neighborhood Search 43

Fig. 20 fastfood ff59.

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

21.1 PGLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

21.2 objLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

21.3 cftLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

21.4 EBLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

21.5 PaEGLNS

Fig. 21 fastfood ff61.

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

22.1 PGLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

22.2 objLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

22.3 cftLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

22.4 EBLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

22.5 PaEGLNS

44 Charles Prud’homme et al.

Fig. 22 fastfood ff63.

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

23.1 PGLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

23.2 objLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

23.3 cftLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

23.4 EBLNS

 1000

 2000

 3000

 4000

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

23.5 PaEGLNS

Fig. 23 league model20-3-5.

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

24.1 PGLNS

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

24.2 objLNS

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

24.3 cftLNS

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

24.4 EBLNS

 50000

 55000

 60000

 65000

 70000

 75000

 80000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

24.5 PaEGLNS

Explanation-Based Large Neighborhood Search 45

Fig. 24 league model30-4-6.

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

25.1 PGLNS

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

25.2 objLNS

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

25.3 cftLNS

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

25.4 EBLNS

 80000

 90000

 100000

 110000

 120000

 130000

 140000

 150000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

25.5 PaEGLNS

Fig. 25 league model50-4-4.

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

26.1 PGLNS

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

26.2 objLNS

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

26.3 cftLNS

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

26.4 EBLNS

 100000

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

26.5 PaEGLNS

46 Charles Prud’homme et al.

Fig. 26 league model55-3-12.

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

27.1 PGLNS

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

27.2 objLNS

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

27.3 cftLNS

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

27.4 EBLNS

 110000

 120000

 130000

 140000

 150000

 160000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

27.5 PaEGLNS

Fig. 27 league model90-18-20.

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

28.1 PGLNS

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

28.2 objLNS

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

28.3 cftLNS

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

28.4 EBLNS

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

28.5 PaEGLNS

Explanation-Based Large Neighborhood Search 47

Fig. 28 league model100-21-12.

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

29.1 PGLNS

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

29.2 objLNS

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

29.3 cftLNS

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

29.4 EBLNS

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

29.5 PaEGLNS

Fig. 29 rcpsp 11.

 78

 79

 80

 81

 82

 83

 84

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

30.1 PGLNS

 78

 79

 80

 81

 82

 83

 84

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

30.2 objLNS

 78

 79

 80

 81

 82

 83

 84

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

30.3 cftLNS

 78

 79

 80

 81

 82

 83

 84

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

30.4 EBLNS

 78

 79

 80

 81

 82

 83

 84

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

30.5 PaEGLNS

48 Charles Prud’homme et al.

Fig. 30 rcpsp 12.

 38

 38.5

 39

 39.5

 40

 40.5

 41

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

31.1 PGLNS

 38

 38.5

 39

 39.5

 40

 40.5

 41

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

31.2 objLNS

 38

 38.5

 39

 39.5

 40

 40.5

 41

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

31.3 cftLNS

 38

 38.5

 39

 39.5

 40

 40.5

 41

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

31.4 EBLNS

 38

 38.5

 39

 39.5

 40

 40.5

 41

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

31.5 PaEGLNS

Explanation-Based Large Neighborhood Search 49

Fig. 31 rcpsp 13.

 78

 78.2

 78.4

 78.6

 78.8

 79

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

32.1 PGLNS

 78

 78.2

 78.4

 78.6

 78.8

 79

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)

32.2 objLNS

 78

 78.2

 78.4

 78.6

 78.8

 79

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

32.3 cftLNS

 78

 78.2

 78.4

 78.6

 78.8

 79

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

32.4 EBLNS

 78

 78.2

 78.4

 78.6

 78.8

 79

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

32.5 PaEGLNS

50 Charles Prud’homme et al.

Fig. 32 rcpsp 14.

 140

 140.2

 140.4

 140.6

 140.8

 141

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

33.1 PGLNS

 140

 140.2

 140.4

 140.6

 140.8

 141

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)

33.2 objLNS

 140

 140.2

 140.4

 140.6

 140.8

 141

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)

33.3 cftLNS

 140

 140.2

 140.4

 140.6

 140.8

 141

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)

33.4 EBLNS

 140

 140.2

 140.4

 140.6

 140.8

 141

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

33.5 PaEGLNS

Fig. 33 vrp A-n38-k5.vrp.

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

34.1 PGLNS

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

34.2 objLNS

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

34.3 cftLNS

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

34.4 EBLNS

 1600

 1800

 2000

 2200

 2400

 2600

 2800

 3000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

34.5 PaEGLNS

Explanation-Based Large Neighborhood Search 51

Fig. 34 vrp A-n62-k8.vrp.

 5000

 5500

 6000

 6500

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

35.1 PGLNS

 5000

 5500

 6000

 6500

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

35.2 objLNS

 5000

 5500

 6000

 6500

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

35.3 cftLNS

 5000

 5500

 6000

 6500

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

35.4 EBLNS

 5000

 5500

 6000

 6500

 7000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

35.5 PaEGLNS

Fig. 35 vrp B-n51-k7.vrp.

 3500

 4000

 4500

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

36.1 PGLNS

 3500

 4000

 4500

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

36.2 objLNS

 3500

 4000

 4500

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

36.3 cftLNS

 3500

 4000

 4500

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

36.4 EBLNS

 3500

 4000

 4500

 5000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

36.5 PaEGLNS

52 Charles Prud’homme et al.

Fig. 36 vrp P-n20-k2.vrp.

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

37.1 PGLNS

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

37.2 objLNS

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

37.3 cftLNS

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

37.4 EBLNS

 300

 400

 500

 600

 700

 800

 900

 1000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

37.5 PaEGLNS

Fig. 37 vrp P-n60-k15.vrp.

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

38.1 PGLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

38.2 objLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

38.3 cftLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

38.4 EBLNS

 1900

 2000

 2100

 2200

 2300

 2400

 2500

 2600

 2700

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

38.5 PaEGLNS

Explanation-Based Large Neighborhood Search 53

Fig. 38 mario mario easy 2.

 0

 100

 200

 300

 400

 500

 600

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

39.1 PGLNS

 0

 100

 200

 300

 400

 500

 600

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

39.2 objLNS

 0

 100

 200

 300

 400

 500

 600

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

39.3 cftLNS

 0

 100

 200

 300

 400

 500

 600

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

39.4 EBLNS

 0

 100

 200

 300

 400

 500

 600

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

39.5 PaEGLNS

Fig. 39 mario mario easy 4.

 0

 100

 200

 300

 400

 500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

40.1 PGLNS

 0

 100

 200

 300

 400

 500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

40.2 objLNS

 0

 100

 200

 300

 400

 500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

40.3 cftLNS

 0

 100

 200

 300

 400

 500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

40.4 EBLNS

 0

 100

 200

 300

 400

 500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

40.5 PaEGLNS

54 Charles Prud’homme et al.

Fig. 40 mario mario n medium 2.

 200

 300

 400

 500

 600

 700

 800

 900

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

41.1 PGLNS

 200

 300

 400

 500

 600

 700

 800

 900

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

41.2 objLNS

 200

 300

 400

 500

 600

 700

 800

 900

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

41.3 cftLNS

 200

 300

 400

 500

 600

 700

 800

 900

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

41.4 EBLNS

 200

 300

 400

 500

 600

 700

 800

 900

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

41.5 PaEGLNS

Fig. 41 mario mario n medium 4.

 500

 550

 600

 650

 700

 750

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

42.1 PGLNS

 500

 550

 600

 650

 700

 750

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

42.2 objLNS

 500

 550

 600

 650

 700

 750

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

42.3 cftLNS

 500

 550

 600

 650

 700

 750

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

42.4 EBLNS

 500

 550

 600

 650

 700

 750

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

42.5 PaEGLNS

Explanation-Based Large Neighborhood Search 55

Fig. 42 mario mario t hard 1.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

43.1 PGLNS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

43.2 objLNS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

43.3 cftLNS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

43.4 EBLNS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

43.5 PaEGLNS

Fig. 43 pattern set mining k1 ionosphere.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

44.1 PGLNS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

44.2 objLNS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

44.3 cftLNS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

44.4 EBLNS

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

44.5 PaEGLNS

56 Charles Prud’homme et al.

Fig. 44 pattern set mining k2 audiology.

 15

 20

 25

 30

 35

 40

 45

 50

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

45.1 PGLNS

 15

 20

 25

 30

 35

 40

 45

 50

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

45.2 objLNS

 15

 20

 25

 30

 35

 40

 45

 50

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

45.3 cftLNS

 15

 20

 25

 30

 35

 40

 45

 50

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

45.4 EBLNS

 15

 20

 25

 30

 35

 40

 45

 50

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

45.5 PaEGLNS

Fig. 45 pattern set mining k2 german-credit.

 2

 4

 6

 8

 10

 12

 14

 16

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

46.1 PGLNS

 2

 4

 6

 8

 10

 12

 14

 16

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

46.2 objLNS

 2

 4

 6

 8

 10

 12

 14

 16

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

46.3 cftLNS

 2

 4

 6

 8

 10

 12

 14

 16

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

46.4 EBLNS

 2

 4

 6

 8

 10

 12

 14

 16

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

46.5 PaEGLNS

Explanation-Based Large Neighborhood Search 57

Fig. 46 pattern set mining k2 segment.

 15

 20

 25

 30

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

47.1 PGLNS

 15

 20

 25

 30

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)

47.2 objLNS

 15

 20

 25

 30

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)

47.3 cftLNS

 15

 20

 25

 30

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

47.4 EBLNS

 15

 20

 25

 30

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

47.5 PaEGLNS

58 Charles Prud’homme et al.

Fig. 47 pc 25-5-5-9.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

48.1 PGLNS

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

48.2 objLNS

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

48.3 cftLNS

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

48.4 EBLNS

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

48.5 PaEGLNS

Explanation-Based Large Neighborhood Search 59

Fig. 48 pc 28-4-7-4.

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

49.1 PGLNS

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

49.2 objLNS

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

49.3 cftLNS

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

49.4 EBLNS

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

49.5 PaEGLNS

Fig. 49 pc 30-5-6-7.

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

50.1 PGLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

50.2 objLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

50.3 cftLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

50.4 EBLNS

 30

 35

 40

 45

 50

 55

 60

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

50.5 PaEGLNS

60 Charles Prud’homme et al.

Fig. 50 pc 32-4-8-0.

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

51.1 PGLNS

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

51.2 objLNS

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

51.3 cftLNS

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

51.4 EBLNS

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

51.5 PaEGLNS

Fig. 51 pc 32-4-8-2.

 20

 30

 40

 50

 60

 70

 80

 90

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

52.1 PGLNS

 20

 30

 40

 50

 60

 70

 80

 90

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

52.2 objLNS

 20

 30

 40

 50

 60

 70

 80

 90

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

52.3 cftLNS

 20

 30

 40

 50

 60

 70

 80

 90

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

52.4 EBLNS

 20

 30

 40

 50

 60

 70

 80

 90

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

52.5 PaEGLNS

Explanation-Based Large Neighborhood Search 61

Fig. 52 ship-schedule.cp 5Ships.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

53.1 PGLNS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

53.2 objLNS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

53.3 cftLNS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

53.4 EBLNS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

53.5 PaEGLNS

Fig. 53 ship-schedule.cp 6ShipsMixed.

 50000

 100000

 150000

 200000

 250000

 300000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

54.1 PGLNS

 50000

 100000

 150000

 200000

 250000

 300000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

54.2 objLNS

 50000

 100000

 150000

 200000

 250000

 300000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

54.3 cftLNS

 50000

 100000

 150000

 200000

 250000

 300000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

54.4 EBLNS

 50000

 100000

 150000

 200000

 250000

 300000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

54.5 PaEGLNS

62 Charles Prud’homme et al.

Fig. 54 ship-schedule.cp 7ShipsMixed.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

55.1 PGLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

55.2 objLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

55.3 cftLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

55.4 EBLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

55.5 PaEGLNS

Fig. 55 ship-schedule.cp 7ShipsMixedUnconst.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

56.1 PGLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

56.2 objLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

56.3 cftLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

56.4 EBLNS

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

56.5 PaEGLNS

Explanation-Based Large Neighborhood Search 63

Fig. 56 ship-schedule.cp 8ShipsUnconst.

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

57.1 PGLNS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

57.2 objLNS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

57.3 cftLNS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

57.4 EBLNS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

57.5 PaEGLNS

Fig. 57 still-life 09.

 37

 38

 39

 40

 41

 42

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

58.1 PGLNS

 37

 38

 39

 40

 41

 42

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

58.2 objLNS

 37

 38

 39

 40

 41

 42

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

58.3 cftLNS

 37

 38

 39

 40

 41

 42

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

58.4 EBLNS

 37

 38

 39

 40

 41

 42

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

58.5 PaEGLNS

64 Charles Prud’homme et al.

Fig. 58 still-life 10.

 47

 48

 49

 50

 51

 52

 53

 54

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

59.1 PGLNS

 47

 48

 49

 50

 51

 52

 53

 54

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

59.2 objLNS

 47

 48

 49

 50

 51

 52

 53

 54

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

59.3 cftLNS

 47

 48

 49

 50

 51

 52

 53

 54

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

59.4 EBLNS

 47

 48

 49

 50

 51

 52

 53

 54

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

59.5 PaEGLNS

Fig. 59 still-life 11.

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

60.1 PGLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

60.2 objLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

60.3 cftLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

60.4 EBLNS

 58

 58.5

 59

 59.5

 60

 60.5

 61

 61.5

 62

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

60.5 PaEGLNS

Explanation-Based Large Neighborhood Search 65

Fig. 60 still-life 12.

 62

 64

 66

 68

 70

 72

 74

 76

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

61.1 PGLNS

 62

 64

 66

 68

 70

 72

 74

 76

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

61.2 objLNS

 62

 64

 66

 68

 70

 72

 74

 76

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

61.3 cftLNS

 62

 64

 66

 68

 70

 72

 74

 76

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

61.4 EBLNS

 62

 64

 66

 68

 70

 72

 74

 76

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

61.5 PaEGLNS

Fig. 61 still-life 13.

 78

 80

 82

 84

 86

 88

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

62.1 PGLNS

 78

 80

 82

 84

 86

 88

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

62.2 objLNS

 78

 80

 82

 84

 86

 88

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

62.3 cftLNS

 78

 80

 82

 84

 86

 88

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

62.4 EBLNS

 78

 80

 82

 84

 86

 88

 0.1

 1 10

 100

ob
je

ct
iv

e

time (log)
 0

 25

 50

 75

 100

62.5 PaEGLNS

	Introduction
	Background
	Explanation-Based LNS
	Evaluation
	Conclusion and future work

