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Abstract. Statistical Model Checking (SMC) is a powerful and widely
used approach that consists in extracting global information on the sys-
tem by monitoring some of its executions. In this paper, we add two new
stones to the cathedral of results on SMC, that are 1. a new algorithm to
detect emergent behaviors at runtime, and 2. an integration of Plasma
Lab, a powerful SMC checker, as a library of Simulink. Our results are
illustrated on a realistic case study.

1 Introduction, Motivations

Complex systems such as cyber-physical systems are large-scale distributed sys-
tems, often viewed as networked embedded systems, where a large number of
computational components are deployed in a physical environment. Each com-
ponent collects information and offers services to its environment (e.g., environ-
mental monitoring and control, health-care monitoring and traffic control). This
information is processed either at the component, in the network or at a remote
location (e.g., the base station), or in any combination of these.

Characteristic for nowadays complex systems is that they have to meet a mul-
titude of quantitative constraints, e.g., timing constraints, power consumption,
memory usage, communication bandwidth, QoS, and often under uncertainty of
the behavior of the environment. There is thus the need for new mathematical
foundation and supporting tools allowing to handle the combination of quantita-
tive aspects concerning, for example, time, stochastic behavior, hybrid behavior
including energy consumption. The main difficulties being that the state space of
nowadays systems is too complex to be analyzed with classical validation tech-
nique. Another problem being that the interleaving of information eventually
leads to undecidability.

In a series of recent works, the formal methods community has studied Sta-

tistical Model Checking techniques (SMC) [11,17,20,15] as a way to reason on
quantitative (potentially undecidable) complex problems. SMC can be seen as a
trade-off between testing and formal verification. The core idea of the approach is
to conduct some simulations of the system and then use results from the statistic
area in order to estimate the probability to satisfy a given property. Of course,
in contrast with an exhaustive approach, a simulation-based solution does not
guarantee a correct result. However, it is possible to bound the probability of
making an error. Simulation-based methods are known to be far less memory and
time intensive than exhaustive ones, and are sometimes the only option. SMC



gets widely accepted in various research areas such as systems biology [5,14] or
software engineering, in particular for industrial applications. There are several
reasons for this success. First, it is very simple to implement, understand and
use. Second, it does not require extra modeling or specification effort, but simply
an operational model of the system, that can be simulated and checked against
state-based properties. Third, it allows to verify properties [2] that cannot be
expressed in classical temporal logics. SMC algorithms have been implemented
in a series of tools such as Ymer [20], Prism [16], UPPAAL [8], Plasma Lab [4].

Albeit SMC has already been widely adopted by the research community and
by the industry. In this paper we propose two new contributions that have the
potential to leverage the applicability of SMC to a broader class of systems.

We first adapt CUSUM [18], an algorithm that can be used to detect changes
in signal monitoring. We will show that CUSUM can be used to detect when the
probability to satisfy a given property drops below some value. This algorithm
offers new possibilities to detect, e.g., emergent behaviors in dynamic systems.
Our main contributions will be to extend temporal logic with a change-based
operator, discuss the calibration of the algorithm and its integration in a global
monitoring procedure, and illustrate the applicability on a concrete case study.

While simulation-based approaches have the potential to be directly inte-
grated in design tools used by industry, most of them still rely on their own
input languages. Such an approach is often perceived negatively by the en-
gineers. Indeed, formal verification should behave as a helper and not as yet
another language they need to learn. We recently developed Plasma Lab an
API-based SMC checker. In this paper, we show that by using the API, Plasma
Lab can directly be integrated as a Simulink library, hence offering the first in
house tool for the verification of stochastic Simulink models – this tool com-
pletes the panoply of validation toolsets already distributed with Simulink (see
http://www.mathworks.nl/verification-validation/). Another advantage
of our approach is that any advance on SMC that we will implement within
Plasma Lab in the future will directly be available to the Simulink users.

Finally, our third contribution is to show the potential of our approach on a
realistic case study.

2 Systems and Problems

Consider a set of states S and a set of states variables SV . Assume that each state
variable x ∈ SV is assigned to domain Dx, and define the valuation function V ,
such that V (s, x) ∈ Dx is the value of x in state s. Consider also a time domain
T ⊆ R. We propose the following definition to capture the behavior of a large
class of stochastic systems.

Definition 1 (Stochastic Process). A stochastic process is a family of ran-

dom variables X = {Xt | t ∈ T}, each random variable Xt having range S.

An execution for a stochastic process X is any sequence of observations {xt ∈
S | t ∈ T} of the random variables Xt ∈ X . It can be represented as a se-
quence π = (s0, t0), (s1, t1), . . . , (sn, tn), such that si ∈ S and ti ∈ T , with



time stamps monotonically increasing, e.g. ti < ti+1. Let 0 ≤ i ≤ n, we denote
πi = (si, ti), . . . , (sn, tn) the suffix of π starting at position i. Let s ∈ S, we
denote Path(s) to be the set of executions of X that starts in state (s, 0) (also
called initial state) and Pathn(s) the set of executions of length n.

In [20], Youness showed that the executions set of a stochastic process is a
measurable space, which defines a probability measure µ over Path(s). The pre-
cise definition of µ depends on the specific probability structure of the stochastic
process being studied. We now define the general structure for stochastic discrete

event systems.

Definition 2 (Stochastic Discrete Event System (SDES)). A stochastic
discrete event system is a tuple Sys = 〈S, I, T, µ, SV, V 〉, where S is a set of

states, I ⊆ S is the set of initial states, T is a set of time stamps, µ a probability

measure over the executions of Sys, SV is a set of state variables and V is the

valuation function.

Properties over traces of Sys are defined via the so-called Bounded Linear
Temporal Logic (BLTL) [3]. BLTL restricts Linear Temporal Logic by bounding
the scope of the temporal operators. Syntactically, we have

ϕ, ϕ′ := true | false | x ∼ v | ϕ ∧ ϕ′ | ϕ ∨ ϕ′ | ϕ ⇒ ϕ′ | ¬ϕ | (ϕ)
| X≤t ϕ | F≤t ϕ | G≤t ϕ | ϕ U≤t ϕ′

where ϕ, ϕ′ are BLTL formulas, x ∈ SV , v ∈ Dx and t ∈ Q+ and ∼∈ {<,≤
,=,≥, >}. As usual, we define F≤tϕ ≡ true U≤tϕ and G≤tϕ ≡ ¬F≤t¬ϕ. The
semantics of a BLTL is defined with respect to executions π of a SDES using
the following rules:

– π |= X≤t ϕ ≡ ∃i, i = max{j | t0 ≤ tj ≤ t0 + t} and πi |= ϕ
– π |= ϕ1 U≤t ϕ2 ≡ ∃i, t0 ≤ ti ≤ t0 + t and πi |= ϕ2 and ∀j, 0 ≤ j <

i, πj |= ϕ1

– π |= ϕ1 ∧ ϕ2 ≡ π |= ϕ1 and π |= ϕ2

– π |= ¬ϕ ≡ π 6|= ϕ and π |= x ∼ v ≡ V (s0, x) ∼ v
– π |= true and π 6|= false

In the rest of the paper, we consider three problems that are 1. the quantita-
tive problem for BLTL, 2. the optimization problem for parametric values and
3. the detection of changes.

2.1 Quantitative and Optimization Problems

Given a SDES Sys and a BLTL property ϕ, we use Pr[Sys |= ϕ] to denote
the probability for an execution of Sys to satisfy ϕ. The quantitative problem

consists in computing this probability.
We will also study the optimization problem, that is the one of finding an

initial state that maximizes/minimizes the value of a given observation. Consider
a set O of observations over Sys. Each observation o ∈ O is a function o :



Pathn(s) → Do that associates to each run of length n and starting at s a value
in a domain Do. We denote (õ)n the average value of o(π) over all the executions
π ∈ Pathn(s). The optimization problem for Sys is to determine an initial state
s ∈ I that minimizes or maximizes the value (õ)n, for all o ∈ O.

As an example, an observation can simply be the maximal value of a given
parameter along an execution. The average observation then becomes the sum of
those observations divided by the number of runs. In this context, the optimiza-
tion could be to find the initial state that minimizes the value of the parameters.

2.2 Change Detection Problem

In this section, we consider the problem of detecting whether the probability to
satisfy a given BLTL property ϕ changes at execution time. More precisely, given
an execution π = (s0, t0), (s1, t1), . . . , (sn, tn) that satisfies ϕ with a probability
p0<k (resp. p0>k) at (s0, t0), we are looking for a suffix πi that satisfies ϕ
with a probability p≥k (resp. p≤k), with k ∈]0, 1[. As an example, assume that
under some traffic conditions, the firemen can extinguish a fire before three hours
with a probability smaller than 0.7, it is expected that this probability decreases
when the traffic increases. The challenge is to detect the time t when this change
happens.

Formally, we consider a sequence of Bernoulli variables Xi such that Xi = 1
iff πi |= ϕ. An execution π satisfies a change p ≥ k where p = Pr[ϕ] at time
t, iff Pr[Xi = 1]<k for ti < t and Pr[Xi = 1]≥k for ti ≥ t. We note τ ! the
fact that an execution is subjected to a change at time t. Using those notations,
one can define Boolean propositions over changes and their respective time.
One can also combine changes propositions with BLTL formulas, providing that
those propositions are not in the scope of temporal operators. We now introduce
extended BLTL change-based relations, an extension of BLTL.

Definition 3. An extended BLTL change relation is defined as:

change := p ⋆ k where p = Pr[ϕ]
prop := let τ = change and τ ′ = change and . . . in δ
δ, δ′ := τ 3 τ ′ + t | τ 3 t | τ ! | ϕ ∈ BLTL

| δ ∨ δ′ | δ ∧ δ′ | ¬δ | δ ⇒ δ′ | (δ)

with p is a probability identifier, k ∈]0, 1[, t ∈ Q+, 3 ∈ {<,≤,≥, >}, ⋆ ∈ {≤,≥}
and ϕ is a BLTL formula.

This extension allows us, e.g., to express conditions such as “if a change occurs
at time t, then the system shall reach a state x in less than 10 units of time”.

3 The Algorithms

In this section, we detail our algorithmic solutions to the three problems de-
scribed in Section 2. Our solutions rely on a simulation-based approach that
falls into the family of the so-called Statistical Model Checking (SMC) approach.



3.1 Quantitative Verification and Optimization

We first focus on the problem of computing the probability for a SDES Sys
to satisfy a given BLTL property. For doing so, we rely on Statistical Model
Checking (SMC).

SMC estimates the probability that a system satisfies a property using a
number of statistically independent simulation traces of an executable model.
The idea being to monitor the property on each simulation, and then use an al-
gorithm from the statistic area to compute an estimate of the probability. Those
algorithms include Monte Carlo, or importance sampling/splitting [12]. Moni-
toring algorithms for BLTL can be found in [10]. In our work, the quantitative
problem will mainly be solved in the context of calibrating a change algorithm
as well as to validate quantitative properties of the model.

Optimization We now show that a simulation approach can also be used to
perform an optimization of the model by varying the model parameters and
evaluating the observable quantities to optimize. We consider a stochastic state
transition system Sys, with a set of initial states I, and a set of observations O.

For each initial state s ∈ I we perform N random simulations of the system
Sys(s) and we compute the average value of the observed quantities over the
simulations. Therefore, for each observation o ∈ O we compute an estimation
1

N

∑N

i=1
o(πi) of the average value (õ)n after runs of length n.

To solve the optimization problem, we must determine the configurations in
I that optimize (minimize or maximize) these quantities. When the problem is
defined with several observable quantities, we are faced with a multi-objective
problem, and the best configurations are then selected by computing the Pareto
frontier of the set of observations.

Observe that the simulation approach allows us to distribute the computation
if the architecture permits it.

3.2 Change Detection with CUSUM

Assuming a SDES Sys, we consider the change p ≥ k where p = Pr[ϕ] with ϕ a
BLTL property and k ∈]0, 1[. Let X1, . . .XN be a finite set of samples collected
during an execution π of Sys. We note pi the probability value at the sample
Xi. We assume the probability initially satisfies p0<k. The problem is stated as:

– H0 : ∀ 1 ≤ i ≤ N, pi < k i.e. no change occurs
– H1 : ∃ 1 ≤ i ≤ N such that the change occurs at time t: ∀1 ≤ j ≤ N , we

have tj < t ⇒ pi < k and tj ≥ t ⇒ pi ≥ k.

In this paper, we will decide between those hypothesis by using the CUSUM
algorithm [1]. Like the Sequential Probability Ratio Test (SPRT) [19,15], the
CUSUM comparison is based on a likelihood-ratio test: it consists in computing
the cumulative sum of the logarithm of the likelihood-ratio Si over the sample
sequence X1, . . .Xi and detecting the change decision as soon as Si satisfies the
stopping rule.
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i
∑

j=1

sj sj =











ln k
pj

, if Xj = 1

ln 1−k
1−pj

, otherwise

The typical behavior of the log-likelihood ratio Si is a global decreasing before
the change, and an increasing shape after the change. Then the stopping rule
purpose is to detect when the positive drift is sufficiently relevant to detect the
change. It consists in saving mi = min1≤j≤i Sj , the minimal value of CUSUM,
and compare it with the current value. If the distance is sufficiently great, the
stopping decision is taken, i.e., an alarm is raised at time ta = min{ti : Si−mi ≥
λ}, where λ is a sensitivity threshold.

In case there is no detection, we set ta = +∞. Note that we presented
CUSUM monitoring for the case p ≥ k, but it could be set up for p ≤ k by
defining the stopping rule for the maximum value of CUSUM instead.

CUSUM Calibration: it is important to note that the likelihood-ratio test as-
sumes that the considered samples must be independent. This assumption may
be difficult to ensure over a single execution of a system, but several heuristic so-
lutions to guarantee independence exist. One of them consists in finding a state
frequently visited during the execution of the system. Collecting exactly one
sample each time such a state is visited, ensures independence between samples.
Another solution being to introduce delays between the samples.

The CUSUM sensitivity depends on the choice of the threshold λ. A smaller
value increases the sensitivity, i.e. the false alarms rate. A false alarm is a change
detection at a time when no relevant event actually occurs in the system. Con-
versely, big values may delay the detection of the changes. The false alarms rate
of CUSUM is defined as E[ta], the expectation of the time before the CUSUM
raises an alarm while the system is still running before the change occurs. Ide-
ally, this value must be the biggest as possible E[ta] → +∞. The detection delay
is defined as the expectation time between the actual change of time t and the
alarm time ta of the CUSUM: E[ta−t | t < ta]. Ideally, this value has to be small
as possible. In Section 5, we will propose an heuristic that uses the quantitative
model checking problem in order to calibrate the algorithm.

The empirical way to choose the stopping rule: Theoretically, the properties of
the CUSUM are based on the computation of the Average Run Length function
(ARL) [1]. In a very few cases, this function may be computed or approximated
using some approximating techniques (Wald or Siegmund) but most of the time,
it is too complex to be used and to deduce λ. The alternative [18] consists in
simulating Sys0, that is a version of the system for which the change does not
occur, i.e., the probability will not reach the value k. The idea, which relies on a
Monte-Carlo approach, consists in generating the CUSUM values for a huge set
of different executions of Sys0. The objective being to characterize the duration
of false alarms that may be triggered on those situation. In Section 5 we apply
such a characterization for change-based BLTL.



Monitoring for Change Relation Satisfiability Let us consider the change
relation γ based on τ1, . . . , τn changes. Using the syntax introduced in Sec-
tion 2.2, it is expressed as let τ1 and . . . and τn in γ, where γ contains Boolean
operations over changes and BLTL formulas. We use the following monitoring
procedure for each atom:

1. For each change τi, we set a CUSUM monitor that splits the monitoring
into one sub-monitor for each random variable. Note that heuristics allows
to reuse information between monitoring actions.

2. The proposition τi! holds iff ti 6= +∞. The proposition τi 3 t holds iff ti 3 t.
Similarly, the proposition τi 3τj +t holds only if ti 3tj +t but it is undefined
if ti = tj = +∞.

3. BLTL formulas can be monitored with classical techniques.

In practice, the tool generates monitors on demand for the given atoms and
combine their answers in a Boolean manner.

4 Simulink and Plasma Lab: an Integration

The results presented in Section 3 have been implemented in the Plasma Lab
SMC toolbox available at https://project.inria.fr/plasma-lab/. In this
section, we first recap the main features of the tool, and then show how ar-
chitecture of the implementation can be exploited in order to integrate Plasma
Lab within Simulink, hence providing an in shell new verification theory for this
widely used language.

4.1 On Plasma Lab

Plasma Lab is a compact, efficient and flexible platform for statistical model
checking of stochastic models. The tool offers a series of SMC algorithms which
includes rare events simulation, distributed SMC, non-determinism, or optimiza-
tion. The main difference between Plasma Lab and other SMC tools is that
Plasma Lab proposes an API abstraction of the concepts of stochastic model
simulator, property checker (monitoring) and SMC algorithm. In other words,
the tool has been designed to be capable of using external simulators, input lan-
guages, or SMC algorithms. This not only reduces the effort of integrating new
algorithms, but also allows us to create direct plug-in interfaces with industry
used specification tools. The latter being done without using extra compilers.

Figure 1 presents Plasma Lab architecture. More specifically, the relations
between model simulators, property checkers, and SMC algorithms components.
Simulators features include starting a new trace and simulating a model step
by step. Checkers decide a property on a trace by accessing to state values. It
also control the simulation, with a state on demand approach. A SMC algorithm
component, such as the CUSUM algorithm, is a runnable object. The algorithm
process is carried out by the run method. Progress and results are then notified
through the Controller API. Samples are obtained by calls to the check function



Fig. 1: Plasma Lab architecture Fig. 2: Interface Plasma Lab- Simulink

of a checker component. Depending on the property language, a checker can
return either Boolean or numerical values.

In coordination with this architecture, we use a plugin system to load models
and properties components. It is then possible to support new model or prop-
erty languages. Adding a simulator, checker or algorithm component is pretty
straightforward as they share a similar plugin architecture. Thus, it requires
only a few classes and methods to get a new component running. Each plugin
contains a factory class used by Plasma Lab to instantiate component objects.
These components implement the corresponding interface defining their behav-
ior. Some companion objects are also required (results, states, identifiers) to
allow communication between components and the Controller API.

4.2 On Integrating Plasma Lab within Simulink

We now show how to integrate Plasma Lab within Simulink, hence lifting the
power of our simulations approaches directly within the tool. We will focus on
those Simulink models with stochastic information. The experienced reader shall
observe that our approach is different from the one of Zuliani et al. [21] that con-
sists in programming one SMC algorithm within the Matlab toolbox of Simulink.
Indeed, the flexibility of our tool will allows us to incrementally add new algo-
rithms to the toolbox without new programming efforts. Moreover, the user will
directly use Plasma Lab within the Simulink interface, without tierce party. The
approach is also different from the one in [6] that consists in translating parts
of Simulink models into the Uppaal language (which makes it difficult to anal-
yse counter examples). The reader shall observe that Plasma Lab for Simulink
offers the first integrated verification tool for Simulink models with stochastic
information.

Simulink is a block diagram environment for multidomain simulation and
Model-Based Design approach. It supports the design and simulation at the sys-
tem level, automatic code generation, and the testing and verification of embed-
ded systems continuously . Simulink provides a graphical editor, a customizable



set of block libraries and solvers for modeling and simulation of dynamic sys-
tems. It is integrated within MATLAB. The Simulink models we considered have
special extensions to randomly behave like failures. By default the Simulink li-
brary provides some random generators that are not compatible with statistical
model checking: they always generate the same random sequence of values at
each execution. To overcome this limitation we use some C-function blocks call
that generate independent sequences of random draws.

Our objective was to integrate Plasma Lab as a new Simulink library. For
doing so, we developed a new simulator plugin whose architecture is showed in
Figure 2. One of the key point of our integration has been to exploit MATLAB
Control, that is a library1 allowing to interact with MATLAB from Java. This
library uses a proxy object connected to a MATLAB session. MATLAB invokes,
e.g. functions eval, feval . . . as well as variables access, that are transmitted
and executed on the MATLAB session through the proxy. This allowed us to
implement the features of a model component, controlling a Simulink simulation,
in MATLAB language. Calls to this implementation are then done in Java from
the Plasma Lab plugin.

Regarding the monitoring of properties, we exploit the simulation output of
Simulink. More precisely, BLTL properties are checked over the executions of a
SDES, i.e. sequences of states and time stamps based on the set of state variables
SV . This set must be defined by declaring in Simulink signals as log output.
During the simulation these signals are logged in a data structure containing
time stamps and are then retrieved as states in Plasma Lab. One important
point is that Simulink discretizes the signals trace, its sample frequency being
parameterized by each block. In terms of monitoring this means that the sample
frequency must be configured to observe any relevant change in the model. In
practice, the frequency can be set as a constant value, or, if the model mixes
both continuous data flow and state flow, the frequency can be aligned on the
transitions, i.e. when a state is newly visited.

5 An Illustrative Case study

We applied all the three analyses presented on the Simulink model of a temper-
ature controller in a pig shed. This model is inspired by similar studies [13,9,7].
The system under control is a pig shed equipped with a fan and a heater to reg-
ulate the air temperature. Air temperature in the shed is subjected to random
variations due to the variation of external temperature and the variation of the
number of pigs that produce heat. The objective of the controller is to counter
these variations such that the temperature remains within a given comfort zone.
To do so, the controller can activate the heater to increase the temperature, and
the fan to bring external air and therefore cool the shed. Then the temperature
T of the shed is given by the following differential equation:

T ′ = Text ∗ Q − T ∗ Q + Wheater + Wpigs

1 https://code.google.com/p/matlabcontrol/



where Text is the external temperature, Q = Qmin +Qfan is the air flow created
by a minimal flow Qmin, and an additional flow Qfan when the fan is activated,
Wheater is the heat produced by the heater, when activated, and Wpigs is the
heat produced by the pigs. This equation is modeled by the Simulink subsystem
of Fig. 3. The number of pigs is computed every 500 time units according to

Fig. 3: Simulink model of the differential equation controlling the temperature

a Poisson law with λ = 13. The external temperature is modulated by two
sinusoidal between −1 ◦C and +25 ◦C, with periods 628 t.u and 62.8 t.u.

The controller that we study applies a bang-bang strategy that is specified
by four temperature thresholds, that is (1) when the temperature goes above
TFanOn, the fan is turned on, (2) when the temperature returns below TFanOff,
the fan is turned off, (3) when the temperature goes below THeaterOn, the heater
is turned on, (4) when the temperature returns above THeaterOff, the heater is
turned off. This controller is implemented by Stateflow automata given in Fig. 4.

Fig. 4: Temperature controller
Fig. 5: Failure generator

The fan and the heater are subjected to random failures when they are in
use. Exponential distributions control the occurrence time of a failure. After a
failure a reparation process allows to restart the fan or the heater, but it also
takes a random time, exponentially distributed. These failures are modeled by
two Stateflow automata, as shown in Fig. 5. In this automaton, rnd is a random
number between 0 and 1, and tuse is the duration of use of the fan or heater.



The timings tfail and trepair corresponds respectively to the time of next failure,
and the repair time, each chosen according to an exponential distribution with
parameter lambdaFail and lambdaRepair, respectively. Additionally, the failure
rate increases with usage due to wear and tear. This continue until a replacement
is performed, which reset the rate.

5.1 Quantitative Verification and Optimization

The controller goal is to maintain the temperature within a comfort zone spec-
ified by a minimum and a maximum temperature (resp. Tmin = 15 ◦C and
Tmax = 25 ◦C). We first consider the following values for the controller thresholds:
TFanOn = 22 ◦C, TFanOff = 20 ◦C, THeaterOn = 18 ◦C and THeaterOff = 20 ◦C.

We apply statistical model-checking to evaluate the efficiency of the controller
both in the presence and absence of failures. The first BLTL property that we
monitor checks that the system is not in discomfort for an excessive period of
time. This is expressed by the following property:

Φ1 = G≤t1F≤t2¬Discomfort

where t1 is the simulation time, t2 is the accepted discomfort time, and Discomfort

is a predicate that is true when the temperature of the system is outside the
comfort zone. A dual of Φ1 is to check for long periods without discomfort. This
is possible with:

Φ2 = F≤t1G≤t2Discomfort

Finally, a third BLTL property checks that each period of discomfort is followed
by a period without discomfort:

Φ3 = G≤t1

(

G≤t2Discomfort ⇒ F≤t3(G≤t4¬Discomfort)
)

Here t1 and t2 are as previously, while t3 ≥ t2 is the expected time at which the
system returns to normal situation, and t4 is the duration of the period without
discomfort.

We use Plasma Lab to estimate the probability to satisfy these properties
for different values of the timing constraints, on both models with and without
failures. Each property is evaluated over a period of time t1 = 12000 t.u. with
precision ǫ = 0.01 and confidence δ = 0.01. Φ1 and Φ2 are evaluated for several
values of t2. Note that for t2 = 0, Φ1 resumes to checking G≤t1¬Discomfort. Φ3

is evaluated with t2 = 25 t.u. and several values of t3 and t4.
The results for properties Φ1 and Φ2 are presented in Fig. 6. While the

probabilities of satisfying Φ1 show a significant difference between the models
with and without failures, the results for Φ2 are almost identical. This means
that discomfort is as frequent in the two models, but it tends to last longer in
the presence of failures. The results for Φ3 are presented in Fig. 7. It shows again
that the model without failures recovers quicker from a discomfort period.

Instead of estimating a probability using SMC techniques, we can compute
the average value of two quantities in the model, namely the discomfort time,
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Fig. 6: Probability estimation with SMC of satisfying Φ1 (left) and Φ2 (right)
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and with failures (right)

that is the cumulative time when the model is in a discomfort state, and the
energy cost, computed with the duration of use of the heater and the fan. We
aim at minimizing these two values by choosing adequate values of the model
parameters.

Using Plasma Lab we can automatically instantiate the model with a range
of values for the four temperature thresholds. We specify the ranges [15, 20]
for THeaterOn and THeaterOff, and [20, 25] for TFanOn and TFanOff, with an
increment of 1. We additionally specify the following constraints to select a subset
of the possible values of the parameters: TFanOff < TFanOn, THeaterOn <
THeaterOff, and THeaterOn < TFanOn.

Using these constraints Plasma Lab generates a set of 225 possible configura-
tions, for each variant of the models, with and without failures. Each configura-
tion is automatically analyzed with 100 simulations. We then plots the average
values of the cost and the discomfort in Fig. 8. These graphs helps to select the
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Fig. 8: Optimization of the thresholds parameters without failures (left) and with
failures (right)

best values of the parameters by looking at the points that lies on the Pareto
frontier of the data.

5.2 Change Detection

In our pig shed, the equipment may sometimes fail (heater or fan may break).
In such situation, the shed may be too frequently in the discomfort zone, which
may lead to the death of several pigs.

As we have seen, the probability of being in the discomfort zone is nominally
very low. However, to avoid problems, one should be able to rise a flag as soon
as the probability to be in the discomfort zones crosses a given threshold. Our
objective is to detect that when such a change happens, there is a maintenance
procedure that moves the shed out of the discomfort zone. In our example, this
maintenance feature is modeled as a procedure that is regularly applied to the
pig shed. Initially, the time between each maintenance is set to a very large value
(500000 t.u.). The final objective is to set this time value in order to have an
acceptable maintenance delay when the die risk is to heavy for the pigs (emergent
behavior). This will be done by detecting changes.

We modeled the property using the change property language we proposed
and we used CUSUM algorithm to check it. We first define τ to be the following
change: “ the probability to be in the discomfort zone more than t1 = 100 t.u.
is greater than 0.35”. We are now ready to propose a property that expresses
that when the change occurs, then the maintenance must be done in less than
t2 = 1000 t.u. Formally,

φ4 =

∣

∣

∣

∣

∣

∣

let τ = p ≥ 0.35 where

p is Pr
[

G≤t1Discomfort
]

in τ ! ⇒ F≤τ+t2Reparation



In order to perform the analysis, the CUSUM algorithm needs a calibration
step. We first require an estimate of p0, the initial probability of being in the
discomfort zone before the change occurs and the stopping sensitivity λ. To
estimate p0, we disable failures of the temperature regulation system (fans +
heaters) in the shed model. The estimate of p0 is obtained by a Monte Carlo
simulation based on the monitoring of G≤t1Discomfort. The property was checked
every 200 t.u. over execution traces of length 21000 t.u. After 630 sec. of analysis,
Plasma Lab returns p0 ∈ [0, 0.05] with a confidence of 0.9.

Next step is to set the stopping rule, which is again done with a Monte Carlo
approach. The objective is to observe several samples (value of the ratio) for
several CUSUM. When there is no failure, the curve of samples should decrease.
Indeed, it should only increases when failures happen, i.e., when the change
happen. In practice, even without failure, the curve may locally increase for a
short amount of time, which is due to the uncertainty introduced in the model.
The objective is to characterize those local drifts to avoid false alarm.

To do so, we ran 100 executions of the CUSUM and observed 2000 samples
per CUSUM (which corresponds to 201000 t.u.). From those experiments, we
observed that the mean time (in CUSUM samples) between positive drift is
127.88 t.u. and the mean duration of positive drift is 1.2 samples. The frequency
of positive sample is thus 1.2/(127.88 + 1.2), which is in the interval [0, 0.05] as
predicted by Monte Carlo algorithm. In order to observe a real alarm one need
to push this quotient to 0.35, which is the probability one wants to observe.
This amounts to vary the duration of a positive sample, i.e., to replace 1.2 by a
higher value in the above quotient. Doing so, we concluded that the probability
will become greater than 0.35 when the positive drift is longer that 52 samples.
From the definition of Φ4, we compute that the drift is ln 0.35

0.05
for each positive

sample. We finally set the stopping rule to λ = 52 ∗ ln 0.35
0.05

≈ 101.
We then launched the CUSUM on the model with failures over an execution

of 210000 t.u. for the property G≤t1Discomfort checked every 200 t.u.. We applied
Plasma Lab and observed that the stopping rule was satisfied after the sample
901 that corresponds to the simulation time 103473.34 t.u. We reproduced the
experiment several times (20): we observed the change occurred at 102543.23 t.u.
in average and in earlier ≈ 101000 t.u. We conclude that to satisfy Property φ4

the maintenance operation must be scheduled at 100000 t.u.

6 Conclusion

We have presented extensions of SMC, implemented within the Plasma Lab
toolset. We have then shown the flexibility of Plasma by integrating it as a
Simulink library. This integration constitutes one of the first proof of concept
that SMC can indeed be integrated as feature library in a designed tool used
in industry without compiling to an intermediary language. Finally, we have
shown the utility of this integration on a large-size case study. Other examples
are available at https://project.inria.fr/plasma-lab/. Future work include
an integration of Plasma with the FMI standard in order to verify complex



heterogeneous systems. Another future work is to extend the power of distributed
computing to Plasma-Simulink. The latter is technically challenging as it would
require to duplicate compiled code to avoid license duplication and costs.
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