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COEFFICIENTS OF SYLVESTER’S DENUMERANT

V. BALDONI, N. BERLINE, J. A. DE LOERA, B. E. DUTRA, M. KÖPPE, AND M. VERGNE

Abstract. For a given sequence α = [α1, α2, . . . , αN+1] of N + 1 positive integers, we
consider the combinatorial function E(α)(t) that counts the non-negative integer solutions
of the equation α1x1 +α2x2 + · · ·+αNxN +αN+1xN+1 = t, where the right-hand side t is a
varying non-negative integer. It is well-known that E(α)(t) is a quasi-polynomial function
in the variable t of degree N . In combinatorial number theory this function is known as
Sylvester’s denumerant.

Our main result is a new algorithm that, for every fixed number k, computes in polyno-
mial time the highest k+ 1 coefficients of the quasi-polynomial E(α)(t) as step polynomials
of t (a simpler and more explicit representation). Our algorithm is a consequence of a nice
poset structure on the poles of the associated rational generating function for E(α)(t) and
the geometric reinterpretation of some rational generating functions in terms of lattice points
in polyhedral cones. Our algorithm also uses Barvinok’s fundamental fast decomposition
of a polyhedral cone into unimodular cones. This paper also presents a simple algorithm
to predict the first non-constant coefficient and concludes with a report of several compu-
tational experiments using an implementation of our algorithm in LattE integrale. We
compare it with various Maple programs for partial or full computation of the denumerant.

1. Introduction

Let α = [α1, α2, . . . , αN , αN+1] be a sequence of positive integers. If t is a non-negative
integer, we denote by E(α)(t) the number of solutions in non-negative integers of the equa-

tion
∑N+1

i=1 αixi = t. In other words, E(α)(t) is the same as the number of partitions of the
number t using the parts α1, α2, . . . , αN , αN+1 (with repetitions allowed). Let us begin with
some background and history before stating the precise results:

The combinatorial function E(α)(t) was called by J. Sylvester the denumerant. The
denumerant E(α)(t) has a beautiful structure: it has been known since the times of Cayley
and Sylvester that E(α)(t) is in fact a quasi-polynomial, i.e., it can be written in the form

E(α)(t) =
∑N

i=0 Ei(t)t
i, where Ei(t) is a periodic function of t (a more precise description

of the periods of the coefficients Ei(t) will be given later). In other words, there exists a
positive integer Q such that for t in the coset q + QZ, the function E(α)(t) coincides with
a polynomial function of t. This paper presents a new algorithm to compute individual
coefficients of this function and uncovers new structure in generating functions that allows
one to compute their periodicity. The study of the coefficients Ei(t), in particular determining
their periodicity, is a problem that has occupied various authors and it is the key focus of our
investigations here. Sylvester and Cayley first showed that the coefficients Ei(t) are periodic
functions having period equal to the least common multiple of α1, . . . , αN+1 (see [12, 13] and
references therein). In 1943, E. T. Bell gave a simpler proof and remarked that the period
Q is in the worst case given by the least common multiple of the αi, but in general it can be

Key words and phrases. Denumerants, Ehrhart quasi-polynomials, restricted partitions, asymptotic be-
havior, polynomial-time algorithms.
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smaller. A classical observation that goes back to I. Schur is that when the list α consist of
relatively prime numbers, then asymptotically

E(α)(t) ≈ tN

N !α1α2 · · ·αN+1

as the number t→∞.

Thus, in particular, there is a large enough integer F such that for any t ≥ F , E(α)(t) > 0
and there is a largest t for which E(α)(t) = 0. Let us give a simple example:

Example 1.1. Let α = [6, 2, 3]. Then on each of the cosets q + 6Z, the function E(α)(t)
coincides with a polynomial E[q](t). Here are the corresponding polynomials.

E[0](t) = 1
72
t2 + 1

4
t+ 1, E[1](t) = 1

72
t2 + 1

18
t− 5

72
,

E[2](t) = 1
72
t2 + 7

36
t+ 5

9
, E[3](t) = 1

72
t2 + 1

6
t+ 3

8
,

E[4](t) = 1
72
t2 + 5

36
t+ 2

9
, E[5](t) = 1

72
t2 + 1

9
t+ 7

72
.

Naturally, the function E(α)(t) is equal to 0 if t does not belong to the lattice
∑N+1

i=1 Zαi ⊂
Z generated by the integers αi. So if g is the greatest common divisor of the αi (which can
be computed in polynomial time), and α/g = [α1

g
, α2

g
, . . . , αN+1

g
] the formula E(α)(gt) =

E(α/g)(t) holds, and we may assume that the numbers αi span Z without changing the
complexity of the problem. In other words, we may assume that the greatest common
divisor of the αi is equal to 1.

Our primary concern is how to compute E(α)(t), a problem has received a lot of attention.
Computing the denumerant E(α)(t) as a close formula or evaluating it for specific t is rele-
vant in several other areas of mathematics. In the combinatorics literature the denumerant
has been studied extensively (see e.g., [2, 12, 15, 27, 30] and the references therein). The
denumerant plays an important role in integer optimization too [25, 28], where the problem
is called an equality-constrained knapsack. In combinatorial number theory and the theory
of partitions, the problem appears in relation to the Frobenius problem or the coin-change
problem of finding the largest value of t with E(α)(t) = 0 (see [19, 24, 29] for details and
algorithms). Authors in the theory of numerical semigroups have also investigated the so
called gaps or holes of the function (see [20] and references therein), which are values of t
for which E(α)(t) = 0, i.e., those positive integers t which cannot be represented by the αi.
For N = 1 the number of gaps is (α1 − 1)(α2 − 1)/2 but for larger N the problem is quite
difficult.

Unfortunately, computing E(α)(t) or evaluating it are very challenging computational
problems. Even deciding whether E(α)(t) > 0 for a given t, is a well-known (weakly) NP-
hard problem. Computing E(α)(t), i.e., determining the number of solutions for a given t,
is #P -hard. Computing the Frobenius number is also known to be NP-hard [29]. Likewise,
for a given coset q+QZ, computing the polynomial E[q](t) is NP-hard. Despite the difficulty
to compute the function, in some special cases one can compute information efficiently. For
example, the Frobenius number can be computed in polynomial time when N + 1 is fixed
[24, 7]. At the same time for fixed N + 1 one can compute the entire quasi-polynomial
E(α)(t) in polynomial time as a special case of a well-known result of Barvinok [8]. There
are several papers exploring the practical computation of the Frobenius numbers (see e.g.,
[19] and the many references therein).

We are certainly not the first to use generating functions to compute E(α)(t). Already
Ehrhart obtained formulas for E(α)(t) in terms of binomial coefficients using partial fraction
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decomposition. Similary, in [31] the authors propose another way to recover the coefficients of
the quasi-polynomial by a method they named rigorous guessing. In [31] quasi-polynomials
are represented as a function f(t) given by q polynomials f [1](t), f [2](t), . . . , f [q](t) such that
f(t) = f [i](t) when t ≡ i (mod q). To find the coefficients of the f [i] their method finds
the first few terms of the Maclaurin expansion of the partial fraction decomposition to find
enough evaluations of those polynomials and then recovers the coefficients of the f [i] as a
result of solving a linear system. Here we are able to prove good complexity results and
produced faster practical algorithms using the number-theoretic nature of the question.

It should be noted that the polynomial-time complexity results for fixed N were achieved
using a powerful geometric interpretation of E(α)(t) (which was the original way we encoun-
tered the problem too): The function E(α)(t) can also be thought of as the number of integral
points in the N -dimensional simplex in RN+1 defined by ∆α = { [x1, x2, . . . , xN , xN+1] : xi ≥
0,
∑N+1

i=1 αixi = t } with rational vertices si = [0, . . . , 0, t
αi
, 0, . . . , 0]. In this context, E(α)(t)

is a very special case of the Ehrhart function (in honor of French mathematician Eugène
Ehrhart who started its study [18]). Ehrhart functions count the lattice points inside a con-
vex polytope P as it is dilated t times. All of the results we mentioned about E(α)(t) are in
fact special cases of theorems from Ehrhart theory [10]. For example, the asymptotic result
of I. Schur can be recovered from seeing that the highest-degree coefficient of Eα(t) is just
the normalized N -dimensional volume of the simplex ∆α. Our coefficients are very special
cases of Ehrhart coefficients.

This paper is about the computation of the coefficients of E(α)(t). Here are our main
results:

(1) It is clear that the leading coefficient is given by Schur’s result. Our main result is a
new algorithm for computing explicit formulas for more coefficients.

Theorem 1.2. Given any fixed integer k, there is a polynomial time algorithm to
compute the highest k + 1 degree terms of the quasi-polynomial E(α)(t), that is

TopkE(α)(t) =
k∑
i=0

EN−i(t)t
N−i.

The coefficients are recovered as step polynomial functions of t.

Note that the number Q of cosets for E(α)(t) can be exponential in the binary
encoding size of the problem, and thus it is impossible to list, in polynomial time,
the polynomials E[q](t) for all the cosets q+QZ. That is why to obtain a polynomial
time algorithm, the output is presented in the format of step polynomials, which we
now introduce:

(i) We first define the function {s} = s− bsc ∈ [0, 1) for s ∈ R, where bsc denotes
the largest integer smaller or equal to s. The function {s+1} = {s} is a periodic
function of s modulo 1.

(ii) If r is rational with denominator q, the function T 7→ {rT} is a function of
T ∈ R periodic modulo q. A function of the form T 7→

∑
i ci{riT} will be called

a (rational) step linear function. If all the ri have a common denominator q,
this function is periodic modulo q.
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(iii) Then consider the algebra generated over Q by such functions on R. An element
φ of this algebra can be written (not in a unique way) as

φ(T ) =
L∑
l=1

cl

Jl∏
j=1

{rl,jT}nl,j .

Such a function φ(T ) will be called a (rational) step polynomial.
(iv) We will say that the step polynomial φ is of degree (at most) u if

∑
j nl,j ≤ u

for each index l occurring in the formula for φ.1 We will say that φ is of period
q if all the rational numbers rj have common denominator q.

In Example 1.1, instead of the Q = 6 polynomials E[0](t), . . . , E[5](t) that we wrote
down, we would write a single closed formula, where the coefficients of powers of t
are step polynomials in t:

1

72
t2+

(
1

4
−
{− t

3
}

6
−
{ t

2
}

6

)
t+

(
1− 3

2
{− t

3
} − 3

2
{ t

2
}+

1

2

(
{− t

3
}
)2

+ {− t
3
}{ t

2
}+

1

2

(
{ t

2
}
)2
)
.

For larger Q, one can see that this step polynomial representation is much more
economical than writing the individual polynomials for each of the cosets of the
period Q.

Our results come after an earlier result of Barvinok [9] who first proved a similar
theorem valid for all simplices. Also in [5], the authors presented a polynomial-
time algorithm to compute the coefficient functions of TopkE(P )(t) for any simple
polytope P (given by its rational vertices) in the form of step polynomials defined as
above. We note that both of these earlier papers use the geometry of the problem very
strongly; instead our new algorithm is different as it uses more of the number-theoretic
structure of the special case at hand. There is a marked advantage of our algorithms
over the work in [9]: We compute in a closed formula using the step polynomials all
the possibilities of E[q](t) while [9] recovers a single polynomial E[q](t) for a given q.
More importantly, our new algorithm is much easier to implement. Another relevant
prior work (also useful for comparison) is our algorithm LattE Top-Ehrhart presented
in [5]. In that paper we extend Barvinok’s results of [9] to weighted Ehrhart quasi-
polynomials via variation of his original approach. The other important ingredient
used in the efficient computation of the top coefficients is the reinterpretation of some
generating functions in terms of lattice points in cones. This allows us to apply the
polynomial-time signed cone decomposition of Barvinok for simplicial cones of fixed
dimension k [8].

(2) Although the main result is computational, interesting mathematics comes into play:
the new algorithm uses directly the residue theorem in one complex variable, which
can be applied more efficiently as a consequence of a rich poset structure on the set of
poles of the associated rational generating function for E(α)(t) (see Subsection 2.3).
By Schur’s result, it is clear that the coefficient EN(t) of the highest degree term is just
an explicit constant. Our analysis of the high-order poles of the generating function
associated to E(α)(t) allows us to decide what is the highest-degree coefficient of

1This notion of degree only induces a filtration, not a grading, on the algebra of step polynomials, because
there exist polynomial relations between step linear functions and therefore several step-polynomial formulas
with different degrees may represent the same function.
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E(α)(t) that is not a constant function of t (we will also say that the coefficient is
strictly periodic).

Theorem 1.3. Given a list of non-negative integer numbers α = [α1, . . . , αN+1], let
` be the greatest integer for which there exists a sublist αJ with |J | = `, such that
its greatest common divisor is not 1. Then for k ≥ ` the coefficient of degree k is a
constant while the coefficient of degree `−1 of the quasi-polynomial E(α)(t) is strictly
periodic. Moreover, if the numbers αi are given with their prime factorization, then
detecting ` can be done in polynomial time.

Example 1.4. We apply the theorem above to investigate the question of peri-
odicity of the denumerant coefficients in the case of the classical partition problem
E([1, 2, 3, . . . ,m])(t). It is well known that this coincides with the classical problem of
finding the number of partitions of the integer t into at most m parts, usually denoted
pm(t) (see [3]). In this case, Theorem 1.3 predicts indeed that the highest-degree co-
efficient of the partition function pm(t) which is non-constant is the coefficient of the
term of degree dm/2e. This follows from the theorem because the even numbers in
the set {1, 2, 3, . . . ,m} form the largest sublist with gcd two.

(3) The paper closes with an extensive collection of computational experiments (Sec-
tion 5). We constructed a dataset of over 760 knapsacks and show our new algorithm
is the fastest available method for computing the top k terms in the Ehrhart quasi-
polynomial. Our implementation of the new algorithm is made available as a part of
the free software LattE integrale [4], version 1.7.2.2

2. The residue formula for E(α)(t)

Let us begin fixing some notation. If φ(z) dz is a meromorphic one form on C, with a pole
at z = ζ, we write

Resz=ζ φ(z) dz =
1

2πi

∫
Cζ

φ(z) dz,

where Cζ is a small circle around the pole ζ. If φ(z) =
∑

k≥k0 φkz
k is a Laurent series

in z, we denote by resz=0 the coefficient of z−1 of φ(z). Cauchy’s formula implies that
resz=0 φ(z) = Resz=0 φ(z) dz.

2.1. A residue formula for E(α)(t). Let α = [α1, α2, . . . , αN+1] be a list of integers.
Define

F (α)(z) :=
1∏N+1

i=1 (1− zαi)
.

Denote by P =
⋃N+1
i=1 { ζ ∈ C : ζαi = 1 } the set of poles of the meromorphic function

F (α) and by p(ζ) the order of the pole ζ for ζ ∈ P .
Note that because the αi have greatest common divisor 1, we have ζ = 1 as a pole of order

N + 1, and the other poles have order strictly smaller.

Theorem 2.1. Let α = [α1, α2, . . . , αN+1] be a list of integers with greatest common divisor
equal to 1, and let

F (α)(z) :=
1∏N+1

i=1 (1− zαi)
.

2Available under the GNU General Public License at https://www.math.ucdavis.edu/~latte/.

https://www.math.ucdavis.edu/~latte/
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If t is a non-negative integer, then

E(α)(t) = −
∑
ζ∈P

Resz=ζ z
−t−1F (α)(z) dz (2.1)

and the ζ-term of this sum is a quasi-polynomial function of t with degree less than or equal
to p(ζ)− 1.

Proof. For |z| < 1, we write 1
1−zαi =

∑∞
u=0 z

uαi so that F (α)(z) =
∑

t≥0E(α)(t)zt.

For a small circle |z| = ε of radius ε around 0, the integral of zk dz is equal to 0 except if
k = −1, when it is 2πi. Thus

E(α)(t) =
1

2πi

∫
|z|=ε

z−tF (α)(z)
dz

z
=

1

2πi

∫
|z|=ε

z−t
N+1∏
i=1

1

(1− zαi)
dz

z
.

Because the αi are positive integers, and t a non-negative integer, there are no residues at
z =∞ and we obtain Equation (2.1) by applying the residue theorem (for a reference about
computational complex analysis see [21, 22, 23].)

Write Eζ(t) := −Resz=ζ z
−tF (α)(z)dz

z
; then the dependence in t of Eζ(t) comes from the

expansion of z−t near z = ζ. We write z = ζ + y, so that

Eζ(t) = −Resy=0(ζ + y)−tF (α)(ζ + y)
dy

ζ + y
.

As the pole of F (α)(ζ + y) at y = 0 is of order p(ζ), to compute the residue at y = 0,
we only need to expand in y the function (ζ + y)−t−1 and take the coefficient of yp(ζ)−1.
Now from the generalized Newton binomial theorem, for k = t+ 1 the function (ζ + y)−k =∑∞

n=0

(
n+k−1
n

)
ζ−k−n(−y)n. From this expression one can recover the desired coefficient.

One can easily check that the dependence in t of our residue is a quasi-polynomial with
degree less than or equal to p(ζ)− 1. We thus obtain the result. �

2.2. Poles of high and low order. Given an integer 0 ≤ k ≤ N , we partition the set of
poles P in two disjoint sets according to the order of the pole:

P>N−k = { ζ : p(ζ) ≥ N + 1− k }, P≤N−k = { ζ : p(ζ) ≤ N − k }.
Example 2.2. (a) Let α = [98, 59, 44, 100], so N = 3, and let k = 1. Then P>N−k consists

of poles of order greater than 2. Of course ζ = 1 is a pole of order 4. Note that ζ = −1
is a pole of order 3. So P>N−k = { ζ : ζ2 = 1 }.

(b) Let α = [6, 2, 2, 3, 3], so N = 4, and let k = 2. Let ζ6 = e2πi/6 be a primitive 6th root of
unity. Then ζ6

6 = 1 is a pole of order 5, ζ6 and ζ5
6 are poles of order 1, and ζ2

6 , ζ3
6 = −1,

ζ4
6 are poles of order 3. Thus P>N−k = P>2 is the union of { ζ : ζ2 = 1 } = {−1, 1} and
{ ζ : ζ3 = 1 } = {ζ2

6 , ζ
4
6 , ζ

6
6 = 1}.

According to the disjoint decomposition P = P≤N−k ∪ P>N−k, we write

EP>N−k(t) = −
∑

ζ∈P>N−k

Resz=ζ z
−t−1F (α)(z) dz

and

EP≤N−k(t) = −
∑

ζ∈P≤N−k

Resz=ζ z
−t−1F (α)(z) dz.

The following proposition is a direct consequence of Theorem 2.1.
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Proposition 2.3. We have

E(α)(t) = EP>N−k(t) + EP≤N−k(t),

where the function EP≤N−k(t) is a quasi-polynomial function in the variable t of degree strictly
less than N − k.

Thus for the purpose of computing TopkE(α)(t) it is sufficient to compute the function
EP>N−k(t). This function is computable in polynomial time, as stated in the main result of
our paper:

Theorem 2.4. Let k be a fixed number. Then the coefficient functions of the quasi-polynomial
function EP>N−k(t) are computable in polynomial time as step polynomials of t.

We prove the theorem in the rest of this section and the next.

2.3. The poset of the high-order poles. We first rewrite our set P>N−k. Note that if ζ
is a pole of order ≥ p, this means that there exist at least p elements αi in the list α so that
ζαi = 1. But if ζαi = 1 for a set I ⊆ {1, . . . , N + 1} of indices i, this is equivalent to the fact
that ζf = 1, for f the greatest common divisor of the elements αi, i ∈ I.

Now let I>N−k be the set of subsets of {1, . . . , N + 1} of cardinality greater than N − k.
Note that when k is fixed, the cardinality of I>N−k is a polynomial function of N . For each
subset I ∈ I>N−k, define fI to be the greatest common divisor of the corresponding sublist
αi, i ∈ I. Let G>N−k(α) = { fI : I ∈ I>N−k } be the set of integers so obtained and let
G(f) ⊂ C× be the group of f -th roots of unity,

G(f) = { ζ ∈ C : ζf = 1 }.

The set {G(f) : f ∈ G>N−k(α) } forms a poset P̃>N−k (partially ordered set) with respect
to reverse inclusion. That is, G(fi) �P̃>N−k G(fj) if G(fj) ⊆ G(fi) (the i and j become

swapped). Notice G(fj) ⊆ G(fi) ⇔ fj divides fi. Even if P̃>N−k has a unique minimal

element, we add an element 0̂ such that 0̂ � G(f) and call this new poset P>N−k.
In terms of the group G(f) we have thus P>N−k =

⋃
f∈G>N−k(α) G(f). This is, of course,

not a disjoint union, but using the inclusion–exclusion principle, we can write the indicator
function of the set P>N−k as a linear combination of indicator functions of the sets G(f):

[P>N−k] =
∑

f∈G>N−k(α)

µ>N−k(f)[G(f)],

where µ>N−k(f) := −µ′>N−k(0̂, G(f)) and µ′>N−k(x, y) is the standard Möbius function for
the poset P>N−k:

µ′>N−k(s, s) = 1 ∀s ∈ P>N−k,

µ′>N−k(s, u) = −
∑
s�t≺u

µ′>N−k(s, t) ∀s ≺ u in P>N−k.
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For simplicity, µ>N−k will be called the Möbius function for the poset P>N−k and will be
denoted simply by µ(f). We also have the relationship

µ(f) = −µ′>N−k(0̂, G(f))

= 1 +
∑

0̂≺G(t)≺G(f)

µ′>N−k(0̂, G(t))

= 1−
∑

0̂≺G(t)≺G(f)

−µ′>N−k(0̂, G(t))

= 1−
∑

0̂≺G(t)≺G(f)

µ(t).

Example 2.5 (Example 2.2, continued).

(a) Here we have I>N−k = I>2 =
{
{, , }, {, , }, {, , }, {, , }, {, , , }

}
and

G>N−k(α) = {1, 1, 2, 1, 1} = {1, 2}. Accordingly, P>N−k = G(1) ∪ G(2). The poset
P>2 is

G(1)

G(2)

0̂

The arrows denote subsets, that is G(1) ⊂ G(2) and 0̂ can be identified with the
unit circle. The Möbius function µ is simply given by µ(1) = 0, µ(2) = 1, and so
[P>N−k] = [G(2)].

(b) Now I>N−k = I>2 =
{
{, , }, {, , }, . . . , {, , }, {, , , }, {, , , }, {, , , },

{, , , }, {, , , }, {, , , , }
}

and thus G>N−k(α) = {2, 3, 1, 1} = {1, 2, 3}. Hence

P>N−k = G(1)∪G(2)∪G(3) = {1}∪{−1, 1}∪{ζ3, ζ
2
3 , 1}, where ζ3 = e2πi/3 is a primitive

3rd root of unity.

G(1)

G(2) G(3)

0̂

The Möbius function µ is then µ(3) = 1, µ(2) = 1, µ(1) = −1, and thus [P>N−k] =
−[G(1)] + [G(2)] + [G(3)].

Theorem 2.6. Given a list α = [α1, . . . , αN+1] and a fixed integer k, then the values for the
Möbius function for the poset P>N−k can be computed in polynomial time.

Proof. First find the greatest common divisor of all sublists of the list α with size greater
than N − k. Let V be the set of integers obtained from all such greatest common divisors.
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We note that each node of the poset P>N−k is a group of roots of unity G(v). But it is
labeled by a non-negative integer v.

Construct an array M of size |V | to keep the value of the Möbius function. Initialize M
to hold the Möbius values of infinity: M [v] ← ∞ for all v ∈ V . Then call Algorithm 2.3
below with findMöbius(1, V,M).

Algorithm 1 findMöbius(n, V , M)

Input: n: the label of node G(n) in the poset P̃>N−k
Input: V : list of numbers in the poset P̃>N−k
Input: M : array of current Möbius values computed for P>N−k
Output: updates the array M of Möbius values

1: if M [n] <∞ then
2: return
3: end if
4: L← { v ∈ V : n | v } \ {n}
5: if L = ∅ then
6: M [n]← 1
7: return
8: end if
9: M [n]← 0

10: for all v ∈ L do
11: findMöbius(v, L,M)
12: M [n]←M [n] +M [v]
13: end for
14: M [n]← 1−M [n]

Algorithm 2.3 terminates because the number of nodes v with M [v] =∞ decreases to zero
in each iteration. To show correctness, consider a node v in the poset PN−k. If v covers 0̂,
then we must have M [v] = 1 as there is no other G(w) with G(f) ⊂ G(w). Else if v does
not cover 0̂, we set M [v] to be 1 minus the sum

∑
w: v|w

M [w] which guarantees that the poles

in G(v) are only counted once because
∑

w: v|w
M [w] is how many times G(v) is a subset of

another element that has already been counted.
The number of sublists of α considered is

(
N
1

)
+
(
N
2

)
+ · · · +

(
N
k

)
= O(Nk), which is a

polynomial for k fixed. For each sublist, the greatest common divisor of a set of integers is
computed in polynomial time. Hence |V | = O(Nk). Notice that lines 4 to 14 of Algorithm 2.3
are executed at most O(|V |) times as once a M [v] value is computed, it is never recomputed.
The number of additions on line 12 is O(|V |2) while the number of divisions on line 4 is also
O(|V |2). Hence this algorithm finds the Möbius function in O(|V |2) = O(N2k) time where
k is fixed. �

Let us define for any positive integer f

E(α, f)(t) = −
∑

ζ: ζf=1

Resz=ζ z
−t−1F (α)(z) dz.
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Proposition 2.7. Let k be a fixed integer, then

EP>N−k(t) = −
∑

f∈G>N−k(α)

µ(f)E(α, f)(t). (2.2)

Thus we have reduced the computation to the fast computation of E(α, f)(t).

3. Polyhedral reinterpretation of the generating function E(α, f)(t)

To complete the proof of Theorem 2.4 we need only to prove the following proposition.

Proposition 3.1. For any integer f ∈ G>N−k(α), the coefficient functions of the quasi-
polynomial function E(α, f)(t) and hence EP>N−k(t) are computed in polynomial time as
step polynomials of t.

By Proposition 2.7 we know we need to compute the value of E(α, f)(t). Our goal now is
to demonstrate that this function can be thought of as the generating function of the lattice
points inside a convex cone. This is a key point to guarantee good computational bounds.
Before we can do that we review some preliminaries on generating functions of cones. We
recall the notion of generating functions of cones; see also [5].

Let V = Rr provided with a lattice Λ, and let V ∗ denote the dual space. A (rational)
simplicial cone c = R≥0w1 + · · · + R≥0wr is a cone generated by r linearly independent
vectors w1, . . . ,wr of Λ. We consider the semi-rational affine cone s + c, s ∈ V . Let ξ ∈ V ∗
be a dual vector such that 〈ξ,wi〉 < 0, 1 ≤ i ≤ r. Then the sum

S(s + c,Λ)(ξ) =
∑

n∈(s+c)∩Λ

e〈ξ,n〉

is summable and defines an analytic function of ξ. It is well known that this function
extends to a meromorphic function of ξ ∈ V ∗C . We still denote this meromorphic extension
by S(s + c,Λ)(ξ).

Example 3.2. Let V = R with lattice Z, c = R≥0, and s ∈ R. Then

S(s+ R≥0,Z)(ξ) =
∑
n≥s

enξ = edseξ
1

1− eξ
.

Using the function {x} = x− bxc, we find dse = s+ {−s} and can write

e−sξS(s+ R≥0,Z)(ξ) =
e{−s}ξ

1− eξ
. (3.1)

Recall the following result:

Theorem 3.3. Consider the semi-rational affine cone s+c and the lattice Λ. The series S(s+
c,Λ)(ξ) is a meromorphic function of ξ such that

∏r
i=1 〈ξ,wi〉 ·S(s+ c,Λ)(ξ) is holomorphic

in a neighborhood of 0.

Let t ∈ Λ. Consider the translated cone t+s+c of s+c by t. Then we have the covariance
formula

S(t + s + c,Λ)(ξ) = e〈ξ,t〉S(s + c,Λ)(ξ). (3.2)

Because of this formula, it is convenient to introduce the following function.
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Definition 3.4. Define the function

M(s, c,Λ)(ξ) := e−〈ξ,s〉S(s + c,Λ)(ξ).

Thus the function s 7→ M(s, c,Λ)(ξ) is a function of s ∈ V/Λ (a periodic function of s)
whose values are meromorphic functions of ξ. It is interesting to introduce this modified
function since, as seen in Equation (3.1) in Example 3.2, its dependance in s is via step linear
functions of s.

There is a very special and important case when the function M(s, c,Λ)(ξ) = e−〈ξ,s〉S(s +
c,Λ)(ξ) is easy to write down. A unimodular cone, is a cone u whose primitive generators
gu
i form a basis of the lattice Λ. We introduce the following notation.

Definition 3.5. Let u be a unimodular cone with primitive generators gu
i and let s ∈ V .

Then, write s =
∑

i sig
u
i , with si ∈ R, and define

{−s}u =
∑
i

{−si}gu
i .

Thus s + {−s}u =
∑

idsiegu
i . Note that if t ∈ Λ, then {−(s + t)}u = {−s}u. Thus,

s 7→ {−s}u is a function on V/Λ with value in V . For any ξ ∈ V ∗, we then find

S(s + u,Λ)(ξ) = e〈ξ,s〉e〈ξ,{−s}u〉
1∏

j(1− e〈ξ,g
u
j 〉)

and thus

M(s, u,Λ)(ξ) = e〈ξ,{−s}u〉
1∏

j(1− e〈ξ,g
u
j 〉)
. (3.3)

For a general cone c, we can decompose its indicator function [c] as a signed sum of indicator
functions of unimodular cones,

∑
u εu[u], modulo indicator functions of cones containing lines.

As shown by Barvinok (see [8] for the original source and [10] for a great new exposition),
if the dimension r of V is fixed, this decomposition can be computed in polynomial time.
Then we can write

S(s + c,Λ)(ξ) =
∑
u

εu S(s + u,Λ)(ξ).

Thus we obtain, using Formula (3.3),

M(s, c,Λ)(ξ) =
∑
u

εu e〈ξ,{−s}u〉
1∏

j(1− e〈ξ,g
u
j 〉)
. (3.4)

Here u runs through all the unimodular cones occurring in the decomposition of c, and the
gu
j ∈ Λ are the corresponding generators of the unimodular cone u.

Remark 3.6. For computing explicit examples, it is convenient to make a change of variables
that leads to computations in the standard lattice Zr. Let B be the matrix whose columns
are the generators of the lattice Λ; then Λ = BZr.

M(s, c,Λ)(ξ) = e−〈ξ,s〉
∑

n∈(s+c)∩BZr
e〈ξ,n〉

= e−〈B
>ξ,B−1s〉

∑
x∈(B−1(s+c)∩Zr

e〈B
>ξ,x〉 = M(B−1s, B−1c,Zr)(B>ξ).
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3.1. Back to the computation of E(α, f)(t). After the preliminaries we will see how
to rewrite E(α, f)(t) in terms of lattice points of simplicial cones. This will require some
suitable manipulation of the initial form of E(α, f)(t). To start with, define the function

E(α, f)(t, T ) = − resx=0 e−tx
∑

ζ: ζf=1

ζ−T∏N+1
i=1 (1− ζαieαix)

.

Writing z = ζex, changing coordinates in residue and computing dz = z dx we write:

E(α, f)(t, T ) = − resz=ζ z
−t−1ζt

∑
ζ : ζf=1

ζ−T∏N+1
i=1 (1− zαi)

.

By evaluating at T = t, we obtain:

E(α, f)(t) = E(α, f)(t, T )
∣∣
T=t

. (3.5)

We can now define:

Definition 3.7. Let k be fixed. For f ∈ G>N−k(α), define

F(α, f, T )(x) :=
∑

ζ: ζf=1

ζ−T∏N+1
i=1 (1− ζαieαix)

,

and

Ei(f)(T ) := resx=0
(−x)i

i!
F(α, f, T )(x).

Then

E(α, f)(t, T ) = − resx=0 e−txF(α, f, T )(x).

The dependence in T of F(α, f, T )(x) is through ζT . As ζf = 1, the function F(α, f, T )(x)
is a periodic function of T modulo f whose values are meromorphic functions of x. Since
the pole in x is of order at most N + 1, we can rewrite E(α, f)(t, T ) in terms of Ei(f)(T )
and prove:

Theorem 3.8. Let k be fixed. Then for f ∈ G>N−k(α) we can write

E(α, f)(t, T ) =
N∑
i=0

tiEi(f)(T )

with Ei(f)(T ) a step polynomial of degree less than or equal to N − i and periodic of T
modulo f . This step polynomial can be computed in polynomial time.

It is now clear that once we have proved Theorem 3.8, then the proof of Theorem 2.4 will
follow. Writing everything out, for m such that 0 ≤ m ≤ N , the coefficient of tm in the
Ehrhart quasi-polynomial is given by

Em(T ) = − resx=0
(−x)m

m!

∑
f∈G>m(α)

µ(f)
∑

ζ: ζf=1

ζ−T∏
i(1− ζαieαix)

. (3.6)

As an example, we see that EN is indeed independent of T because G>N(α) = {1}; thus EN
is a constant. We now concentrate on writing the function F(α, f, T )(x) more explicitly.
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Definition 3.9. For a list α and integers f and T , define meromorphic functions of x ∈ C
by:

B(α, f)(x) :=
1∏

i : f |αi(1− eαix)
,

S(α, f, T )(x) :=
∑

ζ: ζf=1

ζ−T∏
i : f -αi(1− ζαieαix)

.

Thus
F(α, f, T )(x) = B(α, f)(x)S(α, f, T )(x).

The expression we obtained will allow us to compute F(α, f, T ) by relating S(α, f, T ) to
a generating function of a cone. This cone will have fixed dimension when k is fixed.

3.2. E(α, f)(t) as the generating function of a cone in fixed dimension. To this
end, let f be an integer from G>N−k(α). By definition, f is the greatest common divisor of
a sublist of α. Thus the greatest common divisor of f and the elements of α which are not
a multiple of f is still equal to 1. Let J = J(α, f) be the set of indices i ∈ {1, . . . , N + 1}
such that αi is indivisible by f , i.e., f - αi. Note that f by definition is the greatest common
divisor of all except at most k of the integers αj. Let r denote the cardinality of J ; then
r ≤ k. Let VJ = RJ and let V ∗J denote the dual space. We will use the standard basis of RJ ,
and we denote by RJ

≥0 the standard cone of elements in RJ having non-negative coordinates.
We also define the sublist αJ = [αi]i∈J of elements of α indivisible by f and view it as a
vector in V ∗J via the standard basis.

Definition 3.10. For an integer T , define the meromorphic function of ξ ∈ V ∗J ,

Q(α, f, T )(ξ) :=
∑

ζ: ζf=1

ζ−T∏
j∈J(α,f)(1− ζαjeξj)

.

Remark 3.11. Observe that Q(α, f, T ) can be restricted at ξ = αJx, for x ∈ C generic, to
give S(α, f, T )(x).

We find that Q(α, f, T )(ξ) is the discrete generating function of an affine shift of the
standard cone RJ

≥0 relative to a certain lattice in VJ which we define as:

Λ(α, f) :=

{
y ∈ ZJ : 〈αJ ,y〉 =

∑
j∈J

yjαj ∈ Zf
}
. (3.7)

Consider the map φ : ZJ → Z/Zf , y 7→ 〈α,y〉+Zf . Its kernel is the lattice Λ(α, f). Because
the greatest common divisor of f and the elements of αJ is 1, by Bezout’s theorem there
exist s0 ∈ Z and s ∈ ZJ such that 1 =

∑
i∈J siαi + s0f . Therefore, the map φ is surjective,

and therefore the index |ZJ : Λ(α, f)| equals f .

Theorem 3.12. Let α = [α1, . . . , αN+1] be a list of positive integers and f be the greatest
common divisor of a sublist of α. Let J = J(α, f) = { i : f - αi }. Let s0 ∈ Z and s ∈ ZJ
such that 1 =

∑
i∈J siαi + s0f using Bezout’s theorem. Consider s = (si)i∈J as an element

of VJ = RJ . Let T be an integer, and ξ = (ξi)i∈J ∈ V ∗J with ξi < 0. Then

Q(α, f, T )(ξ) = f e〈ξ,T s〉
∑

n∈(−T s+RJ≥0)∩Λ(α,f)

e〈ξ,n〉
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Remark 3.13. The function Q(α, f, T )(ξ) is a function of T periodic modulo f . Since fZJ
is contained in Λ(α, f), the element fs is in the lattice Λ(α, f), and we see that the right
hand side is also a periodic function of T modulo f .

Proof of Theorem 3.12. Consider ξ ∈ V ∗J with ξj < 0. Then we can write the equality

1∏
j∈J(1− ζαjeξj)

=
∏
j∈J

∞∑
nj=0

ζnjαjenjξj .

So

Q(α, f, T )(ξ) =
∑

n∈ZJ≥0

( ∑
ζ : ζf=1

ζ
∑
j njαj−T

)
e
∑
j∈J njξj .

We note that
∑

ζ: ζf=1 ζ
m is zero except if m ∈ Zf , when this sum is equal to f . Then

we obtain that Q(α, f, T ) is the sum over n ∈ ZJ≥0 such that
∑

j njαj − T ∈ Zf . The

equality 1 =
∑

j∈J sjαj + s0f implies that T ≡
∑

j tsjαj modulo f , and the condition∑
j njαj − T ∈ Zf is equivalent to the condition

∑
j(nj − Tsj)αj ∈ Zf .

We see that the point n − T s is in the lattice Λ(α, f) as well as in the cone −T s + RJ
≥0

(as nj ≥ 0). Thus the claim. �

By definition of the meromorphic functions S
(
−T s+RJ

≥0,Λ(α, f)
)
(ξ) andM

(
−T s,RJ

≥0,Λ(α, f)
)
(ξ),

we obtain the following equality.

Corollary 3.14.

Q(α, f, T )(ξ) = f M
(
−T s,RJ

≥0,Λ(α, f)
)
(ξ).

Using Remark 3.11 we thus obtain by restriction to ξ = αJx the following equality.

Corollary 3.15.

F(α, f, T )(x) = f M
(
−T s,RJ

≥0,Λ(α, f)
)
(αJx)

∏
j : f |αj

1

1− eαjx
.

3.3. Unimodular decomposition in the dual space. The cone RJ
≥0 is in general not

unimodular with respect to the lattice Λ(α, f). By decomposing RJ
≥0 in cones u that are

unimodular with respect to Λ(α, f), modulo cones containing lines, we can write

M
(
−T s,RJ

≥0,Λ(α, f)
)

=
∑
u

εuM(−T s, u,Λ),

where εu ∈ {±1}. This decomposition can be computed using Barvinok’s algorithm in
polynomial time for fixed k because the dimension |J | is at most k.

Remark 3.16. For this particular cone and lattice, this decomposition modulo cones con-
taining lines is best done using the “dual” variant of Barvinok’s algorithm, as introduced in
[11]. This is in contrast to the “primal” variant described in [14, 26]; see also [6] for an ex-
position of Brion–Vergne decomposition and its relation to both decompositions. To explain
this, let us determine the index of the cone RJ

≥0 in the lattice Λ = Λ(α, f); the worst-case
complexity of the signed cone decomposition is bounded by a polynomial in the logarithm
of this index.
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Let B be a matrix whose columns form a basis of Λ, so Λ = BZJ . Then |ZJ : Λ| =
|detB| = f . By Remark 3.6, we find

M
(
−T s,RJ

≥0,Λ
)
(ξ) = M(−TB−1s, B−1RJ

≥0,ZJ)(B>ξ).

Let c denote the cone B−1RJ
≥0, which is generated by the columns of B−1. Since B−1 is not

integer in general, we find generators of c that are primitive vectors of ZJ by scaling each
of the columns by an integer. Certainly |detB|B−1 is an integer matrix, and thus we find
that the index of the cone c is bounded above by f r−1. We can easily determine the exact
index as follows. For each i ∈ J , the generator ei of the original cone RJ

≥0 needs to be scaled
so as to lie in the lattice Λ. The smallest multiplier yi ∈ Z>0 such that 〈αJ , yiei〉 ∈ Zf is
yi = lcm(αi, f)/αi. Thus the index of RJ

≥0 in ZJ is the product of the yi, and finally the

index of RJ
≥0 in Λ is

1

|Zr : Λ|
∏
i∈J

lcm(αi, f)

αi
=

1

f

∏
i∈J

lcm(αi, f)

αi
.

Instead we consider the dual cone, c◦ = {η ∈ V ∗J : 〈η,y〉 ≥ 0 for y ∈ c }. We have
c◦ = B>RJ

≥0. Then the index of the dual cone c◦ equals |detB>| = f , which is much smaller
than f r−1.

Following [17], we now compute a decomposition of c◦ in cones u◦ that are unimodular
with respect to ZJ , modulo lower-dimensional cones,

[c◦] ≡
∑
u

εu[u
◦] (modulo lower-dimensional cones).

Then the desired decomposition follows:

[c] ≡
∑
u

εu[u] (modulo cones with lines).

Because of the better bound on the index of the cone on the dual side, the worst-case com-
plexity of the signed decomposition algorithm is reduced. This is confirmed by computational
experiments.

Remark 3.17. Although we know that the meromorphic function M
(
−T s,RJ

≥0,Λ(α, f)
)
(ξ)

restricts via ξ = αJx to a meromorphic function of a single variable x, it may happen that
the individual functions M

(
−T s, u,Λ(α, f)

)
(ξ) do not restrict. In other words, the line

αJx may be entirely contained in the set of poles. If this is the case, we can compute (in
polynomial time) a regular vector β ∈ QJ so that, for ε 6= 0, the deformed vector (αJ + εβ)x
is not a pole of any of the functions M

(
−T s, u,Λ(α, f)

)
(ξ) occurring. We then consider the

meromorphic functions ε 7→M
(
−T s, u,Λ(α, f)

)
((αJ + εβ)x) and their Laurent expansions

at ε = 0 in the variable ε. We then add the constant terms of these expansions (multiplied
by εu). This is the value of M

(
−T s,RJ

≥0,Λ(α, f)
)
(ξ) at the point ξ = αJx.

3.4. The periodic dependence in T . Now let us analyze the dependence in T of the
functions M(−T s, u,Λ(α, f)), where u is a unimodular cone. Let the generators be gu

i , so
the elements gu

i form a basis of the lattice Λ(α, f). Recall that the lattice fZr is contained
in Λ(α, f). Thus as s ∈ Zr, we have s =

∑
i sig

u
i with fsi ∈ Z and hence {−T s}u =∑

i{−Tsi}gu
i with {−Tsi} a function of T periodic modulo f .
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Thus the function T 7→ {−T s}u is a step linear function, modulo f , with value in V . We
then write

M(−T s, u,Λ(α, f))(ξ) = e〈ξ,{T s}u〉
r∏
j=1

1

1− e〈ξ,gj〉
.

Recall that by Corollary 3.15,

F(α, f, T )(x) = f M
(
−T s,RJ

≥0,Λ(α, f)
)
(αJx)

∏
j : f |αj

1

1− eαjx
.

Thus this is a meromorphic function of the variable x of the form:∑
u

elu(T )x h(x)

xN+1
,

where h(x) is holomorphic in x and lu(T ) is a step linear function of T , modulo f . Thus to
compute

Ei(f)(T ) = resx=0
(−x)i

i!
F(α, f, T )(x)

we only have to expand the function x 7→ elu(T )x up to the power xN−i. This expansion can
be done in polynomial time. We thus see that, as stated in Theorem 3.8, Ei(f)(T ) is a step
polynomial of degree less than or equal to N − i, which is periodic of T modulo f . This
completes the proof of Theorem 3.8 and thus the proof of Theorem 2.4.

4. Periodicity of coefficients

Now that we have the main algorithmic result we can prove some consequences to the
description of the periodicity of the coefficients. In this section, we determine the largest i
with a non-constant coefficient Ei(t) and we give a polynomial time algorithm for computing
it. This will complete the proof of Theorem 1.3.

Theorem 4.1. Given as input a list of integers α = [α1, . . . , αN+1] with their prime fac-
torization αi = pai11 pai22 · · · painn , there is a polynomial time algorithm to find all of the largest
sublists where the greatest common divisor is not one. Moreover, if ` denotes the size of the
largest sublists with greatest common divisor different from one, then (1) there are polyno-
mially many such sublists, (2) the poset P̃>`−1 is a fan (a poset with a maximal element and
adjacent atoms), and (3) the Möbius function for P>`−1 is µ(f) = 1 if G(f) 6= G(1) and
µ(1) = 1− (|G>`−1(α)| − 1).

Proof. Consider the matrix A = [aij]. Let ci1 , . . . , cik be column indices of A that denote
the columns that contain the largest number of non-zero elements among the columns. Let
α(cij ) be the sublist of α that corresponds to the rows of A where column cij has a non-zero

entry. Each α(cij ) has greatest common divisor different from one. If ` is the size of the
largest sublist of α with greatest common divisor different from one, then there are ` many
αi’s that share a common prime. Hence each column ci1 of A has ` many non-zero elements.

Then each α(cij ) is a largest sublist where the greatest common divisor is not one. Note that
more than one column index ci might produce the same sublist α(cij ). The construction of
A, counting the non-zero elements of each column, and forming the sublist indexed by each
cij can be done in polynomial time in the input size.



COEFFICIENTS OF THE DENUMERANT 17

To show the poset P̃>`−1 is a fan, let G = {1, f1, . . . , fm} be the set of greatest common
divisors of sublists of size > ` − 1. Each fi corresponds to a greatest common divisor of a
sublist α(i) of α with size `. We cannot have fi | fj for i 6= j because if fi | fj, then fi is also
the greatest common divisor of α(i) ∪α(j), a contradiction to the maximality of `. Then the
Möbius function is µ(fi) = 1, and µ(1) = 1−m.

As an aside, gcd(fi, fj) = 1 for all fi 6= fj as if gcd(fi, fj) 6= 1, then we can take the union
of the sublist that produced fi and fj thereby giving a larger sublist with greatest common
divisor not equal to one, a contradiction. �

Example 4.2. [2274411, 2172111, 114, 173] gives the matrix
2 4 0 0 1
1 2 1 0 0
0 0 4 0 0
0 0 0 3 0


where the columns are the powers of the primes indexed by (2, 7, 11, 17, 41). We see the
largest sublists that have gcd not equal to one are [2274411, 2172111] and [2172111, 114]. Then
G = {1, 2172, 11}. The poset P>1 is

G(1)

G(2172) G(11)

0̂

and µ(1) = −1, µ(11) = µ(2172) = 1.

Proof of Theorem 1.3. Let ` be the greatest integer for which there exists a sublist αJ with
|J | = `, such that its gcd f is not 1. Then for m ≥ ` the coefficient of degree m, Em(T ), is
constant because in Equation (3.6), G>m(α) = {1}. Hence Em(T ) does not depend on T .
We now focus on E`−1(T ). To simplify Equation (3.6), we first compute the µ(f) values.

Lemma 4.3. For ` as in Theorem 1.3, the poset G>`−1(α) is a fan, with one maximal
element 1 and adjacent elements f which are pairwise coprime. In particular, µ(f) = 1 for
f 6= 1.

Proof. Let αJ1 , αJ2 be two sublists of length ` with gcd’s f1 6= f2 both not equal to 1. If f1

and f2 had a nontrivial common divisor d, then the list αJ1∪J2 would have a gcd not equal
to 1, in contradiction with its length being strictly greater than `. �

Next we recall a fact about Fourier series and use it to show that each term in the
summation over f ∈ G>`−1(α) in Equation (3.6) has smallest period equal to f .

Lemma 4.4. Let f be a positive integer and let φ(t) be a periodic function on Z/fZ with
Fourier expansion

φ(t) =

f−1∑
n=0

cne2iπnt/f .

If cn 6= 0 for some n which is coprime to f then φ(t) has smallest period equal to f .
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Proof. Assume φ(t) has period m with f = qm and q > 1. We write its Fourier series as a
function of period m.

φ(t) =
m−1∑
j=0

c′je
2iπjt/m =

m−1∑
j=0

c′je
2iπ(jq)t/f .

By uniqueness of the Fourier coefficients, we have cn = 0 if n is not a multiple of q (and
cqj = c′j). In particular, cn = 0 if n is coprime to f , a contradiction. �

Theorem 1.3 is thus the consequence of the following lemma.

Lemma 4.5. Let f ∈ G>`−1(α). The term in the summation over f in (3.6) has smallest
period f as a function of T .

Proof. For f = 1, the statement is clear. Assume f 6= 1. We observe that the f -term in
(3.6) is a periodic function (of period f) which is given as the sum of its Fourier expansion

and is written as
∑f−1

n=0 cne−2iπnT/f where

cn = − resx=0
(−x)`−1

(`− 1)!
∏

j

(
1− e−2iπnαj/feαjx

) .
Consider a coefficient for which n is coprime to f . We decompose the product according to
whether f divides αj or not. The crucial observation is that there are exactly ` indices j
such that f divides αj, because of the maximality assumption on `. Therefore x = 0 is a
simple pole and the residue is readily computed. We obtain

cn =
(−1)`−1

(`− 1)!
· 1∏

j:f -αj

(
1− e2iπnαj/f

) · 1∏
j:f |αj αj

.

Thus cn 6= 0 for an n coprime with f . By Lemma 4.4, each f -term has minimal period f . �

As the various numbers f in G>`−1(α) different from 1 are pairwise coprime and the
corresponding terms have minimal period f , E`−1(T ) has minimal period

∏
f∈G>`−1(α)

f > 1.

This completes the proof of Theorem 1.3. �

5. Summary of the algorithm and computational experiments

In this last section we report on experiments using our algorithm. But first, let us review
the key steps of the algorithm:

Given a sequence of integersα of lengthN + 1, we wish to compute the top k+1 coefficients
of the quasi-polynomial E(α)(t) of degree N . Recall that

E(α)(t) =
N∑
i=0

Ei(t)t
i

where Ei(t) is a periodic function of t modulo some period qi. We assume that greatest
common divisor of the list α is 1.

1. We have

E(α)(t) = EP>N−k(t) + EP≤N−k(t)

with EP≤N−k(t) a periodic polynomial of degree strictly less than N − k. Computing the
first k + 1 coefficients means to compute EP>N−k(t).
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2. By writing [P>N−k] =
∑

f∈F>N−k(α) µ(f)[G(f)], we have

EP>N−k(t) =
∑

f∈F>N−k(α)

µ(f)E(f,α)(t).

3. Fix f an integer. Write

F(α, f, T )(x) =
∑

ζ: ζf=1

ζ−T∏N+1
i=1 (1− ζαieαix)

;

E(f,α)(t) =
∑
i

tiEi(f)(t) with

Ei(f)(T ) = resx=0(−x)i/i! · F(α, f, T )(x).

4. We fix f and let r be the number of elements αi such that αi is not a multiple of f .
We then list such αi in the list α = [α1, α2, . . . , αr].
We introduce a lattice Λ := Λ(α, f) ⊂ Zr and an element s ∈ Zr so that fs ∈ Λ.
We decompose the standard cone Rr

≥0 as a signed decomposition, modulo cones con-
taining lines, in unimodular cones u for the lattice Λ, obtaining

F(α, f, T )(x) =
∑
u

εuM(T s, u,Λ)(αIx)
1∏

i : f |αi(1− eαix)
.

5. To compute EN−i(f)(T ), we compute the Laurent series of F(α, f, T )(x) at x = 0 and take
the coefficient in x−N−1+i of this Laurent series. As the Laurent series of F(α, f, T )(x)
starts by x−N−1, if i is less than k, we just have to compute at most k terms of this
Laurent series.

5.1. Experiments. We first wrote a preliminary implementation of our algorithm in Maple,
which we call M-Knapsack in the following. Later we developed a faster implementation in
C++, which is referred to as LattE Knapsack in the following (we use the term knapsack
to refer to the Diophantine problem α1x1 + α2x2 + · · · + αNxN + αN+1xN+1 = t). Both
implementations are released as part of the software package LattE integrale [4], version
1.7.2.3

We report on two different benchmarks tests:

(1) We test the performance of the implementations M-Knapsack 4 and LattE Knapsack 5,
and also the implementation of the algorithm from [5], which refer to as LattE Top-
Ehrhart6, on a collection of over 750 knapsacks. The latter algorithm can compute
the weighted Ehrhart quasi-polynomials for simplicial polytopes, and hence it is more
general than the algorithm we present in this paper, but this is the only other available
algorithm for computing coefficients directly. Note that the implementations of the
M-Knapsack algorithm and the main computational part of the LattE Top-Ehrhart
algorithm are in Maple, making comparisons between the two easier.

3Available under the GNU General Public License at https://www.math.ucdavis.edu/~latte/.
The Maple code M-Knapsack is also available separately at https://www.math.ucdavis.edu/~latte/

software/packages/maple/.
4Maple usage: coeff Nminusk knapsack(〈knapsack list〉, t, 〈k value〉).
5Command line usage: dest/bin/top-ehrhart-knapsack -f 〈knapsack file〉 -o 〈output file〉 -k

〈k value〉.
6Command line usage: dest/bin/integrate --valuation=top-ehrhart --top-ehrhart-save=

〈output file〉 --num-coefficients=〈k value〉 〈LattE style knapsack file〉.

https://www.math.ucdavis.edu/~latte/
https://www.math.ucdavis.edu/~latte/software/packages/maple/
https://www.math.ucdavis.edu/~latte/software/packages/maple/
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(2) Next, we run our algorithms on a few knapsacks that have been studied in the
literature. We chose these examples because some of these problems are considered
difficult in the literature. We also present a comparison with other available software
that can also compute information of the denumerant Eα(t): the codes CTEuclid6
[33] and pSn [31].7 These codes use mathematical ideas that are different from those
used in this paper.

All computations were performed on a 64-bit Ubuntu machine with 64 GB of RAM and
eight Dual Core AMD Opteron 880 processors.

5.2. M-Knapsack vs. LattE Knapsack vs. LattE Top-Ehrhart . Here we compare
our two implementations with the LattE Top-Ehrhart algorithm from [5]. We constructed a
test set of 768 knapsacks. For each 3 ≤ d ≤ 50, we constructed four families of knapsacks:

random-3: Five random knapsacks in dimension d − 1 where a1 = 1 and the other
coefficients, a2, . . . , ad, are 3-digit random numbers picked uniformly

random-15: Similar to the previous case, but with a 15-digit random number
repeat: Five knapsacks in dimension d − 1 where α1 = 1 and all the other αi’s are

the same 3-digit random number. These produce few poles and have a simple poset
structure. These are among the simplest knapsacks that produce periodic coefficients.

partition: One knapsack in the form αi = i for 1 ≤ i ≤ d.

For each knapsack, we successively compute the highest degree terms of the quasi-polyno-
mial, with a time limit of 200 CPU seconds for each coefficient. Once a term takes longer than
200 seconds to compute, we skip the remaining terms, as they are harder to compute than
the previous ones. We then count the maximum number of terms of the quasi-polynomial,
starting from the highest degree term (which would, of course, be trivial to compute), that
can be computed subject to these time limits. Figures 1, 2, 3, 4 show these maximum
numbers of terms for the random-3, random-15, repeat, and partition knapsacks, respectively.
For example, in Figure 1, for each of the five random 3-digit knapsacks in ambient dimension
50, the LattE Knapsack method computed at most 6 terms of an Ehrhart polynomial, the
M-Knapsack computed at most four terms, and the LattE Top-Ehrhart method computed
at most the trivially computable highest degree term.

In each knapsack family, we see that each algorithm has a “peak” dimension where after it,
the number of terms that can be computed subject to the time limit quickly decreases; for the
LattE Knapsack method, this is around dimension 25 in each knapsack family. In each family,
there is a clear order to which algorithm can compute the most: LattE Knapsack computes
the most coefficients, while the LattE Top-Ehrhart method computes the least number of
terms. In Figure 3, the simple poset structure helps every method to compute more terms,
but the two Maple scripts seem to benefit more than the LattE Knapsack method.

Figure 4 demonstrates the power of the LattE implementation. Note that a knapsack of
this particular form in dimension d does not start to have periodic terms until around d/2.
Thus even though half of the coefficients are only constants we see that the M-Knapsack
code cannot compute past a few periodic term in dimension 10–15 while the LattE Knapsack
method is able to compute the entire polynomial.

7Both codes can be downloaded from the locations indicated in the respective papers. Maple scripts that
correspond to our tests of these codes are available at https://www.math.ucdavis.edu/~latte/software/
denumerantSupplemental/.

https://www.math.ucdavis.edu/~latte/software/denumerantSupplemental/
https://www.math.ucdavis.edu/~latte/software/denumerantSupplemental/
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Figure 1. Random 3-digit knapsacks: Maximum number of coefficients each
algorithm can compute where each coefficient takes less than 200 seconds.

In Figure 5 we plot the average speedup ratio between the M-Knapsack and LattE Top-
Ehrhart implementations along with the maximum and minimum speedup ratios (we wrote
both algorithms in Maple). The ratios are given by the time it takes LattE Top-Ehrhart to
compute a term, divided by the time it takes M-Knapsack to compute the same term, where
both times are between 0 and 200 seconds. For example, among all the terms computed in
dimension 15 from random 15-digit knapsacks, the average speedup between the two methods
was 8000, the maximum ratio was 20000, and the minimum ratio was 200. We see that in
dimensions 3–10, there are a few terms for which the LattE Top-Ehrhart method was faster
than the M-Knapsack method, but this only occurs for the highest degree terms. Also, after
dimension 25, there is little variance in the ratios because the LattE Top-Ehrhart method is
only computing the trivial highest term. Similar results hold for the other knapsack families,
and so their plots are omitted.

5.3. Other examples. Next we focus on ten problems listed in Table 1. Some of these
selected problems have been studied before in the literature [1, 16, 33, 32]. Table 2 shows the
time in seconds to compute the entire denumerant using the M-Knapsack , LattE Knapsack
and LattE Top-Ehrhart codes with two other algorithms: CTEuclid6 and pSn.

The CTEuclid6 algorithm [33] computes the lattice point count of a polytope, and su-
persedes an earlier algorithm in [32].8 Instead of using Barvinok’s algorithm to construct
unimodular cones, the main idea used by the CTEuclid6 algorithm to find the constant term
in the generating function F (α)(z) relies on recursively computing partial fraction decom-
positions to construct the series. Notice that the CTEuclid6 method only computes the

8Maple usage: CTEuclid(F (α)(x)/xb, t, [x]); where b = α1 + · · ·+ αN+1.
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Figure 2. Random 15-digit knapsacks: Maximum number of coefficients each
algorithm can compute where each coefficient takes less than 200 seconds.

Figure 3. Repeat knapsacks: Maximum number of coefficients each algo-
rithm can compute where each coefficient takes less than 200 seconds.
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Figure 4. Partition knapsacks: Maximum number of coefficients each algo-
rithm can compute where each coefficient takes less than 200 seconds.

Figure 5. Average speedup ratio (dots) between the M-Knapsack and LattE
Top-Ehrhart codes along with maximum and minimum speedup ratio bounds
(vertical lines) for the random 15-digit knapsacks.
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number of integer points in one dilation of a polytope and not the full Ehrhart polynomial.
We can estimate how long it would take to find the Ehrhart polynomial using an inter-
polation method by computing the time it takes to find one lattice point count times the
periodicity of the polynomial and degree. Hence, in Table 2, column “one point” refers to
the running time of finding one lattice point count, while column “estimate” is an estimate
for how long it would take to find the Ehrhart polynomial by interpolation. We see that the
CTEuclid6 algorithm is fast for finding the number of integer points in a knapsack, but this
would lead to a slow method for finding the Ehrhart polynomial.

The pSn algorithm of [31] computes the entire denumerant by using a partial fraction
decomposition based method.9 More precisely the quasi-polynomials are represented as a
function f(t) given by q polynomials f [1](t), f [2](t), . . . , f [q](t) such that f(t) = f [i](t) when
t ≡ i (mod q). To find the coefficients of the f [i] their method finds the first few terms of the
Maclaurin expansion of the partial fraction decomposition to find enough evaluations of those
polynomials and then recovers the coefficients of each the f [i] as a result of solving a linear
system. This algorithm goes back to Cayley and it was implemented in Maple. Looking
at Table 2, we see that the pSn method is competitive with LattE Knapsack for knapsacks
1, 2, . . . , 6, and beats LattE Knapsack in knapsack 10. However, the pSn method is highly
sensitive to the number of digits in the knapsack coefficients, unlike our M-Knapsack and
LattE Knapsack methods. For example, the knapsacks [1, 2, 4, 6, 8] takes 0.320 seconds to find
the full Ehrhart polynomial, [1, 20, 40, 60, 80] takes 5.520 seconds, and [1, 200, 600, 900, 400]
takes 247.939 seconds. Similar results hold for other three-digit knapsacks in dimension four.
However, the partition knapsack [1, 2, 3, . . . , 50] only takes 102.7 seconds. Finally, comparing
the two Maple scripts, the LattE Top-Ehrhart method outperforms the M-Knapsack method.

Table 2 ignores one of the main features of our algorithm: that it can compute just the
top k terms of the Ehrhart polynomial. In Table 3, we time the computation for finding
the top three and four terms of the Ehrhart polynomial on the knapsacks in Table 1. We
immediately see that our LattE Knapsack method takes less than one thousandth of a second
in each example. Comparing the two Maple scripts, M-Knapsack greatly outperforms LattE
Top-Ehrhart . Hence, for a fixed k, the LattE Knapsack is the fastest method.

In summary, the LattE Knapsack is the fastest method for computing the top k terms of
the Ehrhart polynomial. The LattE Knapsack method can also compute the full Ehrhart
polynomial in a reasonable amount of time up to around dimension 25, and the number of
digits in each knapsack coefficient does not significantly alter performance. However, if the
coefficients each have one or two digits, the pSn method is faster, even in large dimensions.

9Maple usage: QPStoTrunc(pSn(〈knapsack list〉,n,j),n); where j is the smallest value in {100, 200, 500,
1000, 2000, 3000} that produces an answer.
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Table 1. Ten selected instances

Problem Data

#1 [8, 12, 11]
#2 [5, 13, 2, 8, 3]
#3 [5, 3, 1, 4, 2]
#4 [9, 11, 14, 5, 12]
#5 [9, 10, 17, 5, 2]
#6 [1, 2, 3, 4, 5, 6]
#7 [12223, 12224, 36674, 61119, 85569]
#8 [12137, 24269, 36405, 36407, 48545, 60683]
#9 [20601, 40429, 40429, 45415, 53725, 61919, 64470, 69340, 78539, 95043]
#10 [5, 10, 10, 2, 8, 20, 15, 2, 9, 9, 7, 4, 12, 13, 19]

Table 2. Computation times in seconds for finding the full Ehrhart polyno-
mial using five different methods.

CTEuclid6

LattE Knapsack M-Knapsack LattE Top-Ehrhart One point estimate pSn

#1 0 0.316 0.160 0.004 3.168 0.328
#2 0.03 5.984 2.208 0.048 347.4 0.292
#3 0.02 4.564 0.148 0.031 9.60 0.212
#4 0.08 18.317 3.884 0.112 7761.6 0.496
#5 0.06 15.200 3.588 0.096 734.4 0.392
#6 0.11 37.974 8.068 0.088 31.68 0.336
#7 0.19 43.006 8.424 0.436 9.466× 1020 >30min
#8 1.14 1110.857 184.663 2.120 8.530× 1020 >30min
#9 >30min >30min >30min >30min >30min >30min
#10 >30min >30min >30min 142.792 1.333× 109 2.336

Table 3. Computation times in seconds for finding the top three and four
terms of the Ehrhart polynomial

Top 3 coefficients Top 4 coefficients

LattE M-Knapsack LattE LattE M-Knapsack LattE
Knapsack Top-Ehrhart Knapsack Top-Ehrhart

#1 0 0.305 0.128 – – –
#2 0 0.004 0.768 0 0.096 1.356
#3 0 0.004 0.788 0 0.080 1.308
#4 0 0.003 0.792 0 0.124 1.368
#5 0 0.004 0.784 0 0.176 1.424
#6 0 0.004 1.660 0 0.088 2.976
#7 0 0.004 0.836 0 0.272 1.652
#8 0 0.068 1.828 0 0.112 3.544
#9 0 0.004 18.437 0 0.016 59.527
#10 0 0.012 142.104 0 0.044 822.187
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Acknowledgments. We are grateful to Doron Zeilberger and an anonymous referee for
suggestions and comments. The work for this article was done in large part during a SQuaRE
program at the American Institute of Mathematics, Palo Alto, in March 2012. V. Baldoni
was partially supported by the Cofin 40%, MIUR. De Loera was partially supported by
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