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Abstract—Adaptive systems can be regarded as a set of
static programs and transitions between these programs. These
transitions allow the system to adapt its behaviour in response
to unexpected changes in its environment. Modelling highly
dynamic systems is cumbersome, as these may go through a
large number of adaptations. Moreover, often they must also
satisfy real-time requirements whereas adaptations may not
complete instantaneously. In this paper, we propose to model
highly adaptive systems as dynamic real-time software product
lines, where software products are able to change their features at
runtime. Adaptive features allow one to design systems equipped
with runtime reconfiguration capabilities and to model changes
in their environment, such has failure modes. We define Featured
Timed Game Automata, a formalism that combines adaptive
features with discrete and real-time behaviour. We also propose
a novel logic to express real-time requirements on adaptive
systems, as well as algorithms to check a system against them. We
implemented our method as part of PyECDAR, a model checker
for timed systems.

Index Terms—Software Product Lines, Features, Real-time
systems, Model-checking, Timed Games

I. INTRODUCTION

Computers play a central role in modern life and their errors

can have dramatic consequences. Proving the correctness of

computer systems is therefore an extremely relevant problem

for which quality assurance techniques like model checking and

testing provide efficient solutions. Testing consists in applying

a finite series of test cases to the system. Although it can

detect errors, it cannot guarantee their absence. Another of its

limitations is that nowadays, systems are embedded and highly

configurable, which makes it hard to specify relevant test cases.

Model checking [1] is an automated technique for verifying

systems against functional requirements. The approach relies

on an exhaustive verification of a bevahioral model of the

system against a property expressed in temporal logic. If the

system fails to satisfy the property, then the model checking

algorithm provides an example of violation. By nature, model

checking guarantees the absence of errors. Albeit it suffers

from the so-called state-space explosion, it has been widely

used and applied on both academic and industry case studies.

Model checking was initially intended for closed and static

Boolean systems, but has been extended to target increasingly

wider classes of systems, including real-time systems.

The recent advances in computer science pose new chal-

lenges to model checking. One of the major difficulties is

that today’s systems often run in open and potentially unsafe

environments, which requires them to adapt their behavior

in order to accomplish their tasks reliably. In case of highly

evolving environment, these adaptations must be performed as

quickly as possible, hence the need for self-adaptive systems.

These are harder to verify than static, closed systems of which

behaviour and environment are known a priori. Applying model

checking to such systems requires to represent all its classes

of behaviour as well as its capability to transit between them.

Moreover, adaptive systems must satisfy multiple goals which

may evolve over time and according to changes in the system

or its environment [2].

One way to model an adaptive system is to view it as a set

of static programs and transitions between these programs [3].

When the system has to adapt its behaviour, it triggers a

transition to one of its other programs. The drawback of this

approach is that all these programs must be modelled and

verified individually. This approach has huge costs and is

intractable. Another difficulty is the need to verify dynamic

properties of adaptive systems. Classical logics cannot express

them in a proper way. Alternatives to existing model checking

techniques of adaptive systems are thus needed.

The static programs composing an adaptive system likely

share commonality, as they also have proper parts. An alter-

native is to organize the variability between these programs

into features, a concept borrowed from software product line

engineering (SPLE) [4]. In the latter discipline, a feature is

an added functionality that meet a requirement of customers.

A product of the line is thus obtained by composing desired

features together. In the context of adaptive systems, features

model differences between the static programs composing the

system. Modifications in its behaviour are therefore triggered

by changing its features. We name this process reconfiguration.

Features constitute an appropriate modelling artifact to reason

on runtime variability. Moreover, transposing this concept to

adaptive systems permits to benefit from the formal verification

techniques currently developed in SPLE.

The behavior of adaptive systems often rely on real-time

requirements such as matching deadline or reacting in real-time

to fault. For example, a routing protocol must ensure that a

data packet must reach the recipient within a certain amount

of time (see more in Section II). Unexpected changes in the

environment may prevent the satisfaction of these requirements,

hence the need for the system to perform adaptations. The

reconfiguration process is not always instantaneous, though.

The system may require time to change its features, or can

have to delay the reconfiguration until it reaches a stable state.



Unfortunately, most of existing model checking techniques for

adaptive systems are not capable of handling such constraints.

In this paper, we propose a formal framework to model

and verify adaptive systems that must satisfy evolving real-

time requirements. We introduce Featured Timed Game Au-

tomata (FTGA), a formalism to represent adaptive behaviour,

dynamic environment, and real-time. Our model results from

the combination of (1) Adaptive Featured Transition Sys-

tems [4], a formalism to model dynamic reconfiguration,

and evolving environment, and (2) timed automata [5], an

established formalism for real-time systems. The semantics

of a FTGA is defined as a timed game, where the system

plays against the environment. Our formalism differs from

existing game-based approaches [6] in that it concisely models

reconfigurations of the systems and evolutions of the environ-

ment by exploiting the featured transition approach [7]. This

latter provides even more flexibility to our method, which

supports not only runtime configuration but also design-time

variability. FTGA thus constitute an unified formalism to model

the behaviour of real-time adaptive software product lines.

As a second contribution, we propose a new temporal logic

to express requirements on FTGA. In [4], we introduced

Adaptive Configuration Time Logic (AdaCTL), a variant of

the Computational Tree Logic (CTL) to reason on features

and reconfigurations. The main differences between AdaCTL

and CTL are that (1) the existential and universal quantifiers

have a game-based semantics similar to Alternating Tree Logic

(ATL) [8], and (2) the satisfaction relation returns a set of

configurations rather than a Boolean value. In this paper, we

go one step further and introduce Timed Adaptive Configuration

Time Logic (T-AdaCTL), a real-time extension of AdaCTL, the

semantics of which is inspired from Timed-ATL [9].

Finally, we design efficient model-checking algorithms to

verify an adaptive system modelled as an FTGA against

requirements expressed in T-AdaCTL. These algorithms extend

efficient timed-game algorithms [10]. As a proof-of-concept,

we implemented our method as part of PyECDAR, a model-

checker for timed systems [11].

Structure of the paper. In Section II, we introduce our

running example and the state of the art is presented in Section

III. We define FTGA in Section IV, whereas we introduce

T-AdaCTL and our model checking algorithms in Section V.

We discuss our implementation in Section VI.

II. INTRODUCTORY EXAMPLE

We present an example inspired by the TCP routing protocol

described in [3]. We consider a routing protocol that can work

in two different environments: a safe environment, where all

the nodes are fully trusted, and an unsafe environment, where

some nodes might be corrupted. In an unsafe environment, a

message must be encrypted before it is sent. Every operation

(routing, sending and encryption) requires time to complete.

The behavior of the protocol in the two types of environment

are modelled as timed automata in Fig. 1.

The protocol must satisfy safety and liveness properties.

When the environment is unsafe, all the messages must be
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Figure 1: Routing protocol in safe and unsafe environment.

encrypted before they are sent. When the environment is safe,

the messages must be sent at most 20 time units after being

received. In a changing environment, the protocol must switch

between the two configurations in order to adapt itself. This

reconfiguration is only possible in state received. We study two

different implementations: in the first one, the reconfiguration

can occur at most every 25 time units; in the second one, the

reconfiguration can always be done but its application requires

5 time units. We want to determine in which implementations

the system can satisfy its specifications.

III. STATE OF THE ART

This paper is at the intersection of adaptive systems verifica-

tion and software product line model checking. We overview

relevant related work in both fields.

A. Quality Assurance for Adaptive Systems

In their research roadmap for adaptive systems [2], Cheng

et al. stated that in the context of adaptive systems, the

objective of quality assurance is to provide evidence that the

system is able to cope with changes in its objectives and its

environment. They presented a framework for adaptive systems

assurance, in which the system, the goals, and the context

are subject to modifications. This results in a succession of

models for the system and properties to verify. Based this idea,

several verification methods model adaptive systems as a set

of programs [12], [13], [14], [3]. To ensure the satisfaction

of intended properties in an unstable environment, the system

is able to make transitions between those programs, that is,

to perform an adaptation to modify its future behaviour. One

distinguishes between local properties that specific programs

must satisfy, global properties that must be satisfied by any

execution of the system, and transitional properties that must

hold during an adaptation. To specify the transitional properties,

Zhang et al. proposed a new logic called A-LTL [15] and

algorithms to check a model against properties expressed in this

logic [3]. As an alternative, Kulkarni et al. [14] consider that an

adaptive system is a program able to add or remove components

during runtime. Instead of traditional model checking, they

use proof lattice to verify that all the adaptations satisfy the



global properties. Instead of behavioural properties, Filieri et

al. [16] are interested in verifying non-functional requirements

on adaptive systems. They propose novel algorithms to check

parametric Markov models. Combining our work with theirs

is an interesting perspective, as it could allow us to quantify

the impact of adding or removing features at runtime in terms

of non-functional properties.

B. Software product line model checking

SPL model checking has become a hot topic that received a

lot of attention in the last years. Li et al. [17] first proposed to

model features as independent automata that are subsequently

composed together to form a product. They provide incremental

algorithms that can check whether the connection of a new

feature preserves the properties of the system. Other work is

based on modal transition systems where transition are either

mandatory (included in all the configurations) or optional (only

part of some products) [18], [19], [20]. Gruler et al. [21]

extended the CCS process algebra with a variability operator

and sketched an algorithm to verify a model against multi-

valued µ-calculus formulae. In the last years, a family of

approaches and tools based on featured transition systems were

designed [7], [22], [23], [24], [25], [26]. In featured transition

systems, transitions are constrained by Boolean formula over

the features, such that the system can execute a transition only if

its features satisfy the associated formula. This relation does not

allow for reconfigurations and is thus a particular case of ours.

Cordy et al. [4] extended this formalism with reconfiguration

capabilities in order to model adaptive systems. Their work

is closely related to this paper but there are also significant

differences. First, the authors do not make the distinction

between controlled and uncontrolled actions. They assume that

non-deterministic transitions are executed by the environment,

and are thus always uncontrolled. Second, they do not consider

real-time, whereas adaptive systems are often require to adapt

their behaviour within a given time frame and these adaptations

may not be instantaneous. Third and last, no implementation

is available.

IV. FEATURED TIMED GAMES

This section introduces the mathematical model we propose

to represent real-time adaptive systems. It includes a representa-

tion of an open environment with which the system interacts in

real-time. This environment evolves over time, and the system

must adapt its behavior to cope with these variations. To make

our models concise and facilitate reasoning, we represent both

the different functional modes of the system and the state of

the environment with adaptive features, i.e., features that can

be enabled or disabled at runtime. In standard SPLE, features

usually model design-time variability and are thus not meant to

be modified at runtime. Our formalism considers these features

as a particular case of adaptive features. Therefore, it is flexible

enough to support product lines of real-time adaptive systems.

We first introduce the syntax of the model. Then we define

its semantics as a timed game. We shall see that timed games

are particularly suitable to reason on system’s reconfigurations

with regard to change in the environment. Beforehand, we

recall basic concepts to formally represent runtime variability

and real-time.

A. Encoding Variability and Real-Time Constraints

Variability. In SPLE, features usually designate units of

difference between software products. We extend this notion

to represent the possible adaptations of the system, as well

as dynamic characteristics of the environment. Therefore, we

distinguish between adaptive and static features, which may

or may not change at runtime, respectively. Dependencies

between features can be captured in a feature model. In this

paper, we define a feature model as tuple d = (Fs, Fa, Fe, JdK)
where Fs is the set of features of the system, Fa ⊆ Fs

contains its adaptive features, and Fe denotes the features of the

environment. We assume that Fs and Fe are disjoint and denote

their union by F . A configuration of d is any subset of Fs∪Fe.

Therefore it denotes a particular variant of the system equipped

with specific static and adaptive features, and deployed in a

certain type of environment. Finally, JdK ⊆ P(F ), where P
denotes the powerset, is the set of the valid configurations that

satisfy the dependencies between the features.

To express that the possible behaviors of the system and

the environment may depend on their features, we extend the

notion of feature expressions borrowed from featured transition

system (FTS) [7]. FTS extends labelled transition systems,

such that a transition may only be triggered by a restricted

set of configurations. Each transition is labelled with a feature

expression, that is a Boolean function exp : P(F ) → {⊤,⊥}
such that exp(p) = ⊤ iff p can execute the transition. We

denote by JexpK ⊆ P(F ) the set of configurations that satisfy

exp and by ⊤ the feature expression such that J⊤K = P(F ).
Further in this section, we show how we generalize feature

expressions to handle reconfiguration and how we combine

them with time constraints.

Real-time. Timed Automata are an established formalism

to represent real-time behavior. They extend labelled transition

systems with real-time clocks of which value evolve as time

passes. The clocks evolution and the discrete behaviors of the

system are controlled by clock reset added to the transitions,

and clock constraints. These constraints are either transitions

guards that specifies when the system can execute a transition,

or location invariants that defines when the system may remain

in a given location. Examples of Timed Automata are shown

in Fig. 1 to describe the models of the routing protocol.

Let C be a finite set of clocks. A clock valuation over C

is a function u : C → R≥0, that is, u ∈ RC
≥0. Given two

valuations u and τ , we write u+τ for the valuation defined by

(u+τ)(x) = u(x)+τ(x). For λ ∈ P(C), we write u[λ] for a

valuation agreeing with u on clocks in C\λ, and setting to 0 the

clocks in λ. Let B(C) denote all clock constraints ϕ generated

by the grammar ϕ ::= x ≺ k | x−y ≺ k | ϕ∧ϕ, where k∈Q,

x, y∈C and ≺∈ {<,≤, >,≥}. By U(C) ⊂ B(C), we denote

the set of constraints restricted to upper bounds and without

clock differences. For ϕ∈B(C) and u∈RC
≥0, we write u |= ϕ

iff u satisfies ϕ. For Z ⊆ RC
≥0, we write Z |= ϕ iff u |= ϕ



for all u ∈ Z. We write JϕK to denote the set of valuations

that satisfy ϕ. Then Z ⊆ RC
≥0 is a zone iff Z = JϕK for some

ϕ ∈ B(C).
To represent the behavior of system deployed in open

environments, a model must distinguish between actions of

the system from those of the environment. Timed Game

Automata [6] are Timed Automata where actions are either

controllable (actions of the system) or uncontrollable (actions

of the environment). In this formalism, the satisfaction of

properties is determined by solving a two-player timed game.

B. Featured Timed Game Automata

We are now ready to introduce Featured Timed Game

Automata (FTGA) as a formalism to model product lines of

real-time adaptive systems. FTGA result from the combination

of the encodings presented above. It provides the following

modelling facilities:

(1) Open environment. An FTGA distinguishes between

controllable and uncontrollable transitions.

(2) Real-time. Clock constraints in invariants and transition

guards model real-time constraints on the system and its

environment.

(3) Variability. Each transition is constrained by a feature

expression that defines in which configurations the system

or its environment can execute it. It allows one to differ-

entiate between the capabilities of every configuration.

(4) Adaptations. The transition relation also encodes which

reconfigurations are possible upon the execution of an

action by the system or its environment.

Formally, FTGA are defined as follows.

Definition 1 An FTGA is a tuple G = (Loc, l0, C, Act,

Inv, Trans, d, γ, AP,L) where Loc is a finite set of locations,

l0 ∈ Loc is the initial location, C is a finite set of clocks,

Act = Actc ⊎Acte, is a finite set of actions partitioned between

controllable actions in Actc and uncontrollable actions in

Acte, Inv : Loc → U(C) associates an invariant to each

location, Trans ⊆ Loc × Act × B(C) × P(C) × Loc is a

set of transitions, d = (Fs, Fa, Fe, JdK) is a feature model,

γ : Trans → (P(F ) × P(F ) → {⊥,⊤}), specifies for each

transition which configurations can execute it, and how the

configuration of the system and the environment can evolve,

AP is a finite set of atomic propositions, L : Loc → 2AP

labels each location ith atomic propositions it satisfies.

The adaptation process is encoded as part of function γ. This

function is defined such that only adaptive features may only be

changed by controllable transitions, and environment features

may only be changed by uncontrollable transitions. Formally, let

α = (l, a, ϕ, λ, l′) ∈ Trans. For any configurations c, c′, e, e′, if

a ∈ Actc, γ(α)(c∪e, c′∪e′) =⇒ (c\c′)∪(c′\c) ⊆ Fa∧e′ = e

and if a ∈ Acte, γ(ei)(c ∪ e, c′ ∪ e′) =⇒ c′ = c. Moreover,

any reconfiguration of the system or the environment must

ensure that the new configuration is valid, that is, γ(α)(c ∪
e, c′ ∪ e′) =⇒ c′ ∪ e′ ∈ JdK. This function provides a flexible

encoding to restrict the reconfiguration process. In particular, it

is able to specify the minimum and maximum amount of time

needed to transit from a given configuration to another one.

To that aim, one may define a self-loop transition constrained

by a given clock, and annotated with an action that represents

the reconfiguration process.

C. Game semantics

An FTGA specifies the behavior of a set of systems, that

is, one per valid configuration. The initial configuration of the

system will determine how its behavior may evolve over time.

Indeed, static features cannot be changed at runtime and thus

fix parts of the system capabilities. Similarly, reconfiguration

is not always doable; the initial value of adaptive features

may thus impede the system to perform actions early in the

execution, which may lead to unavoidable errors.

Accordingly, we define the semantics of an FTGA as a

function J.K : P(Fs) → (Loc × RC
≥0 × P(Fs) × P(Fe))

∗ that

associates an initial system configuration with its set of infinite

executions. A state of the execution is a tuple s = (l, u, c, e),
where l ∈ L is a location, u ∈ RC

≥0 is a clock valuation,

c ∈ P(Fs) is a system configuration and e ∈ P(Fe) is an

environment configuration such that c ∪ e ∈ JdK. An initial

state is (l0,0, c0, e0), where 0 is the valuation that initializes

all clocks to zero, and c0, e0 are the initial configuration of

the system and the environment, respectively. Whereas the

configuration of the system is an input of the semantics function,

the initial configuration of the environment is uncontrolled and

is thus chosen non-deterministically. Since we consider timed

systems, an execution includes two types of transitions:

• delay transitions: (l, u, c, e)
τ
−→(l, u + τ, c, e) if τ ∈ R≥0

and u + τ |= Inv(l).
• discrete transitions: (l, u, c, e)

a
−→(l′, u′, c′, e′) if a ∈ Act

and ∃α = (l, a, ϕ, λ, l′) ∈ Trans, such that: u |= ϕ, u′ =
u[λ] and γ(α)(c ∪ e, c′ ∪ e′) = ⊤.

Finally, a run (or execution) in an FTGA is a sequence of

states starting from an initial state and alternating delay and

discrete transitions:

ρ = s0
τ0−→s′0

a1−→s1
τ1−→s′1

a2−→s2 . . . sn
τn−→s′n

an+1

−−−→sn+1 . . .

Given that an FTGA considers continuous time, it specifies an

infinite number of runs.

Among the transitions executed during a run, some are

controlled by the system and others are uncontrolled, i.e.

executed by the environment. Also, the system controls how it

reconfigure itself, but has no control on the configuration of

environment. The achievement of goals can thus be considered

as a two-player games where the system plays against the

environment. The strategy of one player prescribes a set of

moves to perform according to the states previously visited.

Each move consists of either delaying or executing an available

action. A player can reconfigure itself only after executing

an action. Formally, a strategy for the system is a function:

StrC : (Loc×RC
≥0×P(Fs)×P(Fe))

k → (Actc×P(Fs))∪{τ}
with k ≥ 0. A strategy for the environment is defined

symmetrically, except that the environment also selects its

initial configuration. A strategy is valid iff (1) it complies with



the transition relation and function γ, and (2) it does not lead to

time-convergent or zeno runs [27]. From now on we consider

valid strategies only.

The game proceeds as a concurrent game. In a given

state, if one player chooses to delay while the other

chooses an action, then this action is performed and the

corresponding transition is triggered. If both players select

an action then the transition to execute is chosen non-

deterministically. Given a system strategy StrC and an en-

vironment strategy StrE , the possible outcomes of the game,

noted Outcome(StrC , StrE), are the set of infinite runs

ρ = s0
τ0−→s′0

a1−→s1
τ1−→s′1

a2−→s2 . . . sn
τn−→s′n

an+1

−−−→sn+1 . . .

such that

• if ai ∈ Actc then StrC(s0, . . . , si) = (ai, ci+1).
• if ai ∈ Acte then StrE(s0, . . . , si) = (ai, ei+1).
• if τi ∈ R≥0 then ∀τ ′

i ∈ [0, τi[. si
τ
−→(li, ui +

τ ′
i , ci, ei) and StrC(s0, . . . , si, (li, ui + τ ′

i , ci, ei)) =
StrE(s0, . . . , si, si + τ ′

i) = {τ}.

where sk = (lk, uk, ck, ek) for any k ∈ N.

Example. Fig. 2 presents an FTGA modelling the routing

protocol. The system actions are the plain transitions: route,

reconfig, t-reconfig. The environment actions are the dashed

transitions: init, receive, encryption, sent. The adaptive feature

encrypt determines in which operation modes the system

currently is. Two static features p-reconf and t-reconf specifies

which of the two configuration methods the system can use (see

Section II. Finally, the environment is described with a feature

safe that specifies whether the current node in the network can

be trusted or not. The function γ is defined in two steps. First,

feature expressions are added in the graph to the guard of the

transitions, in order to specify which set of features enables the

transition. Second, we specify the possible reconfigurations:

• The system may only reconfigure the feature encrypt

during the transitions labelled “reconfig”.

• The environment may only reconfigure the feature safe

during the transitions labelled “sent” and “receive”.

In consequence, a possible strategy for the environment is

to start in a safe configuration, do the init action at y = 25,

then the receive action at y = 30, and disable the feature safe

during this transition. In reaction, the system strategy can be

to start with the system feature p-reconf while the adaptive

feature encrypt is disabled, then wait until the environment

reaches the location Received. At this point it can do a reconfig

action immediately, and enable the feature encrypt during the

transition. Finally, at x = 10 it performs the route action to

reach the location RoutedUnsafe. The outcome produced by

these two strategies is:

“

Init,

»

x = 0

y = 0

–

,



p-reconf

safe

ff

” 25,init
−−−−−−→

“

Ready,

»

25

25

–

,



p-reconf

safe

ff

” 5,receive
−−−−−−−−→

“

Received,

»

0

25

–

, {p-reconf}
” 0,reconfig
−−−−−−−−−→

“

Received,

»

0

0

–

,



p-reconf

encrypt

ff

” 10,routed
−−−−−−−−→

“

RoutedUnsafe,

»

0

10

–

,



p-reconf

encrypt

ff

”

start

Init
Ready Received

x ≤ 20

RoutedSafe

x ≤ 10

RoutedUnsafe

x ≤ 5
Encrypted

x ≤ 10

t-Reconfig

y ≤ 5

init

y ≥ 25
receive

x := 0

route

¬encrypt

x ≥ 10
x := 0

sent

x ≥ 8

route

encrypt

x ≥ 10
x := 0

encryption

x ≥ 3
x := 0

sent

x ≥ 8

reconfig

p-reconf

y ≥ 25
y := 0

t-reconfig

t-reconf

10 ≤ x ≤ 15
y := 0

reconfig

y ≥ 5
y := 0

Figure 2: FTGA of the routing protocol.

V. TIMED ADACTL MODEL-CHECKING

To express requirements on real-time adaptive systems,

we propose T-AdaCTL, a timed extension of the Adaptive

Configuration Time Logic (AdaCTL), a logic we recently

introduced to reason on reconfigurable systems. We first present

its syntax and semantics, and then provide algorithms to check

an FTGA against a T-AdaCTL formula.

A. Timed AdaCTL

The formulae of T-AdaCTL are embedded into three levels.

The first level is the feature formula, which has the form Ψ ::=
[χ]Φ where χ is a feature expression and Φ is a state formula.

Intuitively, [χ]Φ defines that if the current configuration of the

system and the environment satisfies χ, then the current state

must satisfy Φ. Feature formulae can thus define requirements

on specific configurations, or even forbid some others. A state

formula has the form Φ ::= ⊤ | a | Ψ1 ∧ Ψ2 | ¬Ψ | Aϕ | Eϕ

where a ∈ AP , Ψ, Ψ1 and Ψ2 are feature formulae, and ϕ

is a path formula. Intuitively, a state satisfies Aϕ (resp. Eϕ)

if from this state, the system can come up with a strategy

of which the outcome will (resp. may) satisfy ϕ. The path

formulae have the form ϕ ::= Ψ1 UI Ψ2 | Ψ1 W Ψ2 where

Ψ, Ψ1 and Ψ2 are feature formulae, I is an interval of R≥0

with integral bounds, U is called the until operator and W is

called the weak until operator. T-AdaCTL extends AdaCTL

with a time constraint attached to the until operator, in the

same manner as TCTL [5] extends CTL. We omit the next

operator of AdaCTL as there is no notion of direct successor

in timed systems. Two path operators can be derived from U

and W: eventually (♦), such that ♦IΨ = ⊤UIΨ , and forever

(�), such that �Ψ = ΨW⊥. When it comes to state and path

formulae, TATL [9] is a generalisation of T-AdaCTL, as it can

express more general time constraints and requirements on the

environment too. However, it does not include any notion of

features, which makes it inappropriate for expressing properties

on our feature-based formalism.



Example. Let us express the properties that the routing

protocol must satisfy in T-AdaCTL. The property “If the

environment is unsafe, all the messages must be encrypted

before they are sent.” can be expressed by the formula

A�([¬safe]¬RoutedSafe). This formula specifies that the

system can never reach the location RoutedSafe if the

environment is not safe. The property “If the environment

is safe, the messages must be sent at most 20 time units

after being received.” can be expressed by the formula

A�([safe]Received ⇒ A♦[0, 20]Ready). It specifies that

whenever location Received is reached in a safe environment,

the location Ready must be reached within 20 time units.

We provide T-AdaCTL with a formal semantics:

Definition 2 Let G be an FTGA and s = (l, u, c, e) one of its

states. Then the satisfiability of a T-AdaCTL feature or state

formula by G in state s is determined as follows:

G, s |= [χ]Φ ⇔ c ∪ e 6∈ JχK ∨ G, s |= Φ

G, s |= ⊤ ⇔ ⊤
G, s |= a ⇔ a ∈ L(l)
G, s |= Φ1 ∧ Φ2 ⇔ G, s |= Φ1 ∧ G, s |= Φ2

G, s |= ¬Φ ⇔ G, s 6|= Φ

G, s |= Eϕ ⇔ ∃StrC · ∃StrE ·
∃ρ ∈ Outcome(s, StrC , StrE) · G, ρ |= ϕ

G, s |= Aϕ ⇔ ∃StrC · ∀StrE ·
∀ρ ∈ Outcome(s, StrC , StrE) · G, ρ |= ϕ

The semantics of path formulae is similar to that of TCTL path

formulae:

G, ρ |= Ψ1 UI Ψ2 ⇔ ∃r ∈ I · G, ρ[r] |= Ψ2 ∧
∀0 ≤ r′ < r · G, ρ[r′] |= Ψ1

G, ρ |= Ψ1 W Ψ2 ⇔ (∀r′ ≥ 0 · G, ρ[r′] |= Ψ1) ∨
(∃r ≥ 0 · G, ρ[r] |= Ψ2 ∧ ∀0 ≤ r′ < r · G, ρ[r′] |= Ψ1)

where ρ[r] the state reached in ρ at time r.

Note that we assume a continuous-time semantics for timed

path operators [28]. We now define the satisfaction of a T-

AdaCTL formula by an FTGA. Contrary to classical temporal

logics, this relation, noted |=F is not Boolean: it is defined

as the set of initial system configurations such that the FTGA

satisfies the formula from its initial state.

Definition 3 Let G be an FTGA and Ψ a T-AdaCTL formula.

(G |=F Ψ) = {c0 ∈ P(Fs) | ∃e0 ∈ P(Fe) · c0∪e0 ∈ JdK ∧

∀e0 ∈ P(Fe) · c0 ∪ e0 ∈ JdK ⇒ G, (l0,0, c0, e0) |= Ψ}

B. Model-Checking Algorithms

The semantics of T-AdaCTL is defined over execution paths,

of which FTGA contain an infinite number. This means that a

model checking procedure for T-AdaCTL must use a symbolic

representation to capture this infinite number of runs in a finite

data structure. To represent the time domain of symbolic states,

we extend the grammar of clock constraints with the negation.

Then for a clock constraint, ϕ, JϕK is a federation, i.e. a finite

union of zones. In combination with federations, we use feature

expressions to encode sets of configurations symbolically, as

opposed to representing each configuration individually in

separate states. Therefore, our algorithms manipulate symbolic

states, i.e. tuples of the form (l, b, ϕ), where l is a location,

b is a feature expression, ϕ is a clock constraint. A symbolic

state is an abstraction of all the concrete states (l, u, c, e) such

that u ∈ JϕK and (c ∪ e) ∈ JbK.

To model check a T-AdaCTL formula Ψ , we first decompose

it into its parse tree, where each node is a subformula. The

root is Ψ itself, whereas the leaves are atomic formulae. Then,

starting from the leaves, we associate each subformula by the

set of symbolic states that satisfy it. This method is similar to

the one used to check CTL formulae [29].

We present how to compute the set of symbolic states that

satisfy each form of T-AdaCTL formula. For feature and state

formulae, the satisfaction rules are the following:

Sat([χ]Φ) = Sat(Φ) ∪ {(l,¬χ,⊤) | l ∈ Loc}

Sat(⊤) = {(l,⊤,⊤) | l ∈ Loc}

Sat(a) = {(l,⊤,⊤) | a ∈ L(l)}

Sat(Ψ1 ∧ Ψ2) = {(l, b1 ∧ b2, ϕ1 ∧ ϕ2) |

(l, b1, ϕ1) ∈ Sat(Ψ1) ∧ (l, b2, ϕ2) ∈ Sat(Ψ2)}

Sat(¬Ψ) = Sat(Ψ)

where for any S ∈ L × P(F ) × R≥0, the complement of

S is defined as S = {(l, b, ϕ)|∄(l, b′, ϕ′) ∈ S • JbK ∩ Jb′K 6=
∅∧JϕK∩Jϕ′K = ∅}. Computing Sat(Eϕ) and Sat(Aϕ) comes

down to solving a two-player game where the system is the

verifier and the environment is the spoiler. To that aim, we

perform a backward fixed-point computation as it is performed

for solving timed games in [6]. The algorithms are based on

discrete predecessors and safe timed predecessors operators.

The definition of these operators in FTGA takes into account

both variability and real-time, which makes it different from

other game-based formalisms. It constitutes the cornerstone

and the real novelty of our verification algorithms. Formally,

let α = (l, a, ϕα, λα, l′) ∈ Trans and (l′, b′, ϕ′) be a symbolic

state. We define the discrete predecessors Predα(l′, b′, ϕ′) =
(l, b, ϕ) such that:

• b = {c ∪ e | ∃(c′ ∪ e′) ∈ b′ · γ(α)(c ∪ e, c′ ∪ e′) = ⊤}
• ϕ = free

(

ϕ′∧{x = 0 | x ∈ λα}, λα

)

∧ϕα∧Inv(l), where

free(ϕ, λ) = {u | ∃v ∈ JϕK · ∀x 6∈ λ · u(x) = v(x)}.

Observe that the distributivity law applies to this operator:

Predα

(

⋃

i

si

)

=
⋃

i

Predα(si)

The discrete predecessors operator can be used to compute the

controllable (resp. uncontrollable) moves that allow the system

(resp. the environment) to reach (resp. to avoid) a winning state.

However, these moves may not be safe as the other player

may have concurrent moves. Formally, given a location l and

the sets of winning states Win[l′] for each location l′, these

controllable moves are:

Nextc(l,Win) =
⋃

α=(l,a∈Actc,ϕ,λ,l′)

Predα(Win[l′])



The uncontrollable moves of the environment are defined

symmetrically. The winning moves are obtained through the

safe timed predecessors operator. Let s1 = (l, b1, ϕ1) and

s2 = (l, b2, ϕ2) be two symbolic states, the safe timed

predecessors of s1 wrt. s2 are the states that can reach s1 while

avoiding any state from s2. They are given by Predt(s1, s2) =
{(l, b1 ∧¬b2, Predt(ϕ1,⊥)), (l, b1 ∧ b2, Predt(ϕ1, ϕ2))} where

Predt(ϕ1, ϕ2) is the safe timed predecessors operator for zones

as defined in [6]. This operator has the following property:

Predt

(

⋃

i

gi,
⋃

j

bj

)

=
⋃

i

⋂

j

Predt(gi, bj).

In what follows, we denote by Pred(l) the locations from which

there is a transition to l.

To enforce that the players’ strategies are valid, we compute

the deadlock states, which are the states beyond the locations

invariant that should not be reached if one player had an

urgent action to perform. We denote by DLc(l) (resp. DLe(l))
the deadlock states in location l for which the system (resp.

environment) is responsible.

Algorithm 1 computes Sat(AΨ1 UI Ψ2). The algorithm

starts with the winning symbolic states that satisfy Ψ2 (Lines

3–7), and next performs a backward exploration (Lines 8–19)

to discover predecessors of winning states that satisfy Ψ1 and

that the environment cannot impede the system to reach. To

check that the time spent to reach the goal in Ψ2 satisfies

the interval constraint I , an additional clock, named clock, is

added to the model; this is a standard way to handle timing

constraints of logical formula. This extra clock is initialized in

I (Line 4) and then decreases during the backward exploration.

Sat(AΨ1 UI Ψ2) is the set of winning states for which the

value of the extra clock is zero (Lines 20–25).

Algorithm 2 executes a similar procedure to compute

Sat(AΨ1 W Ψ2). In this case, however, it starts from the states

that violate the formula (Line 3) and performs a backward

exploration to compute the states from which the system cannot

guarantee to avoid losing states (Lines 4–14). Then, the set of

winning states for the system is the complement of the set of

those states (Line 15).

The algorithms used to compute Sat(EΨ1 UI Ψ2) and

Sat(EΨ1 W Ψ2) also use similar procedures. The main

differences are that the two players now cooperate in order to

reach the goal expressed by the path formula. As an example,

an algorithm for Sat(EΨ1 UI Ψ2) can be obtained by adding

Nexte(l,Win) to set of states Good in Line 11 of Algorithm 1,

and by removing Lined 12-13 (hence setting the set of bad

states to empty set in timed predecessors). Deadlock states

must be avoided. Indeed, the two players cooperate. In case

of a deadlock, they both lose.

VI. IMPLEMENTATION

Our modelling formalism and the associated algorithms have

been implemented on top of PyECDAR [11], a tool for the

analysis of timed systems.

In PyECDAR, a model is written in an XML file that follows

the format of UPPAAL tool set [30]. This allows us to reuse the

Algorithm 1: Sat(AΨ1 UI Ψ2)

Input: G, Ψ1, Ψ2, I
Output: Sat(AΨ1 UI Ψ2)
begin1

/* Initialisation */

Wait← ∅;2

for s = (l, b, ϕ) ∈ Sat(Ψ2) do3

ϕ← ϕ ∧ clock ∈ I;4

Win[l]← s;5

Wait←Wait ∪ Pred(l);6

end7

/* Backward exploration */

while (Wait 6= ∅) do8

l← pop(Wait);9

Good←Win[l] ∪ (DLe(l) ∩ ¬DLc(l));10

Good← Good ∪Nextc(l, Win);11

Bad← Sat(¬Ψ1) ∩ ¬Win[l];12

Bad← Bad ∪Nexte(l, Win);13

NewWin← Predt(Good, Bad);14

if Win[l] ( NewWin then15

Win[l]← NewWin;16

Wait←Wait ∪ Pred(l);17

end18

end19

for l ∈ Loc do20

for s = (l, b, ϕ) ∈Win[l] do21

ϕ← ϕ ∧ clock = 0;22

ϕ← free(ϕ, clock)23

end24

end25

return Win26

end27

Algorithm 2: Sat(AΨ1 W Ψ2)

Input: G, Ψ1, Ψ2

Output: Sat(AΨ1 W Ψ2)
begin1

Wait← ∅;2

Win← Sat(¬Ψ1) ∩ Sat(¬Ψ2);3

while (Wait 6= ∅) do4

l← pop(Wait);5

Bad←Win[l] ∪DLc(l);6

Bad← Bad ∪Nexte(l, Win);7

Good← Ψ2 ∪Nextc(l, Win);8

NewWin← Predt(Bad, Good \Bad);9

if Win[l] ( NewWin then10

Win[l]← NewWin;11

Wait←Wait ∪ Pred(l);12

end13

end14

return Win15

end16

intuitive user interface provided by UPPAAL. In our extension,

we use two variables for each adaptive features that defines

its value before and after the reconfiguration following the

transition. This encoding is sufficient to entirely represent the

function γ. Additional patterns can be used to facilitate the

design of the system. For example, feature expressions can be

used in the invariant of a location, which offer another way to



specify possible reconfigurations. Similarly, assignments can

be used to forbid the reconfiguration of an adaptive feature

during a transition.

The original game algorithms of PyECDAR were limited

to safety and reachability objectives specific to timed spec-

ifications. We have implemented the new game algorithms

presented in this paper and the recursive procedure that checks

a T-AdaCTL formula. To encode continuous time, we use

federations, which are finite unions of DBMs, implemented in

UPPAAL DBM Library. We encode feature expressions with

BDDs, implemented using PyCUDD library (python bindings

for CUDD library [31]). Using these two libraries we have

implemented a new encoding for symbolic states with both

features and time domains, as well as an encoding for finite

unions of symbolic states. Therefore, the different operators

(union, intersection, negation, discrete predecessors, timed

predecessors) are implemented in PyECDAR for unions of

symbolic states.

Example. We consider again the routing protocol modelled

in Fig. 2. We first use PyECDAR to check it against the

T-AdaCTL formula Ψ1 = A�([¬safe]¬RoutedSafe). PyEC-

DAR computes the satisfaction relation for the formula, which

is given by p-reconf ∨ t-reconf ∨ encrypt. It means that the for-

mula is satisfied iff any of the two reconfiguration features are

enabled, or feature encrypt is initially enabled. Then, we verify

the formula Ψ2 = A�([safe]Received ⇒ A♦[0, 20]Ready),
and we obtain the following result: p-reconf ∨ ¬encrypt.

Finally, we consider the formula

Ψ3 = A�
(

([¬safe]¬RoutedSafe) ∧

([safe]Received ⇒ A♦[0, 20]Ready)
)

that combines the previous ones. The satisfaction relation is now

restrained to p-reconf, which proves that in order to satisfy both

properties at the same time the system requires the p-reconf

feature. Note that this result is not the same as the conjunction

of the two previous results. Indeed, solving the formula Ψ1∧Ψ2

comes down to finding configurations in which the system has

either strategies to satisfy Ψ1 or strategies to satisfy Ψ2, but

there may exist no strategy that satisfies both goals.

VII. CONCLUSION

This paper presents a new formal model for highly adaptive

real-time systems. Our approach relies on a combination of

adaptive feature transition systems with timed automata. The

semantics of our model is given as a timed game, which views

the system and the environments as concurrent entities. In

our setting, requirements are expressed in a new logic called

T-AdaCTL, for which we provide a model checking procedure.

We have implemented our approach as an extension of the

PyECDAR toolset. The new tool has been applied to academic

case studies. Our next objective is to evaluate our approach on

real-life case studies.
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