
HAL Id: hal-01087799
https://hal.science/hal-01087799v1

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real-Time Specifications
Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman,

Louis-Marie Traonouez, Andrzej Wasowski

To cite this version:
Alexandre David, Kim Guldstrand Larsen, Axel Legay, Ulrik Nyman, Louis-Marie Traonouez, et al..
Real-Time Specifications. International Journal on Software Tools for Technology Transfer, 2015, 17
(1), pp.29. �10.1007/s10009-013-0286-x�. �hal-01087799�

https://hal.science/hal-01087799v1
https://hal.archives-ouvertes.fr

Software Tools for Tehnology Transfer manusript No.

(will be inserted by the editor)

Real-Time Spei�ations

⋆

Alexandre David

1
and Kim. G. Larsen

1
and Axel Legay

2
and Ulrik Nyman

1
and Louis-Marie

Traonouez

2
and Andrzej W¡sowski

3

1
Computer Siene, Aalborg University, Denmark, e-mail: adavid�s.aau.dk, kgl�s.aau.dk, ulrik�s.aau.dk

2
INRIA/IRISA, Rennes Cedex, Frane, e-mail: axel.legay�inria.fr, louis-marie.traonouez�inria.fr

3
IT University of Copenhagen, Denmark, e-mail: wasowski�itu.dk

Reeived: date / Aepted: date

Abstrat A spei�ation theory ombines notions of

spei�ations and implementations with a satisfation

relation, a re�nement relation, and a set of operators

supporting stepwise design. We develop a spei�ation

framework for real-time systems using Timed I/O Au-

tomata as the spei�ation formalism, with the seman-

tis expressed in terms of Timed I/O Transition Systems.

We provide onstruts for re�nement, onsisteny hek-

ing, logial and strutural omposition, and quotient of

spei�ations � all indispensable ingredients of a ompo-

sitional design methodology.

The theory is implemented in the new tool Edar.

We present symboli versions of the algorithms used in

Edar, and demonstrate the use of the tool using a

small ase study in ompositional veri�ation.

Key words: Real-time systems, Stepwise-Re�nement,

Compositional Veri�ation, Timed I/O Automata

1 Introdution

Many modern systems are big and omplex assemblies

of numerous omponents. The omponents are often de-

signed by independent teams, working under a ommon

agreement on what the interfae of eah omponent should

be. Consequently, ompositional reasoning [41℄, the math-

ematial foundations of reasoning about interfaes, is an

ative researh area. It supports inferring properties of

the global implementation from the omponents, or ad-

visedly designing and reusing omponents.

⋆
This paper is an extended version of the work previously pre-

sented in [24,23,26℄. The main additions are (1) a uni�ed presenta-

tion, (2) a deeper link between the theory and the tool, (3) proofs

of theorems, and (4) the desription of ase studies.

In a logial interpretation, interfaes are spei�a-

tions, while omponents that implement an interfae are

understood as models/implementations. Spei�ation the-

ories may support various features inluding (1) re�ne-

ment, whih allows us to ompare spei�ations as well

as to replae a spei�ation by another one in a larger

design, (2) logial onjuntion, expressing the interse-

tion of the set of requirements expressed by two or more

spei�ations, (3) strutural omposition, whih allows

us to ombine spei�ations, and (4) a quotient opera-

tor that is dual to strutural omposition. We shall see

that quotient is useful to perform inremental design and

to reason about assumptions and guarantees. Also, the

operations have to be related by ompositional reason-

ing theorems, guaranteeing both inremental design and

independent implementability [32℄.

Building good spei�ation theories is the subjet of

intensive studies [20,31℄. One suessfully diretion is the

theory of interfae automata [31,32,45,52℄. In this frame-

work, an interfae is represented by an input/output au-

tomaton [50℄, i.e. an automaton whose transitions are

typed with input and output . The semantis of suh

an automaton is given by a two-player game: the in-

put player represents the environment, and the output

player represents the omponent itself. Contrary to the

input/output model proposed by Lynh [50℄, this seman-

ti o�ers an optimisti treatment of omposition: two

interfaes an be omposed if there exists at least one

environment in whih they an interat together in a

safe way. In [34℄, a timed extension of the theory of in-

terfae automata has been introdued, motivated by the

fat that time an be a ruial parameter in pratie,

for example in embedded systems. While [34℄ fouses

mostly on strutural omposition, in this paper we go

one step further and build a game-based spei�ation

theory for timed systems that embeds the four features

listed above.

We represent spei�ations by timed input/output

automata [42℄, i.e., timed automata whose sets of dis-

rete transitions are split into input and output transi-

tions (see Setion 4). Contrary to [34℄ and [42℄, we dis-

tinguish between implementations and spei�ations by

adding onditions on the models. This is done by assum-

ing that the former have �xed timing behaviour and they

an always advane either by produing an output or

delaying. We also provide a game-based methodology to

deide whether a spei�ation is onsistent, i.e. whether

it has at least one implementation. The latter redues

to deiding existene of a strategy that despite the be-

haviour of the environment will avoid states that annot

possibly satisfy the implementation requirements.

Our theory is equipped with a re�nement relation

(see Setion 5). Roughly speaking, a spei�ation S1 re-

�nes a spei�ation S2 i� it is possible to replae S2

with S1 in every environment and obtain an equivalent

system that satis�es the same spei�ations. In the in-

put/output setting, heking re�nement redues to de-

iding an alternating timed simulation between the two

spei�ations [31℄. In our timed extension, heking suh

simulation an be done with a slight modi�ation of the

theory proposed in [15℄. As implementations are spe-

i�ations, re�nement oinides with the satisfation re-

lation. Our re�nement operator has the model inlusion

property, i.e., S1 re�nes S2 i� the set of implementations

satis�ed by S1 is inluded in the set of implementations

satis�ed by S2. We also propose a logial onjuntion op-

erator between spei�ations (see Setion 6). Given two

spei�ations, the operator will ompute a spei�ation

whose implementations are satis�ed by both operands.

The operation may introdue error states that do not

satisfy the implementation requirement. Those states are

pruned by synthesizing a strategy for the omponent to

avoid reahing them. We also show that onjuntion o-

inides with shared re�nement, i.e., it orresponds to the

greatest spei�ation that re�nes both S1 and S2.

Following [34℄, spei�ations interat by synhroniz-

ing on inputs and outputs. However, like in [42,50℄, we

restrit ourselves to input-enabled systems. This makes

it impossible to reah an immediate deadlok state, where

a omponent proposes an output that annot be ap-

tured by the other omponent. Here, in heking for om-

patibility of the omposition of spei�ations, one tries

to synthesize a strategy for the inputs to avoid the error

states, i.e., an environment in whih the omponents an

be used together in a safe way. Our omposition opera-

tor is assoiative and the re�nement is a preongruene

with respet to it (see Setion 7). We propose a quotient

operator dual to omposition (see Setion 8). Intuitively,

given a global spei�ation T of a omposite system as

well as the spei�ation of an already realized ompo-

nent S, the quotient will return the most liberal spei�-

ation X for the missing omponent, i.e. X is the largest

spei�ation suh that S in parallel with X re�nes T .

Our methodology has been implemented in a new

tool Edar that is an extension of Uppaal-tiga [9℄ (see

Setion 9). It builds on timed input/output automata,

a symboli representation for timed input/output tran-

sition systems. We show that onjuntion, omposition,

and quotienting an be redued to simple produt on-

strutions allowing for both onsisteny and ompatibil-

ity heking to be solved using the zone-based algorithms

for synthesizing winning strategies in timed games [51,

17℄. So while our theory is learly new, our redution

allows us to exploit well-established algorithms and im-

plementations whih makes it robust. Finally, re�nement

between spei�ations is heked using a variant of the

reent e�ient game-based algorithm of [15℄. The poten-

tial of our tool is illustrated on two ase studies, eah of

them showing the utility of the various features of our

theory (see Setions 10 and 11).

2 Introdutory Example

We will now give a rough overview of the theory using

an example. Consider a vending mahine that an serve

tea or o�ee. Its spei�ation is shown in Fig. 1(a). We

use the syntax of timed I/O automata [42℄. The dashed

edges represent outputs and the solid ones orrespond

to inputs. In the example, tea! is an output and oin?

is an input. The mahine waits for oins and serves ei-

ther tea or o�ee with di�erent timing onstraints. It

an also serve free tea after two time units. A possible

implementation of this mahine is given in Fig. 1(b).

Our models share the following harateristis:

� Both spei�ations and implementations are deter-

ministi. This assumption re�ets our experiene of

working with engineers, who prefer to reate deter-

ministi spei�ations. It also allows to reate a the-

ory with good properties for ompositional reasoning.

� Output transitions of the implementation Implemen-

tation must arrive at a �xed moment in time and

annot be delayed. We say that an implementation

is output-urgent. Spei�ations are allowed to be im-

preise about timing of outputs, while implementa-

tions have �xed timing. Intuitively, this means that

not only the hoie of ation, but also the timing

(of outputs) is deterministi. We do not restrit the

timing of inputs as the environment may well be not

preditable.

� In Implementation, we an observe that eah time the

output tea! from Idle to Idle is taken, Clok y is re-

set. Without this reset, the time would be stopped

and the exeution would be stuk in the loation Idle.

A desirable property is that either a omponent an

delay or it must be able to produe some output.

This property, alled independent progress, guaran-

tees that the progress of time an happen without

relying on the environment.

2

a)

teacoin cof

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2

Mahine b)

teacoin cof

coin?

tea!
y=0

cof!

coin?

Idle

y<=5

Serving

y = 0

y==5

y <= 6
y==6

Implementation)

pub
coftea

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researher

Figure 1: a) Spei�ation of a o�ee and tea Mahine, b) an implementation that re�nes the spei�ation and)

a Researher that uses the Mahine. Initial loations are double irled. Transition guards are written in green and

lok resets in blue, while loation invariants are in purple.

� Both spei�ations and implementations are assumed

to be input-enabled. This is a natural requirement

that a omponent annot prevent the environment

from sending an input. Instead we should be able

to desribe the failure of the system, when an un-

expeted input arrives. This assumption is made in

many spei�ation theories [49,38,56,61,53℄.

Implementations relate to spei�ations through re-

�nement. More preisely, our implementation model Im-

plementation re�nes our spei�ationMahine in the sense

that whenever Implementation wants to produe an out-

put, that output is allowed by Mahine, and Implementa-

tion aepts all the inputs spei�ed by Mahine. Then an

implementation is reusable in any environment whih a-

epts the spei�ation. Also an implementation will not

produe more interations than what the spei�ation

allows in suh an environment. We will see later that

heking re�nement redues to a two-player game where

the attaker plays delays and outputs on Implementation,

and inputs onMahine, while the defender responds with

outputs and delays on Mahine, and inputs from Imple-

mentation.

More generally, the re�nement an be used to om-

pare spei�ations. Thanks to the assumptions of deter-

minism and input-enabledness, our re�nement oinides

with implementation set inlusion, that is Spei�ation

AS re�nes Spei�ation AT if and only if the set of im-

plementations of AS is inluded in the set of implemen-

tations of AT .
Consider now the spei�ation of UniSpe in Fig. 2.

A good university produes patents as a result of reeiv-

ing grants. Observe the timing onstraints that onstrain

how often the university should produe patents. Our ob-

jetive is to re�ne this spei�ation by another one that

is more preise regarding the behavior of the researhers

and administration sta� of the university. We onsider

researhers who will publish, if provided with tea and

o�ee, an administration that will turn grants into oins

(to fund tea and o�ee) while turning publiations into

patents, and a o�ee mahine that aepts oins and

produes hot beverages for the researhers. In order to

reason about eah omponent individually, we will split

grant patent

patent!

grant?grant?

grant?

u>2

u<=2

u<=20

grant?
u=0

patent! u=0

UniSpe

Figure 2: Spei�ation of the university omponent

(UniSpe).

the university spei�ation into multiple spei�ations

that we will ombine using omposition operators. The

resulting spei�ation shall then be heked against the

original one using re�nement.

The spei�ations for the o�ee mahine and the re-

searher are given in �gures 1(a) and 1(), respetively.

We assume that researhers publish more e�iently if

drinking o�ee than when drinking tea. Furthermore, re-

searhers dislike tea, so if tea is served after a long period

of waiting (15 units of time) the subsequent behaviour

is unde�ned�supposedly due to irritation. Publiations

are produed with the output pub!.

The ase of the administration is somewhat more

ompliated. Indeed, administration should not only turn

grants into oins, but also turn publiations into patents�

a onjuntion of two requirements. We will model eah

requirement individually and then ompute their on-

juntion, i.e, the spei�ation that represents the set

of their ommon implementations: Administration is the

onjuntion of HalfAdm1 and HalfAdm2, both presented

in Fig. 3. Observe that both spei�ations are input en-

abled and allow patents and oins as outputs. Given

grants (grant?), resp. publiations (pub?), oins are pro-

dued within 2 time units (with oin!), resp. patents

(with patent!). In general, onjuntion an introdue

bad behaviors in spei�ations, i.e, behaviors that an-

not be implemented beause they do not respet prop-

erties suh as independent progress. In our theory suh

behaviors will be pruned using a game-based tehnique.

3

a)

grant pubpatent coin

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1 b)

grant pubpatent coin

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

Figure 3: Two onjunts that together model the Admin-

istration omponent.

We are now ready to ompose our spei�ations in or-

der to derive a re�nement of the university model. Fig. 4

gives the overview of this re�nement hek. The grey

part of the �gure desribes the proesses performed by

the veri�ation engine. The operators are displayed in-

side the irles, while the square boxes denote the om-

putation of an internal representation for the TIOAs.

We put in parallel the omponents for the researher,

the o�ee mahine, and the administration. Our veri�-

ation engine then heks if this omposition re�nes the

spei�ation of our university. The veri�ation is done

in a ompositional manner in the sense that every om-

ponent is explored loally, bad behaviour is eliminated

(pruned), and ombined with the appropriate operator,

shown in the �gure.

Slightly surprisingly, the re�nement hek of Fig. 4

fails. It turns out that sine the mahine allows the re-

searhers to get free tea, they an publish for free, whih

an give patents for free�a senario that has not been

antiipated in the spei�ation.

3 Related Work

The objetive of this setion is mainly to survey a state-

of-the art for interfae theory, not to make an exhaustive

list of all existing timed spei�ation theories.

It has been argued [31,27,32℄ that games onstitute

a natural model for interfae theories: eah omponent

is represented by an automaton whose transitions are

typed with input and output modalities. The semantis

of suh an automaton is given by a two-player game: the

input player represents the environment, and the out-

put player represents the omponent. Contrary to the

input/output model proposed by Lynh and Tuttle [50℄,

this semanti o�ers (among many other advantages) an

optimisti treatment of omposition: two interfaes an

be omposed if there exists at least one environment in

whih they an interat together in a safe way. Game-

based interfaes were �rst developed for untimed systems

[32,28℄ and implemented in tools suh as TICC [2℄ and

CHIC [21℄ for both synhronous and asynhronous mod-

els. The �rst dense time extension of the theory of in-

terfae automata has been developed in [34℄, motivated

by the fat that real time is a ruial parameter in some

systems. The theory, whih extends timed input/output

automata [42℄, was later implemented in TICC, but us-

ing disretized real time only [29℄. The idea is similar to

the untimed ase: omponents are modeled using timed

input/output automata (TIOAs) with a timed game se-

mantis [17℄. The theory of [34℄ has never been om-

pleted, in the sense that it laks support for onjun-

tion and re�nement (in ontrast to the one presented

here). The usefulness of suh theories for ompositional

design of real time systems is thus limited. While tool-

ing is not the fous of this paper, let us mention that,

elsewhere [14℄, we show how the Edar tool and our

timed interfae theory an be used to solve problems

that are beyond the sope of lassial Uppaal timed

input/automata extensions [13,11℄.

In [45℄ Larsen proposes modal automata, whih are

deterministi automata equipped with transitions of the

following two types: may and must . The omponents

that implement suh interfaes are simple labeled tran-

sition systems. Roughly, a must transition is available in

every omponent that implements the modal spei�a-

tion, while a may transition need not be. Reently [12℄ a

timed extension of modal automata was proposed. This

series of works, whih generalizes an early attempt [19℄,

embeds all the operations presented in the present pa-

per. However, modalities are orthogonal to inputs and

outputs, and it is well-known [47℄ that, ontrary to the

game-semanti approah, they annot be used to distin-

guish between the behaviors of the omponent and those

of the environment.

Among other modeling languages for spei�ation,

one �nd those that use logial representations suh as

Timed Computational Tree Logi (TCTL), Metri Tem-

poral Logi (MTL), or duration. While suh logis are

generally onvenient to reason on individual requirements

[54℄, they are generally not suited for operations suh

as strutural omposition and quotient. To the best of

our knowledge, the expressiveness relation between log-

ial formalism and timed I/O automata or timed modal

spei�ations remains unknown. There are also timed

extensions of languages suh as CSP. A omparison be-

tween CSP (and related proess algebra languages) and

interfae theories an be found in [8℄.

Finally, let us add that numerous authors have stud-

ied interfae theories and omponent based design. Am-

ong them, one �nds a series of very pratial works that

do not study quotient and onjuntion, but rather fous

on riher omposition operations and spei� models of

omputation for interonnetion and software design [1,

36,37℄. Another example is the series of more reent pa-

pers that fous on omposition and performane analysis

or sheduling for embedded systems [40℄. While our the-

ory is ertainly more general, it would be of interest to

4

E

n

g

i

n

e

tea!

coin?

tea!

cof!

coin?

Idle

Serving
y=0

y>=4 y<=6

y>=2

Mahine

pub? patent!

patent!

coin! grant?

A

B

pub? grant?

x<=2

x=0

HalfAdm1

grant? coin!

coin!

patent! pub?

C

D

pub? grant?

y<=2

y=0

HalfAdm2

tea?

tea?

pub!

cof?

pub!

x=0 pub!
tea?cof?

Idle

x<=8x<=4

Stuck

Coffee Tea

x=0x=0

x<=15 x=0

x>15

x>=4

x>=2

Researher

grant? grant?

grant?

patent! patent!

grant?
GrantStartEnd

u=0

u<=2

u=0

u<=20
u>2

UniSpe

e

x

p

l

o

r

e

a

n

d

p

r

u

n

e

i

n

t

e

r

n

a

l

T

I

O

A

&&

o

n

j

u

n

t

i

o

n

‖

o

m

p

o

s

i

t

i

o

n

ombine with operator

≤

r

e

�

n

e

m

e

n

t

h

e

k

yes/no+strategy

Figure 4: Illustration of the steps performed in a onrete re�nement hek. The gray box represents the part arried

out internally by the veri�ation engine.

learn from those models and the ase studies they handle

in order to extend our omposition operation.

There are of ourse other tools and theories for timed

systems. As an example, another tool supporting re�ne-

ment is PAT [57,58℄. Unlike Edar, it builds on CSP

with a failure, divergene, and refusal semantis, whih

makes a diret omparison di�ult. However, the CSP

theory does not support quotienting nor simple on-

juntion of spei�ations. And thus, in ontrast to E-

dar, PAT does not support assume/guarantee reasoning

about systems. This related work survey only the posi-

tion of our work in the interfae theory setting.

4 Spei�ations and Implementations

We use four lasses of objets in our theory�spei�a-

tions, and models (implementations) together with their

respetive behavioral semantis as transition systems.

Two kinds of relations are used between the four lasses:

operational semantis and satisfation. Fig. 5 shows an

overview of the four lasses of objets and relations be-

tween them.

We distinguish spei�ations and models. In the left

part of Fig. 5, a spei�ation A and a model X an be re-

lated through a satisfation relation |=, relating models

and spei�ations. The left half of Fig. 5, shows syntati

objets (spei�ations and implementations), while the

right half shows the semanti objets (spei�ation se-

mantis and implementation semantis). Horizontal ar-

rows point from syntati objets to their semantis. Ver-

tial arrows point from spei�ations downwards to their

models (both in the syntati and the semanti halves).

Traditionally spei�ations are logial formulas, and

models are witnesses of onsisteny of these formulas.

This is the view that most of the model-heking [22,

7℄ researh takes. In our ase, spei�ations are timed

games [51℄, resembling timed automata [3℄. Sine these

are symboli �nite representations desribing ontinu-

ous state behavior, it is onvenient to distinguish an-

other semanti layer, whih desribes this behavior op-

A

X

S = JAKsem

P = JX Ksem

|= |=

J ·Ksem

J ·Ksem

timed I/O
transition systems

(infinite)

timed I/O
automata

(finite)

sp
ec

ifi
ca

tio
ns

(im
pl

e
m

e
nt

a
tio

ns
)

m
od

el
s

Figure 5: Semanti Layer's in our spei�ation theory

erationally. Thus we will say that the semantis of a

spei�ation A (respetively of an implementation X) is

given by a Timed I/O Transition System JS K
sem

(re-

spetively of a Timed I/O Transition System JX K
sem

).

Our transition systems are very similar to those indued

by proesses in [63℄, exept that their disrete ations are

split into inputs and outputs, like in I/O automata [49℄.

Unlike in I/O automata we give them a game semantis,

not the language semantis.

Throughout the presentation of our spei�ation the-

ory, we ontinuously swith the mode of disussion be-

tween the semanti and syntati levels. In general, the

formal framework is developed for the semanti objets,

Timed I/O Transition Systems (TIOTSs in short) [39℄,

and enrihed with syntati onstrutions for Timed I/O

Automata (TIOAs), whih at as a symboli and �nite

representation for TIOTSs. However, the theory for

TIOTSs does not rely in any way on the TIOAs represen-

tation�one an build TIOTSs that annot be repre-

sented by TIOAs, and the theory remains sound for them

(although we would not know how to manipulate them

symbolially).

De�nition 1. A Timed I/O Transition System (TIOTS)

is a tuple S = (StS , s0, Σ
S,−→S), where StS is an in�nite

5

set of states, s0 ∈ St is the initial state, ΣS = ΣS
i

⊕ΣS
o

is a �nite set of ations partitioned into inputs (ΣS
i

) and

outputs (ΣS
o

), and−→S : StS×(ΣS∪R≥0)×St
S
is a transi-

tion relation. We write s a−→Ss′ instead of (s, a, s′) ∈ −→S ,
and we write s a−→S if ∃s′.s a−→Ss′, and use i?, o! and d to
range over inputs, outputs and R≥0 respetively. Tran-

sitions that are labelled by ations (inputs or outputs)

are alled disrete transitions, while transitions labelled

by real values are alled timed transitions. In addition

any TIOTS satis�es the following:

[time determinism℄ if s d−→Ss′ and s d−→Ss′′ then s′=s′′

[time re�exivity℄ s 0−→Ss for all s ∈ StS

[time additivity℄ for all s, s′′∈ St

S
and all d1, d2 ∈ R≥0,

we have s d1+d2−−−−→Ss′′ i� s d1−−→Ss′ and s′ d2−−→Ss′′ for an

s′ ∈ St

S
.

We only work with deterministi TIOTSs in this paper:

for all a ∈ Σ ∪ R≥0 whenever s a−→Ss′ and s a−→Ss′′, we
have s′ = s′′ (determinism is required not only for timed

transitions, but also for disrete transitions). In the rest

of the paper, we often drop the adjetive 'determinis-

ti'. Of ourse, this de�nition of determinism does not

prevent from issuing several ations from the same state,

the only restrition is that one given ation an only take

the system to a deterministi loation.

For a TIOTS S and a set of states X , we write:

pred

S
a (X) =

{

s ∈ St

S
∣

∣ ∃s′∈X. s a−→s′
}

(1)

for the set of all a-predeessors of states in X . We write

ipred

S(X) for the set of all input predeessors, and

opred

S(X) for all the output predeessors of X :

ipred

S(X) =
⋃

a∈ΣS
i

pred

S
a (X) (2)

opred

S(X) =
⋃

a∈ΣS
o

pred

S
a (X) . (3)

Also post

S
[0,d0]

(s) is the set of all time suessors of a

state s that an be reahed by delays smaller or equal to

d0:

post

S
[0,d0]

(s) =
{

s′∈StS
∣

∣ ∃ d∈ [0, d0]. s d−→
Ss′

}

(4)

Following [51℄ we will later use these operators to �nd

strategies for safety and reahability objetives imposed

on TIOTSs.

We shall now introdue a �nite syntati symboli repre-

sentation for TIOTSs in terms of Timed I/O Automata

(TIOAs). Let Clk be a �nite set of loks. A lok val-

uation over Clk is a mapping u ∈ [Clk 7→ R≥0]. Given
d ∈ R≥0, we write u+ d to denote a valuation suh that

for any lok r we have (u + d)(r) = x + d i� u(r) = x.
We write u[r 7→ 0]r∈c for a valuation whih agrees with

u on all values for loks not in c, and returns 0 for all

loks in c. Let op be the set of relational operators:

op = {<,≤, >,≥}. A guard over Clk is a �nite onjun-

tion of expressions of the form x ≺ n, where ≺ is a

relational operator and n ∈ N. We write B(Clk) for the
set of guards over Clk using operators in the set op, and

U(Clk) for the subset of upper bound guards using only

the operators {<,≤}. We also write P(X) for the pow-
erset of a set X .

De�nition 2. A Timed I/O Automaton (TIOA) is a

tuple A = (Lo, q0,Clk, E,Act, Inv) where Lo is a �nite

set of loations, q0 ∈ Lo is the initial loation, Clk is a

�nite set of loks, E ⊆ Lo×At×B(Clk)×P(Clk)×Lo
is a set of edges, At = At

i

⊕At

o

is a �nite set of

ations, partitioned into inputs and outputs respetively,

and Inv : Lo 7→ U(Clk) is a set of loation invariants.

If (q, a, ϕ, c, q′) ∈ E is an edge, then q is an initial loa-

tion, a is an ation label, ϕ is a onstraint over loks

that must be satis�ed when the edge is exeuted, c is a
set of loks to be reset, and q′ is a target loation. We

denote NextInv(q′, c) =
∧

{x ≺ n | x ≺ n ∈ Inv(q′)∧ x /∈
c} the invariant of the next loation that restrit the

guard of the edge. Examples of TIOAs have been shown

in the introdution.

We de�ne the semanti of a TIOA A=(Lo, q0,Clk,
E,At, Inv) to be a TIOTS JA K

sem

= (Lo × (Clk 7→
R≥0), (q0,0),At,−→), where 0 is a onstant funtion map-

ping all loks to zero, and −→ is the largest transition

relation generated by the following rules:

(q, a, ϕ, c, q′) ∈ E u ∈ [Clk 7→ R≥0]

u |= ϕ u[r 7→ 0]r∈c |= Inv(q′)

(q, u) a−−→(q′, u[r 7→ 0]r∈c)

q ∈ Lo u ∈
ˆ

Clk 7→ R≥0

˜

d ∈ R≥0 u + d |= Inv(q)

(q, u) d−→(q, u + d)

The TIOTSs indued by TIOAs, aording to the above

rules, satisfy the axioms of De�nition 1: time determin-

ism, time re�exivity, time additivity. Moreover, in order

to guarantee determinism of JA K
sem

, the TIOA A has to

be deterministi: for eah ation�loation pair only one

transition an be enabled at the same time.

This an be heked algorithmially with a standard

hek for disjointness of guards of transitions with the

same ation. For eah loation q and eah ation a ∈
At, hek whether all its guards are mutually exlusive.

Formally, let Gq,a be the set of strengthened guards of

all a transitions leaving q:

Gq,a = {ϕ ∧ NextInv(q′) | whenever (q, a, ϕ, c, q′) ∈ E}
(5)

To guarantee determinism hek for eah pair ψ1, ψ2 ∈
Gq,a whether the onjuntion Inv(q) ∧ ψ1 ∧ ψ2 is inon-

sistent, and do that for all loations.

We assume that all TIOAs below are deterministi.

4.1 Spei�ations

We will now introdue our notions of spei�ations and

implementations.

6

De�nition 3 (Spei�ation). A TIOTS P = (StP ,
p0, Σ

P ,−→P) is a spei�ation semantis if eah state s ∈
St

P
is input-enabled : for eah input i?∈ΣP

i

there exists

a state s′∈StP suh that s i?−−→P s′.
A TIOA A is a spei�ation i� its semantis JA K

sem

is input-enabled.

The assumption of input-enabledness, also seen in many

spei�ation theories [49,38,56,61,53℄, re�ets our belief

that an input annot be prevented from being sent to a

system, but it might be unpreditable how the system

behaves after reeiving it. A standard way of modeling

a disallowed input in suh a setting is to rediret it to a

speial universal state, where all ations are enabled�

the behaviour of the system beomes unpreditable after

reahing this state.

Input-enabledness enourages expliit modeling of this

unpreditability, and ompositional reasoning about it;

for example, it allows asking if an unpreditable be-

haviour of one omponent indues unpreditability of

the entire system.

In pratie, tools should not require the users to spe-

ify input-enabled automata, as this quikly beomes te-

dious. There are however good strategies for making au-

tomata input-enabled. First, absent inputs an be in-

terpreted as ignored inputs, orresponding to loation

loops in the automaton that an be added automatially.

Seond, absent inputs an be interpreted as unavailable

(�bloking�) inputs, whih are modeled by adding im-

pliit transitions to a designated error loation (for ex-

ample a universal loation as suggested above). Later,

in Setion 7, we will all suh a state stritly undesirable

and give a rationale for this name.

In order to hek that a TIOA A indues an input-

enabled TIOTS JA K
sem

, deide for eah loation q ∈
Lo

A
and eah input ation i? ∈ At if a disjuntion of

guards of outgoing transitions labelled by i? is entailed

by Inv(q). Formally, if Gq,i? is the set of strengthened

guards (see (5)) of all i?�transitions leaving q, then in

order to hek if i? is always enabled in loation q, hek

Inv(q) entails

∨

ψ∈Gg,i?

ψ (6)

To hek if the entire spei�ation automaton is input-

enabled just repeat the hek for all loation�input pairs.

4.2 Implementations

The role of spei�ations in a spei�ation theory is to

abstrat, or underspeify, sets of possible implementa-

tions. We will assume that implementations of timed sys-

tems have �xed timing behaviour (outputs our at pre-

ditable times) and systems an always advane either by

produing an output or delaying. This is formalized us-

ing axioms of output-urgeny and independent-progress

below:

De�nition 4 (Implementation). A TIOTS P = (StP ,
p0, Σ

P ,−→P) is an implementation semantis if it is a

spei�ation semantis that ful�lls the output urgeny

and independent progress onditions, so if for eah state

p ∈ St

P
we respetively have:

[output urgeny℄ ∀ p′, p′′ ∈ St

P
if p o!−−→P p′ and p d−→P p′′

then d = 0 (and thus, due to determinism p = p′′)

[independent progress℄ either (∀d ≥ 0. p d−→P)
or ∃ d∈R≥0. ∃ o!∈ΣP

o

. p d−→p′ and p′ o!−−→P .

A TIOA A is an implementation i� A is a spei-

�ation and its semantis, JA K
sem

, ful�lls independent

progress and output urgeny.

Independent progress is one of the entral properties

in our theory: it states that an implementation annot

ever get stuk in a state where it is up to the environment

to indue the progress of time. So in every state there is

either an output transition (whih is ontrolled by the

implementation) or an ability to delay until an output

is possible. Otherwise a state an delay inde�nitely. An

implementation annot wait for an input from the envi-

ronment without letting time pass.

Remark 1. Our notion of implementation remains at the

theory level. Generating exeutable ode and taking ro-

bustness into aount is not the topi of this paper. How-

ever, one ould exploit existing works [5℄ to generate ro-

bust C ode from a given timed automaton.

In Setion 9 we desribe how to hek for indepen-

dent progress and other important properties of spei�-

ations.

4.3 Spei�ations as Timed Games

Spei�ations are interpreted as two-player real-time ga-

mes between the output player (the omponent) and the

input player (the environment). The input player plays

with ations in At

i

and the output player plays with

ations in At

o

. A strategy for a player is a funtion that

de�nes his move at any state (either delaying or playing

a ontrollable ation). As we will explain in the following

setions, strategies for output (respetively input) an be

interpreted as implementations (respetively ompatible

environments).

A strategy is alled memoryless if the next move de-

pends solely on the urrent state. We only onsider mem-

oryless strategies, as these su�e for safety games [30℄.

For simpliity, we only de�ne strategies for the output

player (i.e. output is the veri�er). De�nitions for the in-

put player are obtained symmetrially.

De�nition 5. A memoryless strategy fo for the output
player on the TIOA A is a partial funtion St

JA K
sem 7→

At

o

∪ {delay}, suh that

� If fo(s) ∈ At

o

then ∃s′.s fo(s)−−−−→Ss′.

7

� If fo(s) = delay then ∃s′′.s d−→Ss′′ for some d > 0, and
fo(s

′′) = delay.

The game proeeds as a onurrent game between the

two players. Then, by applying a strategy fo, the output
player restrits the set of reahable states from the se-

mantis. This de�nes the outome of the strategy, suh

that for a state s ∈ St

JA K
sem

, Outome(s, fo) is the set

of states de�ned indutively by:

� s ∈ Outome(s, fo),
� if s′ ∈ Outome(s, fo) and s

′ a−→s′′, then
s′′ ∈ Outome(s, fo) if one the following onditions

holds:

1. a ∈ Ati,

2. a ∈ Ato and fo(s
′) = a,

3. a ∈ R≥0 and ∀d ∈ [0, a[.∃s′′′. s′ d−→s′′′

and fo(s
′′′) = delay.

In a safety game, the winning ondition is to avoid a set

Bad of �bad� states. A strategy fo is a winning strategy

from state s if and only if Outome(s, fo) ∩ Bad = ∅. A
state s is winning if there exists a winning strategy from
s, and the game is winning if and only if the initial state

is winning. Solving this game is deidable [51,17,24℄.

5 Satisfation, Re�nement and Consisteny

A notion of re�nement allows to ompare two spei�a-

tions as well as to relate an implementation to a spei-

�ation. Re�nement should satisfy the following substi-

tutability ondition. If P re�nes Q, then it should be

possible to replae Q with P in every environment and

obtain an equivalent system.

We study these kind of properties in later setions. It

is well known from the literature [31,32,15℄ that in order

to give these kind of guarantees a re�nement should have

the �avour of alternating (timed) simulation [4℄.

De�nition 6 (Re�nement ≤). ATIOTS S = (StS , s0,
Σ,−→S) re�nes a TIOTS T = (StT, t0, Σ,−→T), written
S≤T , i� there exists a binary relation R⊆StS×StT on-
taining (s0, t0) suh that for eah pair of states (s, t) ∈ R
we have:

1. whenever t i?−−→T t′ for some t′∈StT then s i?−−→Ss′ and
(s′, t′)∈R for some s′∈StS

2. whenever s o!−−→Ss′ for some s′ ∈ St

S
then t o!−−→T t′ and

(s′, t′) ∈ R for some t′ ∈ St

T

3. whenever s d−→Ss′ for d ∈ R≥0 then t d−→T t′ and (s′, t′) ∈
R for some t′ ∈ St

T

A spei�ation automaton A1 re�nes another spei�a-

tion automaton A2, written A1 ≤ A2, i� JA1 K
sem

≤
JA2 K

sem

.

It is easy to see that the re�nement is re�exive and tran-

sitive, so it is a preorder on the set of all spei�ations

teacoin cof

Mahine2

Figure 6: A o�ee mahine spei�ation that re�nes the

o�ee mahine in Fig. 1.

(and, of ourse, also on the set of all spei�ation se-

mantis). Re�nement an be heked for spei�ation

automata by reduing the problem to a spei� re�ne-

ment game, and using a symboli representation to rea-

son about it. We disuss details of this proess in Se-

tion 9.

Fig. 6 shows a o�ee mahine that is a re�nement of

the one in Fig. 1. It has been re�ned in two ways: one

output transition has been ompletely dropped and one

state invariant has been tightened.

Sine our implementations are a sublass of spei�-

ations, we simply use re�nement as an implementation

relation:

De�nition 7 (Satisfation). An implementation se-

mantis TIOTS P satis�es a spei�ation semantis S,
written P |= S, i� P ≤ S. An implementation I sat-

is�es a spei�ation A i� J I K
sem

|= JA K
sem

. We write

JA K
mod

for all semanti models of A, so JA K
mod

= {P |
P is a TIOTS and P |= JA K

sem

}.

From a logial perspetive, spei�ations are like for-

mulae, and implementations are their models. This anal-

ogy leads us to a lassial notion of onsisteny, as exis-

tene of models.

De�nition 8 (Consisteny). A spei�ation seman-

tis TIOTS S is onsistent if there exists an input-enabled

TIOTS P suh that P |= S, and P is an implementation

semantis. A spei�ation A is onsistent if its spei�a-

tion semantis, JA K
sem

, is onsistent.

All spei�ations shown until now are onsistent. An

example of an inonsistent spei�ation an be found in

Fig. 7: notie that the invariant in the seond state (x≤4)
is stronger than the guard (x≥5) on the of! edge; there-

fore this state does not ful�ll the independent progress

ondition, and it annot be implemented.

We also de�ne a soundly striter, more syntati, no-

tion of onsisteny, whih requires that all states are on-

sistent:

8

teacoin cof

Inonsistent

Figure 7: An inonsistent spei�ation.

De�nition 9 (Loal Consisteny). A state s of a

spei�ation semantis S is loally onsistent if it ful-

�lls independent progress. S is loally onsistent i� ev-

ery state s ∈ St

S
is loally onsistent. A spei�ation A

is loally onsistent if JA K
sem

is loally onsistent.

Lemma 1. Every loally onsistent spei�ation seman-

tis S is onsistent in the sense of Def. 8.

Proof (Lemma 1). Let us begin with de�ning an auxil-

iary funtion δ whih hooses a delay and an output for

every loally onsistent state s:

δs =

d for some d suh that s d−→Ss′

and ∃o!. s′ o!−−→S

+∞ if ∀d ≥ 0. s d−→S
(7)

Note that δ is a funtion, so it always gives a unique

value of a delay for any state s, thus in the �rst ase we

mean that an arbitrary �xed value is hosen out of un-

ountably many possible values. It is immaterial for the

proof whih of the many values is hosen. It is important

however that δ is time additive in the following sense: if

s d−→s′ and d ≤ δs then δs′ + d = δs. It is always possible
to hoose suh a funtion δ due to time additivity of −→S ,
and loal onsisteny of S.

We want to synthesize a TIOTS P = (StP , ps0 , Σ
P ,

−→P), where St

P = {ps | s ∈ St

S}, ΣP = ΣS
with the

same partitioning into inputs and outputs, and −→P is

the largest transition relation generated by the following

rules:

s i?−−→Ss′ i? ∈ ΣS
i

ps i?−−→
P ps′

(8)

s o!−−→Ss′ o! ∈ ΣS
o

δs = 0

ps o!−−→
P ps′

(9)

s d−→Ss′ d ∈ R≥0 d ≤ δs

ps d−→P ps′
(10)

Sine P only takes a subset of transitions of S, the
determinism of S implies determinism of P . The transi-
tion relation of P is time-additive due to time additivity

of −→JA K
sem

and of δ. It is also time-re�exive due to the

last rule (0 ≤ δs for every state s and −→S was time

re�exive). So P is a TIOTS.

The new transition relation is also input-enabled as

it inherits input transitions from A, whih was input

enabled. The seond rule guarantees that outputs are

urgent (P only outputs when no further delays are pos-

sible). Moreover P observes independent progress. Con-

sider a state ps. Then, if δs = +∞, learly ps an delay

inde�nitely. If δs is �nite, then by de�nition of δ and of

P , the state ps an delay and then produe an output.

Thus P satis�es onditions of Def. 8.

Now, the following relation R ⊆ St

P × St

S
witnesses

P |= S :

R =
{

(ps, s) | ps ∈ St

P
and s ∈ St

JA K
sem

}

(11)

This is argued using an unsurprising oindutive argu-

ment. Obviously, (ps0 , s0) ∈ R. Now for any (ps, s) ∈ R:

� If s i?−−→Ss′ with i? ∈ ΣS
i

, then aording to rule 8

ps i?−−→P ps′ .
� If ps o!−−→P ps′ with o! ∈ ΣS

o

, then aording to rule 9

s o!−−→Ss′.
� If ps d−→P ps′ with d ∈ R≥0, then aording to rule 10

s d−→Ss′.

This proves that R is a re�nement relation. ⊓⊔

It follows diretly that:

Corollary 1. Every loally onsistent spei�ation is on-

sistent (in the sense of Def.8).

We shall see later (Figure 8) that the impliation

opposite to the one of Corollary 1 does not hold. To es-

tablish loal onsisteny, or independent progress, for a

TIOA, it su�es to hek for eah loation if the supre-

mum of all solutions of its invariant exists, whether it

satis�es the invariant itself and allows at least one en-

abled output transition.

Prior spei�ation theories for disrete time [45℄ and

probabilisti [16℄ systems reveal two main requirements

for a de�nition of implementation. These are the same re-

quirements that are typially imposed on a de�nition of a

model as a speial ase of a logial formula. First, imple-

mentations should be onsistent spei�ations (logially,

models orrespond to some onsistent formulae). Se-

ond, implementations should be fully spei�ed (models

annot be re�ned by non-models), as opposed to proper

spei�ations, whih should be underspei�ed. For exam-

ple, in propositional logis, a model is represented as a

omplete onsistent term. Any impliant of suh a term

is also a model (in propositional logis, it is atually

equivalent to it).

Our de�nition of implementation satis�es both re-

quirements, and to the best of our knowledge, is the

�rst example of a proper notion of implementation for

timed spei�ations. As the re�nement is re�exive we

get P |= P for any implementation and thus eah im-

plementation is onsistent as per Def. 8. Furthermore

9

eah implementation annot be re�ned anymore by any

underspei�ed spei�ations:

Lemma 2. Any loally onsistent spei�ation seman-

tis S re�ning an implementation semantis P is an im-

plementation semantis as per Def. 4.

Proof (Lemma 2). Observe �rst that S is already lo-

ally onsistent, so all states of S warrant independent

progress. We only need to argue that they also verify

output urgeny.

Without loss of generality, assume that JS K
sem

only

ontains states that are reahable by (sequenes of) dis-

rete or timed transitions.

If S only ontains reahable states, every state of S
has to be related to some state of P in a relation R wit-

nessing S ≤ P (output and delay transitions need to be

mathed in the re�nement; input transitions also need to

be mathed as P is input enabled and S is deterministi).

This an be argued for using a standard, though slightly

lengthy argument, by formalizing reahable states as a

�xpoint of a monotoni operator.

Now, that we know that every state of S is related

to some state of P onsider an arbitrary s ∈ St

S
and let

p ∈ St

P
be suh that (s, p) ∈ R. Then if s o!−−→Ss′ for some

state s′ ∈ St

S
and an output o! ∈ ΣS

o

, it must be that

also p o!−−→p′ for some state p′ ∈ St

P
(and (s′, p′) ∈ R).

But sine P is an implementation, its outputs must be

urgent, so p 6 d−−→P for all d > 0, and onsequently s 6 d−−→S

for all s > 0. We have shown that all states of S have

urgent outputs (if any) and thus S is an implementation.

⊓⊔

Corollary 2. Any loally onsistent spei�ation S re-

�ning an implementation P is an implementation itself.

We onlude the setion with the �rst major theorem.

Observe that every preorder � is intrinsially omplete

in the following sense: S � T i� for every smaller element

P � S also P � T . This means that a re�nement of two

spei�ations oinides with inlusion of sets of all the

spei�ations re�ning eah of them:

S ≤ T i� {P | P ≤ S} ⊆ {P | P ≤ T } (12)

However, sine out of all spei�ations only the imple-

mentations orrespond to real world objets, another

ompleteness question is more relevant: does the re�ne-

ment oinide with the inlusion of implementation sets?

This property, whih does not hold for preorders in gen-

eral, turns out to hold for our re�nement:

Theorem 1 (Re�nement Is Thorough). For any two

loally onsistent spei�ations A, B we have that

A ≤ B i� JA K
mod

⊆ JB K
mod

(13)

We split the proof of Theorem 1 into two lemmas.

Lemma 3 (Soundness). For all loally onsistent spe-

i�ation semantis S and T , if S ≤ T then for any im-

plementation semantis P , P |= S implies P |= T .

Proof (Lemma 3). This lemma is a speial ase of the

transitivity of the re�nement relation. Consider an im-

plementation semantis P of S. Then P ≤ S and S ≤ T ,
implies P ≤ T , whih proves that P |= T . ⊓⊔

Lemma 4 (Completeness). For all loally onsistent

spei�ation semantis S and T , if for any implementa-

tion semantis P , P |= S implies P |= T , then S ≤ T .

In the following we write p |= s for states p and s of
TIOTS P (respetively S) meaning that there exists a

relation R′
witnessing P |= S that ontains the pair of

states (p, s).

Proof (Lemma 4). Assume that every model of S is a

model of T . Consider the relation R ⊆ St

S × St

T
:

R = {(s, t) | for eah implementation TIOA P

it holds that (pP0 |= s =⇒ pP0 |= t)} , (14)

where pP0 denotes the initial state of P . We shall argue

that R witnesses S ≤ T . It follows diretly from the

de�nition of R and the assumption on model inlusion

that (s0, t0) ∈ R. Now onsider a pair (s, t) ∈ R. There
are two ases to be onsidered:

� For any input i? there exists t′ ∈ St

T
suh that

t i?−−→T t′. We need to show existene of a state s′ ∈ St

S

suh that s i?−−→Ss′ and (s′, t′) ∈ R.

Observe that due to input-enabledness, for the same

i?, there exists a state s′ ∈ St

S
suh that s i?−−→JS K

sems′.
We need to show that (s′, t′) ∈ R. By Theorem 1 we

have that there exists an implementation semantis

P with initial state pP0 suh that pP0 |= s′ (teh-
nially speaking, s may be a non-initial state of S,
but then we an onsider a version of S with initial

state hanged to s to apply Theorem 1, onluding

existene of the implementation P as above).

We will now argue that arbitrary implementation

semantis (not only P) satisfying the state s′ also
satis�es t′. So onsider an implementation semantis

Q |= S and its initial state qQ0 suh that qQ0 |= s′.

We show that qQ0 |= t′.

Create an implementation Q′
by merging Q and P

above and adding a fresh state qQ
′

0 with all the same

transitions like the initial loation of P (so targeting

loations of the P -part), exept for the transition la-

beled by i?, whih should go to qQ0 ; so: q
Q′

0
i?−−→Q

′

qQ0
and otherwise qQ

′

0
a−→Q

′

p whenever pP0
a−→P p for a 6=

i?. The transitions for all the other states of Q′
are

like in P and Q, depending to whih of the two im-

plementation semantis the state originally belonged.

Now qQ
′

0 |= s as p |= s and it follows all evolutions

of p for a 6= i? and q i?−−→Q
′

q0 and q0 |= s′. By assump-

tion, every implementation semantis of s is also an

10

implementation semantis of t, so qQ
′

0 |= t and on-

sequently q0 |= t′ as qQ
′

0 is deterministi on i?.

Summarizing, for any implementation q0 |= s′ we
were able to argue that q0 |= t′, thus neessarily

(s′, t′) ∈ R.
� Consider any ation a (whih is an output or a de-

lay) for whih exists s′ suh that s a−→Ss′. Similarly

as above, one an onstrut (and thus postulate ex-

istene) of an implementation P ontaining p ∈ St

P

suh that p |= s whih has a transition p a−→P p′. Sine
then also p |= t we have that there exists t′ ∈ St

T

suh that t a−→T t′. It remains to argue that (s′, t′) ∈ R.
This is done in the same way as with the �rst ase,

by onsidering any model of s′, then by extending it

deterministially to a model of s, onluding that it

is now a model of t and the only a-derivative, whih
is p′, must be a model of t′. Consequently (s′, t′) ∈ R.

⊓⊔

A omplete re�nement in the above sense is also

sometimes alled thorough (see e.g. [6℄). The restrition

of the theorem to loally onsistent spei�ations is not a

serious one. As we shall see later (Theorem 2), any on-

sistent spei�ation an be transformed into a loally

onsistent one preserving the set of implementations.

6 Consisteny and Conjuntion

6.1 Consisteny

We will now study how onsisteny and re�nement in-

terat with time lok errors (violation of independent

progress) in spei�ations. In partiular we will give an

operational haraterization of Def. 8.

An immediate error ours in a state of a spei�a-

tion semantis if the state disallows progress of time and

output transitions�suh a spei�ation will break if the

environment does not send an input. For a spei�ation

semantis S we de�ne the set of immediate error states

err

S ⊆ St

S
as:

err

S=
{

s
∣

∣ (∃d. s6 d−−→) and ∀d∀o! ∀s′.s d−→s′ implies s′6 o!−−→
}

It follows that no immediate error states an our in

implementations, or in loally onsistent spei�ations.

In general, immediate error states in a spei�ation

do not neessarily mean that a spei�ation annot be

implemented. Fig. 8 shows a partially inonsistent spei-

�ation, a version of the o�ee mahine that beomes in-

onsistent if it ever outputs tea. The inonsisteny an be

possibly avoided by some implementations, whih would

not implement delay or output transitions leading to it.

More preisely an implementation will exist if there is a

strategy for the output player in a safety game to avoid

err

S
.

teacoin cof

coin?

cof!

coin?

tea!

coin?
y<=0

y<=6y>=4

y=0 y=0

Partially Inonsistent

Figure 8: A partially inonsistent spei�ation.

We will solve the safety game, by seeking states whih

an delay until a safe move, without passing through any

unsafe states (or states from whih a spoiling move ex-

ists). We �rst de�ne the safe timed predeessor operator

[33,51,17℄, whih gives all the states that an safely delay

until an output into X while avoiding the set of unsafe

states Y :

Pred

S
t

(X,Y) = {s ∈ St

S
∣

∣ ∃d0 ∈ R≥0. ∃s
′ ∈ X. s d0−−→Ss′

and post

S
[0,d0]

(s) ⊆ Y } (15)

Sine in our game it is possible to play by delaying indef-

initely (not neessarily until an output is possible), we

need another operator, Idle

t

, that aptures states that

an delay inde�nitely without passing through unsafe

states. This operator is analogous to the above one, ex-

ept that it delays inde�nitely. Again, Y denotes the

unsafe states:

Idle

S
t

(Y) = {s ∈ St

S | ∀d ∈ R≥0. ∃s
′ ∈ Y . s d−→s′} (16)

Now the set of safe states is omputed as the greatest

�xpoint of the following operator π, whih is an adjust-

ment of the standard ontrollable predeessors operator

[33,51℄ that aounts for in�nite delay moves:

π(X) = err

S ∩
[

Idle

S
t

(

ipred

S(X)
)

∪PredS
t

(

opred

S(X), ipredS(X)
)]

(17)

The π operator formalizes a two player game, when both

players hoose a delay, possibly zero, and a move to be

made. The move with a shorter delay is exeuted. If the

two delays are equal then the move is nondeterministi,

and thus the operator omputing the strategy requires

that both moves have to be non-losing.

The set of all onsistent states ons

S
(i.e. the states

for whih the environment has a winning strategy) is

de�ned as the greatest �xpoint of π: onsS = π(onsS),
whih is guaranteed to exist by monotoniity of π and

ompleteness of the powerset lattie due to the theo-

rem of Knaster and Tarski [59℄. For transition systems

11

enjoying �nite symboli representations, automata spe-

i�ations inluded, the �xpoint omputation onverges

after a �nite number of iterations [51,17℄.

Lemma 5. A spei�ation semantis S = (StS , sS0 , Σ
S,

−→S) is onsistent i� sS0 ∈ ons

S
.

Corretness of the �xpoint haraterization of win-

ning strategies for safety games has �rst been observed

in [51℄. We have updated the theorem to our setting

(whih allows idling as a possible move). Below we pro-

vide a proof for this extended version.

Proof (Lemma 5). First, assume that s0 ∈ ons

S
. Show

that S is onsistent in the sense of Def. 8. In a similar

fashion to the proof of Lemma 1 we �rst postulate ex-

istene of a funtion δ, whih hooses a delay and an

output for every onsistent state s:

δs =

{

d′ if ∃s′, s′′ ∈ ons

S . s d
′

−−→Ss′ and ∃o!. s′ o!−−→Ss′′

+∞ otherwise

(18)

For eah state s ∈ ons

S
the value of δs an be de-

�ned, sine either s ∈ Idle

t

(ipredS(onsS)) or s ∈ Pred

t

(

opred

S(onsS), ipredS(onsS)). In the former ase it must

be able to delay inde�nitely through states in ons

S
(and

thus δs postulating the in�nite delay is reasonable), in

the latter ase it an delay until an output predeessor

of a state in ons

S
, without leaving ons

S
during the de-

lay. Note that δ is a funtion, so it always gives a unique
value of a delay for any state s, thus in the �rst ase

we mean that an arbitrary �xed value is hosen out of

possibly unountably many values for d′. It is important

however that δ is time additive in the following sense: if

s d−→s′ and d ≤ δs then δs′ + d = δs. It is always possible
to hoose suh a funtion δ due to time additivity of −→S ,
and the fat that ons

S
is a �xpoint of π.

We show this by onstruting an implementation se-

mantis P = (StP , p0, Σ
P ,−→P) suh that St

P = {ps |
s ∈ St

S}, ΣP = ΣS
with the same partitioning in the

inputs and outputs, p0 = ps0 and the transition relation

is the largest relation generated by the following rules:

1. ps o!−−→P ps′ i� s o!−−→Ss′ and s′ ∈ ons

S
and δs = 0

2. ps i?−−→P ps′ i� s i?−−→Ss′

3. ps d−→P ps′ i� s d−→Ss′ and d ≤ δs

Observe that the onstrution of P is essentially iden-

tial to the one in the proof of Lemma 1 above. It an

be argued in almost the same way as in the above proof,

that P satis�es the axioms of TIOTSs and is an imple-

mentation semantis. Here one has to use the de�nition

of π in order to see that the side ondition in the �rst

rule, that is s′ ∈ ons

S
, does not introdue a violation of

independent progress.

It remains to argue that P |= S. This is done by

arguing that the following relation R:

R =
{

(p, s) ∈ St

P × St

S | ps = p
}

(19)

witnesses the re�nement of S by P .

For the opposite diretion, assume that S is onsistent

and show that s0 ∈ ons

S
. Sine S is onsistent, then

there exists an implementation semantis P and P |= S,
witnessed by a satisfation relation R. Without loss of

generality onsider an implementation, whih only has

reahable states, and all its states are related to some

states of S in R (so R is a total relation). Consider the

following subset of states of S:

X = {s ∈ St

S | (p, s) ∈ R for some state p of P } (20)

Obviously sS0 ∈ X . It su�es to show that X is a post-

�xed point of π. Then s0 ∈ X ⊆ π(X) ⊆ ons

S
, sine

ons

S
is the greatest suh (post-) �xed point.

Remember that (p, s) ∈ R for some state p of P . Also
p satis�es independent progress. We onsider two ases:

� p an delay inde�nitely: ∀d. p d−→p′ for some state p′.
But then also s d−→s′ for some state s′ ∈ St

S
and

(p′, s′) ∈ R. So we have that all s′ ∈ X . To show

that s ∈ π(X) we need to see that s′ ∈ errS and

s ∈ Idle

S
t

(ipredS(X)). For the former this is quite

obvious, as s must satisfy independent progress, if p
does. For the latter assume that s d−→s′ i?−−→s′′ for some

s′′ ∈ X. It must be that p d−→p′ for some state p′ ∈
St

P
, sine p an delay inde�nitely, and by satisfation

(p′, s′) ∈ R. Then also p′ i?−−→p′′ for some state p′′

and (p′′, s′′) ∈ R by satisfation. But then s′′ ∈ X ,

whih ontradits our assumption that s′′ ∈ X. Thus

all timed suessors of s avoid unsafe states as per

de�nition of Idle

S
t

(ipredS(X)).
� p an delay until a safe output: ∃d0 ∈ R≥0. p d0−−→p′

o!−−→p′′ for some states p′ and p′′. Then by satisfa-

tion s d0−−→s′ o!−−→s′′ for some states s′ and s′′, suh
that (p′, s′), (p′′, s′′) ∈ R, so s′, s′′ ∈ X . To ar-

gue that s ∈ Pred

S
t

(opred(X), ipred(X)) it remains

to show that post

S
[0,d0]

(s)∩ ipredS(X) = ∅. So assume

the opposite: s d̂−→ŝ′ i?−−→ŝ′′ for some delay d̂ ≤ d0 and

states ŝ′, ŝ′′ with ŝ′′ ∈ X . Sine p is time additive we

have that p d̂−→p̂′ for some state p̂′ ∈ St

P
and by sat-

isfation p̂′ i?−−→p̂′′ for some state p̂′′; witnessing that

ŝ′, ŝ′′ ∈ X , whih ontradits our assumption. Thus

it must be that s ∈ Pred

S
t

(opred(X), ipred(X)). ⊓⊔

Corollary 3. Consisteny an be soundly established for

any spei�ation A by applying the above proedure that

establishes Lemma 5 for JA K
sem

.

The set of (in)onsistent states an be omputed for

timed games, and thus for spei�ation automata, using

ontroller synthesis algorithms [17℄. We disuss it brie�y

in Setion 9.

The inonsistent states an be pruned from a on-

sistent S leading to a loally onsistent spei�ation.

Pruning is applied in pratie to derease the size of

spei�ations.

12

For a onsistent spei�ation semantis S = (StS , sS0 ,
ΣS ,−→S) we de�ne the pruned spei�ation semantis

S∆ = (onsS, s0, Σ
S,−→S

∆

), where −→S
∆

= −→S ∩(onsS×
(ΣS ∪R≥0)× ons

S).

Theorem 2. Let S be a onsistent spei�ation seman-

tis. S∆ is loally onsistent and JS K
mod

=JS∆ K
mod

.

Proof (Theorem 2). All the inonsistent states (that do

not ful�ll the independent progress ondition) are re-

moved from the pruned spei�ation semantis, so obvi-

ously S∆ is loally onsistent.

Then, as we proved in Lemma 5, if we onsider an

implementation P of S and the set X = {s ∈ St

S |
(p, s) ∈ R for some state p of P } of the states from S
that are related to some state in P , then this set of states
is onsistent: X ⊆ ons

S
. This allows to use the same

re�nement relation R to show that P ≤ S i� P ≤ S∆.
⊓⊔

For spei�ation automata pruning is realized by ap-

plying a ontroller synthesis algorithm, obtaining a max-

imum winning strategy, whih an then be presented as

a spei�ation automaton itself.

6.2 Conjuntion

Consisteny guarantees realizability of a single spei�-

ation. It is of further interest whether several spei�-

ations an be simultaneously met by the same ompo-

nent, without reahing error states of any of them. We

formalize this notion by de�ning a logial onjuntion

for spei�ations.

De�nition 10 (Produt ×). Let S = (StS , sS0 , Σ,−→
S)

and T = (StT , sT0 , Σ,−→
T) be two spei�ation semantis.

A produt of S and T , written S × T , is de�ned to be

the spei�ation semantis (StS × St

T , (sS0 , s
T
0), Σ,−→),

where the transition relation −→ is the largest relation

generated by the following rule:

s a−→Ss′ t a−→T t′ a ∈ Σ ∪R≥0

(s, t) a−→(s′, t′)
(21)

In general, a result of the produt may be loally inon-

sistent, or even inonsistent. To guarantee onsisteny

we apply a onsisteny hek to the result, heking if

(s0, t0) ∈ ons

S×T
and, possibly, pruning the inonsis-

tent parts:

De�nition 11 (Conjuntion ∧). For spei�ations S
and T over the same alphabet, suh that S×T is onsis-

tent, de�ne S∧T = (S×T)∆.

Conjuntion is ommutative, assoiative and it is the

greatest lower bound for loally onsistent spei�ations

in the following sense:

Theorem 3. For any loally onsistent spei�ation se-

mantis S, T , and U over the same alphabet:

1. S ∧ T ≤ S and S ∧ T ≤ T
2. (U ≤ S) and (U ≤ T) implies U ≤ (S∧T)
3. JS ∧ T K

mod

= JS K
mod

∩ JT K
mod

4. J (S ∧ T) ∧ U K
mod

= JS ∧ (T ∧ U) K
mod

All the above fats naturally translate to syntati spe-

i�ations (TIOAs).

We omit the (fairly standard) proof for the �rst laim.

Intuitively the laim holds beause S × T transitions

are stritly transitions of S (and of T) and beause the

pruning produing (S × T)∆ only removes output and

delay transitions (whih are allowed to be dropped by

the re�nement). It never removes input transitions from

reahable states.

The third laim follows from the �rst two and the

fat that the re�nement oinides with model inlusion.

The fourth laim follows from repetitive appliation of

the third laim (and the fat that set intersetion is the

least upper bound in every powerset lattie). We only

give a detailed proof for the seond laim below.

Proof (Theorem 3.2). Assume that the relation R1 wit-

nesses U ≤ S, and relation R2 witnesses U ≤ T . First,
show that the following set X is a post �xed point of π:

X = {(s, t) | ∃u ∈ St

U . (u, s) ∈ R1 and

(u, t) ∈ R2} (22)

Then we know that then (s, t) ∈ X ⊆ π(X) ⊆ ons

S×T
,

so all states in X are states of the onjuntion.

Consider an arbitrary pair (s, t) in X , suh that (u, s)
∈ R1 and (u, t) ∈ R2 for some state u ∈ St

U
. Show

that (s, t) ∈ err

S×T
. This is easily seen ad absurdum. By

Lemma 1 we know that there exists an implementation

P and its state p suh that p |= u. Sine P is an imple-

mentation semantis it satis�es independent progress. So

p an delay independently, or until an output. By sat-

isfation u an do the same, and by re�nement both s
and t an do the same. By onstrution of the prod-

ut (s, t) an thus do the same, and it annot be that

(s, t) ∈ err

S×T
.

Similarly, show (s, t) ∈ Idle

S×T
t

(

ipred

S×T (X)
)

∪

Pred

S×T
t

(

opred

S×T (X), ipredS×T (X)
)

. This is again ar-

gued by the properties of u (and the fat that U is on-

sistent). Consider the state u witnessing that (s, t) ∈ X .

Sine U is onsistent, it must be that u either admits

delaying inde�nitely, or it delays until an output.

� Assume that for eah delay d there exists a state u′

suh that u d−→u′ then, by re�nement and onstru-

tion (s, t) d−→(s′, t′) for some (s′, t′) ∈ X . Sine u is

loally onsistent, all intermediate suessors states

are implementable thus intermediate time suessors

of (s, t) annot be in ipred

S×T (X). Formally, onsider

an intermediate suessor u′′, so u d′−−→u′′ and thus

(s, t) d
′

−−→(s′′, t′′) for some (s′′, t′′) with (u′′, s′′) ∈ R1

and (u′′, t′′) ∈ R2. Now if (s′′, t′′) i?−−→(s′′′, t′′′) for

13

some (s′′′, t′′′) ∈ X we get a ontradition as by re-

�nement it must be that u′′ i?−−→u′′′ and u′′′ witnesses
that (s′′′, t′′′) ∈ X .

� If u annot delay inde�nitely, then it an delay until

an output (by loal onsisteny). We use an almost

idential argument that then both s and t must be
able to do this, and so must their produt. Avoiding

ipred

S×T (X) is argued ad absurdum exatly like in

the previous ase. So we onlude that X desribes

a onsistent part of the produt.

Now it remains to show that U indeed re�nes the

part of S × T indued by X . This is a standard proof

by arguing that the following relation R is a re�nement

relation:

R = {(u, (s, t)) ∈ St

U ×X | (u, s) ∈ R1 and

(u, t) ∈ R2} (23)

Sine X ⊆ ons

S×T
, we have that R also witnesses re-

�nement of S ∧ T by U . ⊓⊔

We turn our attention to syntati representations

again. Consider two spei�ations TIOAsA1 = (Lo1, q
1
0 ,

Clk1, E1, Act
1, Inv1) and A2 = (Lo2, q

2
0 ,Clk2, E2, Act

2,
Inv2) with At

1
i = At

2
i and At

1
o = At

2
o. Their onjun-

tion, denoted A1 ∧A2, is the TIOA A = (Lo, q0,Clk, E,
Act1, Inv) given by: Lo = Lo1 × Lo2, q0 = (q10 , q

2
0),

Clk = Clk1 ⊎Clk2, Inv((q1, q2)) = Inv(q1) ∧ Inv(q2). The
set of edges E is de�ned by the following rule:

� If (q1, a, ϕ1, c1, q
′
1) ∈ E1 and (q2, a, ϕ2, c2, q

′
2) ∈ E2,

then ((q1, q2), a, ϕ1 ∧ ϕ2, c1 ∪ c2, (q′1, q
′
2)) ∈ E

It might appear as if two systems an only advane on an

input if both are ready to reeive an input, but beause

of input enabledness this is always the ase.

The following theorem lifts all the results from the

TIOTSs level to the symboli representation level:

Theorem 4. Let A1 and A2 be two spei�ation au-

tomata, we have JA1 K
sem

∧ JA2 K
sem

= JA1 ∧A2 K
sem

.

7 Compatibility and Composition

We shall now de�ne strutural omposition, also alled

parallel omposition, between spei�ations. We follow

the optimisti approah of [34℄, i.e., two spei�ations

an be omposed if there exists at least one environment

in whih they an work together. Parallel omposition is

made of three main steps. First, we ompute the lassial

produt between timed spei�ations [42℄, where ompo-

nents synhronize on ommon inputs/outputs. The se-

ond step is to identify inompatible states in the produt,

i.e., states in whih the two omponents annot work

together. The last step is to seek for an environment

that an avoid suh error states, i.e., an environment in

whih the two omponents an work together in a safe

way. Before going further, we would like to ontrast the

strutural and logial omposition.

The main use ase for parallel omposition is in fat

dual to the one for onjuntion. Indeed, as observed in

the previous setion, onjuntion is used to reason about

internal properties of an implementation set, so if a loal

inonsisteny arises in onjuntion we limit the imple-

mentation set to avoid it in implementations. A pruned

spei�ation an be given to a designer, who hooses a

partiular implementation satisfying onjoined require-

ments. A onjuntion is onsistent if the output player

an avoid inonsistenies, and its main theorem states

that its set of implementation oinides with the inter-

setion of implementation sets of the onjunts.

In ontrast, parallel omposition is used to reason

about external use of two (or more) omponents. We

assume an independent implementation senario, where

the two omposed omponents are implemented by inde-

pendent designers. The designer of any of the environ-

ment omponents an only assume that the omposed

implementations will adhere to original spei�ations be-

ing omposed. Consequently if an error ours in parallel

omposition of the two spei�ations, the environment is

the only entity that possibly has the power to avoid it.

Thus, following [31℄, we say that a omposition is useful,

and omposed omponents are ompatible, if the input

player has a strategy in the safety game to avoid error

states in the omposition. The main theorem will state

that if an environment is ompatible with a useful spei-

�ation, it is also ompatible with any of its re�nements,

inluding implementations.

We now propose our formal de�nition for parallel

omposition. We onsider two spei�ation semantis S =
(StS, sS0 , Σ

S,−→S) and T = (StT, sT0 , Σ
T,−→T), and we say

that they are omposable i� their output alphabets are

disjoint ΣS
o

∩ΣT
o

= ∅. We say that two spei�ations are

omposable if their semantis are omposable.

As we did for onjuntion, before de�ning the par-

allel omposition we �rst introdue a suitable notion of

produt.

De�nition 12 (Parallel produt ⊗). The parallel

produt of S and T , whih roughly orresponds to the

one de�ned on timed input/output automata [42℄, is the

spei�ation S ⊗ T = (StS ⊗ St

T, (sS0 , s
T
0), ΣS⊗T,−→S⊗T),

where the alphabet ΣS⊗T = ΣS ∪ ΣT
is partitioned

in inputs and outputs in the following way: ΣS⊗T
i =

(ΣS
i \Σ

T
o) ∪ (ΣT

i \Σ
S
o), ΣS⊗T

o = ΣS
o ∪Σ

T
o .

The transition relation of the produt is the largest

relation generated by the following rules:

14

s a−→Ss′ a ∈ ΣS \ΣT

(s, t) a−→S⊗T (s′, t)
[indep-l]

t a−→T t′ a ∈ ΣT \ΣS

(s, t) a−→S⊗T (s, t′)
[indep-r]

s a−→Ss′ t a−→T t′

a ∈ R≥0 ∪Σ
S⊗T
i ∪ (ΣS

i ∩Σ
T
o) ∪ (ΣS

o ∩Σ
S
i)

(s, t) a−→S⊗T (s′, t′)
[syn]

Observe that if we ompose two loally onsistent

spei�ations using the above produt rules, then the

resulting produt is also loally onsistent. Sine we nor-

mally work with onsistent spei�ations in a develop-

ment proess, immediate errors as de�ned for onjun-

tion are not appliable to parallel omposition. More-

over, unlike [34℄, our spei�ations are input-enabled,

and there is no way to de�ne an error state in whih

a omponent an issue an output that annot be ap-

tured by the other omponent. However, the absene

of �model-related� error states allows us to de�ne more

elaborated errors, spei�ed by the designer. Those an-

not easily be onsidered in [34℄.

When reasoning about parallel omposition we use

model spei� error states, i.e., error states indiated by

the designer. These error states ould arise in several

ways. First, a spei�ation may ontain an error state in

order to model unavailable inputs in presene of input-

enabledness (transitions under inputs that the system is

not ready to reeive, should target suh an inompatible

state. Typially universal states are used for the pur-

pose of signaling unpreditability of the behaviour after

reeiving an unantiipated input). Seond, a temporal

property written in some logi suh as TCTL [3℄ an be

interpreted over our spei�ation, whih when analyzed

by a model heker, will result in a partition of the states

into good ones (say satisfying the property) and bad ones

(violating the property). Third, an inompatibility in a

omposition an be propagated from inompatibilities in

the omposed omponents. It should always be the ase

that a state in a produt (s, t) is an inompatible state

if s is an inompatible state in S, or t is an inompatible

state in T .
Formally, we will model all these soures of inom-

patibility as a set of error states. We will all this set

of states, stritly undesirable states and refer to it as

undesirable

S
. In the rest of the setion, to simplify the

presentation, we will inlude the set of stritly undesir-

able states as part of spei�ation de�nitions.

We say that a spei�ation is useful if there exists an

environment E that an always avoid reahing a stritly

undesirable state, whatever the spei�ation will do. Thus

the environment is haraterizing a winning strategy for

the input player in a safety game to avoid undesirable

states. The environment E is said to be ompatible with

S.

We ompute the set of useful states of S using a �x-

point haraterization. This haraterization is a dual of

the safety game for onsisteny presented in the previ-

ous setions. We onsider a variant of ontrollable timed

predeessor operator, where the roles of the inputs and

outputs are reversed:

ω(X) = undesirable

S ∩
[

Idle

S
t

(opredS(X))∪

Pred

t

(ipred(X), opred(X))
]

(24)

Now the set of useful states useful

S
an be har-

aterized as the greatest �xpoint of ω, so useful

S =

ω(usefulS). Again existene and uniqueness of this �x-

point is warrented by monotoniity of ω. Sine the ω is

a simple dual of π we omit the proofs in this setion,

as they are essentially isomorphi to the ones for onsis-

teny and onjuntion; with exeption of the ongruene

theorem, whose proof is standard.

Theorem 5. A onsistent spei�ation semantis S is

useful i� s0 ∈ useful

S
. A onsistent spei�ation A is

useful i� s
JA K

sem

0 ∈ useful

JA K
sem

.

The proof of Theorem 5 is a dual to the one of Lemma 5.

As for inonsistent states, undesirable states an be

pruned from the spei�ation. For a useful spei�ation

semantis S = (StS , sS0 , Σ
S ,−→S) we de�ne the pruned

spei�ation semantis Sβ=(usefulS ∪ {u}, s0, ΣS,−→S
β

),
where u is a universal state (allows arbitrary behaviour)

and −→S
β

= −→S ∩(usefulS ∪ {u}× (ΣS ∪R≥0)× useful

S ∪
{u}). The following theorem shows that pruning the spe-

i�ation does not hange the set of ompatible environ-

ments.

Theorem 6. Let S be a useful spei�ation semantis.

Then E is an environment ompatible with S i� E is

ompatible with Sβ.

The proof of Theorem 6 is a dual to the one of Theorem 2

that shows that P is an implementation semantis of

spei�ation S i� P is an implementation semantis of

S∆.

Having introdued the general notion of usefulness

of omponents and spei�ations, we are now ready to

de�ne ompatibility of spei�ations and parallel om-

position. We propose the following de�nition, whih is

in the spirit of [31℄.

De�nition 13 (Compatibility). Two omposable spe-

i�ation semantis S and T are ompatible i� the ini-

tial state of S ⊗ T is useful. Two omposable spei�-

ations A and B are ompatible if the initial state of

JA K
sem

⊗ JB K
sem

is useful.

15

De�nition 14 (Composition ‖). For two ompati-

ble spei�ation semantis S and T de�ne their parallel

omposition S ‖ T = (S ⊗ T)β, and undesirable

S‖T =

{(s, t) | s ∈ undesirable

S
or t ∈ undesirable

T }.

As we have disussed above, the set of stritly undesir-

able states, undesirable

S⊗T
, an be inreased by the de-

signer as needed, for example by adding state for whih

desirable temporal properties about the interplay of S
and T do not hold.

Observe that parallel omposition is ommutative,

and that two spei�ations omposed give rise to well-

formed spei�ations. It is also assoiative in the follow-

ing sense:

J (S ‖ T) ‖ U K
mod

= JS ‖ (T ‖ U) K
mod

(25)

Theorem 7. Re�nement is a pre-ongruene with re-

spet to parallel omposition; for any spei�ation se-

mantis S1, S2, and T suh that S1 ≤ S2 and S1 om-

posable with T , we have that S2 omposable with T and

S1 ‖ T ≤ S2 ‖ T . Moreover if S2 ompatible with T then

S1 ompatible with T .

Theorem 7 allows the independent implementability

senario:

Corollary 4. For any onsistent spei�ation seman-

tis S and T , suh that S is omposable with T , S ‖ T is

onsistent. Moreover, if P1 is implementation semantis

that satis�es S and P2 is an implementation semantis

that satis�es TS, then P1 ‖ P2 |= S ‖ T .

Proof. If S is omposable with T then P1 is omposable

with P2 sine the alphabets are the same. Then a �rst

apppliation of Theorem 7 proves that P1 ‖ P2 ≤ P1 ‖ T ,
and a seond one that P1 ‖ T ≤ S ‖ T . Finally sine

re�nement is transitive we proves that P1 ‖ P2 |= S ‖ T .

We now swith to the symboli representation. Par-

allel omposition of two spei�ation TIOAs is de�ned in

the following way. Consider two TIOA A1 = (Lo1, q
1
0 ,

Clk1, E1, Act1, Inv1) and A2 = (Lo2, q
2
0 ,Clk2, E2, Act2,

Inv2) with At

1
o ∩ At

2
o = ∅. Their parallel omposition

whih is denoted A1 ‖ A2 is the TIOA A = (Lo, q0,Clk,
E,Act, Inv) given by: Lo = Lo1 × Lo2, q0 = (q10 , q

2
0),

Clk = Clk1 ⊎ Clk2, Inv((q1, q2)) = Inv(q1) ∧ Inv(q2),
and the set of ations At = Ati ⊎ Ato is given by

Ati = At

1
i \At

2
o ∪At

2
i \At

1
o and Ato = At

1
o ∪At

2
o.

The set of edges E is de�ned by the following rules:

� If (q1, a, ϕ1, c1, q
′
1) ∈ E1 with a ∈ At1 \At2 then for

eah q2 ∈ Lo2 ((q1, q2), a, ϕ1, c1, (q
′
1, q2)) ∈E

� If (q2, a, ϕ2, c2, q
′
2) ∈ E2 with a ∈ At2 \At1 then for

eah q1 ∈ Lo1 ((q1, q2), a, ϕ1, c1, (q1, q
′
2)) ∈E

� If (q1, a, ϕ1, c1, q
′
1) ∈ E1 and (q2, a, ϕ2, c2, q

′
2) ∈ E2

with a ∈ At1 ∩ At2 then ((q1, q2), a, ϕ1 ∧ ϕ2, c1 ∪
c2, (q

′
1, q

′
2)) ∈ E

Just like for onjuntion, after the omposition, the re-

sult an be pruned to limit the representation to useful

states. Note that the result of this pruning may lead

to a loally inonsistent spei�ation. The onsisteny

pruning (∆) an be applied subsequently to �x this, if

desirable.

Finally, the following theorem lifts all the results from

timed input/output transition systems to the symboli

representation level.

Theorem 8. Let A1 and A2 be two spei�ation au-

tomata, we have JA1 K
sem

‖ JA2 K
sem

= JA1 ‖ A2 K
sem

.

8 Quotient

The quotient operator allows for fatoring out behavior

from a larger omponent. If one has a large omponent

spei�ation T and a small one S then T \\S is the spe-

i�ation of all the models that when omposed with S
re�ne T . In other words, T \\S spei�es the work that

still needs to be done, given availability of an implemen-

tation of S, in order to provide an implementation of T .
We �rst desribe the theory behind the operator, then

we show how it an be exploited to reason on assump-

tions and guarantees.

We have the following requirements on the sets of

inputs and outputs of the dividend T and the divisor S
when applying quotienting: ΣS

i

⊆ ΣT
i

∪ ΣT
o

and ΣS
o

⊆
ΣT
o

(and S must be well-formed, so ΣS
i

and ΣS
o

are dis-

joint).

We proeed similarly to strutural and logial ompo-

sitions, and start with a pre-quotient that may introdue

error states. Those errors are then pruned to obtain the

quotient.

De�nition 15 (Pre-quotient ⋋). Given two spei�-

ation semantis S = (StS, sS0 , Σ
S,−→S) and T = (StT, tT0 ,

ΣT,−→T) their pre-quotient is a spei�ation semantis

T ⋋ S = (St, (sS0 , t
T
0), Σ,−→), where St = (StS × St

T) ∪
{u, e} where u and e are fresh states suh that, u is uni-

versal (allows arbitrary behaviour), and e is inonsistent

(no output-ontrollable behaviour an satisfy it). State

e disallows progress of time and has no output transi-

tions. The universal state guarantees nothing about the

behaviour of its implementations (thus any re�nement

with a suitable alphabet is possible), and dually the in-

onsistent state allows no implementations.

Moreover we require that Σ = ΣT
with Σ

i

= ΣT
i

∪
ΣS
o

and Σ
o

= ΣT
o

\ ΣS
o

. Finally the transition relation

−→T⋋S
is the largest relation generated by the following

rules:

16

t a−→T t′ s a−→Ss′ a ∈ ΣS ∪R≥0

(t, s) a−→T⋋S(t′, s′)
[all]

s 6 a−−→S a ∈ ΣS
o

∪R≥0

(t, s) a−→T⋋S
u

[unreahable]

t 6 a−−→T s a−→Ss′ a ∈ ΣS ∩ΣT
o

(t, s) a−→T⋋S
e

[unsafe]

t a−→T t′ a ∈ ΣT \ΣS

(t, s) a−→T⋋S(t′, s)
[dividend]

a ∈ Σ ∪R≥0

u

a−→T⋋S
u

[universal]
a ∈ Σ

i

e

a−→T⋋S
e

[inonsistent]

It is not hard to see that the pre-quotient T ⋋ S
is input-enabled. Inputs of T ⋋ S are Σ

i

= ΣT
i

∪ ΣS
o

.

The universal state u (respetively the inonsistent state

e) is input-enabled for Σ
i

due to the [universal℄ (resp.

[inonsistent℄) rule. For the remaining states input-ena-

bledness follows from the remaining rules. Let a ∈ Σ
i

.

For a ∈ ΣS
o

we get that the transition exists by the

[unreahable℄, [unsafe℄, or [all℄ rule. Otherwise, if a ∈ ΣT
i

a transition is indued by the [dividend℄, or [all℄ rule.

Theorem 9 states that the proposed pre-quotient op-

erator has exatly the property that it is dual of stru-

tural omposition with regards to re�nement.

Theorem 9. For any two spei�ation semantis S and

T suh that the pre-quotient T⋋S is de�ned, and for any

implementation semantis X over the same alphabet as

T ⋋ S, we have that S ‖ X is de�ned and S ‖ X ≤ T i�

X ≤ T ⋋ S.

We now give the proof for Theorem 9. First observe

that sine X has the same input and output alphabets

as T ⋋ S, sets ΣX
o

and ΣS
o

are disjoint, and thus S ‖ X
is de�ned. We split the argument for the two diretions

of the equivalene into two separate lemmas below.

Lemma 6. For any two spei�ation semantis S and

T suh that T ⋋ S is de�ned, and an implementation X
over the same alphabet as T ⋋ S:

S ‖ X ≤ T implies X ≤ T ⋋ S

Proof (Lemma 6). We have the re�nement relation R1

showing that S ‖ X ≤ T and need to present a relation

witnessing X ≤ T ⋋ S. Consider:

R2 = {(x, (t, s)) | ((s, x), t) ∈ R1}

∪ {(x, u) | x ∈ St

X} (26)

We have to prove that R2 is a re�nement relation. Let

(x, (t, s)) ∈ R2.

� Assume that (t, s) i?−−→(t′, s′). Need to show that x i?−−→x′

and (x′, (t′, s′)) ∈ R2. Split in sub-ases depending on

whih rule was used to onlude (t, s) i?−−→(t′, s′).

[all℄ If both t i!−→t′ and s i!−→s′ then:
as x is input-enabled we have x i?−−→x′ and by [syn-
io℄ that (s, x) i!−→(s′, x′). Then sine (s, x), t) ∈ R1

it must be that ((s′, x′), t′) ∈ R1 and (x′, (t′, s′)) ∈
R2.

Similarly if both t i?−−→t′ and s i?−−→s′ then:
beause x is input-enabled we have x i?−−→x′ and
by rule [syn-in℄ we have (s ‖ x) i?−−→(s′ ‖ x′) and

thus ((s′, x′), t′) ∈ R1, whih allows onluding

that (x′, (t′, s′)) ∈ R2.

Observe that other input/output ombinations

with an appliation of [all℄ are not possible here:

t i!−→t′ and s i?−−→s′ would result in an output of the
quotient, ontraditing the assumption; t i?−−→t′ and
s i!−→s′ is impossible as ΣS

o

⊂ ΣT
o

and the inputs

are disjoint from outputs.

[unreahable℄ Assume premise of [unreahable℄. Then

(t, s) i?−−→u. By input-enabledness of x get x i?−−→x′

and by onstrution: (x′, u) ∈ R2.

[unsafe℄ If i ∈ ΣT
o

∩ΣS
o

then this rule annot be used

to onlude that (t, s) i?−−→(t′, s′) beause then t 6 i!−→
and s i!−→s′, whih implies that ((s, x), t) /∈ R1 (or

that R1 is not a re�nement relation).

If i ∈ ΣT
o

∩ ΣS
i

then i ∈ ΣT⋋S
o

so it annot be

that (t, s) i?−−→.

[dividend℄ We have that t i?−−→t′ and, by input-enabled-
ness, x i?−−→x′ and i /∈ ΣS

. By [indep-r℄ obtain

(s, x) i?−−→(s′, x′), whih with ((s, x), t) ∈ R1 allows

onluding ((s, x′), t′) ∈ R1 and in turn (x′, (t′, s))
∈ R2.

[universal℄ Then (t, s) = u. It is trivial to see that

the transitions indued by this rule satisfy the

de�nition of re�nement.

[inonsistent℄ Then (t, s) = e. This rule ould have

not been used to indue (t, s) i?−−→(t′, s′), simply

beause (x, e) /∈ R2.

� Assume x o!−−→x′ and show that (t, s) o!−−→(t′, s′) and

(x′, (t′, s′)) ∈ R2. Note that o ∈ Σ
X
o

= ΣT
o

\ΣS
o

If o ∈ (ΣT
o

\ ΣS
o

) ∩ ΣS
i

and then by the parallel

omposition rule [syn-io℄ we have (s, x) o!−−→(s′, x′)
and sine ((s, x), t) ∈ R1 then also t o!−−→t′ for some

state t′ and ((s′, x′), t′) ∈ R1. But then by onstru-

tion also (x′, (s′, t′)) ∈ R2. It remains to see that

(t, s) o!−−→(t′, s′), but this follows from rule [all℄.

If o ∈ (ΣT
o

\ ΣS
o

) \ ΣS
i

the argument is analogous,

exept that [indep-r℄ and [dividend℄ are used instead

of respetively [syn-io℄ and [all℄.

� Assume that x d−→x′ and show (t, s) d−→(t′, s′) and (x′,
(t′, s′)) ∈ R′

2.

If s 6 d−→ then we an onlude by [unreahable℄ that

(t, s) d−→u and (x′, u) ∈ R2. Otherwise, if s d−→s′ then
(s, x) d−→(s′, x′) and by ((s, x), t) ∈ R1 we know that

t d−→t′ for some state t′ and ((s′, x′), t′) ∈ R1 whih in

turn gives (x′, (t′, s′)) ∈ R2. It remains to show that

(t, s) d−→(t′, s′), whih follows from [all℄.

17

Lemma 7. For any two spei�ation semantis S and

T suh that T ⋋ S is de�ned, and an implementation X
over the same alphabet as T ⋋ S:

S ‖ X ≤ T ⇐= X ≤ T ⋋ S

Proof (Lemma 7).

We have the re�nement relation R2 witnessing that

X ≤ T ⋋ S and want to give a relation showing that

S ‖ X ≤ T . Consider:

R1 = {((s, x), t) | (x, (t, s)) ∈ R2}

We have to prove that R1 is a re�nement relation.

Assume that (x, (t, s)) ∈ R1.

� Assume that t i?−−→t′ and show states s′, x′ suh that

(s, x) i?−−→(s′, x′) and ((s′, x′), t′) ∈ R1.

Sine x is input-enabled then x i?−−→x′ for some x′.
If i ∈ ΣS

i

then also s i?−−→s′ and by rule [syn-io℄

we have that (s, x) i?−−→(s′, x′). Further by [all℄ also

(t, s) i?−−→(t′, s′) and sine (x, (t, s)) ∈ R2 also (x′, (t′,
s′)) ∈ R2. This by onstrution gives ((s′, x′), t′) ∈
R1.

Otherwise, if i ∈ ΣT
i

\ ΣS
i

, use an analogous argu-

ment relying on [indep-r℄ and [dividend℄ rules instead

of respetively [syn-io℄ and [all℄.

� Assume that (s, x) o!−−→(s′, x′) and show that t o!−−→t′

and ((s′, x′), t′) ∈ R1 for some state t′.

Case 2.1: If o ∈ ΣX
o

∩ ΣS
o

then have s o!−−→s′ and

x o?−−→x′ by rule [syn-io℄. Assume that t 6 o!−−→. Then

by [unsafe℄ (t, s) o?−−→e and (determinism and inde-

pendent-progress!) it annot be that (x, (t, s)) ∈
R2, sine (x′, e) /∈ R2 for any x′. So there must

exist t′ suh that t o!−−→t′. Moreover by [all℄ we

get (t, s) o?−−→(t′, s′) and sine (x, (t, s)) ∈ R2 also

get (x′, (t′, s′)) ∈ R2. By onstrution of R1 get

((s′, x′), t′) ∈ R1.

Case 2.2: Assume o ∈ ΣX
o

∩ ΣS
i

. Then have s o?−−→s′

and x o!−−→x′ by [syn-io℄. We use the same argu-

ment as above to onlude that t o!−−→t′ for some

state t′. Otherwise [unsafe℄ allows onluding that
(t, s) o!−−→e and (x, (t, s)) ∈ R2 is violated as (x′, e) /∈
R2. By [all℄ we get (t, s) o!−−→(t′, s′) and sine (x, (t,
s)) ∈ R2 also get (x′, (t′, s′)) ∈ R2. By onstru-

tion of R1 get ((s′, x′), t′) ∈ R1.

Case 2.3: If o ∈ ΣX
o

\ΣS = ΣT
o

\ΣS
then by [indep-r℄

we have (s, x) o!−−→(s, x′) with x o!−−→x′ Further, by
[dividend℄ have (t, s) o!−−→(t′, s) and, sine (x, (t, s))
∈ R2, also (x′, (t′, s)) ∈ R2 whih in turn gives

((s, x′), t′) ∈ R1 by onstrution of the latter.

� Assume (s, x) d−→(s′, x′) and show that t d−→t′ and ((s′,
x′), t′) ∈ R1. By [delay℄ we have that s d−→s′ and

x d−→x′. Sine x d−→x′, s d−→s′ and (x, (t, s)) ∈ R2 it

must be that (t, s) d−→(t′, s′) (beause only rule [all℄

ould have been used) and (x′, (t′, s′)) ∈ R2. Thus

also t d−→t′ from the premise of [all℄ and ((s′, x′), t′) ∈
R1

Finally, the atual quotient, denoted T \\S, is de�ned
if T⋋S is onsistent. It is obtained by pruning the states

of the pre-quotient T⋋S from where the implementation

has no strategy to avoid immediate errors states err

T\\S

using the same game haraterization like in Setion 6.

It follows from Theorem 2 that Theorem 9 also holds

for the atual quotient operator \\ (as opposed to the

pre-quotient).

De�nition 16 (Quotient \\). For any spei�ations S
and T suh that T ⋋ S is de�ned and onsistent, de�ne

T \\S = (T ⋋ S)∆.

Quotienting for spei�ations (TIOAs) is de�ned in

the following way. Consider two spei�ations AT =
(LoT , q

T
0 ,ClkT , ET , ActT , InvT) and AS = (LoS , q

S
0 ,

ClkS , ES , ActS , InvS) with At

S
i ⊆ At

T
i and At

S
o ⊆

At

T
o . The quotient, whih is denoted AT \\AS is the

TIOA given by: Lo = LoT × LoS ∪ {lu, l∅}, q0 =
(qT0 , q

S
0), Clk = ClkT ⊎ ClkS ⊎ {xnew}, Inv((qT , qS)) =

Inv(lu) = true and Inv(l∅) = {xnew ≤ 0}. The two new

states lu and l∅ are respetively universal and inonsis-

tent. The set of ations At = Ati ⊎ Ato is given by

Ati = At

T
i ∪ At

S
o ∪ {inew} and Ato = At

T
o \At

S
o .

The set of edges E is de�ned by the following rules:

� [unreahable1] For eah qT ∈ LoT , qS ∈ LoS and

a ∈ At, ((qT , qS), a,¬InvS(qS), {xnew}, lu) ∈ E.

� [unsafe1] For eah qT ∈ LoT , qS ∈ LoS ,

((qT , qS), inew,¬InvT (qT)∧InvS(qS), {xnew}, l∅) ∈ E.

� [all] If (qT , a, ϕT , cT , q
′
T) ∈ ET and (qS , a, ϕS , cS , q

′
S) ∈

ES , then ((qT , qS), a, ϕT ∧ ϕS , cT ∪ cS , (q′T , q
′
S)) ∈ E

� [unsafe2] For eah (qS , a, ϕS , cS , q
′
S) ∈ ES with a ∈

At

S
o , ((qT , qS), a, ϕS ∧ ¬GT , {xnew}, l∅) ∈ E

where GT =
∨

{ϕT | (qT , a, ϕT , cT , q
′
T)}

� [dividend] For eah (qT , a, ϕT , cT , q
′
T) ∈ ET and a /∈

AtS , ((qT , qS), a, ϕT , cT , (q
′
T , qS)) ∈ E

� [unreahable2] For eah (qT , a, ϕT , cT , q
′
T) ∈ ET with

a ∈ At

S
o , ((qT , qS), a,¬GS , {}, lu) ∈ E

where GS =
∨

{ϕS | (qS , a, ϕS , cS , q′S)}
� [universal] For eah a ∈ Ati, (l∅, a, true, {}, l∅) ∈ E

� [inonsistent] For eah a ∈ At, (lu, a, true, {}, lu) ∈ E

Finally, the following theorem lifts all the results from

timed input/output transition systems to the symboli

representation level.

Theorem 10. Let A1 and A2 be two spei�ation au-

tomata, we have

(JA1 K
sem

⋋ JA2 K
sem

)∆ = (JA1 ⋋A2 K
sem

)∆ (27)

8.1 Assumptions and Guarantees

In the following we will illustrate the utility of quotient-

ing. This setion is a summary of results presented in

[25℄. The ontribution of the present paper is in apply-

ing the de�nition presented in this setion to the park-

ing example of Setion 11. We start with an example

18

a)

bad good button1 button2

button1?

button2?

bad!

good!

s1 s2

button2?

button1?
good!

ButtonSpe

b)

bad good button1 button2

button1!

good?

bad?

ButtonA

)

bad good button1 button2

button2?

good!button1?
G

ButtonG

Figure 9: Spei�ation of a) the ButtonSpe, b) the assumption ButtonA,) the guarantee ButtonG.

that onsists of three Timed I/O Automata spei�a-

tions as shown in Fig. 9. We start with a simple spei�-

ation, shown in Fig. 9(a) of a system with two buttons.

The spei�ation states that as long as only button1 is

pressed (assumption) then only good output will be pro-

dued (guarantee). If at some point button2 is pressed

then the system ould start to produe bad output. Fig-

ure 9 thus represents the ombination of assumptions

and guarantees, eah of them being desribed with a

TIOA. In general, one does not obtain suh spei�a-

tion diretly, but rather from the ombination of some

automata representing the assumptions and the guaran-

tees. We now show how quotient an be used to ombine

assumptions and guarantees to obtain the automaton in

Fig.9.

The following de�nition taken from [25℄ presents an

operator known as weaken or weakening, that is used for

easier spei�ation of assume guarantee spei�ations.

Weakening omputes the largest guarantee one an get

under some assumption.

De�nition 17 (Weaken >>). For any spei�ations

A and G we de�ne G >> A as follows:

G >> A ≡ (A||G)\\A

Let us go bak to our example and show how it an

exploit the weakening operator. We would like to express

the assumptions and guarantees that we have to the sys-

tem separately, and then retrieve the automaton in Fig.9.

In Fig. 9(b) we speify the assumption that button2 is

never pressed while in Fig. 9() we speify the guaran-

tee that the system never produes bad output. Even

though, in this example, our ButtonSpe is quite sim-

ple the assumption ButtonA and guarantee ButtonG are

even simpler and extremely easy to understand. We then

ompute ButtonG >> ButtonA and show that it oin-

ides (in terms of re�nement) with ButtonSpe, i.e., we

use Edar to prove the following two re�nements:

refinement: (ButtonG >> ButtonA) <= ButtonSpe

refinement: ButtonSpe <= (ButtonG >> ButtonA)

Thus e�etively being able to substitute ButtonG >>
ButtonA for ButtonSpe in any ontext.

The possibility of splitting assumptions from guaran-

tees beomes even more appealing when having multiple

assumptions and guarantees that are onjoined.

9 Tool Support

Our spei�ation theory has been implemented in a new

tool alled Edar. We shall now desribe the funtion-

ality of the tool, then provide some details on the various

game-based algorithms implemented in Edar, and �-

nally demonstrate what is possible in the tool using a

small ase study. Edar is freely available at edar.s.

aau.dk.

9.1 Arhiteture and Funtionality

The arhiteture of Edar builds on Uppaal. The tool

features a graphial user interfae (GUI), and a model-

heker in the form of a server or a standalone veri�er.

The user an edit, simulate, and speify properties in the

GUI.

Editor. The timed I/O automata (TIOA) are represented

as graphs with solid (input) and dashed (output) edges.

Sine TIOAsmust be input enabled, only broadast om-

muniations are allowed. The user has aess to the other

features of the language suh as user-de�ned types and

funtions. All �gures of spei�ations and implementa-

tions in this paper have been made using the editor of

Edar.

Simulator. The simulator, based onUppaal-tiga, shows

networks of automata and will allow the user to se-

let transitions aording to how omponents are om-

posed (parallel omposition or onjuntion). The simu-

lator supports open systems and follows the semantis

of TIOAs as desribed in this paper. It annot at the

moment simulate systems where the quotient operator

is used

1

.

1

The quotient generates omponents that annot be displayed

in the GUI.

19

Figure 10: Playing a re�nement ounter-strategy in the

simulator.

Spei�ation Interfae. Another view in the interfae is

used to speify properties using the expressions of our

theory. This view is similar to Uppaal's model heking

view. Unlike in Uppaal, the simulator only works when

a query has been heked previously beause the stru-

ture of the system (as given by the di�erent operations)

is de�ned in the query.

The properties supported are of the following types:

� onsisteny hek with the syntax

onsisteny: system,

� re�nement hek with the syntax

refinement: system <= system

� implementation hek with the syntax

implementation: system,

where system is a omposition of omponents using the

parallel omposition, onjuntion, or quotient operator.

The onsisteny and re�nement heks follow diretly

the algorithms presented in this paper. The engine an

hek if a system is an implementation aording to the

onstraints we have de�ned, suh as output urgeny and

independent progress.

The tool provides a strategy to prove or disprove the

property, whih an be used to re�ne the model. The

strategy an be played interatively. Fig. 10 shows a

sreenshot of suh an interative game. When the heked

property is satis�ed for onsisteny and implementa-

tion, the user an hoose inputs and the engine responds

with outputs. For re�nement it is an alternating 2-player

game: the user plays the attaker and the engine the de-

fender if the property is satis�ed. If the property is not

satis�ed, the roles are inverted. Edar an also output

the resulting strategy in a textual format.

9.2 Implementation of Edar

Edar exploits the veri�ation engine for timed games

implemented in Uppaal-tiga, the game extension of

Uppaal [9,10℄. Edar di�ers from Uppaal-tiga by

implementing ompositional reasoning primitives.

The Game Solver of Uppaal-tiga The engine of

Uppaal-tiga supports the omputation of winning stra-

tegies for timed games with respet to a large lass of

timed temporal logi winning objetives suh as reah-

ability/safety or even Bühi. All the algorithms imple-

mented in Uppaal-tiga build on the so-alled reah-

ability algorithm of Uppaal-tiga introdued in [17℄.

Roughly speaking, this algorithm uses an on-the-�y ap-

proah to perform forward exploration of reahable states

and bak-propagation of (so-far) omputed winning states

in an interleaved manner using �xed-point operators as

shown in this paper. Cruial to any game solving algo-

rithm is the symboli representation and e�ient ma-

nipulation of state-sets. In Uppaal-tiga, our symboli

representations exploit zones, i.e. sets of lok valua-

tions haraterized by onstraints on individual loks

and lok-di�erenes. In partiular the operators used

in the �xpoint algorithm of Uppaal-tiga are omputed

using federations (unions of zones). In addition, the en-

gine implements the turn-based game solver of [15℄. We

refer to this engine as the simulation engine.

The Game Solver of Edar The engine of Edar

reuses the same basi design as Uppaal-tiga to im-

plement its onsisteny heker with the addition of a

speial omponent to haraterize onsistent states. In

addition, all omponents implementing the semantis of

the transition system are hanged on-the-�y to hoose

between the di�erent operations of parallel omposition,

onjuntion, and quotienting. Edar also reuses the gen-

erated state graphs as internal inputs for inremental

onsisteny heks whereas Uppaal-tiga only takes a

network of timed game automata as input. Before us-

ing the result of a onsisteny hek (for re�nement or

to apply an operation), the state-graph is pruned with

respet to the strategy obtained from the onsisteny

game. The proedure is as follows: for every symboli

state, restrit it to the winning states of the strategy;

and for every output transition, restrit to the ones al-

lowed by the strategy (by strengthening its guard). The

pruning feature is absent from Uppaal-tiga.

The onsisteny heker is used to hek whether a

spei�ation admits at least one implementation. This

question redues to the one of deiding if there exists

a strategy for the output player to avoid reahing bad

states in the spei�ation, i.e., states that do not satisfy

the independent progress property. To solve this on-

sisteny game, we apply the reahability algorithm of

Uppaal-tiga where input transitions are ontrollable,

output transitions unontrollable, and where states that

do not have any outputs nor allow time to elapse are tar-

get states. The game is then solved as in Uppaal-tiga,

but with di�erent omponents that hange the semantis

and with the addition of pruning.

20

The re�nement heker is used to deide whether an

implementation satis�es a given spei�ation or if a spe-

i�ation re�nes another one. As we already said, re�ne-

ment heking redues to a 2-player alternating game.

To solve this game, we hange the rules of the simula-

tion game of Uppaal-tiga to math the semantis of

re�nement, i.e., the rules w.r.t. ontrollable and unon-

trollable transitions are inverted. In this game where we

hek the re�nement S ≤ T , the �rst player (the at-

taker) plays outputs on S and inputs on T , whereas the
seond player (the defender) plays inputs on S and in-

puts on T . The produt of S and T aording to these

rules is then onstruted on-the-�y, whih is the forward

exploration step. We detet error states on-the-�y and

we bak-propagate them. There are two kinds of error

states: 1) Either the attaker may delay and violates in-

variants on T , whih is, the defender annot math a

delay, or 2) the defender has to play a given ation and

annot do so, i.e., a deadlok. This is similar to Uppaal-

tiga in priniple, exept that the underlying strutures

are di�erent: a pruned state-graph for Edar and a net-

work of timed game automata for Uppaal-tiga.

We disuss heking for independent progress, output

determinism, and output urgeny in more detail. A sym-

boli state is a tuple 〈q, Z〉, where q is a loation, and Z
a zone [48℄, i.e. a set of lok valuations. For a guard g ∈
B(Clk), we denote by J g K = {u ∈ [Clk 7→ R≥0] | u |= g}
the set of valuations that satisfy g. A state is not urgent,

if its invariant allows a positive delay:

2

urgent(〈q, Z〉) ≡ ∀ v ∈ Z. ∃d ≥ 0. v+d |= Inv(q) ⇒ d = 0

A state is unbounded if Z has no upper bound, i.e., it

ontains valuations where it is possible to delay in�nitely.

Sine we are handling onvex sets de�ned with di�erene

onstraints, if a state is unbounded then it is possible to

delay in�nitely from all its valuations.

unbounded(〈q, Z〉) ≡ {v ∈ Z | ∀t ≥ 0. v + t ∈ Z} 6= ∅

Algorithm 1 ombines these notions to hek for in-

dependent progress. We hek that for this notion of

deadlok in lines 3�5. For a set of lok valuations Z
we write Z↓

(line 5) meaning the set of its time prede-

essors: Z↓ = {v | ∃ d ≥ 0. v + d ∈ Z}.
Algorithm 2 shows how we hek for output deter-

minism. It is applied iteratively to every reahable sym-

boli state of a spei�ation. For an output o and a sym-

boli state (q, Z) we identify edges that an be enabled

in this state, and hek whether they ause nondeter-

minism.

Output urgeny for implementations is established

by onstruting a zone graph and heking the following

ondition for eah symboli state 〈q, Z〉:

¬urgent(〈q, Z〉)⇒ for eah edge (q, o!, ϕ, c, q′).

Jϕ ∧NextInv(q′, c) K ∩ Z = ∅.

2

Edar borrows from Uppaal the syntati onstruts to ob-

tain this e�et onveniently: urgent loations and urgent hannels

Algorithm 1: Symboli hek for independent

progress.

funtion consistent(〈q, Z〉)
if unbounded(〈q, Z〉) then return true1

deadlok ← Z2

if urgent(〈q, Z〉) then3

foreah edge (q, o!, ϕ, c, q′) do4

deadlok ← deadlok\ (Jϕ∧NextInv(q′, c) K∩Z)
else foreah edge (q, o!, ϕ, c, q′) do5

deadlok ← deadlok \ (Jϕ ∧ NextInv(q′, c) K ∩ Z)↓

return deadlok = ∅6

Algorithm 2: Symboli hek for output deter-

minism.

funtion output-determinism(〈q, Z〉)
su← ∅1

su = {e = (q, o!, ϕ, c, q′) | Jϕ ∧ NextInv(q′, c) K ∩2

Z 6= ∅ for any guard ϕ and output o!}
foreah pair of edges (e1, e2) ∈ su.3

e1 6= e2 ∧ output(e1) = output(e2) do
let (q1, o!, ϕ1, c1, q

′
1) = e1 and4

(q2, o!, ϕ2, c2, q
′
2) = e2

if Jϕ1 ∧ NextInv(q′1, c1) K ∩ Jϕ2 ∧5

NextInv(q′2, c2) K ∩ Z 6= ∅ then return false

end

return true6

(...)

(...)

PSfrag replaements

Mi

Mi

Mi+1

reci

reci+1

reci+1

wi

wi

wi+1

M0

M1

M2

w0

w1

w2

rec1

rec2

SSi

Figure 11: Overview of Milner's sheduler example and

the sub-spei�ation SSi.

10 Appliation 1: Milner's Sheduler Case

Study

We use a modi�ed real-time version of Milner's sheduler

algorithm, to show how indutive arguments for re�ne-

ment an be onstruted using ompositional operators

of our theory. The model onsists of N nodes arranged

in a ring. A token is sent around, whih takes some time,

and the nodes on the ring perform some work when the

token arrives. Fig. 11 (left) shows a single node that an

reeive a token on reci. The node subsequently begins

external work by outputting on wi. In parallel to this it

21

w[i]!

rec[(i+1)%N]!

rec[(i+1)%N]! w[i]!

rec[i]?

x<=D

y>d

x<=D

x<=D

rec[i]?

rec[i]?
x=0,
y=0

rec[i]?

y>d w[e]!

z=0

rec[e]!

w[0]!

z<=(N+1)*De!=0
e:id_t

e:id_t

Figure 12: Left: Template for a single node Mi. Right:

Template for the overall spei�ation.

an forward the token by outputting on reci+1, but only

after a delay between d and D time units. Fig. 11 (right)

illustrates a ring of suh nodes Mi in whih some nodes

have been grouped together. This grouping exempli�es

a part of the spei�ation, whih we will later be able

to replae with an abstration SSi in order to exeute a

ompositional proof.

We model the sheduler using templates in a modular

way, whih allows us to sale the model by instantiating

as many nodes as needed. A single node of our shed-

uler is shown in the left side of Fig. 12. In the initial

loation of the spei�ation, it is ready to reeive a mes-

sage on the hannel re[i℄?. After this there are two

ways to return to the initial state depending on the or-

der in whih it starts its work (w[i℄!) and passes on the

token (re[(i+1)%N℄!). The �rst node of the system

M0 is instantiated with a di�erent initial loation (the

bottom-most one), re�eting the fat that it holds the

token initially. The right side of Fig. 12 shows the over-

all spei�ation S0 of the system. It requires that w[0℄!

ours at least every (N+1) ∗D time units. Remaining

ations an be exeuted freely.

One way to verify that the sheduler is orret is to

verify a property of the type:

refinement: (M0 || M1 || M2 || M3 || M4) <= S0

We all this type of veri�ation monolithi, sine it on-

struts a spei�ation preisely representing the entire

system. It is natural to verify the monolithi property in

order to show that the omposed system re�nes the over-

all spei�ation. Unfortunately, this strategy fails due to

state-spae explosion. As the number of omponents is

inreased, the state spae grows, and more interleaving

is introdued in the system.

In order to ombat the problem we apply omposi-

tional veri�ation. The idea is to reate N sub-spei�a-

tions that are used in a series of re�nement steps. First

one shows that M1 ≤ SS1. After this it is proved for

inreasing indexes, 1 to N that SSi||Mi+1 ≤ SSi+1. Fi-

nally the property SSn||M0 ≤ S0 is heked. Fig. 13

gives the properties for �ve nodes. The sub-spei�ation

aims at apturing the important aspet of the subsys-

tem needed for the next step in the veri�ation proess

of the overall property. It is very important to notie that

the sub-spei�ation is, like all the other omponents in

refinement: M1 <= SS1

refinement: (SS1 || M2) <= SS2

refinement: (SS2 || M3) <= SS3

refinement: (SS3 || M4) <= SS4

refinement: (SS4 || M0) <= S0

Figure 13: Inremental veri�ation.

d = 29 20 10 9 8 6 4

n = 5 0.080 0.097 0.191 0.169 0.172 0.151 0.205

monolithi 0.034 0.034 0.073 1.191 1.189 64.933 > 600

n = 6 0.102 0.133 0.231 0.228 0.238 0.238 0.294

monolithi 0.040 0.043 0.095 6.786 6.791 > 600 > 600

n = 8 0.225 0.349 0.516 0.515 0.540 0.600 0.582

monolithi 0.076 0.076 0.230 88.542 88.642 > 600 > 600

n = 12 0.830 1.414 1.802 1.895 1.831 2.079 2.181

monolithi 0.220 0.223 0.843 > 600 > 600 > 600 > 600

n = 20 4.990 9.739 12.377 11.923 12.041 12.438 12.764

monolithi 1.038 1.030 4.523 > 600 > 600 > 600 > 600

n = 30 22.053 45.709 55.728 55.345 55.112 54.702 56.164

monolithi 3.791 3.778 17.652 > 600 > 600 > 600 om

Table 1: Results of the veri�ation experiments. Timings

in seonds. om = 4GB.

rec[(i+1)%N]!

rec[1]?
rec[(i+1)%N]!

rec[1]?
w[e]!

w[e]!

rec[1]?

rec[1]?

rec[1]?

e:id_t

e>0 && e<=i

e>0 && e<=i

x<=i*D

e:id_t

e:id_t

w[e]!

x=0,
y=0 y<=N*d

x=0,
y=0

e>0 && e<=ix>=i*d

y>N*d

Figure 14: The sub-spei�ation SSi that abstrats the
the sub-system M1|| . . . ||Mi.

the system, reated as a template, and that thus it is

modelled only one and then instantiated with di�erent

indies.

Here the sub-spei�ation SSi, as shown in Fig. 14,

is a model for a sequene of nodes M1|| . . . ||Mi (see

Fig. 11). Informally SSi is expressed as following, noting
that the relevant ports for this subsystem are re[1℄?,

w[e℄! (0<e<=i) and re[i+1℄!: Under the assumption

that a) the time elapsing between two re[1℄? is more

than N ∗ d time-units and b) there are no two onseu-

tive re[1℄?without a re[i+1℄!, then it is guaranteed

that re[i+1℄! will our within [i ∗ d, i ∗D] time units

from re[1℄?.

We have onduted experiments for di�erent values

of N , the number of nodes in the ring, and d the min-

imum time delay before passing on the token. We have

�xed the upper time limit for passing the token to 30.

22

The results of the experiments are shown in Table 1.

The table shows the time used to hek a given property

measured in seonds. For eah value of N we have two

rows. The top one represents the veri�ation of all the

steps in the ompositional veri�ation while the bottom

row represents the veri�ation of one monolithi prop-

erty. If the veri�ation took more than 600 seonds we

stopped it. We had one instane where Edar ran out of

memory whih is indiated by om. The time results that

are written in italis are the ases in whih the omposi-

tional veri�ation gave a negative result. In these ases

one needs to propose more preise sub-spei�ations in

order to make the ompositional veri�ation work. The

monolithi method gives positive results in these ases.

In the ase where d is lose toD there is very little in-

terleaving in the system and the veri�ation of the mono-

lithi property is the fastest. The smaller the d value the
more interleaving appears in the system and in these

omplex ases the ompositional veri�ation shows its

strength. The ases where the ompositional veri�ation

beats the monolithi are marked by boldfae.

11 Appliation 2: A Parking System

In this example we use real-time spei�ations in an as-

sume/guarantee approah, to build a system that de-

sribes the behavior of a ar park. Suh a system has

been studied in [55℄, with a top to bottom approah that

builds a spei�ation of the system from a list of require-

ments written in natural language, and then projets

these spei�ations on an arhiteture of omponents.

We use a di�erent approah that starts with a set of

requirements for these omponents and then builds the

formal spei�ations of these omponents, whih an be

omposed together in order to build the spei�ation of

the system. We also made the example muh more realis-

ti by adding timing requirements. This also requires to

hek global timing properties, whih we perform using

the Edar toolset.

The system is omposed of four omponents: Entry-

Gate, ExitGate, Controller, and Payment. It is parame-

terized by the maximum number Nmax of ars that an

enter the parking. We will also onsider the environment

of the system that onsists in the ar users. However, we

adopt an abstrat view of the system in whih ars are

not individualized, but we remember the number of ars

that have entered.

The omponents are de�ned by the following require-

ments that desribe either guarantees on the outputs of

the omponents or assumptions on the inputs provided

by the environment. For eah gate:

EntryGate

ExitGate

Controller

Payment

vehicle_enter

entry_ticket_issue

entry_gate_open

entry_gate_close

request_enter

vehicle_exit

exit_gate_open

exit_gate_close
exit_ticket_insert

exit_ticket_issue

entry_ticket_insert

coin_insert

Figure 15: Parking omponents and ommuniation

hannels

Req. 1 A vehile shall not pass when the gate is losed.

Req. 2 One a vehile has passed the gate, another ve-

hile annot pass before the gate loses.

Req. 3 After the gate has opened, it does not open before

it loses. After the gate has losed, it does not

lose before it opens.

Req. 4 The gate must lose within 5 seonds after a ve-

hile passes, and only then.

Spei� to EntryGate:

Req. 5 An entry tiket is issued only when the entry gate

is losed.

Req. 6 The gate must open within 5 seonds after an

entry tiket has been issued, and only then.

Spei� to ExitGate:

Req. 7 An exit tiket is inserted only when the entry

gate is losed.

Req. 8 The gate must open within 5 seonds after an

exit tiket has been inserted, and only then.

For Controller:

Req. 9 A vehile does not exit when the parking is

empty.

Req. 10 A vehile does not enter before reeiving an entry

tiket.

Req. 11 If the parking is not full, an entry tiket is issued

within 10 seonds after being requested.

For Payment:

Req. 12 A user inserts a oin every time an entry tiket

is inserted, and only then.

Req. 13 A user may insert an entry tiket only initially

or after an exit tiket has been issued.

Req. 14 The payment mahine issues an exit tiket

within 40 seonds one the entry tiket and the

oin have been inserted.

The ommuniations between the omponents are

desribed in Fig. 15.

23

Number of vehiles 10 102 103 104 105

Consisteny <0.1s <0.1s 0.4s 4.4s 45.4s

Compatibility <0.1s <0.1s 0.2s 1.6s 18s

Table 2: Edar performane in analyzing SubSys

11.1 The entry gate subsystem

We begin with the spei�ations of the two omponents

EntryGate and Controller. It forms a subsystem that has

three inputs (vehile_enter, vehile_exit, and

request_enter) and three outputs (entry_gate_open,

entry_gate_lose, and entry_tiket_issue). Eah re-

quirement is translated into a timed spei�ation. Reqs. 1-

2 are assumptions on the EntryGate inputs. They are

translated into spei�ations EnA1 (Fig. 16(a)) and EnA2

(Fig. 16(b)), respetively. Req. 5 is translated into a

spei�ation EnA3 similar to EnA1. Conversely, Reqs. 3-

4-6 orrespond to guarantees on the outputs of Entry-

Gate, and they are translated into spei�ations EnG1

(Fig. 16()), EnG2 (Fig. 16(d)), and EnG3 (Fig. 16(e)),

respetively.

The Controller is responsible for the delivery of the

entry tiket. We impose an additional requirement on

the Controller that should be su�ient to satisfy the as-

sumption in Req. 5:

Req. 15 Request to enter are ignored for 6 seonds after

a vehile has entered.

Then, Reqs. 9-10-11-15 de�ned the spei�ation CtAG,

shown in Fig. 16, that enompasses both assumptions

and guarantees in the same model, using a universal

state to model inompatible inputs.

We hek with Edar the onsisteny of this subsys-

tem and the ompatibility between its two omponents.

The EntryGate omponent is de�ned using the weaken

operator between the assumptions and the guarantees:

EnA := (EnA1 ∧ EnA2 ∧ EnA3)

EnG := (EnG1 ∧ EnG2 ∧ EnG3)

EntryGate := EnG >> EnA

The subsystem is onstruted using the parallel ompo-

sition.

SubSys := EntryGate ‖ CtAG

We provide a minimal environment that is build from

the assumptions EnA1, EnA2, and the one desribed in

Req. 9, translated into EnvCt1, suh that Env := EnA1∧
EnA2∧EnvCt1. We hek that SubSys ‖ Env is onsistent
and that no universal state is reahed. This proves that

the omponents are ompatible, and that the assump-

tions Req. 5 and Req. 11 are both satis�ed by the other

omponent. Benhmarking results are given in Table 2

for di�erent number of vehiles in the ar park. They

show that these tests sale well.

entry_ticket_insert!

entry_ticket_issue?

m++

entry_ticket_insert!

entry_ticket_issue?no_ticket

m>1

tickets

m−−

m−−

m==1

m++

Figure 18: EnvEnTikets: Spei�ation of the environ-

ment w.r.t. entry tikets.

11.2 Parking system orretness

We pursue our study by inluding the omponents Ex-

itGate and Payment. For ExitGate, Reqs. 1-2-7 yield the

spei�ations of the assumptions ExA1, ExA2, and ExA3,

and Reqs. 3-4-8 yield the guarantees ExG1, ExG2, and

ExG3, in the same manner as were onstruted the ones

of EntryGate. For Payment, Reqs. 12-13-14 yield the spe-

i�ations PayA1 (Fig. 17(a)), PayA2 (Fig. 17(b)), and

PayG1 (Fig. 17()), respetively. Then the system under

study is the following:

ExA := (ExA1 ∧ ExA2 ∧ ExA3)

ExG := (ExG1 ∧ ExG2 ∧ ExG3)

ExitGate := ExG >> ExA

Payment := PayG >> (PayA1 ∧ PayA2)

Sys := EntryGate ‖ ExitGate ‖ Payment ‖ CtAG

This system is however underspei�ed, sine no for-

mal relation exists between the tikets that are issued

and the ones that are inserted. Therefore we add the

following requirements:

Req. 16 An entry tiket is inserted only if it has been

issued before.

Req. 17 An exit tiket is inserted only if it has been issued

before.

These yield two spei�ations, EnvEnTikets in Fig. 18,

and similarly EnvExTikets, that are added in onjun-

tion to the environment, along with the assumptions of

ExitGate and Payment.

We want to hek the orretness of the parking sys-

tem, expressed by the property that no ar an exit with-

out paying. Therefore we design a spei�ation SpeExp

(Fig. 19(a)), that inreases its revenue expetation e eah
time a vehile enter, and dereases it when the payment

is reeived. If all the vehiles exit when the number n
of vehiles in the parking is stritly greater than e, that
means that the payment has been reeived previously.

We hek by re�nement that the system satisfy this prop-

erty:

Sys ‖ Env ≤ SpeExp

Benhmarking results for this property are listed in the

�rst row of Table 3.

24

vehicle_enter!

entry_gate_close?

entry_gate_open?

open

entry_ticket_issue!

entry_ticket_issue!

closed

a) EnA1

vehicle_enter!

entry_gate_close?

idle

entry_ticket_issue! entry_ticket_issue!

car_in_gate

b) EnA2

entry_gate_open!
closed

entry_gate_close!

open

) EnG1

entry_gate_close! entry_gate_close!

entry_gate_open!

entry_ticket_issue?

closed_2

open

entry_gate_close!

entry_open <= 5

entry_open=0

closed_1

d) EnG2

entry_gate_open!

vehicle_enter?

entry_gate_open!

entry_gate_open!

open_1

closed

entry_gate_close!

entry_close <= T_close_entry

entry_close=0

open_2

e) EnG3

vehicle_enter?

vehicle_exit?

request_enter?

vehicle_exit? vehicle_exit?

vehicle_enter? vehicle_exit?

deliver=0

vehicle_enter? entry_ticket_issue!

request_enter?

vehicle_exit?

vehicle_exit?

n==0

deliver <= 10

n==0

n==0

Universal

idle

issued

requestedn−−

n++,deliver=0

n−−

n−−

n==Nmax or
deliver < 6

n>0

n>0

n>0

n<Nmax and
deliver >= 6

f) CtAG

Figure 16: Timed spei�ations of the entry gate subsystem (all models are input-enabled and therefore assume that

self-loops exist for input ations that are not represented).

entry_ticket_insert!

coin_insert!

waiting_payment

entry_ticket_insert!

waiting_ticket

a) PayA1

entry_ticket_insert!

exit_ticket_issue?

available

coin_insert! coin_insert!

in_use

b) PayA2

entry_ticket_insert?

coin_insert?exit_ticket_issue!

idle

payment_inserted

exit_ticket=0

ticket_inserted

exit_ticket <= T_ticket_exit

) PayG

Figure 17: Timed spei�ations of payment mahine (self-loops with input ations are not represented).

25

vehicle_exit!

n++,e++

coin_insert!

vehicle_enter!

e>−Nmax

n>0 and e<n

e−−

n<Nmax and e<Nmax

n−−

a) SpeExp

vehicle_exit!

vehicle_enter!

vehicle_enter!

Idle Entered

vehicle_exit!

time=0

time <= Tmax

b) SpeTime

Figure 19: System properties.

request_enter!

entry_gate_open?vehicle_enter!

idle

open
entry_gate_close? car_entry <= 30

car_entry=0

requested

Figure 20: EnvEnCar: Spei�ation of the environment

w.r.t. entry ars.

11.3 Timing onstraints

In the last part of our study we perform a timing analysis

of the system. Inherent timing onstraints of the ompo-

nents have already been taken into aount in the guar-

antees (EnG2,EnG3,ExG2,ExG3,CtAG, and PayG). We would

like to hek a global timing onstraint: the time between

a vehile entering the parking and a vehile exiting is

bounded by some maximum delay. For this study we need

to preisely speify the timing behaviors of the environ-

ment, that is to say the vehile drivers, whih lead us to

add or modify some requirements:

Req. 18 A user inserts a oin within 30 seonds every

time an entry tiket is inserted, and only then.

Req. 19 One an entry tiket is issued, the user inserts

it in the payment mahine within 1 hour.

Req. 20 One an exit tiket is issued, the user inserts it

at the exit gate within 5 minutes.

Req. 21 When a gate opens, a vehile passes within 30

seonds.

Consequently, to satisfy Reqs. 18-19-20 we modify the

spei�ations of the environment PayA1, EnvEnTikets,

and EnvExTikets. To satisfy Req. 21 we add two addi-

tional spei�ations to the environment, EnvEnCar (dis-

played in Fig. 20), and similarly EnvExCar, that desribe

the behavior of the users. We hek the ompatibility of

this new environment that is su�ient to satisfy the as-

sumptions of EntryGate and ExitGate, sine no universal

state is reahed in Sys ‖ Env.
Finally the timing property is translated into a spe-

i�ation SpeTime displayed in Fig. 19(b). The property

is heked with the re�nement:

Sys ‖ Env ≤ SpeTime

Number of vehiles 2 4 8 16 32

SpeExp <0.1s 0.2s 1.5s 11.5s 90s

Compatibility 0.2s 0.6s 3.5s 17.3s 72.5s

SpeTime 0.2s 1.5s 19.5s 94s 327s

Table 3: Edar performanes in analyzing Sys

We prove that the property is satis�ed for Tmax = 4100.
Table 3 presents the benhmarking results for the anal-

ysis of Sys.

12 Conlusion and future work

This paper presents a omplete game-based interfae

theory for timed systems. Our theory implements all the

good operations for a spei�ation theory, namely: on-

sisteny, re�nement, strutural/logial omposition, and

quotient. Our results have been implemented in the E-

dar toolset that is an extension of the well-established

Uppaal model heker. Our tool has been applied to se-

rious size ase studies (while most of existing frameworks

remain at the theory level).

Our researh an be pursued in various diretions,

one of them being to ontinue intensive testing of E-

dar and give a omplete haraterization of problems

for whih our theory is indeed pratially useful. Target-

ing large size systems will ertainly require to improve

the e�ieny of the algorithms implemented in Edar.

As an example, we postulate that state-spae redution

through bisimulation quotient should onsiderably im-

prove the pruning algorithm. Still, in the ontext of E-

dar, developing a user-feedbak mehanism is halleng-

ing, but needed to broaden our user base.

Another promising diretion is the one of robust spe-

i�ation theories. One says that an implementation is

robust with respet to a given spei�ation if it remains

an implementation of the spei�ation under small per-

turbations of time. Studying robustness is ruial as it is

generally not possible to implement a spei�ation with-

out onsidering perturbations introdued by the exter-

nal environment [62℄ (e.g. hardware onstraints). We re-

ently investigated this problem for our timed interfaes

for a �xed value of the perturbation [46℄ and we proposed

a tehnique to evaluate the maximal perturbation under

whih an implementation remains robust [60℄. In the fu-

ture we want to fully integrate this theory in Edar.

We will also investigate the problem of stuttering and

hidden ations, whih we plan to do via an exploitation

of imperfet information games [18℄.

Finally, it would be worth extending our theory to

systems with both timed and stohasti aspets, hene

proposing the �rst spei�ation theory for probabilisti

timed automata [43,44℄. In a series of reent work [35,

16℄, we have proposed spei�ation theories for stohas-

26

ti systems. We postulate that suh spei�ation theo-

ries an be ombined with our timed interfaes one, just

like timed automata have been ombined with Markov

deision proesses.

Aknowledgements. Work partially supported by VKR Cen-

tre of Exellene � MT-LAB, the European projet COMBEST,

and ARC (TP)I.

Referenes

1. Tesnim Abdellatif, Jaques Combaz, and Joseph Sifakis.

Model-based implementation of real-time appliations.

In EMSOFT, pages 229�238. ACM, 2010.

2. B. Thomas Adler, Lua de Alfaro, Leandro Dias da Silva,

Maro Faella, Axel Legay, Vishwanath Raman, and Pri-

tam Roy. Ti: A tool for interfae ompatibility and

omposition. In CAV, volume 4144 of LNCS, pages 59�

62. Springer, 2006.

3. Rajeev Alur and David L. Dill. A theory of timed au-

tomata. Theor. Comput. Si., 126(2):183�235, 1994.

4. Rajeev Alur, Thomas A. Henzinger, Orna Kupferman,

and Moshe Y. Vardi. Alternating re�nement relations.

In CONCUR, volume 1466 of LNCS. Springer, 1998.

5. Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul

Pettersson, and Wang Yi. Times: A tool for shedu-

lability analysis and ode generation of real-time sys-

tems. In FORMATS, volume 2791 of LNCS, pages 60�72.

Springer, 2003.

6. Adam Antonik, Mihael Huth, Kim G. Larsen, Ulrik Ny-

man, and Andrzej Wasowski. Modal and mixed spei�-

ations: key deision problems and their omplexities.

Mathematial Strutures in Computer Siene, 20(1):75�

103, 2010.

7. Christel Baier and Joost-Pieter Katoen. Priniples of

Model Cheking. The MIT Press, 2008.

8. Sebastian S. Bauer, Line Juhl, Kim G. Larsen, Axel

Legay, and Jirí Srba. Extending modal transition sys-

tems with strutured labels. Mathematial Strutures in

Computer Siene, 22(4):581�617, 2012.

9. Gerd Behrmann, Agnès Cougnard, Alexandre David,

Emmanuel Fleury, Kim G. Larsen, and Didier Lime.

Uppaal-tiga: Time for playing games! In CAV, volume

4590 of LNCS. Springer, 2007.

10. Gerd Behrmann, Alexandre David, Kim Guldstrand

Larsen, Paul Pettersson, and Wang Yi. Developing up-

paal over 15 years. Softw., Prat. Exper., 41(2):133�142,

2011.

11. Jasper Berendsen and Frits W. Vaandrager. Composi-

tional abstration in real-time model heking. In FOR-

MATS, volume 5215 of LNCS. Springer, 2008.

12. Nathalie Bertrand, Axel Legay, Sophie Pinhinat, and

Jean-Baptiste Ralet. A ompositional approah on

modal spei�ations for timed systems. In ICFEM,

LNCS. Springer, 2009.

13. T. Bourke and A. Sowmya. Automatially transforming

and relating uppaal models of embedded systems. In

EMSOFT, pages 59�68. ACM, 2008.

14. Timothy Bourke, Alexandre David, Kim G. Larsen, Axel

Legay, Didier Lime, Ulrik Nyman, and Andrzej Wa-

sowski. New results on timed spei�ations. In WADT,

volume 7137 of LNCS, pages 175�192. Springer, 2010.

15. Peter Bulyhev, Thomas Chatain, Alexandre David, and

Kim G. Larsen. E�ient on-the-�y algorithm for hek-

ing alternating timed simulation. In FORMATS, volume

5813 of LNCS, pages 73�87. Springer, 2009.

16. Benoit Caillaud, Benoit Delahaye, Kim G. Larsen, Axel

Legay, Mikkel L. Pedersen, and Andrzej W¡sowski. Com-

positional design methodology with onstraint Markov

hains. In QEST, pages 123�132. IEEE, 2010.

17. Frank Cassez, Alexandre David, Emmanuel Fleury,

Kim G. Larsen, and Didier Lime. E�ient on-the-�y al-

gorithms for the analysis of timed games. In CONCUR,

2005.

18. Frank Cassez, Alexandre David, Kim Guldstrand

Larsen, Didier Lime, and Jean-François Raskin. Timed

ontrol with observation based and stuttering invariant

strategies. In ATVA, volume 4762 of LNCS, pages 192�

206. Springer, 2007.

19. Karlis Cerans, Jens Chr. Godskesen, and Kim Guld-

strand Larsen. Timed modal spei�ation - theory and

tools. In CAV, pages 253�267. Springer-Verlag, 1993.

20. Arindam Chakabarti, Lua de Alfaro, Thomas A. Hen-

zinger, and Marielle I. A. Stoelinga. Resoure interfaes.

In R. Alur and I. Lee, editors, EMSOFT 03: 3rd Intl.

Workshop on Embedded Software, LNCS. Springer, 2003.

21. Arindam Chakrabarti, Lua de Alfaro, Thomas A. Hen-

zinger, and Freddy Y. C. Mang. Synhronous and bidi-

retional omponent interfaes. In CAV, volume 2404 of

LNCS, pages 414�427, 2002.

22. Edmund M. Clarke, Orna Grumberg, and Doron A.

Peled. Model Cheking. The MIT Press, 1999.

23. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Ny-

man, and Andrzej Wasowski. Methodologies for spei�-

ation of real-time systems using timed i/o automata. In

FMCO, volume 6286 of LNCS, pages 290�310. Springer,

2009.

24. Alexandre David, Kim G. Larsen, Axel Legay, Ulrik Ny-

man, and Andrzej Wasowski. Timed i/o automata: a

omplete spei�ation theory for real-time systems. In

HSCC, pages 91�100. ACM ACM, 2010.

25. Alexandre David, Kim Guldstrand Larsen, Axel Legay,

Mikael H. Møller, Ulrik Nyman, Anders P. Ravn, Arne

Skou, and Andrzej Wasowski. Compositional veri�ation

of real-time systems using edar. STTT, 14(6):703�720,

2012.

26. Alexandre David, Kim Guldstrand Larsen, Axel Legay,

Ulrik Nyman, and Andrzej Wasowski. Edar: An en-

vironment for ompositional design and analysis of real

time systems. In ATVA, volume 6252 of LNCS, pages

365�370. Springer, 2010.

27. Lua de Alfaro. Game models for open systems. In Pro-

eedings of the International Symposium on Veri�ation

(Theory in Pratie), volume 2772 of LNCS. Springer,

2003.

28. Lua de Alfaro, Leandro Dias da Silva, Maro Faella,

Axel Legay, Pritam Roy, and Maria Sorea. Soiable in-

terfaes. In FroCos, volume 3717 of LNCS, pages 81�105.

Springer, 2005.

29. Lua de Alfaro and Maro Faella. An aelerated al-

gorithm for 3-olor parity games with an appliation to

27

timed games. In CAV, volume 4590 of LNCS. Springer,

2007.

30. Lua de Alfaro, Maro Faella, Thomas A. Henzinger, Ru-

pak Majumdar, and Mariëlle Stoelinga. The element of

surprise in timed games. In CONCUR, volume 2761 of

LNCS, pages 142�156. Springer, 2003.

31. Lua de Alfaro and Thomas A. Henzinger. Interfae

automata. In FSE, pages 109�120, Vienna, Austria,

September 2001. ACM Press.

32. Lua de Alfaro and Thomas A. Henzinger. Interfae-

based design. In In Engineering Theories of Software In-

tensive Systems, Marktoberdorf Summer Shool. Kluwer

Aademi Publishers, 2004.

33. Lua de Alfaro, Thomas A. Henzinger, and Rupak Ma-

jumdar. Symboli algorithms for in�nite-state games.

In CONCUR, volume 2154 of LNCS, pages 536�550.

Springer, 2001.

34. Lua de Alfaro, Thomas A. Henzinger, and Marielle I. A.

Stoelinga. Timed interfaes. In EMSOFT, volume 2491

of LNCS, pages 108�122. Springer, 2002.

35. Benoît Delahaye, Joost-Pieter Katoen, Kim G. Larsen,

Axel Legay, Mikkel L. Pedersen, Falak Sher, and Andrzej

Wasowski. Abstrat Probabilisti Automata. In VMCAI,

pages 324�339. Springer, 2011.

36. José Luiz Fiadeiro and Luis Filipe Andrade. Interon-

neting objets via ontrats. In Pro. of the 38th In-

ternational Conferene on Tehnology of Objet-Oriented

Languages and Systems, Components for Mobile Com-

puting (TOOLS'38), pages 182�183. IEEE Computer So-

iety, 2001.

37. José Luiz Fiadeiro and T. S. E. Maibaum. Interonnet-

ing formalisms: Supporting modularity, reuse and inre-

mentality. In Pro. of the 3rd ACM SIGSOFT Sym-

posium on Foundations of Software Engineering (SIG-

SOFT FSE'95), pages 72�80. ACM, 1995.

38. Stephen J. Garland and Nany A. Lynh. The IOA

language and toolset: Support for designing, analyz-

ing, and building distributed systems. Tehnial report,

Massahusetts Institute of Tehnology, Cambridge, MA,

1998.

39. Thomas A. Henzinger, Zohar Manna, and Amir Pnueli.

Timed transition systems. In REX Workshop, volume

600 of LNCS, pages 226�251. Springer, 1991.

40. Thomas A. Henzinger and Slobodan Mati. An interfae

algebra for real-time omponents. In IEEE Real Time

Tehnology and Appliations Symposium, pages 253�266.

IEEE Computer Soiety, 2006.

41. Thomas A. Henzinger and Joseph Sifakis. The embedded

systems design hallenge. In FM, volume 4085 of LNCS,

pages 1�15. Springer, 2006.

42. Dilsun Kirli Kaynar, Nany A. Lynh, Roberto Segala,

and Frits W. Vaandrager. The Theory of Timed I/O

Automata, Seond Edition. Synthesis Letures on Dis-

tributed Computing Theory. Morgan & Claypool Pub-

lishers, 2010.

43. M. Z. Kwiatkowska, G. Norman, J. Sproston, and

F. Wang. Symboli model heking for probabilisti

timed automata. In FORMATS, volume 3253 of LNCS,

pages 293�308. Springer, 2004.

44. M. Z. Kwiatkowska, G. Norman, J. Sproston, and

F. Wang. Symboli model heking for probabilisti

timed automata. Inf. Comput., 205(7):1027�1077, 2007.

45. Kim G. Larsen. Modal spei�ations. In Joseph Sifakis,

editor, Automati Veri�ation Methods for Finite State

Systems, volume 407 of LNCS, pages 232�246. Springer,

1989.

46. Kim G. Larsen, Axel Legay, Louis-Marie Traonouez, and

Andrzej Wasowski. Robust spei�ation of real time

omponents. In FORMATS 2011, volume 6919 of LNCS.

Springer, 2011.

47. Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski.

Modal I/O automata for interfae and produt line the-

ories. In Roo De Niola, editor, ESOP, volume 4421 of

LNCS, pages 64�79. Springer, 2007.

48. Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-

Cheking for Real-Time Systems. In Pro. of Fundamen-

tals of Computation Theory, volume 965 of LNCS, pages

62�88, August 1995.

49. Nany Lynh. I/O automata: A model for disrete event

systems. In Annual Conferene on Information Sienes

and Systems, pages 29�38, Prineton University, Prine-

ton, N.J., 1988.

50. Nany A. Lynh and Mark R. Tuttle. An intro-

dution to input/output automata. Tehnial Report

MIT/LCS/TM-373, The MIT Press, November 1988.

51. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the

synthesis of disrete ontrollers for timed systems (an

extended abstrat). In STACS, pages 229�242, 1995.

52. Robin Milner. Communiation and Conurreny. Pren-

tie Hall, 1988.

53. Roo De Niola and Roberto Segala. A proess algebrai

view of input/output automata. Theoretial Computer

Siene, 138, 1995.

54. Amalinda Post, Johen Hoenike, and Andreas Podelski.

rt-inonsisteny: A new property for real-time require-

ments. In FASE, volume 6603 of LNCS, pages 34�49.

Springer, 2011.

55. J.-B. Ralet, B. Caillaud, D. Nikovi, R. Passerone,

A. Sangiovanni-Vinentelli, T. Henzinger, and K. G.

Larsen. Contrats for the design of embedded sys-

tems part i: Methodology and use ases. Tehnial re-

port. Submitted, http://www.irisa.fr/distribom/

benveniste/pub/ProIEEE_ontratsPart1.pdf.

56. Eugene W. Stark, Rane Cleavland, and Sott A.

Smolka. A proess-algebrai language for probabilisti

I/O automata. In CONCUR, LNCS, pages 189�2003.

Springer, 2003.

57. Jun Sun, Yang Liu, and Jin Song Dong. Model heking

sp revisited: Introduing a proess analysis toolkit. In

ISoLA, volume 17 of Communiations in Computer and

Information Siene, pages 307�322. Springer, 2008.

58. Jun Sun, Yang Liu, Jin Song Dong, Yan Liu, Ling Shi,

and Andre Etienne. Modeling and verifying hierarhial

real-time systems using stateful timed sp. ACM Trans.

Softw. Eng. Methodol., 2012. Aepted.

59. Alfred Tarski. A lattie-theoretial �xpoint theorem and

its appliations. Pai� Journal of Mathematis, 5:285�

309, 1955.

60. Louis-Marie Traonouez. A parametri ounterexample

re�nement approah for robust timed spei�ations. In

FIT, volume 87 of EPTCS, pages 17�33, 2012.

61. Frits W. Vaandrager. On the relationship between pro-

ess algebra and input/output automata. In LICS, pages

387�398, 1991.

28

62. Martin Wulf, Laurent Doyen, Niolas Markey, and Jean-

François Raskin. Robust safety of timed automata.

Formal Methods in System Design, 33:45�84, Deember

2008.

63. Wang Yi. Real-time behaviour of asynhronous agents.

In Jos C. M. Baeten and Jan Willem Klop, editors, CON-

CUR, volume 458 of LNCS, pages 502�520. Springer,

1990.

29

