
HAL Id: hal-01087778
https://hal.science/hal-01087778

Submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Synthesis for Real Time Systems
Kim Guldstrand Larsen, Axel Legay, Louis-Marie Traonouez, Andrzej

Wąsowski

To cite this version:
Kim Guldstrand Larsen, Axel Legay, Louis-Marie Traonouez, Andrzej Wąsowski. Robust Synthesis for
Real Time Systems. Theoretical Computer Science, 2014, 515, pp.96 - 122. �10.1016/j.tcs.2013.08.015�.
�hal-01087778�

https://hal.science/hal-01087778
https://hal.archives-ouvertes.fr

Robust Synthesis for Real Time SystemsI

Kim G. Larsena, Axel Legayb, Louis-Marie Traonouezb,∗, Andrzej Wąsowskic

aAalborg University, Science Selma Lagerlöfs Vej 300, 9220 Aalborg East, Denmark
bIRISA / INRIA Rennes, 263 Avenue du Général Leclerc, 35042 Rennes Cedex, France
cIT University of Copenhagen, Rued Langgaards Vej 7, 2300 Copenhagen S, Denmark

Abstract

Specification theories for real-time systems allow reasoning about interfaces and
their implementation models, using a set of operators that includes satisfaction,
refinement, logical and parallel composition. To make such theories applicable
throughout the entire design process from an abstract specification to an imple-
mentation, we need to reason about the possibility to effectively implement the
theoretical specifications on physical systems, despite their limited precision. In
the literature, this implementation problem has been linked to the robustness
problem that analyzes the consequences of introducing small perturbations into
formal models.

We address this problem of robust implementations in timed specification
theories. We first consider a fixed perturbation and study the robustness of
timed specifications with respect to the operators of the theory. To this end we
synthesize robust strategies in timed games. Finally, we consider the parametric
robustness problem and propose a counter-example refinement heuristic for
computing safe perturbation values.

Keywords: Stepwise refinement, Timed I/O automata, Timed games,
Specification theory, Robustness

1. Introduction

Component-based design is a software development paradigm well established
in the software engineering industry. In component-based design, larger systems
are built from smaller modules that depend on each other in well delimited ways
described by interfaces. The use of explicit interfaces encourages creation of
robust and reusable components.

IThe research presented in this paper has been supported by MT-LAB, a VKR Centre of
Excellence for the Modeling of Information Technology.
∗Corresponding author. Phone: +33 299847456. Fax: +33 299847171.
Email addresses: kgl@cs.aau.dk (Kim G. Larsen), axel.legay@inria.fr (Axel Legay),

louis-marie.traonouez@inria.fr (Louis-Marie Traonouez), wasowski@itu.dk (Andrzej
Wąsowski)

Preprint submitted to Theoretical Computer Science January 18, 2014

Practice of component-based design is supported by a range of standardized
middleware platforms such as CORBA [1], OSGi [2] or WSDL [3]. These technolo-
gies are usually not expressive enough to handle intricate correctness properties of
safety-critical concurrent real-time software—a domain where component-based
design would be particularly instrumental to address the strict legal require-
ments for certification [4]. To aid these needs, researchers work on developing
trustworthy rigorous methods for component-oriented design. In the field of
concurrency verification this includes compositional design (specification theo-
ries, stepwise-refinement) and compositional model checking. Akin to algebraic
specifications, specification theories provide a language for specifying component
interfaces together with operators for combining them, such as parallel (struc-
tural) composition or conjunction (logical composition), along with algorithms
for verification based on refinement checking.

For real-time systems, timed automata [5] are the classical specification
language. Designs specified as timed automata are traditionally validated using
model checking against correctness properties expressed in a suitable timed
temporal logic [6]. Mature modeling and model-checking tools exist, such as
Uppaal [7], that implement this technique and have been applied to numerous
industrial applications [8, 9, 10, 11, 12].

In [13], we have proposed a specification theory for real time systems based
on timed automata. A specification theory uses refinement checking instead of
model-checking to support compositionality of designs and proofs from ground
up. We build on an input/output extension of timed automata model to specify
both models and properties. The set of state transitions of the timed systems is
partitioned between inputs, representing actions of the environment, and outputs
that represent the behavior of the component. The theory is equipped with a
game-based semantic. The two players, Input and Output, compete in order to
achieve a winning objective—for instance safety or reachability. These semantics
are used to define the operations of the theory, including satisfaction (can a
specification be implemented), refinement (how two specifications compare),
logical composition (superposition of two specifications), structural composition
(combining smaller components into larger ones), and quotient (synthesizing a
component in a large design).

Let us illustrate the main concepts with an example. Figure 1a displays
a specification of a coffee machine that receives an input coin? and outputs
either coffee (cof!) or tea (tea!). It can be composed with the specification of a
researcher in Fig. 1b by synchronizing input with output labeled with the same
channel name (cof and tea). In Fig. 1b the researcher specifies that if tea arrives
after 15 time units, she enters into an error state lu. We can say that if there
exists an environment for these two specifications that avoids reaching this error
state then the two specifications are compatible [14]. In this particular example,
such an environment simply needs to provide coin? sufficiently often. In general
deciding existence of safe environments is reduced to establishing whether there
exists a winning strategy in the underlying timed safety game.

Besides compatibility checking, the theory of [13] is equipped with a con-
sistency check to decide whether a specification can indeed be implemented.

2

tea!

coin?

tea!

cof! coin?

Idle

Serving

y=0y>=4

y<=6

y>=2

(a) Coffee machine

cof?

tea?

tea?

cof?

pub!

tea? cof?

pub!

pub!

cof? tea?

x<=8
C

x<=4

x>15

lu

T

Idle

tea?

x=0

x=0

x=0

x>=2

x<=15

x=0

x>=4

(b) Researcher

Figure 1: Timed specifications with timed I/O automata

Unfortunately, this check does not take limitations and imprecision of the physical
world into account. This is best explained with an example.

Consider the refined specification of the cof-

cof!

choice?

coin?

abort!

coin?

coin?

Idle

y<=6

Wait

Serving

choice?

y=0

choice?

y>6

y>=4

Figure 2: Non robust specifi-
cation of a coffee machine

fee machine in Fig. 2. This machine first pro-
poses to make a choice of a drink, then awaits
a coin, and, after receiving the payment, deliv-
ers the coffee. If the payment does not arrive
within six time units, the machine aborts the
drink selection and returns to the initial state,
awaiting a new choice of a beverage. Already in
this simple example it is quite hard to see that
implementing a component satisfying this spec-
ification is not possible due to a subtle mistake.
Suppose that the environment makes the choice?
action in the Idle location, waits six time units,
and then provides the coin? action. In such ex-
ecution the system reaches the location Serving
with clock y at value 6. The invariant y ≤ 6 in the Serving location requires now
that any valid implementation must deliver the coffee (cof!) immediately, in zero
time units. No physical system would permit this, so we say that this state is
not robustly consistent.

The above example can be fixed easily by adding another reset to clock y,
when the coin? message is received. It is probably the intended behaviour of
the specification that the serving should take six time units from the insertion
of the coin, and not from the choice of the drink. After all the machine does
not control how much time passes between the choice of the drink and the
payment. An alternative simple fix is to allow the timeout abort transition to
be taken earlier — for example after four time units. This would guarantee at
least two time units for brewing the coffee. Despite both corrections being quite
simple, it is clear that subtle timing mistakes like this one are very difficult to
spot. Finding such errors in specifications is even harder in larger designs as

3

non-robust timing can emerge in the compositions of multiple specifications, as a
result of combing behaviours that themselves are robust. Examples exist where
independent components appear compatible, but their compatibility requires
infinitely precise execution platform or an infinitely fast environment.

The timing precision errors in specifications are not handled in any way in
idealized interface theories such as [13, 15]. These and similar issues have led to
a definition of the timing robustness problem that checks if a model can admit
some timing perturbations while preserving a desired property. The robustness
problem has been studied in various works for timed automata. Providing a
solution to this problem in the setting of timed I/O specifications is the objective
of this paper:

• We propose a notion of implementation of a specification that is robust with
respect to a given perturbation in the delay before an action. The concept
of robust implementation is lifted to a robust satisfaction relation that
takes variations of timed behaviors into account when checking whether
the implementation matches the requirement of the specification.

• Classical compositional design operators are lifted to the robust setting.
One of the remarkable features of this new theory is that this does not
require modifications to the definitions of the operators themselves and
that all the good properties of a specification theory (including independent
implementability) are maintained—the only effort requires is reproving the
properties of the operators in a non-idealized setting.

• We propose a consistency check for robust satisfaction. This new check
relies on an extension of the classical timed I/O game to the robust setting.
In [16], Chatterjee et al. show that problems on robust timed games
can be reduced to classical problems on an extended timed game. We
modify the original construction of [16] to take the duality of inputs and
outputs into account. Then, we show how our new game can be used to
decide consistency in a robust setting as well as to synthesize a robust
implementation from a given specification.

• Finally, we present a technique that computes the greatest admissible
perturbations for the robustness problems. We apply a counterexample
abstraction refinement-like technique that analyzes parametrically the
results of loosing timed games in order to refine the value of the perturbation.
This technique and the different constructions presented in the paper are
implemented in a prototype tool. We demonstrate the performance of
the refinement heuristic against the baseline of a simple binary search
technique for finding an optimal precision value.

To the best of our knowledge, this paper presents the first theory for stepwise
refinement and specification of timed systems in a robust manner. While the
presentation is restricted to the theory of [13], we believe that our methods work
for any timed specifications. Our experience with industrial projects shows that
such realistic design theories are of clear interest [17, 18, 19].

4

Organization of the paper. We proceed by summarizing the state of the art in
Section 2 and introducing the background on Timed Specifications (Section 3).
In Section 4 we introduce methods for solving robust time games that arise
in our specification theory. These methods are used in Sections 5 to reason
about consistency, conjunction, parallel composition, in order to synthesize
robust implementations of real time components. In Section 6 we develop a
counterexample refinement technique to measure the maximum imprecision
allowed by the specifications. Finally in Section 7 we present a prototype that
implements some of the functionalities of the tool ECDAR, extended with the
robustness concepts presented in this paper. We demonstrate this tool on three
experiments.

2. State of The Art

In the literature the robustness problem has been considered for timed
automata using logical formulas as specifications (and neglecting compositional
design operators). The robust semantics for timed automata with clock drifts has
been introduced by Puri [20]. The problem has been linked to the implementation
problem in [21], which introduced the first semantics that modeled the hardware
on which the automaton is executed. In this work, the authors proposed a robust
semantics of Timed Automata called AASAP semantics (for “Almost As Soon
As Possible”), that enlarges the guards of an automaton by a delay ∆. This
work has been extended in [22] to propose another robust semantics with both
clock drifts and guard enlargement. Extending [20] they solve the robust safety
problem, defined as the existence of a non-null value for the imprecision. They
show that in terms of robust safety the semantics with clock drifts is just as
expressive as the semantics with delay perturbation. We extend the work of
[21, 22] by considering compositional design operators, stepwise-refinement, and
reasoning about open systems (only closed system composition were considered
so far).

We solve games for consistency and compatibility using a robust controller
synthesis technique inspired by Chatterjee et al. [16], who provide synthesis
techniques for robust strategies in games with parity objectives. Driven by the
fact that consistency and compatibility are safety games, we restrict ourselves to
safety objectives, but we extend [16] by allowing negative perturbation of delays.

Our paper is also similar to the works in [23, 24] that show how one can
synthesize from any timed automaton an equivalent robust automaton. We also
synthesize robust components, but we start from the specification and we apply
a controller synthesis methods to the specification, rather than modifying an
existing implementation.

Robustness is defined in [22] as the existence of a positive value for the
imprecision of a timed automaton. The papers shows that this problem is
decidable, but it does not show how to synthesize the value. A bound on
the value is computed in [25]. Finally a quantitative analysis is performed in
[26] that computes the greatest admissible value for the perturbation, but the
method is restricted to timed automata without nested loops. We propose an

5

approximation technique that computes this value in our timed specifications
context, with no major restrictions on syntax of the specifications.

There is presently no alternative specification theory for timed systems with
support for robustness. A preliminary version of this paper has appeared in [27].
This version differs from the short version by including proofs of theorems, by
adding two entirely new sections presenting parametric methods for robustness
(Sections 6–7). The algorithms of [27] merely check whether a given specification
is robust with respect to a given timing precision parameter. The new methods
compute the maximum value of the precision for which the specification is
robustly consistent (or two specifications are robustly compatible). We also add
an experimental evaluation of the performance of the proposed methods.

3. Background on Timed I/O Specifications

We now recall the definition of Timed I/O specifications [13]. We use N for
the set of all natural numbers, R for the set of all real numbers, and R≥0 (resp.
R>0) for the non-negative (resp. strictly positive) subset of R. Rational numbers
are denoted by Q, and their subsets are denoted analogously. For x ∈ R≥0, let
bxc denote the integer part of x and 〈x〉 denote its fractional part. Given a
function f on a domain D and a subset C of D, we denote by f|C the restriction
of f to C.

3.1. Timed I/O Transitions Systems and Timed I/O Automata
In the framework of [13], specifications and their implementations are se-

mantically represented by Timed I/O Transition Systems (TIOTS) that are
nothing more than timed transition systems with input and output modalities
on transitions. Later we shall see that input represents the behaviors of the
environment in which a specification is used, while output represents behaviours
of the component itself.

3.1.1. Timed I/O Transitions Systems
Definition 1 A Timed I/O Transition System is a tuple S=(StS, s0,ΣS,→S),
where

• StS is an infinite set of states,

• s0∈StS is the initial state,

• ΣS = ΣSi] ΣSo is a finite set of actions partitioned into inputs ΣSi and
outputs ΣSo ,

• and →S : StS×(ΣS ∪ R≥0)×StS is a transition relation.

We write s a−→Ss′ when (s, a, s′) ∈→S, and use i?, o! and d to range over
inputs, outputs and R≥0, respectively.

In what follows, we assume that any TIOTS satisfies the following conditions:

6

• time determinism: whenever s d−→Ss′ and s d−→Ss′′ then s′ = s′′

• time reflexivity: s 0−→Ss for all s ∈ StS

• time additivity: for all s, s′′ ∈ StS and all d1, d2 ∈ R≥0 we have s d1+d2−−−−→Ss′′

iff s d1−→Ss′ and s′ d2−→Ss′′ for s′ ∈ StS

A run ρ of a TIOTS S from its state s1 is a sequence

s1
a1−→Ss2

a2−→S . . . sn−1
an−1−−−→Ssn

an−−→ . . .

such that for all 1 ≤ i ≤ n, si
ai−→Ssi+1 with ai ∈ ΣS ∪R≥0. We write Runs(s1, S)

for the set of runs of S starting in s1 and Runs(S) for Runs(s0, S). We write
States(ρ) for the set of states reached in ρ, and if ρ is finite then we denote the
last state occurring in ρ by last(ρ).

A TIOTS S is deterministic iff the action or delay fully determines the
next state: ∀a ∈ ΣS ∪ R≥0, whenever s

a−→Ss′ and s
a−→Ss′′, then s′ = s′′. It is

input-enabled iff there is an input transition for every input action in each of its
states s ∈ StS : ∀i?∈ΣSi .∃s′∈St

S . s
i?−→Ss′.

A TIOTS is output urgent iff whenever an output transition is possible, no
further delaying is allowed:

∀s, s′, s′′ ∈ StS if ∃o! ∈ ΣSo .∃d ≥ 0.s o!−→Ss′ and s d−→Ss′′ then d = 0

Output urgency captures predictability of timing of system’s reactions. Finally,
we say that a TIOTS S satisfies the independent progress condition iff it can
always evolve using delays and outputs, regardless whether the environment
collaborates providing inputs or not. This is not a limiting assumption—in real
systems, when the environment does not interact, the time is simply passing, and
so it should be possible in the models of systems. Formally, for each state s we
have either (∀d ≥ 0.∃s′s d−→Ss′) or (∃d ∈ R≥0.∃o! ∈ ΣSo .∃s′, s′′ ∈ StS . d−→Ss′ and
s′
o!−→Ss′′). The property guarantees that the environment cannot block progress

of time.

3.1.2. Timed I/O Automata
TIOTS are syntactically represented by Timed I/O Automata (TIOA). Let

Clk be a finite set of clocks. A clock valuation over Clk is a mapping Clk 7→ R≥0
(thus an element of RClk

≥0). Given a valuation u and d ∈ R≥0, we write u+d for
the valuation in which for each clock x∈Clk we have (u+d)(x) = u(x)+d. For
λ⊆Clk, we write u[λ] for a valuation agreeing with u on clocks in Clk \ λ, and
giving 0 for clocks in λ.

Let B(Clk) denote all clock constraints ϕ generated by the grammar ϕ ::=
x ≺ k | x−y ≺ k | ϕ∧ϕ, where k ∈ Q, x, y ∈ Clk and ≺∈ {<,≤, >,≥}. By
U(Clk) ⊂ B(Clk), we denote the set of constraints restricted to upper bounds
and without clock differences. For constraint ϕ∈B(Clk) and u∈RClk

≥0 , we write
u |= ϕ if u satisfies ϕ. If Z ⊆ RClk

≥0 , we write Z |= ϕ if u |= ϕ for all u ∈ Z.
We write JϕK to denote the set of valuations {u ∈ RClk

≥0 | u |= ϕ}. A subset

7

Z ⊆ RClk
≥0 is a zone if Z = JϕK for some ϕ ∈ B(Clk). Let Clk′ ⊂ Clk and

Z ⊆ RClk
≥0 be a zone. We define the projection of Z on the subset of clocks Clk′

as Z|Clk′ = {u′ ∈ RClk′
≥0 | ∃u ∈ Z.u′ = u|Clk′}.

Definition 2 A Timed I/O Automaton is a tuple A = (Loc, q0,Clk, E,Act, Inv),
where

• Loc is a finite set of locations,

• q0 ∈ Loc is the initial location,

• Clk is a finite set of clocks,

• E ⊆ Loc×Act× B(Clk)× 2Clk × Loc is a set of edges,

• Act = Acti]Acto is a finite set of actions, partitioned into inputs (Acti)
and outputs (Acto),

• Inv : Loc 7→ U(Clk) is a set of location invariants.

Without loss of generality we assume that the guards are satisfiable and that
the invariants are always satisfied by the incoming edges. Formally, let e =
(q, a, ϕ, λ, q′) ∈ E, we assume that JϕK 6= ∅ and that ∀u ∈ JϕK.u[λ] |= Inv(q′).

A universal location, denoted lu, in a TIOA accepts every input and can produce
every output at any time. Formally lu is such that, ∀a ∈ Act.∃(lu, a,>, ∅, lu) ∈ E,
where > is the clock constraints such that J>K = RClk

≥0 . We assume that
every TIOA contains a universal location, even if it is not drawn on the graph.
The universal location will be used to model an unpredictable behavior of a
component.

Example 1 Figure 1b on page 3 depicts an example of a TIOA that admits two
input actions cof? and tea?, and one output action pub!. Edges are labeled with
an action, a guard and a set of reset clocks. Edges with input action are drawn
with plain arrows, while Edges with output action are drawn with dashed arrows.
Location are labeled with a name and an invariant constraint. lu is the universal
location.

The semantics of a TIOA A=(Loc, q0,Clk, E,Act, Inv) is a TIOTS JAKsem =
(Loc×RClk

≥0 , (q0,0),Act,→), where 0 is a constant function mapping all clocks
to zero, and → is the largest transition relation generated by the following rules:

• Each edge (q, a, ϕ, λ, q′) ∈ E gives rise to (q, u) a−→(q′, u′) for each clock
valuation u ∈ RClk

≥0 such that u |= ϕ and u′ = u[λ].

• Each location q ∈ Loc with a valuation u ∈ RClk
≥0 gives rise to a transition

(q, u) d−→(q, u+ d) for each delay d ∈ R≥0 such that u+ d |= Inv(q).

8

Example 2 In the example of Fig. 1b a possible run starting from initial location
Idle is

(Idle, (0)) cof?−−→(C, (0)) 2.6−−→(C, (2.6)) pub!−−→(Idle, (0))

LetX be a set of states in JAKsem. For a ∈ Act the a-successors and a-predecessors
of X are defined respectively by:

Posta(X) = {(q′, u′) | ∃(q, u) ∈ X. (q, u) a−→(q′, u′)}
Preda(X) = {(q, u) | ∃(q′, u′) ∈ X. (q, u) a−→(q′, u′)}

The timed successors and predecessors of X are respectively defined by:

X↗= {(q, u+ d) | (q, u) ∈ X, d ∈ R≥0}
X↙= {(q, u− d) | (q, u) ∈ X, d ∈ R≥0}

The safe timed predecessors of X with respect to a set of unsafe states Y are
the set of timed predecessors of X such that the states of Y are avoided along
the path:

Predt(X,Y) = {(q, u) | ∃d ∈ R≥0. (q, u)
d−→(q, u+ d) and (q, u+ d) ∈ X

and ∀d′ ∈ [0, d]. (q, u+ d′) 6∈ Y }

These operations can be implemented symbolically on zones using Difference
Bound Matrices (DBMs) [28].

3.1.3. Symbolic abstractions
Since TIOTSs are infinite size they cannot be directly manipulated by com-

putations. Usually symbolic representations, such as region graphs [5] or zone
graphs, are used as data structures that finitely represent semantics of TIOAs.
A symbolic state is a pair (q, Z) that combines all concrete states (q, u) such
that u ∈ Z, where q ∈ Loc and Z ⊆ RClk

≥0 . Usually symbolic states are formed
combining locations with special kinds of sets of valuations: regions and zones.
Recall that zones are sets expressed by clock constraints in TIOAs. We now
define regions.

Let M be the integer constant with the greatest absolute value among
constants appearing in the guards and invariants of a TIOA1. A clock region is
an equivalence class of the relation ∼ on clock valuations such that u∼v iff the
following conditions hold:

• ∀x∈Clk, either bu(x)c = bv(x)c, or u(x) > M and v(x) > M ,

• ∀x, y∈Clk, ∀k ∈ [−M,M], u(x)− u(y)≤k iff v(x)− v(y) ≤ k,

• ∀x∈Clk if u(x) ≤M then 〈u(x)〉 = 0 iff 〈v(x)〉 = 0,

1The region graph of an automaton with rational constants can be built by scaling all
constants of the automaton to work only with integers.

9

We write r↗ for the region that is the unique direct time successor of region r,
if such exists. Formally, r↗ is the regions such that ∀u ∈ r.∃d > 0.(u+ d ∈ r↗
∧ ∀d′ < d.u+ d′ ∈ r ∪ r↗). For a clock valuation u, we write [u] to denote the
unique region containing u.

The region graph of a TIOA A is a triple GA = (RA, r0,−→), where RA =
{(q, [u]) | (q, u) ∈ StJAKsem} is the set of symbolic states, r0 = (q0, [0]) is the
initial symbolic state, and −→ ⊆ RA× (Act∪{τ})×RA, such that (q, r) τ−→(q, r↗)
iff r↗|= Inv(q), and (q, r) a−→(q′, r′) iff (q, u) a−→(q′, u′) for some u ∈ r and u′ ∈ r′.

The zone graph G′A = (ZA, X0,−→) is defined analogously, but using zones
instead of regions. It provides a coarser abstraction, in which only discrete
transitions are observed. There, ZA is the set of reachable symbolic states:
(q, Z) ∈ ZA if Z is a zone of RClk

≥0 . The initial symbolic state is defined by
X0 = {(q0,0↗∩JInv(q0)K)}. For action a ∈ Act there is an edge (q, Z) a−→(q′, Z ′)
iff (q, a, ϕ, λ, q′) ∈ E with Z ′ = ((Z ∩ JϕK)[λ])↗∩JInv(q′)K.

3.2. Basics of the Timed Specification Theory
In [13], timed specifications and implementations are both represented by

TIOAs satisfying additional conditions:

Definition 3 A specification S is a TIOA whose semantics JSKsem is determin-
istic and input-enabled. An implementation I is a specification whose semantics
JIKsem additionally satisfies the output urgency and the independent progress
conditions.

Example 3 The TIOA in Figure 1b is
a specification of a researcher. It accepts
either coffee (cof) or tea in order to pro-
duce publications (pub). If tea is served
after a too long period the researcher
falls into an error state, represented by
the universal state lu.
An implementation of this specification is
presented in Figure 3. It is output urgent
since it produces pub exactly 3 time units
after receiving cof and 6 time units after
receiving tea. The location Blocked is an
implementation of the universal location
that never produces pub.

tea?

tea?

pub!

cof?

cof?

tea? cof?

pub!

tea?cof?

x<=3

x>16

x>=3

Blocked

x<=6

Idle

tea?

x=0

x=0

x=0

x>=6
x=0

x<=16

Figure 3: Implementation for a re-
searcher

In specification theories, a refinement relation plays a central role. It allows
to compare specifications, and to relate implementations to specifications. In [13],
as well as in [14, 29, 30], refinement is defined in the style of alternating (timed)
simulation:

10

qx ≤ 10 q1

q2 q3

a!
x ≥ 4

c? x < 8

c? x ≥ 8

b!
x ≤ 9

(a) Specification S

qx ≤ 6 q1
a!

x ≥ 5

c?

(b) Specification T

qx ≤ 6 q1

q2 q3

a!
x ≥ 5

c?

b!
x ≤ 9

(c) Specification U

Figure 4: Refinement between specifications: T ≤ S, but U � S

Definition 4 (Refinement) An alternating timed simulation between two TIOTS
T =(StT, t0,Σ,→T) and S=(StS, s0,Σ,→S) is a relation R ⊆ StT × StS such that
(t0, s0) ∈ R and for every (t, s) ∈ R

• If ∃i? ∈ Σi.∃s′ ∈ StS .s i?−→Ss′, then ∃t′ ∈ StT .t i?−→T t′ and (t′, s′) ∈ R.

• If ∃o! ∈ Σo.∃t′ ∈ StT .t o!−→T t′, then ∃s′ ∈ StS .s o!−→Ss′ and (t′, s′) ∈ R.

• If ∃d ≥ 0.∃t′ ∈ StT .t d−→T t′, then ∃s′ ∈ StS .s d−→Ss′ and (t′, s′) ∈ R.

We write T ≤ S if there exists an alternating simulation between T and S. For
two TIOAs T and S, we say that T refines S, written T ≤S, iff JT Ksem ≤ JSKsem.

Example 4 We illustrate the concept of refinement between three simple spec-
ifications presented in Figure 4. T refines S, because it can only delay up to
x = 6 and performs a! between [5, 6]. However, U does not refine S (and S does
not refine U), because when c? is received at x = 0, the states (q, 0) from S and
(q2, 0) from U must be in relation, which is not possible because (q2, 0) b!−→U (q3, 0)
is not allowed at (q, 0) by S.

Definition 5 (Satisfaction) An implementation I satisfies a specification S,
denoted I sat S, iff JIKsem ≤ JSKsem. We write JSKmod for the set of all
implementations of S:

JSKmod = {I | I sat S and I is an implementation}

Definition 6 A specification S is consistent iff there exists an implementation
I such that I sat S.

The reader might find it surprising that in a robust specification theory we
refrain from adjusting the refinement to account for imprecision of implementa-
tions when comparing specifications. Our basic assumption is that specifications
are precise mathematical objects that are not susceptible to imprecision of exe-
cution. In contrary, implementations can behave imprecisely when executed, so

11

in Section 4 we will introduce an extension of Def. 5 that takes this into account.
It is a fortunate property of Def. 4 that we do not need to modify it in order to
reason about robust implementations (Property 3 in Sect. 4).

In [13], we have reduced refinement checking to finding winning strategies in
timed games. In the reminder of this section, we recall the definition of such
games and show how they can be used to check consistency. Timed games also
underly other operations such as conjunction, composition, and quotient [13],
which will be illustrated in Sect. 5.

3.3. Timed Games for Timed I/O Specifications
TIOAs are interpreted as two-player real-time games between the output

player (the component) and the input player (the environment). The input
player plays with actions in Acti and the output player plays with actions in
Acto. A strategy for a player is a function that defines her move at any given
time (either delaying or playing a controllable action). The delay chosen by one
player is implicitely defined by the time until a controllable action is chosen. A
strategy is called memoryless if the next move depends solely on the current
state. We only consider memoryless strategies, as these suffice for safety games
[31]. For simplicity, we only define strategies for the output player (i.e. output is
the verifier). Definitions for the input player are obtained symmetrically.

Definition 7 A memoryless strategy fo for the output player on the TIOA A
is a partial function StJAKsem 7→ Acto ∪ {delay}, such that

• Whenever fo(s) ∈ Acto then s fo(s)−−−→s′ for some s′.

• Whenever fo(s) = delay then s
d−→s′′ for some d > 0 and state s′′, and

fo(s′′) = delay.

The game proceeds as a concurrent game between the two players, each proposing
its own strategy. The restricted behavior of the game defines the outcome of the
strategies.

Definition 8 Let A be a TIOA, fo and fi be two strategies over A for the output
and input player, respectively, and s be a state of JAKsem. Outcome(s, fo, fi) is
the subset of Runs(s, JAKsem) defined inductively by:

• s ∈ Outcome(s, fo, fi),

• if ρ ∈ Outcome(s, fo, fi), then ρ′ = ρ
a−→s′ ∈ Outcome(s, fo, fi) if ρ′ ∈

Runs(s, JAKsem) and one the following conditions hold:
1. a ∈ Acto and fo(last(ρ)) = a,
2. a ∈ Acti and fi(last(ρ)) = a,
3. a ∈ R≥0 and ∀d ∈ [0, a[.∃s′′. last(ρ) d−→s′′

and ∀k ∈ {o, i} fk(s′′) = delay.

• ρ ∈ Outcome(s, fo, fi) if ρ is infinite and all its finite prefixes are in
Outcome(s, fo, fi).

12

tea!

coin?

tea!

coin?

cof! coin?

Idle

y<=0

Serving

Blocked

y=0y>=4

y=0

y<=6

y>=2

Figure 5: Consistent specification with error states

A winning condition for a player in the TIOA A is a subset of Runs(JAKsem).
This player is then called the verifier, whereas the other player tries to prevent
her from winning, and therefore is called the spoiler. In safety games the winning
condition is to avoid a set Bad ⊆ StJAKsem of “bad” states. Formally, the winning
condition for output is W o(Bad) = {ρ ∈ Runs(JAKsem) | States(ρ) ∩ Bad = ∅}.
A strategy fo is a winning strategy from state s if and only if, for all strategies
fi of input, Outcomeo(s, fo, fi) ⊆W o(Bad). On the contrary, a strategy fi for
input is a spoiling strategy of fo if and only if Outcome(s, fo, fi) 6⊆W o(Bad). A
state s is winning for output if there exists a winning strategy from s. The game
(A,W o(Bad)) is winning if and only if the initial state is winning. Solving this
game is decidable [32, 28, 13]. We only consider safety games in this paper, and
without lost of generality we assume these “bad” states are specified by a set
of entirely “bad” locations (in the sense that all states in which such a location
participates are bad).

Strategies in Timed Games as Operators on Timed Specifications. We sketch
how timed games can be used to establish consistency of a timed specification.

An immediate error occurs if the specification disallows progress of time
and output transitions in a given state—such a specification will break if the
environment does not send an input. For a specification S we define the set of
immediate error states errS ⊆ StJSKsem as:

errS=
{
s
∣∣ (∃d. s 6 d−→) and ∀d∀o!∀s′. s d−→s′ implies s′ 6 o!−−→

}
It follows that no immediate error states can occur in implementations, since
they verify independent progress. In [13] we show that S is consistent (see Def. 6)
iff there exists a winning strategy for output in the safety game (S,W o(errS)).

Consider the example specification of another coffee machine on Figure 5.
There is a unique reachable error state errS = {(Blocked, 0)}. Now let us take
a strategy for the output player, fo, such that fo((Serving, 4)) = coff!, and
∀y 6= 4.fo(Serving, y)) = delay. It can be translated into an implementation
of the coffee machine, in which tea is never served. Thus this specification is
consistent.

13

4. Robust Timed I/O Specifications

We now define a robust extension of our specification theory. An essential
requirement for an implementation is to be realizable on a physical hardware, but
this requires admitting small imprecisions characteristic for physical components
(computer hardware, sensors and actuators). The requirement of realizability
has already been linked to the robustness problem in [21] in the context of
model checking. In specification theories the small deficiencies of hardware
can be reflected in a strengthened satisfaction relation, which introduces small
perturbations to the timing of implementation actions, before they are checked
against the requirements of a specification. This ensures that the implementation
satisfies the specification even if its behavior is perturbed.

We first formalize the concept of perturbation. Let the constraint ϕ ∈ B(X)
be a guard over the set of clocks X. For all ∆ ∈ Q≥0, the enlarged guard dϕe∆
is constructed according to the following rules:

• Any term x ≺ k of ϕ with ≺∈{<,≤} is replaced by x ≺ k+∆

• Any term x � k of ϕ with �∈{>,≥} is replaced by x � k−∆

Similarly, the restricted guard bϕc∆ is using the two following rules:

• Any term x ≺ k of ϕ with ≺∈{<,≤} is replaced by x ≺ k−∆

• Any term x � k of ϕ with �∈{>,≥} is replaced by x � k+∆.

Notice that for a for a clock valuation u and a guard ϕ, we have that u |= ϕ
implies u |= dϕe∆, and u |= bϕc∆ implies u |= ϕ, and bdϕe∆c∆ = dbϕc∆e∆ = ϕ.

4.1. Perturbed Implementation and Robust Timed I/O Specifications.
We lift the perturbation to implementation TIOAs. Given a jitter ∆, the

perturbation means a ∆-enlargement of invariants and of output edge guards.
Guards on the input edges are restricted by ∆:

Definition 9 For an implementation I=(Loc, q0,Clk, E,Act, Inv) and ∆∈Q≥0,
the ∆-perturbation of I is the TIOA I∆ = (Loc, q0,Clk, E′,Act, Inv′), such that:

• Every edge (q, o!, ϕ, λ, q′)∈E is replaced by (q, o!, dϕe∆, λ, q′) ∈ E′,

• Every edge (q, i?, ϕ, λ, q′)∈E is replaced by (q, i?, bϕc∆, λ, q′) ∈ E′,

• ∀q ∈ Loc. Inv′(q) = dInv(q)e∆,

• ∀q ∈ Loc.∀i?∈Acti there exists and edge (q, i?, ϕu, ∅, lu)∈E′ with

ϕu = ¬

 ∨
(q,i?,ϕ,λ,q′)∈E

bϕc∆

14

q

x ≤ 10

q1

q2

q3

lu

o!
x ≥ 10

i? x ≥ 8

i?
x < 8

(a) Implementation I

q

x ≤ 11

q1

q2

q3

lu

o!
x ≥ 9

i? x ≥ 9

i?
x < 7

i?
7 ≤ x < 9

(b) I1, the ∆-perturbation of I

Figure 6: Illustration of the ∆-perturbation of an implementation I by ∆ = 1.

I∆ is not necessarily action deterministic, as output guards are enlarged.
However it is input-enabled, since by construction (last case in the previous
definition), any input not accepted after restricting input guards is redirected to
the universal location lu. Also I0 equals I. An illustration of this transformation
is presented in Figure 6.

In essence, we weaken the constraints on output edges, and strengthen
the constraints on input edges. This is consistent with the game semantics
of specifications: perturbation makes the game harder to win for the verifier.
Since the gaps created by strengthening input guards are closed by edges to the
universal location, the implementation becomes less predictable. If an input
arrives close to the deadline, the environment cannot be certain it will be handled
precisely as specified. Enlargement of output guards has a similar effect. The
environment of the specification has to be ready that outputs will arrive slightly
after the deadlines.

Such considerations are out of place in classical robustness theories for model
checking, but are crucial when moving to models, where input and output
transitions are distinguished. For example, in [21] the authors propose a robust
semantics for timed automata. Their maximal progress assumption is equivalent
to the output urgency condition of our implementations. However, in [21] both
input and output guards are increased, which is suitable for the one-player
setting, but incompatible with the contravariant nature of two-player games.
Such enlargement would not be monotonic with respect to the alternating
refinement (Def. 4), while the perturbation of Def. 9 is monotonic.

We are now ready to define our notion of robust satisfaction:

Definition 10 An implementation I robustly satisfies a specification S for a
given delay ∆ ∈ Q≥0, denoted I sat∆ S, iff I∆ ≤ S. We write JSK∆mod for the
set of all ∆-robust implementations of S, such that

JSK∆mod = {I | I sat∆ S ∧ I is an implementation}

Property 1 (Monotonicity) Let I be an implementation and 0 ≤ ∆1 ≤ ∆2.
Then:

I ≤ I∆1 ≤ I∆2

15

Proof 1 (Property 1) First, observe that for any clock valuation u and guard
ϕ, if u |= dϕe∆1 then u |= dϕe∆2 , and conversely if u |= bϕc∆2 then u |= bϕc∆1 .
We now check the refinement between JI∆1Ksem and JI∆2Ksem. Let R = {(s1, s2) ∈
StJI∆1Ksem × StJI∆2Ksem | s1 = (q, u) = s2} be a candidate alternating simulation
relation. We prove by co-induction that R satisfies Def. 4. Consider any state
(q, u) such that (q, u)R(q, u).

1. If (q, u) d−→I1(q, u+ d) for some d ∈ R≥0,
then (q, u) d−→I2(q, u+ d), since u+ d |= dInv(q)e∆1 ⇒ u+ d |= dInv(q)e∆2 .

2. If (q, u) o!−→I1(q′, u′), then (q, u) o!−→I2(q′, u′), since u |= dϕe∆1 ⇒ u |= dϕe∆2

(where ϕ is the guard of the edge that fires o!), and, similarly, u′ |=
dInv(q′)e∆1 ⇒ u′ |= dInv(q′)e∆2 .

3. If (q, u) i?−→I2(q′, u′) then (q, u) i?−→I1(q′, u′), since u |= bϕc∆2 ⇒ u |= bϕc∆1

(where ϕ is the guard of the edge that fires i?). Besides u |= ϕ and therefore
we assume that u′ |= Inv(q′), which implies that u′ |= dInv(q′)e∆1 .

Clearly, both transition systems JI∆1Ksem and JI∆2Ksem share the same initial
state s0 and s0Rs0, which concludes the proof. The argument that I ≤ I∆1

proceeds similarly with the same witness relationR. �

In addition, we obtain these properties by transitivity of alternating simula-
tion:

Property 2 Let S be a specification and ∆1 ≤ ∆2. Then:

JSK∆2
mod ⊆ JSK∆1

mod ⊆ JSKmod

Property 3 Let S and T be specifications and 0≤∆. Then:

S≤T =⇒ JSK∆mod⊆JT K∆mod

The definition of robust satisfaction naturally induces a notion of robust
consistency (implementability):

Definition 11 Let S be a specification and ∆ ∈ Q>0, then S is ∆-robust
consistent iff there exists an implementation I such that I sat∆ S.

Like in the non-robust case, deciding consistency is reducible to solving games.
But now, we will need to make the games aware of the robustness conditions. In
the rest of this section, we propose a definition for such games. Then, in Section
5 we show how they can be used to perform classical operations on specifications.

Example 5 Figure 7 presents a ∆-perturbation of the researcher implementation
presented in Fig. 3. This implementation robustly satisfies the specification of
Fig. 1b for any ∆ ∈]0, 1]. However, for ∆ = 2 the following run is possible in
the perturbed implementation:

(Idle, (0)) cof?−−→ (C, (0)) 5−→ (C, (5))

but it cannot be matched by the specification because it exceeds the invariant of
the location corresponding to C in Fig. 1b.

16

cof?

tea?

tea?

tea?

cof?

cof? tea?cof?

tea?

pub! pub!

tea?cof?

x<=6+∆

Idle

x<=3+∆

x > 16-∆ &&
x < 16+∆

lu

C

Blocked

T

pub!

x=0x=0

x=0x=0

x>16+∆

x>=6-∆

x<=16-∆

x>=3-∆

Figure 7: ∆-perturbation of the researcher implementation.

4.2. Robust Timed Games for Timed I/O Specifications.
As we have seen timed specifications are interpreted as timed games. Solving

games is used to analyze and synthesize real-time components. Now that we
add imprecision to models, we need a notion of suitable games that can be used
to synthesize robust components. Therefore we extend timed games with ∆-
perturbations, and study the synthesis of robust timed strategies. Note that it is
not enough to restrict the specifications in order to synthesize robust components,
since the behaviors removed might still happen after the ∆-perturbation and
could lead to error states. However we propose a construction that encodes a
robust game into a classical timed game.

De Alfaro et al. show [31] that timed games can be solved using region
strategies, where the players only need to remember the sequence of locations and
clock regions, instead of the sequence of states used in Definition 7. Consequently
timed games can be solved through symbolic computations performed on symbolic
graphs (either the region graph or the zone graph) using for instance the algorithm
presented in [28]. The following definition formalizes the notion of a symbolic
strategies, which can be represented using symbolic states only:

Definition 12 A symbolic strategy F for the output player is a function Z 7→
Acto∪{delay}, where Z is a set of symbolic states, such that whenever F ((q, Z)) ∈
Acto then for each u ∈ Z we have (q, u) F ((q,Z))−−−−−→(q′, u′) for some (q′, u′). A
symbolic strategy for the input player is defined analogously.

A symbolic strategy F corresponds to the set of (non-symbolic explicit) strategies
f such that whenever F ((q, Z)) = a then f((q, u)) = a for some u∈Z.

Syntactic outcomes. The following construction represents the outcome of ap-
plying a symbolic strategy to a TIOA as another timed automaton. It decorates
a region graph with clocks, guards and invariants. We exploit the region graph
construction in the definition, but any stable partitioning of the state-space
could serve this purpose, and would be more efficient in practice.

17

Definition 13 Let A = (Loc, q0,Clk, E,Act, Inv) be a TIOA and F a symbolic
strategy over A for output. The TIOA AF = (RA, (q0, r0),Clk, Ê,Act∪{τ}, Înv)
representing the outcome of applying F to A is built by decorating the region
graph GA = (RA,−→G) of A. For each region r in location q, the incident edges
and the invariant are defined as follows:

• ((q, r), τ, r↗, ∅, (q, r↗)) ∈ Ê iff (q, r) τ−→G(q, r↗).

• For each edge (q, i?, ϕ, λ, q′)∈E, ((q, r), i?, ϕ, λ, (q′, r′)) ∈ Ê,
iff (q, r) i?−→G(q′, r′).

• If F ((q, r)) = delay then Înv(q, r) = Inv(q) ∧ (r ∨ r↗),

• If F ((q, r)) = o!, then Înv(q, r) = r, and for each edge (q, o!, ϕ, λ, q′)∈E,
((q, r), o!, ϕ, λ, (q′, r′)) ∈ Ê, iff (q, r) o!−→G(q′, r′).

In a robust timed game we seek strategies that remain winning after pertur-
bation by a delay ∆. The perturbation is defined on the syntactic outcome of
the strategy, by enlarging the guards for the actions of the verifier, so that each
action can happen within ∆ time of what the strategy originally prescribes. We
write dAeo∆ (respectively dAei∆) for the TIOA where the guards of the output
(resp. input) player and the invariants have been enlarged by ∆—so every guard
ϕ has been replaced by dϕe∆ and every invariant γ by dγe∆.

Definition 14 For a timed game (A,W o(Bad)), a symbolic strategy F for output
is ∆-robust winning if it is winning when the moves of output are perturbed, i.e.

Runs(JdAF eo∆Ksem) ⊆W o(Bad)

In the rest of this section we describe a technique to find these robust strategies
by modifying the original game automaton.

4.3. Robust game automaton
Robust timed games for a bounded delay can be reduced to classical timed

games by a syntactic transformation of the game automaton [16]. Below in
Def. 15, we propose an extended version of the construction presented in [16].
We admit both positive and negative perturbations of the player moves. In
the original construction of [16] only delayed executions of actions were treated,
but premature execution of communication may also lead to a safety violation
in a specification theory, so we have to account for them. Then we show, in
Theorem 1, how this construction can be used to find robust strategies as defined
in Def. 14.

Let (A,W o(Bad)) be a timed game, where A = (Loc, q0,Clk, E,Act, Inv) and
Bad ∈ Loc. We assume that all the constants in A are integers and we consider
a perturbation ∆ ∈ N.

18

q

Inv(q)

q1

q2

o!
ϕo, λo

i? ϕi, λi

(a) TIOA A

q

Inv(q)

qαe

y ≤ ∆

qβe

y ≤ ∆

q1

q2

Bad

τo!

ϕo, y := 0

i?
ϕi, λi

τo!

y = ∆, y := 0

o!, ϕo ∧ Inv(q), λo

o!
¬(ϕo ∧ Inv(q))

i?
ϕi, λi

o!
ϕo ∧ Inv(q), λo

o!
¬(ϕo ∧ Inv(q))

i?
ϕi, λi

(b) Robust game automaton A∆
rob

Figure 8: Illustration of the construction of the robust game automaton A∆
rob,

from an automaton A, with one location q and incident edges e = (q, o!, ϕo, λo, q1)
and (q, i?, ϕi, λi, q2).

Definition 15 The robust game automaton A∆
rob = (L̃oc, q0,Clk ∪ {y}, Ẽ, Ãct,

Ĩnv) is constructed from A, with an additional clock y, input actions Ãcti =
Acti∪Acto, and output actions Ãcto = {τo! | o! ∈ Acto}, according to the following
rules. For each location q ∈ Loc, and for each edge e = (q, o!, ϕ, λ, q′) ∈ E:

• q ∈ L̃oc, and two locations qαe and qβe are added in L̃oc. The invariant of q
is unchanged; the invariants of qαe and qβe are both y ≤ ∆.

• Each edge e′ = (q, i?, ϕ, λ, q′) ∈ E gives rise to the following edges in Ẽ:
(q, i?, ϕ, λ, q′), (qαe , i?, ϕ, λ, q′) and (qβe , i?, ϕ, λ, q′).

• e gives rise to the following edges in Ẽ: (q, τo!, ϕ, {y}, qαe),
(qαe , τo!, {y = ∆}, {y}, qβe), (qαe , o!, ϕ∧Inv(q), λ, q′), (qβe , o!, ϕ∧Inv(q), λ, q′),
(qαe , o!,¬(ϕ ∧ Inv(q)), ∅,Bad) and (qβe , o!,¬(ϕ ∧ Inv(q)), ∅,Bad)

Actions τo! are considered as silent actions, and consequently they will be concealed
from the runs of the automaton.

Technically speaking, since in a TIOA guards must be convex, the two transitions
to the Bad location (drawn in red on Fig. 8) may be split into several copies,
one for each convex guard in ¬ϕ.

The construction is illustrated in Fig. 8. Intuitively, whenever the output
player wants to fire a transition induced by an edge (q, o!, ϕo, λo, q1) in the
original automaton, from a state (q, u), after elapsing d time units, in the robust
automaton the input player is allowed to perturb the timing of this action.
Consider the following traces on the robust game automaton that explain the
construction.

19

1. Output proposes to play action o! after a delay d with the following sequence
of transitions:

(q, u) d−∆−−−→(q, u+ d−∆) τo!−−→(qαe , u+ d−∆) ∆−→(qαe , u+ d) τo!−−→(qβe , u+ d)

Note that this forbid output to play any action with a reaction time smaller
than ∆. More precisely, any strategy for output found in the robust game
automaton A∆

rob will effectively correspond to a non-zeno strategy in A.
2. Input can perturb this move with d′ ≤ ∆, such that action o! is performed

with either a smaller delay:

(qαe , u+ d−∆) d
′

−→(qαe , u+ d−∆ + d′) o!−→(q1, u+ d−∆ + d′)

or a greater delay:

(qβe , u+ d) d
′

−→(qβe , u+ d+ d′) o!−→(q1, u+ d+ d′)

3. In locations q,qαe and qβe , the original input edge (q, i?, ϕi, λi, q1) may still
be fired. So while the execution of the output o! is delayed control can be
intercepted by an arriving input.

4. If output reaches a state (qαe , u) or (qβe , u), with u 6|= ϕo, then input has
a winning strategy with one of the following moves: (qαe , u)

o!−→(Bad, u) or
(qβe , u)

o!−→(Bad, u), that denote the late firing of action o!.

Let F : RA∆
rob
7→ Ãcto ∪ {delay} be a winning symbolic strategy for output

in the robust game (A∆
rob,W

o(Bad)). We construct a strategy Frob : RA 7→
Acto ∪ {delay} for the game (A,W o(Bad)) in the following manner. For each
(q, r) ∈ RA,

• Frob((q, r)) = o! if there exists an edge e ∈ E and a region (qαe , r̃) ∈ RA∆
rob

,
such that r = r̃|Clk and F ((qαe , r̃)) = τo!.

• Otherwise Frob((q, r)) = delay.

Theorem 1 The robust game automaton is a sound construction to solve robust
timed games in the following sense: if F is a winning strategy for output in
the game (A∆

rob,W
o(Bad)), then Frob (constructed above) is a ∆-robust winning

strategy for output in the game (A,W o(Bad)).

Proof 2 (Theorem 1) We consider the automaton AFrob representing the
outcome of applying Frob to A. We must prove that Runs(JdAFrobeo∆Ksem) ⊆
W o(Bad), where W o(Bad) = {ρ ∈ Runs(JAKsem) | States(ρ) ∩ Bad = ∅}.

First, we map each run ρ̂ of dAFrobeo∆ to a run ρ of A. We use an induction
on the length of the runs. We assume that the property holds for runs of length
i: if ρ̂i is a run of Runs(JdAFrobeo∆Ksem) such that last(ρ̂i) = ((qi, ri), ui), then
there exists a run ρi in Runs(JAKsem), such that last(ρi) = (qi, ui).

Let ρ̂i+1 = ρ̂i
a−→((qi+1, ri+1), ui+1). We prove the inductive step, splitting

into cases:

20

1. If a ∈ Acti, then there exists an edge ê = ((qi, ri), a, ϕ, λ, (qi+1, ri+1)) in
AFrob . By construction, there also exists an edge e = (qi, a, ϕ, λ, qi+1) in
A. Since ê is firable, ui |= ϕ, and therefore e and ẽ are also firable.
So ρi+1 = ρi

a−→(qi+1, ui+1) is a run of A.
2. If a ∈ Acto, then there exists ê = ((qi, ri), a, ϕ, λ, (qi+1, ri+1)) in AFrob and

by construction, e = (qi, a, ϕ, λ, qi+1) in A. Since ê is firable, ui |= dϕe∆
and ui |= drie∆ that is the enlarged invariant of (qi, ri). By construction
also Frob((qi, ri)) = a, which implies that there exists r̃i such that ri = r̃i|Clk
and F ((qαi , r̃i)) = a. Since ui |= drie∆, ∃δ ∈ [-∆,∆]. ui + δ |= ri. Let ui =
(ui1, ui2, . . . , uin), then ui+δ = (ui1 +δ, ui2 +δ, . . . , uin+δ). By definition
of the projection this implies that ũiδ = (ui1 +δ, ui2 +δ, . . . , uin+δ,∆) ∈ r̃i.
Now in the automaton A∆

rob, F is a winning strategy, which implies that
∀δ′ ∈ [-∆,∆]. ũiδ + δ′ |= ϕ∧ Inv(qi) (otherwise input as a spoiling strategy).
This proves that ui |= ϕ ∧ Inv(qi) and therefore that e is firable. So
ρi+1 = ρi

a−→(qi+1, ui+1) is a run of A.
3. If a ∈ R≥0, either the strategy Frob prescribes that output can delay in-

finitely in ((qi, ri), ûi). This implies that Inv(qi) is unbounded, and that
proves immediately that ρi+1 ∈ Runs(JAKsem).
Otherwise output has a strategy that eventually performs an action. This is
represented by the following sequence of edges in AFrob : (qi, ri)

τ−→(qi, ri1)
τ−→(qi, ri2) . . . (qi, rin)

o!−→(q′i, r′i). We consider that a is the maximum delay
firable from ρ̂i, thus ρ̂i+1 = ρ̂i

a1−→((qi, ri1), ui + a1)
τ−→((qi, ri2), ui + a1)

a2−→
((qi, ri2), ui + a1 + a2)

τ−→ . . . ((qi, rin), ui + a) o!−→((q′i, r′i), u′i), such that a =∑n
j=1 aj . Then ui + a |= drine∆. and as in the previous case we can prove

that ui + a |= ϕ ∧ Inv(qi). This proves that ρi+1 ∈ Runs(JAKsem).
We now prove that all the states in dAFrobeo∆ are safe, by mapping the

runs of AFrob with the ones of A∆
rob. We use another induction on the length

on the run. Let assume that ρ̂i ∈ Runs(JdAFrobeo∆Ksem) is mapped to a run
ρ̃i ∈ Runs(JA∆

robKsem), such that if last(ρ̂i) = ((qi, ri), ui), then last(ρ̃i) = (qi, ũi),
ui = ũi|Clk, and (qi, ũi) is a winning state for the strategy F .

1. Either in ((qi, ri), ui) the strategy Frob allows delaying infinitely, and con-
sequently the strategy F allows delaying infinitely in A∆

rob without reach-
ing an unsafe state. For any delay d ∈ R≥0, all the input actions i?
firable from a state ((qi, r′i), ui + d) are also firable in (qi, ũi + d) since
the guards are the same. Therefore, ((qi, r′i), ui + d) i?−→((qi+1, ri+1), ui+1),
and (qi, ũi + d) i?−→(qi+1, ũi+1). Additionally, (qi+1, ũi+1) is also a winning
state, since it is an outcome of the strategy F , and ũi+1 = ui+1, since the
same clocks are reset. This proves the induction hypothesis

2. Otherwise, output has a strategy that eventually performs an action o! after
a delay a. Let ρ̂i+1 = ρ̂i

a−→((qi, r′i), ui+a)
o!−→((qi+1, ri+1), ui+1) (concealing

τ transitions). This implies that there exists an edge e ∈ A that fires o! in
qi+1, the following edges exists in A∆

rob: (qi, τo!, ϕ, λ∪{y}, qαie), (qi, τo!, {y =
∆}, {y}, qβie), (qαie , o!, {y ≤ ∆}, {y}, qi+1) and (qβie , o!, {y ≤ ∆}, {y}, qi+1).
Since o! is firable in ((qi, r′i), ûi + a), this means that Frob((qi, r′i)) = o!
and ui + a |= dr′ie∆. Then by construction of Frob, F (qαie , r̃

′
i) = τo!, and

21

q0

x ≤ 2

q1

x ≤ 2

q2
a! b!

(a) Specification S

q0

x ≤ 1

q1

x ≤ 1

q2
a!

x ≥ 1
b!

x ≥ 1

(b) Implementation I

Figure 9: Specification with 1−robust implementation, but with no robust
strategy in the robust game automaton.

there exists b ∈ R≥0 s.t. (qi, ũi)
b−→(qi, ũi + b) (concealing τo! transitions),

and ũi + b ∈ r̃′i. Additionally, ∀δ ∈ [-∆,∆].(qi, ũi)
b+δ−−→(qi, ũi + b+ δ) o!−→.

This is in particular the case for b + δ = a since a ∈ dr′ie∆. Therefore
(qi, ũi)

a−→ o!−→(qi+1, ũi+1), and (qi+1, ũi+1) is winning since it is an outcome
of F , and ũi+1 = ui+1, since the same clocks are reset. To finish the
induction step, the same argument as in the first case is used to demonstrate
that any input action firable from ((qi, ri), ui) after some delay d is also
firable from (qi, ũi). �

This construction shall serve as a tool for deciding robust consistency, synthe-
sizing a robust implementation, and other operations of the specification theory
with robustness which are detailed in next section.

Remark on completeness. The robust game automaton is not a complete tech-
nique to solve robust timed games. Indeed, our notion of robustness introduces
perturbations on the syntax of the automaton, whereas the robust game automa-
ton modifies the semantics of the game. Therefore there exist specifications that
can be robustly implemented, although they will be judged as non robust using
the robust game automaton construction. For instance, the specification S in
Fig. 9a is 1-robust consistent and it can be robustly implemented with the imple-
mentation I in Fig. 9b (the ∆-perturbation I1 corresponds to the same TIOA
as S). But for ∆ = 1 no robust strategy exists in the robust game automaton.
Indeed, since clock x is not reset by the edge from q0 to q1, the following run is
possible in the semantics of I1: (q0, 0) 2−→I(q0, 2) a!−→I(q1, 2) b!−→I(q2, 2). Therefore
in this run action b! must happen immediately. This is not robust according to
the robust game automaton, as it cannot be perturbed.

5. Robust Consistency andRobust Compatibility

5.1. Robust Consistency
We now provide a method to decide the ∆-robust consistency of a specification

and synthesize robust implementations by solving a robust timed safety game,
in which the output player must avoid a set of immediate error states. From
there, the computation of a robust strategy described in the previous section
provides a method to synthesize an implementation of the specification that is
robust with respect to outputs enlargement.

22

To account for input restrictions, we increase the set of error states errS .
Intuitively a specification is ∆-robust with respect to input i?, if between
enabling of any two i? edges at least 2∆ time passes, during which the reaction
to i? is unspecified. So, if the two actions trigger ∆-too-late and ∆-too-early
(respectively), there is no risk that the reaction is resolved non-deterministically
in the specification.

In our input-enabled setup, lack of reaction is modeled using transitions to
the universal (unpredictable) state. Formally, we say that ∆-robust specifications
should admit ∆-latency of inputs. A state (q, u) satisfies the ∆-latency condition
for inputs, iff for each edge e = (q, i?, ϕ, c, q′), where q′ 6= lu and e is enabled in
(q, u) we have:

∀d ∈ [0, 2∆].∀e′ = (q, i?, ϕ, c, q′′)
if e′ 6= e and (q, u) d−→(q, u+ d) and e′ is enabled in (q, u+ d) then q′′ = lu

Definition 16 For a specification S and ∆ ∈ R≥0, the set errS∆ of error states
for ∆-robust consistency is such that (q, u) ∈ errS∆ iff one the following conditions
is verified:

• Violates independent progress:

(∃d ∈ R≥0. (q, u) 6
d−→) and (∀d.∀o!. (q, u) d−→(q, u+ d)⇒ (q, u+ d) 6 o!−→)

• Violates ∆-latency of inputs: ∃e = (q, i?, ϕ, c, q′), with q′ 6= lu, enabled
in (q, u), such that ∃d ∈ [0, 2∆].(q, u) d−→(q, u+ d) and ∃e′ = (q, i?, ϕ, c, q′′)
enabled in (q, u+ d), with e′ 6= e and q′′ 6= lu.

Observe that errS ⊆ errS∆, because the error condition with robustness is weaker
than in the classical case (cf. page 13).

The ∆-robust consistency game (S,W o(errS∆)) can be solved using the con-
struction of Definition 15. This synthesizes a robust strategy F and its syntactic
outcome SF . Then we build the robust implementation IF by applying the
following transformation to SF :

• When we apply a ∆-perturbation on IF , a state ((q, r), u) can be reached
even if u 6∈ r ∨ r↗. However due to the region partitioning, the inputs
edges available in IF might not be firable from r ∨ r↗. Then, in order
to enforce the robust satisfaction relation between (IF)∆ and S, we add
additional input edges to IF : for each location (q, r) in IF , for each edge
e = ((q, r), i?, ϕ, λ, (q∗, r∗)) (with q∗ 6= lu), and for each location (q′, r′)
that can be reach from (q, r) by a sequence of τ transitions, we add an
edge e′ = ((q′, r′), i?, ϕ, λ, (q∗, r∗)).

• To support restriction of input guards in (IF)∆, we replaced in IF all guards
ϕ of edges e = ((q, r), i?, ϕ, λ, (q′, r′)) with q′ 6= lu by their enlargement
dϕe∆. Guards on edges to the lu location are adjusted in order to maintain
action determinism and input-enableness.

23

Note that this construction adds many input edges to the implementation, out
of which many are never enabled. This simplifies the construction and the proof
of correctness. In practice, to efficiently synthesize implementations, coarser
abstractions like zones should be used that do not include τ transitions, thus
avoiding the multiplication of input edges.

Theorem 2 Let S be a specification. If F is a robust winning strategy in the
∆-robust consistency game, then IF sat∆ S and S is ∆-robust consistent.

Proof 3 (Theorem 2) S is ∆-robust consistent if it admits a ∆-robust imple-
mentation. IF satisfies the independent progress condition since it corresponds
to the outcome of the strategy F that avoids the inconsistent states in S. For the
same reason it also verifies the ∆-latency condition, which permits to increase
guards on input edges without adding non-determinism. Since F is a symbolic
strategy it may authorize small delays in the regions where an output action
must be fired, and therefore IF may not be output urgent. However, any point
in these regions can be freely chosen to concretely implement IF

We check now that IF sat∆ S with the following relation

R = {(((q, r), u), (q, u)) ∈ J(IF)∆Ksem × JSKsem}

Note that since F is a robust winning strategy, the runs of dSF eo∆ (and by
construction the ones of (IF)∆) also belong to S. Finally we assume that
S can accept τ transitions in any state as output transitions. Let consider
(((q, r), u), (q, u)) ∈ R:

1. If ((q, r), u) d−→(IF)∆((q, r), u+ d) for some d ∈ R≥0, then since the runs of
(IF)∆ are included into the ones of S, it is also the case that (q, u) d−→S(q, u+
d).

2. If ((q, r), u) o!−→(IF)∆((q′, r′), u′) for some o! ∈ Acto, then there exists an
edge ((q, r), o!, ϕ, λ, (q′, r′)) in IF and also in SF . It also means that there
exists a similar edge (q, o!, ϕ, λ, q′) in S. And since the runs of (IF)∆ are
included into the ones of S, it implies that (q, u) o!−→S(q′, u′).

3. If ((q, r), u) τ−→(IF)∆((q, r′), u) then by assumption (q, u) τ−→S(q, u).
4. If (q, u) i?−→S(q′, u′) for some i? ∈ Acti, then there exists an edge e =

(q, i?, ϕ, λ, q′) such that u |= ϕ. There also exists an edge (q, [u]) i?−→G(q′, [u′])
in the region graph of S. If u ∈ r then this edge also exists in IF . Oth-
erwise u ∈ dr ∨ r↗e∆. This means that there exists a sequence of τ
transitions in IF between r and [u], and by construction the input edge
is copied in each location along this sequence, including (q, r). u |= ϕ
implies that u |= bdϕe∆c∆, which proves that it is firable. Therefore
((q, r), u) i?−→I∆((q′, [u′]), u′). �

5.2. Conjunction
A conjunction of two specifications captures the intersection of their imple-

mentation sets. The following conjunction operator has been proposed in [13]:

24

Definition 17 Let S = (LocS, qS0,Clk
S, ES,Act, InvS) and T = (LocT, qT0 ,Clk

T,
ET,Act, InvT) be specifications that share the same alphabet of actions Act.
We define their conjunction, denoted S ∧ T , as the TIOA (Loc, q0,Clk, E,Act,
Inv) where Loc = LocS×LocT , q0 = (qS0 , qT0), Clk = ClkS]ClkT , Inv((qs, qt))=
Inv(qs)∧Inv(qt), and the set of edges is defined according to the following rule:

((qs, qt), a, ϕs∧ϕt, λs ∪ λt, (q′s, q′t)) ∈E iff
(qs, a, ϕs, λs, q′s) ∈ES and (qt, a, ϕt, λt, q′t) ∈ET

It turns out that this operator is robust, in the sense of precisely characterizing
also the intersection of the sets of robust implementations. So not only conjunc-
tion is the greatest lower bound with respect to implementation semantics, but
also with respect to the robust implementation semantics. More precisely:

Theorem 3 For specifications S, T and ∆ ∈ Q>0:

JS∧T K∆mod = JSK∆mod ∩ JT K∆mod

Proof 4 The theorem is a direct extension of Theorem 6 in [13], but now for
robust implementations. By definition of the robust implementation,

I ∈ JS∧T K∆mod ⇔ I∆ ≤ S ∧ T

According to Theorem 6 in [13], items 1 and 2,

I∆ ≤ S ∧ T ⇔ I∆ ≤ S ∧ I∆ ≤ T

And the last terms correspond to the definition of robust implementations.

We remark that due to the monotonicity of the refinement (Property 1), we
can use two different delays ∆1 and ∆2, such that:

JSK∆1
mod ∩ JT K

∆2
mod ⊇ JS∧T Kmax(∆1,∆2)

mod

So requirements with different precision can be conjoined, by considering the
smaller jitter. Robustness of the operator in Def. 17 is very fortunate. Thanks
to this, large parts of implementation of theory of [13] can be reused.

5.3. Parallel Composition and Robust Compatibility
Composition is used to build systems from smaller units. Two specifications

S, T can be composed only iff ActSo ∩ActTo = ∅. Parallel composition is obtained
in [13] by a product, where the inputs of one specification synchronize with the
outputs of the other:

Definition 18 Let S = (LocS, qS0,Clk
S, ES,ActS, InvS) and T = (LocT, qT0 ,Clk

T,
ET,ActT, InvT) be two composable specifications.
We define their parallel composition, denoted S ‖ T , as the TIOA (Loc, q0,Clk, E,

25

Machine Researcher

Machine ‖ Researcher

coin

cof

tea

pub

Figure 10: Diagram for the parallel composition of a coffee machine and a
researcher

Act, Inv), where Loc = LocS × LocT , q0 = (qS0 , qT0), Clk = ClkS] ClkT , Act =
Acto ∪Acti with Acto = ActSo]ActTo and Acti = (ActSi \ActTo) ∪ (ActTi \ActSo),
Inv(qs, qt) = Inv(qs)∧Inv(qt), and the set of edges is defined by the three following
rules:

• Let a ∈ ActS\ActT , for each qt ∈ LocT , ((qs, qt), a, ϕs, λs, (q′s, qt)) ∈ E,
iff (qs, a, ϕs, λs, q′s) ∈ ES.

• Let a ∈ ActT \ActS, for each qs ∈ LocS, ((qs, qt), a, ϕt, λt, (qs, q′t)) ∈ E,
iff (qt, a, ϕt, λt, q′t) ∈ ET .

• Let a ∈ ActS ∩ActT , ((qs, qt), a, ϕs ∧ ϕt, λs ∪ λt, (q′′s , q′t)) ∈ E
iff (qs, a, ϕs, λs, q′s) ∈ ES and (qt, a, ϕt, λt, q′t) ∈ ET .

We also recall the definition of the parallel product for two TIOTS S =
(StS, s0,ΣS,→S) and T = (StT, t0,ΣT,→T). S ⊗ T = (StS × StT , (s0, t0),ΣS⊗T,
→S⊗T), such that:

s
a−→Ss′ a ∈ ΣS\ΣT

(s, t) a−→S⊗T (s′, t)
indep-l

t
a−→T t′ a ∈ ΣT \ΣS

(s, t) a−→S⊗T (s, t′)
indep-r

s
a−→Ss′ t

a−→T t′ a ∈ R≥0 ∪ ΣS⊗Ti ∪ (ΣSi ∩ ΣTo) ∪ (ΣSo ∩ ΣTi)
(s, t) a−→S⊗T (s′, t′)

sync

Example 6 The two timed specifications in Fig. 1a and 1b can be composed
together by synchronizing the outputs cof and tea of the Machine with the inputs
of the Researcher. The resulting TIOA is a timed specification whose input is
coin and outputs are pub, cof and tea. This composition scheme is illustrated in
the diagram of Fig. 10.

In the input-enableness setting we model incompatibility by introducing a
predicate describing undesirable states, here denoted by a set und. It should
in general contain the universal location lu. For example, a communication
failure can be modeled by redirecting an input edge to an undesirable location.
In general any reachability objective, for example given by a temporal logic
property, can serve as the set of undesirable behaviors und. It is important that

26

such behaviors are avoided during the composition. For doing so, we propose
to follow the optimistic approach to composition introduced in [14] that is
two specifications can be composed if there exists at least one environment in
which they can work together. In the robustness setting we consider imprecise
environments by applying a ∆-perturbation to their outputs. Then, in what
follows, we say that a specification is ∆-robust useful if there exists an imprecise
environment E that avoids the undesirable states, whatever the specification
does.

Definition 19 A specification S is ∆-robust useful if there exists an environ-
ment E such that no undesirable states are reached in JdEeo∆ ‖ SKsem.

Remark that, contrary to robust implementations, we only apply a pertu-
bation to the outputs of the environment. Indeed since the environment is a
complement of the system, its inputs correspond to the output of the system,
and therefore they are not perturbed to achieve robust compatibility.

Property 4 (Monotonicity) Given ∆1 ≤ ∆2, if S be a ∆2-robust useful
specification, then S is ∆1-robust useful.

Proof 5 (Property 4) If S is ∆2-robust useful this means that there exists an
environment E such that no undesirable states is reached in JdEeo∆2

‖ SKsem. Then
for ∆1 ≤ ∆2, JdEeo∆1

Ksem ⊆ JdEeo∆2
Ksem. This implies that JdEeo∆1

‖ SKsem ⊆
JdEeo∆2

‖ SKsem, which proves that S is also ∆1-robust useful. �

To check robust usefulness we solve the robust game (S,W i(und)), and
determine if the input player has a robust strategy F that avoids the undesirable
states. Let SF be the syntactic outcome of F in S. We build from SF a robust
environment EF by permuting the input and output players, such that each
input in SF becomes an output, and conversely.

Theorem 4 Let S be a specification. If F is a robust winning strategy in the
∆-robust usefulness game, then S is ∆-robust useful in the environment EF .

Proof 6 (Theorem 4) The theorem directly follows from the definition of the
robust strategy. JdSF ei∆Ksem ⊆ JSKsem which implies that dEF eo∆ synchronizes
with every action of S in their parallel composition. Therefore, only the states
belonging to JdSF ei∆Ksem can be reached in the composition, and by definition
they are not undesirable. �

Finally, two specifications are compatible if their composition is useful.

Definition 20 Two composable specifications S and T are ∆-robust compatible
if and only if S ‖ T is ∆-robust useful.

27

We now study the impact of adding ∆-perturbations introduced in previous
section over parallel composition. It is important that the robust theory does
not modify the definition of the operations themselves. This means that all the
important properties of composition introduced in [13] remain valid. Moreover,
robustness distributes over parallel composition in the following fashion:

Lemma 1 For any implementations I, J and a delay ∆ ∈ Q>0:

(I ‖J)∆ ≤ I∆ ‖J∆

Proof 7 (Lemma 1) In the following, we denote by (Lock, qk0 ,Clk
k, Ek,Actk,

Invk), with k ∈ {I, J, I ‖ J}, the TIOAs corresponding to I,J , or I ‖ J , re-
spectively, and by (Stk, (qk0 , 0),Actk,→k), with k ∈ {I, J, I ‖ J}, their semantics,
and with k ∈ {I∆, J∆, [I ‖ J]∆}, their perturbed semantics.
First let recall Theorem 11 from [13] that states that JI∆ ‖J∆Ksem = JI∆Ksem ⊗
JI∆Ksem. Then we need to prove the refinement J(I ‖ J)∆Ksem ≤ JI∆Ksem ⊗
JJ∆Ksem by witnessing the following relation:

R =
{((

(qi, qj), uij
)
,
(
(q̂i, ui), (q̂j , uj)

))
∈ St[I‖J]∆ × (StI∆ × StJ∆) |(

(qi = q̂i ∧ ui = uij|ClkI) ∨ q̂i = lu
)
∧
(
(qj = q̂j ∧ uj = uij|ClkJ) ∨ q̂j = lu

)
}

We prove by coinduction that R is a timed alternating relation. Let
((

(qi, qj), uij
)
,(

(q̂i, ui), (q̂j , uj)
))
∈ R.

1. If
(
(qi, qj), uij

) d−→[I‖J]∆
(
(qi, qj), uij + d

)
for some d ∈ R≥0, then by defi-

nition uij |= dInv(qi, qj)e∆. By construction of the parallel composition
dInv(qi, qj)e∆ = dInv(qi) ∧ Inv(qj)e∆ = dInv(qi)e∆ ∧ dInv(qj)e∆. Then,
we can deduce that ui + d |= dInv(qi)e∆ and uj + d |= dInv(qj)e∆. This
implies that (qi, ui)

d−→I∆(qi, ui + d) and (qj , uj)
d−→J∆(qj , uj + d). Besides,

by definition of the universal state, for any valuation u of a TIOA is always
true that (lu, u)

d−→(lu, u+ d).
By definition of the sync rule from JI∆Ksem ⊗ JJ∆Ksem,(

(q̂i, ui), (q̂j , uj)
) d−→I∆⊗J∆

(
(q̂i, ui + d), (q̂j , uj + d)

)
and the relation R is trivially preserved in the next states.

2. If
(
(qi, qj), uij

) o!−→[I‖J]∆
(
(q′i, q′j), u′ij

)
, then ∃e ∈ EI‖J .e = ((qi, qj), o!, ϕ, c,

(q′i, q′j)) such that uij |= dϕe∆ and u′ij |= dInv(q′i, q′j)e∆,
(a) And if o ∈ ActIo\ActJi (or conversely, if o ∈ ActJo \ActIi ; this case is

similar, so we will not consider it), then ∃ei ∈ EI . ei = (qi, o!, ϕi, ci, q′i),
and q′j = qj, ϕ = ϕi, c = ci, and u′

ij|ClkJ = uj. Consequently,
ui |= dϕie∆ and u′i = u′

ij|ClkI |= dInv(q′i)e∆, which proves that
(qi, ui)

o!−→I∆(q′i, u′i). Besides, by definition of the universal state,
(lu, ui)

o!−→I∆(lu, ui).

28

Then, according to the indep-l rule,
(
(q̂i, ui), (q̂j , uj)

) o!−→I∆⊗J∆
(
(q̂′i, u′i),

(q̂j , uj)
)
. Moreover, either q̂i = qi and then q̂′i = q′i, or q̂i = lu = q̂′i,

which proves that the relation R is preserved.
(b) If o ∈ ActIo ∩ActJi (the reverse case o ∈ ActJo ∩ActIi is similar), then
∃ei ∈ EI . ei = (qi, o?, ϕi, ci, q′i) and ∃ej ∈ EJ . ej = (qj , o!, ϕj , cj , q′j)
and ϕ = ϕi ∧ ϕj, c = ci ∪ cj. On the side of I, since uij |= dϕe∆
and u′ij |= dInv(q′i, q′j)e∆, we get that ui |= dϕie∆ and u′i = u′

ij|ClkI |=
dInv(q′i)e∆, which implies that (qi, ui)

o!−→I∆(q′i, u′i).
On the side of J , we also get that uj |= dϕje∆ and u′j |= dInv(q′j)e∆. If
moreover uj |= bϕjc∆, then as previously it implies that (qj , uj)

o?−→J∆

(q′j , u′j). Otherwise, a reductio ab absurdum argument allows us to
prove that there exists no other edge e′j = (qj , o?, ϕ′j , c′j , q′′j) ∈ EJ such
that uj |= bϕ′jc∆ (since uj |= dϕje∆ it implies that ∃ε ∈ [-∆,∆].uj +
ε |= ϕj, but in the same time it would be the case that uj + ε |= ϕ′j.
This is a contradiction since J , as an implementation is supposed
to be deterministic). However, by construction of JJ∆Ksem , input-
enableness is preserved by linking the unexpected input to a universal
location lu. So (qj , uj)

o?−→J∆(lu, uj).
Then, according to the sync rule,

(
(q̂i, ui), (q̂j , uj)

) o!−→I∆⊗J∆
(
(q̂′i, u′i),

(q̂′j , u′j)
)
, and as previously, by construction we check that the relation

is preserved.
3. Finally, if

(
(q̂i, ûi), (q̂j , ûj)

) i?−→I∆⊗J∆
(
(q̂′i, u′i), (q̂′j , u′j)

)
, for i ∈ ActIi ∩ActJi

(the cases i ∈ ActIi \ActJi or i ∈ ActJi \ActIi can be proved similarly by
considering that only one component reacts, while the other stay in the
same state), then from the definition of the composition:
• (q̂i, ûi)

i?−→I(q̂′i, û′i), and
• (q̂j , ûj)

i?−→J(q̂′j , û′j).
Besides, due to input-enableness,

(
(qi, qj), uij

) i?−→[I‖J]∆
(
(qi, qj), uij + d

)
,

which implies that:
• (qi, ui)

i?−→I(q′i, u′i), with u′i = u′
ij|ClkI , and

• (qj , uj)
i?−→J(q′j , u′j), with u′j = u′

ij|ClkJ .
If q̂i = lu then q̂′i = lu, and in this case the relation R is always preserved
(and similarly for q̂j). Otherwise q̂i = qi and ûi = ui (and similarly for q̂j).
In this latter case, since JI∆Ksem is deterministic, it implies that q̂′i = q′i
and û′i = u′i, which also proves the induction for relation R. �

Finally, we show in Theorem 5 that the independent implementability prop-
erty of [13] can be extended to robust implementability, which follows from
Lemma1 and Theorem 10 in [13].

Theorem 5 Let S and T be composable specifications and let I and J be ∆-
robust implementations of S and T (resp.), i.e. I sat∆ S and J sat∆ S.
Then I ‖ J sat∆ S ‖ T . Moreover if S and T are ∆-compatible then I and J
are also ∆-compatible.

29

Proof 8 (Theorem 5) The first part of the theorem is deduced from previous
results:

• Due to lemma 1, J(I ‖ J)∆Ksem ≤ JI∆Ksem ⊗ JJ∆Ksem.

• Then, Theorem 10 from [13] proves that refinement is a pre-congruence
with respect to parallel composition: if S1 ≤ S2 and T is composable with
S1, then S1 ⊗ T ≤ S2 ⊗ T . Observe that since S and T are composable, so
are I and J , and their semantics. Thus we can apply it twice:
JI∆Ksem ≤ JSKsem ⇒ JI∆Ksem ⊗ JJ∆Ksem ≤ JSKsem ⊗ JJ∆Ksem, and
JJ∆Ksem ≤ JT Ksem ⇒ JSKsem ⊗ JJ∆Ksem ≤ JSKsem ⊗ JT Ksem.

• Finally Theorem 11 in [13] allows to lift the result to the composition of
TIOA specifications: JSKsem ⊗ JT Ksem = JS ‖ T Ksem.

Due to the transitivity of the refinement, we can concatenate the previous results,
which proves that J(I ‖ J)∆Ksem ≤ JS ‖ T Ksem, and therefore I ‖ J sat∆ S ‖ T .

We now prove the second part of the theorem. Since S and T are ∆-compatible,
there exists an environment E such that dEeo∆ ‖ (S ‖ T) avoids reaching any
undesirable states. From Theorems 10 and 11 in [13], we get that I ‖ J ≤
S ‖ T . Again with Theorem 10 we get that (I ‖ J) ‖ dEeo∆ ≤ (S ‖ T) ‖ dEeo∆.
Consequently, since no undesirable states are reached in (S ‖ T) ‖ dEeo∆ this is
also the case in (I ‖ J) ‖ dEeo∆, which proves that I ‖ J is ∆-useful and so I
and J are ∆-compatible. �

Additionally, due to the monotonicity of perturbations with respect to the
refinement, two different delays can be used to implement specifications S and T .
For two implementations I sat∆1 S and J sat∆2 T of the parallel components,
their composition satisfies the composition of specifications with the smaller of
the two precisions:

I ‖ J satmin(∆1,∆2) S ‖ T

5.4. Quotient
Quotient is a dual operator to composition, such that for two specifications

T and S, T S is the specification of the components that composed with
S will refine T . In other words, if T is the specification of a system, and
S the specification of a subsystem, T S specifies the component that still
needs to be implemented after having an implementation of S, in order to
build an implementation of T . One possible application is when T is a system
specification, and S is the plant, then a robust controller for a safety objective
can be achieved by finding a ∆-consistent implementation of the quotient T S.

To apply quotienting, we require that ActS ⊆ ActT and ActSo ⊆ ActTo . The
construction of a quotient requires the use of a universal location lu, as well as
an inconsistent location l∅ that forbids any outputs and forbids elapsing of time.

Definition 21 Let S = (LocS, qS0,Clk
S, ES,ActS, InvS) and T = (LocT, qT0 ,Clk

T,
ET,ActT, InvT) be two specifications, with ActS ⊆ ActT and ActSo ⊆ ActTo .

30

Their quotient, denoted T S, is the TIOA (Loc, q0,Clk, E,Act, Inv) where
Loc = LocT × LocS ∪ {lu, l∅}, q0 = (qT0 , qS0), Clk = ClkT] ClkS] {xnew},
Act = Acti] Acto with Acti = ActTi ∪ ActSo ∪ {inew} and Acto = ActTo \ ActSo ,
Inv(qt, qs) = Inv(lu) = true and Inv(l∅) = {xnew ≤ 0}, and the set E of edges is
defined by the following rules:

• ((qt, qs), a,¬InvS(qs), {xnew}, lu) ∈ E iff qt ∈ LocT , qs ∈ LocS , a ∈ Act.

• ((qt, qs), inew,¬Inv(qt) ∧ Inv(qs), {xnew}, l∅) ∈ E iff qt ∈ LocT , qs ∈ LocS.

• ((qt, qs), a, ϕT ∧ ϕS , λt ∪ λs, (q′t, q′s)) ∈ E iff (qt, a, ϕt, λt, q′t) ∈ ET and
(qs, a, ϕs, λs, q′s) ∈ ES.

• Let a ∈ ActSo and GT =
∨
{ϕt | (qt, a, ϕt, λt, q′t) ∈ ET },

((qt, qs), a, ϕS ∧ ¬GT , {xnew}, l∅) ∈ E iff (qs, a, ϕs, λs, q′s) ∈ ES.

• Let a 6∈ ActS, ((qt, qs), a, ϕT , λt, (q′t, q′s)) ∈ E iff ∀(qt, a, ϕt, λt, q′t) ∈ ET .

• Let a ∈ ActSo and GS =
∨
{ϕs | (qs, a, ϕs, λs, q′s) ∈ ES},

((qt, qs), a,¬GS , {}, lu) ∈ E iff (qt, a, ϕt, λt, q′t) ∈ ET .

• (l∅, a, xnew = 0, ∅, l∅) ∈ E iff a ∈ Acti.

• (lu, a, true, ∅, lu) ∈ E iff a ∈ Act.

As stated in Theorem 12 of [13], the quotient gives a maximal (the weakest)
specification for a missing component. This theorem can be generalized to speci-
fications that are locally consistent (see [13]), and used to argue for completeness
of the quotient construction in the robust case. It turns out that this very
operator is also maximal for the specification of a robust missing component, in
the following sense:

Theorem 6 Let S and T be two specifications such that the quotient T S is
defined and let J be an implementation, then:

S ‖ J∆ ≤ T iff J sat∆ T S

Proof 9 (Theorem 6) First let remark that J∆ is a locally consistent specifi-
cation, as defined in [13]. Then, we can apply Theorem 12 of [13] to J∆ which
proves:

S ‖ J∆ ≤ T iff J∆ ≤ T S

According to the definition of ∆-robust satisfaction this proves the theorem.

6. Counter Strategy Refinement For Parametric Robustness

In the previous sections we define and solve robustness problems for a
fixed delay, and we study the properties of these perturbations with respect
to the different operators in the specification theory. Now we will propose a
technique that evaluates the greatest possible value of the perturbation. We

31

follow a counterexample refinement approach, a technique used for automatic
abstraction refinement in [33]. In our setting counterexamples are spoiling
strategies computed for a given value of the perturbation. We replay these
strategies on a parametric model of the robust game in order to refine the value
of the perturbation.

The robustness problems that we consider in this sections are the parametric
extension of the previously defined problems:

Robust Consistency. Given a specification S, determine the greatest value of ∆
such that S is ∆-robust consistent.

Robust Usefulness. Given a specification S, determine the greatest value of ∆
such that S is ∆-robust useful.

6.1. Parametric Timed Games
When we consider ∆ as a free parameter, the robust game automaton

construction of Section 4 defines a Parametric Timed I/O Automata, in a similar
manner as Parametric Timed Automata are defined in [34, 35]. We denote by
B∆(Clk) the set of parametric guards with parameter ∆ over a set of clocks
Clk. Parametric guards in B∆(Clk) are generated by the following grammar
ϕ ::= x ≺ l | x−y ≺ l | ϕ∧ϕ, where x, y∈Clk, ≺∈ {<,≤, >,≥} and l = a+ b ∗∆
is a linear expression such that a, b ∈ Q.

Definition 22 A Parametric TIOA with parameter ∆, is a TIOA A such that
guards and invariants are replaced by parametric guards.

IfA is a parametric TIOA andW o(Bad) is a safety objectives, then (A,W o(Bad))
is parametric timed game. For a given value δ ∈ Q of the parameter, we define
the non-parametric TIOA Aδ obtained by replacing each occurrence of the
parameter ∆ in the parametric guards of A by the value δ.

A parametric symbolic state X is a set of triples (q, u, δ), where δ is a
valuation of the parameter ∆ and (q, u) is a state in JAδKsem. Operations on
symbolic states can be extended to parametric symbolic states, such that X↗P ,
X↙P ,PPosta(X), PPreda(X) and PPredt(X,Y) stands for the extensions of
previously defined non-parametric operations. Formally:

X↗P={(q, u+ d, δ) | (q, u, δ) ∈ X, d ∈ R≥0}
X↙P={(q, u− d, δ) | (q, u, δ) ∈ X, d ∈ R≥0}

PPosta(X) ={(q′, u′, δ) | ∃(q, u, δ) ∈ X. (q, u) a−→Aδ(q′, u′)}
PPreda(X) ={(q, u, δ) | ∃(q′, u′, δ) ∈ X. (q, u) a−→Aδ(q′, u′)}

PPredt(X,Y) ={(q, u, δ) | ∃d ∈ R≥0. (q, u)
d−→Aδ(q, u+ d) and (q, u+ d) ∈ X

and ∀d′ ∈ [0, d]. (q, u+ d′, δ) 6∈ Y }

32

6.2. Parametric Robustness Evaluation
Let (A∆

rob,W
o(Bad)) be a parametric timed game that solve a robustness

problem (either robust consistency or robust usefulness). We define ∆max =
Sup{∆ | (A∆

rob,W
o(Bad)) has a winning strategy}. Computing ∆max would in

general require to solve a parametric timed game. This problem is undecidable
as it has been shown that parametric model-checking problem is undecidable
[34]. In this paper we propose to compute an approximation of this maximum
value. Due to the monotonicity of the robustness problems (Properties 1 and 4),
we can apply an iterative evaluation procedure that searches for the maximum
value until it belongs within a given precision interval. This basic procedure is
describe in Algorithm 1 for the parametric game (A∆

rob,W
o(Bad)) for output

(again it applies symmetrically to input).

Algorithm 1: Evaluation of the maximum robustness
Input: (A∆

rob,W
o(Bad)): parametric robust timed game,

∆init : initial maximum value,
ε: precision

Output: ∆good such that ∆max −∆good ≤ ε
begin1

∆good ← 02

∆bad ← ∆init3

while ∆bad −∆good > ε do4

(∆good ,∆bad)← RefineValues(A∆
rob,∆good ,∆bad)5

end6

return ∆good7

end8

The algorithm assumes that the game (A0
rob,W

o(Bad)) is won, and on
contrary that (A∆init

rob ,W o(Bad)) is lost. If ∆max is not infinite, then the maximum
constant in the automaton can be used for ∆init . At the heart of the algorithm
the procedure RefineValues solves the game (Aδrob,W

o(Bad)) for a value δ ∈
[∆good,∆bad]. It updates the variables ∆good and ∆bad according to the result.

Different algorithms can be used to implement RefineValues. A basic method
is binary search. In that case RefineValues chooses the middle point ∆mid of the
interval [∆good ,∆bad] and solves the game (A∆mid

rob ,W o(Bad)). According to the
results it updates either ∆good or ∆bad. This algorithm has several drawbacks.
First, the number of games it needs to solve heavily depends on the precision
parameter. Second, depending on the initial maximum value a high proportion
of the games played may be winning, which implies that they explore completely
the state-graph of the model.

Correctness and termination. The algorithm is correct if two invariants are
satisfied: ∆good is a lower bound for ∆max , and ∆bad is an upper bound. These
invariants must be preserved by the implementation of RefineValues.

33

The algorithm terminates if at each iteration RefineValues reduces the length
of the interval [∆good ,∆bad] by some fixed minimum amount.

6.3. Counter Strategy Refinement
We propose an alternative method that analyzes the spoiling strategies

computed when the game is lost and refine the value of the variable ∆bad . With
this algorithm only the last game is winning. The different steps are the following.

1. Solve the game (A∆bad
rob ,W o(Bad)).

2. If the game is won, return the values (∆bad ,∆bad).
3. Else extract a counter strategy Fi for the input player.
4. Replay Fi on the parametric game using Algorithm 2; it returns the value

∆min = Inf{∆ | Fi is a spoiling strategy in (A∆
rob,W

o(Bad))}.
5. If ∆min is not a minimum (Fi is not a spoiling strategy in (A∆min

rob ,
W o(Bad))) and ∆bad −∆min > ε, return the values (∆good ,∆min).

6. Else return the values (∆good ,∆min − ε).

The goal of Algorithm 2 is to replay the spoiling strategy Fi on the parametric
game and compute the maximum value of ∆ such that this strategy becomes
unfeasible. It takes as inputs the parametric game automaton A∆

rob, the symbolic
graph (Z∆bad

A , X0,−→) computed for the game (A∆bad
rob ,W o(Bad)), and the spoiling

strategy Fi. It returns the infimum of the values ∆bad such that Fi is a spoiling
strategy in the game (A∆bad

rob ,W o(Bad)).
The algorithm is similar to the timed game algorithm proposed in [28]

and implemented in the tool TIGA [36]. However only the backward analysis
is applied on parametric symbolic states, starting from the ”bad” locations.
Additionally the algorithm only explores the states that belongs to the outcome
of Fi. Since Fi is a spoiling strategy in a safety game, its outcome contains a
set of finite runs that eventually reach the ”bad” locations. This ensures that a
backward exploration restricted to this set of finite runs will terminate.

Formally, we define the outcome of a symbolic spoiling strategy Fi for input.
First, for a symbolic state X ∈ Z∆bad

A , we define its timed successors restricted
by the symbolic strategy Fi as:

X↗Fi= {(q, u+ d) | (q, u) ∈ X, d ∈ R≥0,∀d′ ∈ [0, d].

if ∃(q, Z) ∈ Z∆bad
A . ∃(q, Z ′) ∈ Z∆bad

A . u+ d ∈ Z. u+ d′ ∈ Z ′

then Fi((q, Z ′)) = Fi((q, Z)) ∨ Fi((q, Z ′)) = delay}

X↗Fi is computed by taking the intersection of the timed sucessors of X with
the symbolic states on which is defined the strategy. Outcome(Fi) is the subset
of runs in the symbolic graph defined inductively by:

• (q0, X0↗Fi) ∈ Outcome(Fi),

• if ρ ∈ Outcome(Fi) and last(ρ) = (q, Z), then ρ′ = ρ−→(q′, Z ′) ∈ Outcome(Fi)
iff ∃(q, a, ϕ, λ, q′) ∈ E and one of the following condition holds:

34

Algorithm 2: Counter strategy refinement
Input: (A∆

rob,W
o(Bad)): parametric robust timed game,

(Z∆bad
A , X0,−→): symbolic graph computed for (A∆bad

rob ,W o(Bad))
Fi: spoiling strategy for input in (A∆bad

rob ,W o(Bad))
Output: Infimum of the values ∆bad such that Fi is a spoiling strategy in

(A∆bad
rob ,W o(Bad))

begin1

/* Initialisation */
Waiting ← ∅2

for X = (q, Z) ∈ Z∆bad
A do3

if q ∈ Bad then4

PWin[X]← (q, JInv(q)K)5

Waiting ←Waiting ∪ {Y | ∃ρ. ρ−→Y−→X ∈ Outcome(Fi)}6

else7

PWin[X]← ∅8

end9

end10

/* Backward exploration */
while (Waiting 6= ∅) ∧ (q0,0) 6∈ PWin[X0]) do11

X = (q, Z)← pop(Waiting)12

PBad∗ ← (q,¬JInv(q)K) ∪ (
⋃
X

a∈Acti−−−−→Y PPreda(Win[Y]))13

PGood∗ ←
⋃
X

a∈Acto−−−−−→Y PPreda((q, JInv(q)K) \ PWin[Y])14

PWin[X]← PPredt(PBad∗, PGood∗ \ PBad∗)15

Waiting ←Waiting ∪ {Y | ∃ρ. ρ−→Y−→X ∈ Outcome(Fi)}16

end17

return Inf((PWin[X0] ∩ (q0,0))|∆)18

end19

1. either a ∈ Acti and ∃Z ′′.Fi((q, Z ′′)) = a and (q′, Z ′) = Posta((q, Z ∩
Z ′′))↗Fi ,

2. or a ∈ Acto and ∃Z ′′.Fi((q, Z ′′)) = delay and (q′, Z ′) = Posta((q, Z ∩
Z ′′))↗Fi ,

The backward exploration ends when the set of winning states PWin[X0] contains
the initial state. Then, the projection (PWin[X0] ∩ (q0,0))|∆ computes the set
of all the valuations of ∆ such that the strategy Fi is winning. The algorithm
returns the infimum of these valuations.

Theorem 7 (Soundness) Algorithm 2 returns a value ∆inf ∈ Q such that
∀∆ > ∆inf the game (A∆

rob,W
o(Bad)) is lost.

Proof 10 (Theorem 7) Given a value ∆ ∈ Q, Algorithm 2 is similar to the
timed games algorithm of TIGA described in [28], but with less exploration steps

35

since only the outcome of the spoiling strategy are explored. Therefore for that
value PWin[X0] ⊆Win[X0].

By assumption, the game (A∆bad
rob ,W o(Bad)) is lost, so ∆bad ∈ (PWin[X0] ∩

(q0,0))|∆.
Ab absurdo, if ∆ > ∆inf is a good value, i.e. (A∆

rob,W
o(Bad)) is winning,

then (q0,0) 6∈Win[X0], and consequently (q0,0) 6∈ PWin[X0]. This implies that
(PWin[X0] ∩ (q0,0))|∆ = ∅, which is a contradiction.

Theorem 7 ensures that RefineValues preserves the invariants of Algorithm 1.

7. Implementation and experiments

7.1. PyECDAR implementation
The specification theory described in [13] is implemented in the tool EC-

DAR [37]. In order to experiment with the methods proposed in the present
paper, we have built a prototype tool in Python that reimplements the main
functionalities of ECDAR and supports the analyses of the robustness of timed
specifications [38]. Inside this tool, the theory presented in Sections 4 and 5 is
implemented as a set of model transformations:

1. Computation of I∆, the ∆-perturbation of an implementation I for some
∆ ∈ Q≥0.

2. Computation of the robust game automaton A∆
rob.

3. In order to add rational perturbations on the models I∆ and A∆
rob the tool

scales all the constants in the TIOA.
4. Finally we transform the TIOA of a specification into a specific consistency

game automaton (resp. usefulness game automaton), such that all non
∆-robust consistent (resp. non ∆-robust useful) states are observed by a
single location.

By combining these transformations we can check in the tool the three problems:
∆-robust satisfaction, ∆-consistency and ∆-usefulness. The algorithms used
are respectively the alternating simulation algorithm presented in [28] and the
on-the-fly timed game algorithm presented in [30].

To solve the parametric robustness problems we have implemented the
heuristic presented in Section 6 that approximates the maximum solution through
a counter strategy refinement, and we have implemented a binary search heuristic
to compare the efficiency. In the algorithm 2 operations on parametric symbolic
states are handled with the Parma Polyhedra Library [39]. We shall remark
that using polyhedra increases the complexity of computations compared to
Difference Bound Matrices (DBMs), but this is necessary due to the form of the
parametric constraints that are beyond the scope of classical DBMs. This is
not such a problem in our approach as parametric analysis is limited to spoiling
strategies whose size is kept as small as possible. Nevertheless an interesting
improvement can be to use Parametric DBMs as presented in [35].

36

∆init = 8 ∆init = 6 ∆init = 8 ∆init = 6
Game size ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

Model loc. edges CR BS CR BS CR BS CR BS

M 9 21 119ms 314ms 119ms 262ms 119ms 438ms 119ms 437ms
R 11 27 188ms 303ms 188ms 299ms 188ms 419ms 188ms 523ms
A 9 22 133ms 316ms 133ms 287ms 133ms 441ms 133ms 483ms

M ‖ A 41 158 10.1s 10.1s 10.1s 9.6s 10.4s 17.5s 10.4s 17.6s
R ‖ A 48 201 14.1s 12.1s 12.5s 11s 14.1s 19.6s 12.5s 19.4s
M ‖ R 44 152 10s 15.5s 9.81s 15.8s 10.3s 22.9s 9.78s 29.2s

M ‖ R ‖ A 180 803 54.4s 56.3s 54.6s 112s 55s 58.8s 55.7s 216s

Table 1: Robust consistency of the university specifications

∆init = 8 ∆init = 6 ∆init = 8 ∆init = 6
Game size ε = 0.1 ε = 0.1 ε = 0.01 ε = 0.01

Model loc. edges CR BS CR BS CR BS CR BS

M ‖ R 21 90 2.64s 4.34s 1.72s 4.02s 2.64s 5.5s 1.72s 5.45s
M ‖ R ‖ A 75 399 48s 65s 42.7s 74.2s 48.2s 78.1s 42.9s 120s

Table 2: Robust compatibility between the university specifications

7.2. Experiments
We evaluate the performance of the tool to solve the parametric robustness

problems on two examples. We compare in these experiments the Counter
strategy Refinement (CR) approach with the Binary Search (BS) method. We
presents benchmarks results for different values of the initial parameters ∆init
and ε.

Specification of a university. The toy examples featured in this paper are ex-
tracted from [13]. They are part of an overall specification of a university,
composed by three specifications: the coffee machine (M) of Fig. 1a, the re-
searcher (R) of Fig. 1b, and the Administration (A) (see [13]). We study the
robust consistency and the robust compatibility of these specifications and their
parallel composition. The results are presented in Tables 1 and 2. The column
game size displays the size of the robust game automaton used in the analysis
in terms of locations (loc.) and edges. The next columns display the time spent
to compute the maximum perturbation with different initial conditions. The
analysis of these results first shows that the Counter strategy Refinement method
is not sensitive to the values of the two initial parameters ∆init and ε. This is
not the case for Binary Search: the precision ε determines the number of games
that must be solved, and the choice of ∆init change the proportion of games that
are winning. Comparing the results of the two methods shows that for most of
the cases, especially the more complex one, the Counter strategy Refinement
approach is more efficient.

Specification of a Milner Scheduler. The second experiment studies a real time
version of Milner’s scheduler previously introduced in [37]. The model consists

37

∆init = 30 ∆init = 31 ∆init = 30 ∆init = 31
Game size ε = 0.5 ε = 0.5 ε = 0.1 ε = 0.1

Model loc. edges CR BS CR BS CR BS CR BS

1 Node 13 35 0.97s 0.68s 1.09s 0.72s 0.97s 1.03s 1.09s 1.09s
2 Nodes 81 344 10.7s 10.3s 11.2s 12.6s 10.5s 15.8s 11.1s 19.4s
3 Nodes 449 2640 1m58 2m25 2m06 2m26 1m57 3m39 2m05 3m45
4 Nodes 2305 17152 17m38 24m12 17m38 27m46 17m41 37m57 17m37 41m50

Table 3: Robust consistency of Milner’s scheduler nodes

∆init = 8
ε = 0.1

∆init = 6
ε = 0.1

∆init = 8
ε = 0.01

∆init = 6
ε = 0.01

0

50

100

150

200

T
im

e
[s]

CR
BS

(a) University experiment
M ‖ R ‖ A model

∆init = 30
ε = 0.5

∆init = 31
ε = 0.5

∆init = 30
ε = 0.1

∆init = 31
ε = 0.1

0

10

20

30

40

T
im

e
[m

in
]

CR
BS

(b) Milner experiment
4 nodes model

Figure 11: Comparisons of the performances between the two methods Counter
strategy Refinement (CR) and Binary Search (BS)

in a ring of N nodes. Each nodes receives a start signal from the previous node
to perform some work and in the mean time forward the token to the next node
within a given time interval. We check the robust consistency of this model for
different values of N and different initial parameters. The results are displayed in
Table 3. Like in previous experiment, the results show that the Counter strategy
Refinement method is not sensitive to the initial conditions and in general more
efficient than Binary Search.

7.3. Interpretation
Previous results are summarized in Fig. 11 in order to compare the perfor-

mance of the two methods on the most complex examples.
The performance of the Binary Search method depends on the number of

games that are solved and on the outcome of these games. Games that are
winning (or games that are losing but with a value of ∆ close to the optimum
value) are harder to solve, since in these cases the (almost) complete symbolic
state space must be explored. Reducing the precision parameter ε implies that
more games must be solved close to the optimum value, and therefore it increases

38

request_enter?

vehicle_enter?

request_enter?
vehicle_exit?

vehicle_exit?

vehicle_exit? vehicle_exit?
vehicle_enter?

request_enter?

request_enter?

request_enter?

vehicle_enter?

vehicle_exit?

entry_ticket_issue!

vehicle_exit?

deliver < 6

deliver <= 10

n==0

n==0
n==0

lu

idle

issued

requesteddeliver=0

n++,deliver=0

n--

n--

n--

n==Nmax and
deliver >= 6 n>0

n>0

n>0

n<Nmax and
deliver >= 6

Figure 12: Specification of the parking controller

the time of analysis. Moreover, changing, even slightly, the initial maximum
value ∆init may change the number of games, but most important the outcome
of these games, and therefore the proportion of winning games. For instance in
the last experiment, the expected result is 7.5. With an initial value of 30 the
bisections performed by the Binary Search method arbitrarily imply that only 1
game is winning out of 9 (for ε = 0.1). With 31 this proportion is 6 out of 9,
which increases the complexity of the analysis.

With the Counter strategy Refinement approach proposed in this paper only
losing games are solved until one is winning. The choice of ∆init modifies the
number of games that are solved, but in general the first games for large values of
∆ are easily solved. Consequently, the choice of ∆init shows in the experiments
almost no impact on the performances. With the parametric approach the
parameter ε is only used when the value ∆min computed by the refinement
process is the minimum of the bad values. In that case, the next iteration solves
the game with the value ∆min − ε. The experiments shows this has no impact
on the performances.

7.4. Parking controller
In this final case study we analyze the robustness of a parking controller.

This component is part of parking system, described in [40], that model the

39

behavior of a car park. The system is composed by an entry gate, an exit gate,
a gate controller and a payment machine. We study the implementation of the
gate controller whose task is to deliver entry tickets, whenever they are requested,
and as long as the parking is not full.

ε = 0.1 ε = 0.01
Number
Nmax of
vehicles

∆max CR BS CR BS

1 5 78ms 204ms 78ms 288ms
2 2.5 376ms 547ms 367ms 788ms
5 1 2.82s 1.71s 2.82s 2.58s

10 0.5 7.05s 3.78s 13.3s 6.29s
15 0.33 12.9s 5.62s 35.6s 10.9s
20 0.25 14.74s 10s 59.44s 19.1s

Table 4: Robust consistency of the parking controller

The specification Controller of this components is given in Figure 12 for a
capacity Nmax of cars in the parking. It specifies that tickets must be delivered
at most 10 time units after accepting a request and the request is accepted
only if the parking is not full. It also specifies some assumptions about the
environment by linking the unexpected behaviors to a universal location lu.
These assumptions are that a vehicle may exit only when the parking is not
empty, that it may enter only after receiving its entry tickets, and that tickets
may be requested at least 6 time units after the previous one has been delivered.

We study the robust consistency of this specification in order to determine if
we can implement it. The results are given in Table 4. For an increasing number
Nmax of vehicles we list the maximum allowed perturbation ∆max, and the time
needed to compute it with two values of precision for each methods. The results
show that the robustness of the specification decreases when the capacity of the
parking increases. We also remark that the counterexample refinement method
is less efficient than binary search to analyze this model. Indeed on this model
the counterexample refinement method requires more games to determine that
value of ∆max.

This low robustness can be a problem to implement the controller for large
number of vehicles. We can analyze spoiling strategies to find that the responsible
executions involve a large number of vehicle exiting the parking within the short
time interval before the entry ticket is issued. However this is unrealistic and
therefore we propose to fix the model. We add an assumption on the environment
that limits the number of vehicles that can exit within a given time interval. This
assumption is specified in a new specification Assumption shown in Figure 13.
It allows any behaviors, but, when a vehicle exit less than 10 time units before
the previous one, it goes to the universal location. We add this assumption in
conjunction with the controller specification. We analyse the robustness of the
new specification Controller ∧ Assumption, and, as previously, we list the results
in Table 5. It shows that the robustness now remains constant for any number

40

vehicle_exit?

request_enter?

vehicle_enter? vehicle_exit?L0 lu

entry_ticket_issue!

y=0

y>10

y<=10

Figure 13: Assumption on the environment of the parking controller

of vehicles

ε = 0.1 ε = 0.01
Number of

vehicles
∆max CR BS CR BS

1 5 205ms 619ms 205ms 883ms
2 2.5 1.11s 1.7s 1.11s 2.52s
5 2.5 2.42s 3.26s 2.42s 4.34s

10 2.5 5.6s 6.53s 5.61s 7.69s
15 2.5 8.91s 9.86s 8.93s 11.2s
20 2.5 12.7s 14s 12.7s 15.5s

Table 5: Robust consistency of the parking’s controller with assumption

8. Concluding Remarks

We have presented a compositional framework for reasoning about robustness
of timed I/O specifications. Our theory builds on the results presented in [13]
combined together with a new robust timed game for robust specification theories.
It can be used to synthesize an implementation that is robust with respect to a
given specification, and to combine or compare specifications in a robust manner.
In our approach, robustness is achieved through syntactic transformations, which
allows reusing classical analysis technique and tools. In particular we extend the
construction of [16] to the setting of specification theories, to solve robust games
by reducing them to problems on classical timed games.

As a new contribution from [27], we also study the parametric robustness
problems and evaluate the maximum imprecision allowed by specifications. To
this end we propose a counter example refinement approach that analyzes spoiling
strategies in timed games. These contributions have been implemented in a
prototype tool that has been used to evaluate the performances of our counter
strategy refinement approach.

We have focused in this paper on solving robust consistency and robust
compatibility problems. This provides a constructive approach to synthesize

41

robust implementations. In a future version of our tool we would like to apply
the counter example refinement approach on the alternating simulation game, in
order to solve the parametric satisfaction problem for an existing implementation.

In future we plan to extend our approach to different models, like timed
automata with stochastic semantics [41]. In this context we could give a stochastic
definition of robustness that would allow a more expressive quantitative analysis
than the worst case scenario used in this paper.

References

[1] O. M. Group, Corba 3.2, 2011. http://www.omg.org/spec/CORBA/3.2/.

[2] J. McAffer, P. VanderLei, S. Archer, OSGi and Equinox: Creating Highly
Modular Java Systems, Addison-Wesley, Amsterdam, 2010.

[3] W3C, Web services description language (wsdl) version 2.0 part 1: Core
language, 2007. http://www.w3.org/TR/wsdl20/.

[4] E. Standard, Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems: IEC 61508-1:2010, DS/EN 61508, 2010.

[5] R. Alur, D. L. Dill, A theory of timed automata, Theor. Comput. Sci. 126
(1994) 183–235.

[6] T. A. Henzinger, X. Nicollin, J. Sifakis, S. Yovine, Symbolic model checking
for real-time systems, Inf. Comput. 111 (1994) 193–244.

[7] G. Behrmann, A. David, K. G. Larsen, P. Pettersson, W. Yi, Developing
uppaal over 15 years, Softw., Pract. Exper. 41 (2011) 133–142.

[8] A. Cimatti, Industrial applications of model checking, in: Modeling and
Verification of Parallel Processes, volume 2067 of LNCS, Springer, 2001, pp.
153–168.

[9] B. Long, J. Dingel, T. Graham, Experience applying the spin model checker
to an industrial telecommunications system, in: ICSE ’08, pp. 693 –702.

[10] D. Keating, A. McInnes, M. Hayes, An industrial application of model check-
ing to a vessel control system, in: Electronic Design, Test and Application
(DELTA), pp. 83 –88.

[11] F. Kammüller, S. Preibusch, An industrial application of symbolic model
checking, Informatik - Forschung und Entwicklung 22 (2008) 95–108.

[12] S. Chandra, P. Godefroid, C. Palm, Software model checking in practice:
an industrial case study, in: ICSE ’02, pp. 431 –441.

[13] A. David, K. G. Larsen, A. Legay, U. Nyman, A. Wąsowski, Timed I/O
automata: a complete specification theory for real-time systems, in: HSCC,
ACM, 2010, pp. 91–100.

42

http://www.omg.org/spec/CORBA/3.2/
http://www.w3.org/TR/wsdl20/

[14] L. de Alfaro, T. A. Henzinger, Interface automata, in: ESEC / SIGSOFT
FSE, pp. 109–120.

[15] L. de Alfaro, T. A. Henzinger, M. Stoelinga, Timed interfaces, in: EMSOFT,
volume 2491 of LNCS, Springer, 2002, pp. 108–122.

[16] K. Chatterjee, T. A. Henzinger, V. S. Prabhu, Timed parity games: Com-
plexity and robustness, in: FORMATS, volume 5215 of LNCS, Springer,
Saint Malo, France, 2008, pp. 124–140.

[17] The COMBEST Consortium, Combest, 2008 – 2011. http://www.combest.eu.

[18] The SPEEDS Consortium, Speeds, 2006 – 2010. http://www.speeds.eu.com.

[19] E. Badouel, A. Benveniste, B. Caillaud, T. Henzinger, A. Legay,
R. Passerone, Contract Theories for Embedded Systems : A white pa-
per, Research report, IRISA/INRIA Rennes, 2009.

[20] A. Puri, Dynamical properties of timed automata, in: Formal Techniques
in Real-Time and Fault-Tolerant Systems, volume 1486 of LNCS, Springer,
1998, pp. 210–227.

[21] M. D. Wulf, L. Doyen, J.-F. Raskin, Almost ASAP semantics: from timed
models to timed implementations, Formal Aspects of Computing 17 (2005)
319–341.

[22] M. Wulf, L. Doyen, N. Markey, J.-F. Raskin, Robust safety of timed
automata, Formal Methods in System Design 33 (2008) 45–84.

[23] P. Bouyer, K. G. Larsen, N. Markey, O. Sankur, C. Thrane, Timed automata
can always be made implementable, in: CONCUR, volume 6901 of LNCS,
Springer, Aachen, Germany, 2011, pp. 76–91.

[24] O. Sankur, P. Bouyer, N. Markey, Shrinking timed automata, in: FSTTCS,
Leibniz International Proceedings in Informatics, Leibniz-Zentrum für In-
formatik, Mumbai, India, 2011, pp. 90–102.

[25] P. Bouyer, N. Markey, O. Sankur, Robust model-checking of timed automata
via pumping in channel machines, in: FORMATS, volume 6919 of LNCS,
Springer, Aalborg, Denmark, 2011, pp. 97–112.

[26] R. Jaubert, P.-A. Reynier, Quantitative robustness analysis of flat timed
automata, in: FOSSACS, volume 6604 of LNCS, Springer, 2011, pp. 229–
244.

[27] K. G. Larsen, A. Legay, L.-M. Traonouez, A. Wasowski, Robust specification
of real time components, in: FORMATS, volume 6919 of LNCS, Springer,
Aalborg, Denmark, 2011, pp. 129–144.

43

http://www.combest.eu
http://www.speeds.eu.com

[28] F. Cassez, A. David, E. Fleury, K. G. Larsen, D. Lime, Efficient on-the-fly
algorithms for the analysis of timed games, in: CONCUR, volume 3653 of
LNCS, Springer, 2005, pp. 66–80.

[29] L. de Alfaro, T. A. Henzinger, Interface-based design, in: In Engineering
Theories of Software Intensive Systems, Marktoberdorf Summer School.

[30] P. Bulychev, T. Chatain, A. David, K. G. Larsen, Efficient on-the-fly
algorithm for checking alternating timed simulation, in: FORMATS, volume
5813 of LNCS, Springer, 2009, pp. 73–87.

[31] L. de Alfaro, M. Faella, T. A. Henzinger, R. Majumdar, M. Stoelinga, The
element of surprise in timed games, in: R. M. Amadio, D. Lugiez (Eds.),
CONCUR, volume 2761 of LNCS, Springer, 2003, pp. 142–156.

[32] O. Maler, A. Pnueli, J. Sifakis, On the synthesis of discrete controllers for
timed systems (an extended abstract), in: STACS, pp. 229–242.

[33] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-
guided abstraction refinement, in: CAV, volume 1855 of LNCS, Springer,
2000, pp. 154–169.

[34] R. Alur, T. A. Henzinger, M. Y. Vardi, Parametric real-time reasoning, in:
STOC, pp. 592–601.

[35] T. Hune, J. Romĳn, M. Stoelinga, F. W. Vaandrager, Linear parametric
model checking of timed automata, J. Log. Algebr. Program. 52-53 (2002)
183–220.

[36] G. Behrmann, A. Cougnard, A. David, E. Fleury, K. G. Larsen, D. Lime,
Uppaal-tiga: Time for playing games!, in: CAV, volume 4590 of LNCS,
Springer, 2007, pp. 121–125.

[37] A. David, K. G. Larsen, A. Legay, U. Nyman, A. Wąsowski, ECDAR: An
environment for compositional design and analysis of real time systems, in:
ATVA, volume 6252 of LNCS, Springer, Singapore, 2010, pp. 365–370.

[38] Python implementation of ECDAR, Pyecdar, 2011. https://project.inria.fr/
pyecdar.

[39] R. Bagnara, P. M. Hill, E. Zaffanella, The Parma Polyhedra Library: Toward
a complete set of numerical abstractions for the analysis and verification
of hardware and software systems, Science of Computer Programming 72
(2008) 3–21.

[40] J.-B. Raclet, B. Caillaud, D. Nickovic, R. Passerone, A. Sangiovanni-
Vincentelli, T. Henzinger, K. G. Larsen, Contracts for the Design of Em-
bedded Systems Part I: Methodology and Use Cases, Technical Report,
2012. Submitted, http://www.irisa.fr/distribcom/benveniste/pub/ProcIEEE_
contractsPart1.pdf.

44

https://project.inria.fr/pyecdar
https://project.inria.fr/pyecdar
http://www.irisa.fr/distribcom/benveniste/pub/ProcIEEE_contractsPart1.pdf
http://www.irisa.fr/distribcom/benveniste/pub/ProcIEEE_contractsPart1.pdf

[41] A. David, K. G. Larsen, A. Legay, M. Mikucionis, D. B. Poulsen, J. van Vliet,
Z. Wang, Statistical model checking for networks of priced timed automata,
in: FORMATS, volume 6919 of LNCS, Springer, Aalborg, Denmark, 2011,
pp. 80–96.

45

