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Small-scale anisotropic intermittency is examined in three-dimensional incompressible magnetohydrodynamic
turbulence subjected to a uniformly imposed magnetic field. Orthonormal wavelet analyses are applied to direct
numerical simulation data at moderate Reynolds number and for different interaction parameters. The magnetic
Reynolds number is sufficiently low such that the quasistatic approximation can be applied. Scale-dependent
statistical measures are introduced to quantify anisotropy in terms of the flow components, either parallel
or perpendicular to the imposed magnetic field, and in terms of the different directions. Moreover, the flow
intermittency is shown to increase with increasing values of the interaction parameter, which is reflected in
strongly growing flatness values when the scale decreases. The scale-dependent anisotropy of energy is found
to be independent of scale for all considered values of the interaction parameter. The strength of the imposed
magnetic field does amplify the anisotropy of the flow.
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I. INTRODUCTION

Turbulence of electrically conducting fluids subjected to
external magnetic field at low magnetic Reynolds number
is encountered in geophysical flows, e.g., the geodynamo,
and in numerous machines, e.g., electromagnetic casting of
melted metals and cooling blankets of nuclear reactors [1].
The imposed magnetic field can be assumed to be uniform for
small-scale turbulence. Mathematical modeling of the Lorentz
force leads to the so-called quasistatic (QS) approximation
of magnetohydrodynamic (MHD) turbulence, therefore called
QS MHD turbulence; see, e.g., [2]. The intensity of the Lorentz
force, due to the imposed magnetic field, compared to flow
inertia is characterized by the magnetic interaction parameter,
sometimes called the Stuart number, while the turbulence
intensity is quantified by the kinetic Reynolds number. The
Lorentz force is anisotropic and suppresses turbulence [3].

Experiments with liquid-metal flows present difficulties for
measuring and visualizing the relevant fields, owing to the
opacity of the liquid metals and their corrosion. Therefore,
direct numerical simulation (DNS) is an essential tool to obtain
statistics on the turbulent flows and flow structures encountered
in those experiments. In the current work, homogeneous flows
are considered which allow for periodic boundary conditions.
Hence, efficient Fourier pseudospectral methods can be used
for solving the underlying equations by means of DNS.

Since the pioneering work of Schumann [4], DNS studies
of three-dimensional (3D) QS MHD turbulence have been
carried out for canonical turbulent flows, e.g., homogeneous
turbulence. It was shown that vorticity structures have the
tendency to be aligned with the direction of the imposed
magnetic field [5]. Scale-by-scale flow anisotropy was quan-
tified by the Fourier representation of the two-point velocity
correlations. It was observed that flow anisotropy is stronger
as the interaction parameter increases, see, e.g., [4–7]. Two
types of anisotropy measured by the use of the 3D energy
spectra are persistent at small scales for turbulence, even at

modest kinetic Reynolds numbers, and their scale dependence
is weak [7]. In Ref. [6], one-dimensional (1D) spectra of each
velocity component in the longitudinal direction showed that
the component parallel to the imposed magnetic field is more
attenuated at small scale than the components perpendicular to
the magnetic field. Ishida and Kaneda [8] predicted the scale
dependence and the angular dependence of the anisotropic
velocity correlation spectrum in the inertial subrange, using
the response of the equilibrium state to the external magnetic
field. They showed that the predicted spectrum is in good
agreement with their DNS results. In long-time simulations
of decaying QS MHD turbulence, one observes the transition
from 3D to 2D and three-component turbulence predicted by
[9], which results from the Joule dissipation and generation of
polarization anisotropy due to nonlinear interaction [10]. Due
to the decay of the kinetic energy, the level of turbulence
is strongly reduced. Readers interested in DNS of wall-
bounded turbulent QS MHD flows may refer to a review
article [11].

Fourier techniques yield insight into wave-number-
dependent, i.e., scale-dependent second-order velocity mo-
ments of turbulent flows in different directions, as men-
tioned above. However, their spatial fluctuations at different
scales cannot be quantified owing to the global character
of the Fourier basis functions. Hence, one is then not able
to quantify the anisotropy of the spatial fluctuations and
the flow intermittency at each scale. Wavelets, being well-
localized functions in space, scale, and direction, yield a
nonredundant orthogonal representation of flows, allowing us
to quantify both anisotropy and intermittency. Bos et al. [12]
introduced directional scale-dependent wavelet statistics, for
example, flatness factors, which yield intermittency measures
of anisotropic turbulence. Wavelet techniques have been
applied in hydrodynamic [12–16], MHD [17], and solar-wind
turbulence for analysis [18–20], for modeling [21,22], and for
computing turbulent flows [23,24].
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In this paper, we examine the anisotropy of spatial fluc-
tuations and of intermittency for QS MHD turbulence of
small scales. Emphasis is put on scale dependence and on
the influence of the magnetic field strength. We thus propose
to extend the wavelet-based statistics developed in Ref. [12]
and introduce scale-dependent statistical measures in order
to quantify the anisotropy of the spatial fluctuations of the
different flow components, either parallel or perpendicular to
the imposed magnetic field, and to relate these measures to
the flow intermittency. Anisotropy in different flow directions,
either longitudinal or transverse, can be quantified too.

We perform DNS of 3D QS MHD turbulence in a periodic
box, using solenoidal forcing imposed only on the large-
scale flow. The motivation for applying such a forcing is
to obtain statistically quasistationary small-scale turbulence
while keeping the kinetic Reynolds number as high as possible.

The remainder of the paper is organized as follows. First,
we briefly recall the basic equations of QS MHD turbulence in
Sec. II and describe the numerical approach used to solve them.
Then the wavelet methodology and the statistical measures
based on it are introduced in Sec. III. Numerical results are
presented in Sec. IV. Finally, Sec. V draws some conclusions
and gives perspectives for future work.

II. BASIC EQUATIONS AND DIRECT NUMERICAL
SIMULATION

We consider the 3D turbulent motions of an incompressible
electrically conducting fluid in a periodic cube with side length
2π , subjected to a uniformly imposed magnetic field B0.
Statistically the motions yield axisymmetry and reflectional
symmetry. Their magnetic Reynolds numbers are assumed to
be sufficiently small such that the QS MHD approximation
can be applied. We use Cartesian coordinates and set B0 to
(0,0,B0) without loss of generality. The velocity field u(x,t)
obeys

∂u
∂t

+ (u · ∇)u = − 1

ρ
∇p + ν∇2u − σB2

0

ρ
�−1 ∂2u

∂x2
3

+ f ,

(1)

∇ · u = 0, (2)

where x = (x1,x2,x3), ∇ = (∂/∂x1,∂/∂x2,∂/∂x3), �−1 rep-
resents the inverse Laplace operator, t the time, f (x,t) an
external solenoidal forcing, p(x,t) the modified pressure
including the magnetic pressure, ν the kinematic viscosity,
ρ the density, and σ the electrical conductivity. In Eqs. (1)
and (2), and hereafter, we omit the arguments x and t , if not
otherwise stated.

Equations (1) and (2) are solved by DNS at resolution 5123,
using a dealiased Fourier pseudospectral method with a fourth-
order Runge-Kutta method for time marching. Aliasing errors
are removed by a phase-shift method and a spherical spectral
cutoff retaining only Fourier modes satisfying k � kmax. Here,
k = |k|, where k is the wave vector, kmax is the maximum
integer smaller than 21/2n/3, and n = 512 is the number of
grid points in one Cartesian direction. We impose the same
type of forcing as introduced in Ref. [7]. To retain active
large-scale three dimensionality, only the low wave-number

TABLE I. Statistics of the DNS computations for RunN0, RunN1,
and RunN2 at the final time instant.

N Rλ kmaxη 〈εν〉 〈εm〉
RunN0 0 226 1.02 10.2 ×10−2 0
RunN1 1 359 1.29 4.03 ×10−2 14.4 ×10−2

RunN2 2 581 1.64 1.54 ×10−2 20.8 ×10−2

range k < 2.5 is forced and the total kinetic energy is kept at
a constant value of 0.5. The forcing is defined as

f̂ (k) = 〈εν〉 + 〈εm〉
nf |̂u(k)|2 û(k), (3)

where ·̂ is the Fourier transformation of ·, nf is the number of
Fourier modes subjected to the forcing, 〈εν〉 is the mean kinetic
energy dissipation rate per unit mass, and 〈εm〉 is the Joule
dissipation rate per unit mass. The kinematic viscosity is ν =
2.8 × 10−4, and the time increment is 1.0 × 10−3. Different
values for the intensity of the uniform magnetic field B0 are
chosen such that the interaction parameters N are equal to 0,
1, and 2, respectively. The interaction parameter is defined by

N = σB2
0L

ρu′ , (4)

which characterizes the intensity B0 relative to the flow
nonlinearity. Here, u′ = (〈|u|2〉/3)1/2, where 〈·〉 denotes the
spatial average of ·, and L is the initial integral length
scale defined by L = π/(2u′2)

∫ kmax

0 e(k)/k dk, where e(k)

is the energy spectrum defined by e(k) = ∑3
i=1 e(i)(k) with

e(i)(k) = ∑
k−1/2�|q|<k+1/2 |û(i)(q)|2/2.

The DNS computations for N = 0, 1, and 2, respectively
called RunN0, RunN1, and RunN2, are performed up to the
final time instants: (t − t0)/T � 1.14 for RunN0, and (t −
t0)/T � 6.31 for RunN1 and RunN2, where T denotes the
initial large-eddy turnover time defined by T = u′/L, and t0
is the initial time. The flow in RunN0 can be considered as
hydrodynamic turbulence. The resulting flows are statistically
quasistationary at small scales in the sense that 〈εν〉 and the
component-wise anisotropic measure c(k) only slightly change
in time at small scales, where

c(k) = e(1)(k) + e(2)(k)

2e(3)(k)
. (5)

Table I summarizes the statistics at the final time, the Taylor
microscale Reynolds number Rλ, the Kolmogorov length scale
η, 〈εν〉, and 〈εm〉, where Rλ = u′λ/ν, λ = (15νu′2/〈εν〉)1/2,
and η = (ν3/〈εν〉)1/4. It is shown that Rλ increases with N ,
owing to the reduction of 〈εν〉 with increasing N , as observed
in Ref. [25] where a random solenoidal forcing was used. It
can be noted that the results which will be presented in Sec. IV
are confirmed to be robust, using the data from [25].

The field used to initialize the DNS computations is a
quasistationary hydrodynamic turbulent flow at Rλ = 235,
which was computed by a preceding DNS with the same
parameters of RunN0. We consider only DNS data for N = 0,
1, and 2, because for larger N it would take much more time
to reach a statistically quasistationary state. For example, the
level of c(k) at small scales decays in time for N = 4, and
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reaching a statistically steady state takes 1.3 times longer than
for RunN2.

III. METHODOLOGY

In the following, we give a brief summary of orthogonal
wavelet analysis applied to the velocity field. The wavelet
representation allows us to measure scale-dependent distri-
butions of turbulent flows in different directions and also of
the different flow components. For example, not only energy
but also its spatial fluctuations can be quantified at different
length scales and in different directions. Thus, longitudinal
or transverse contributions can be distinguished, as well as
contributions in the directions perpendicular or parallel to
the imposed magnetic field. Therefore, statistical quantities
based on the wavelet representation are introduced in order
to examine scale-dependent anisotropy and the corresponding
intermittency of low magnetic Reynolds number turbulence.
Intermittency is defined here as a departure from Gaussianity,
reflected by the fact that the flatness increases when scale
decreases, as introduced by Sandborn [26] in the context of
boundary layer flows. For a historical overview we refer to
[15]. Different definitions of intermittency, for example, a
steepening of the energy spectrum proposed by Kolmogorov
1962 [27], can be found, e.g., in Ref. [28].

Related work to quantify the anisotropy of the flow and
its intermittency using structure functions of either tensorial
components or applying the SO3 decompositions, the latter
is based on spherical harmonics, have been proposed in
Refs. [29–31]. As structure functions can be linked to wavelet
decompositions (see, e.g., [15]), the increments can be seen
as wavelet coefficients using the poor man’s wavelet (i.e.,
the difference of two δ distributions), the exponent of the
detectable scaling laws is limited by the order of the structure
function, and the scale selectivity is reduced because the
frequency localization of the poor man’s wavelet is rather bad.

A. Orthogonal wavelet decomposition

The starting point is the velocity field u = (u(1),u(2),u(3)),
sampled at resolution n = 23J , which is decomposed into a
series:

u(x) =
J−1∑
j=0

7∑
μ=1

2j −1∑
i1,i2,i3=0

ũj,μ,iψj,μ,i (x), (6)

using 3D orthogonal wavelets ψj,μ,i (x). The basis func-
tions are constructed by tensor products of one-dimensional
wavelets and a periodization technique [32]. The indices are
the scale index j (varying from 0 to J − 1), the spatial
index i = (i1,i2,i3) having 23j values for each j and μ, and
the direction index μ = 1, . . . ,7. The directions μ = 1,2,3
correspond to the Cartesian directions, and μ = 4,5,6,7 to
additional directions. The wavelet coefficients measure the
fluctuations of u at scale 2−j and around position 2−j i for
each of the seven possible directions μ. Due to orthogonality
with respect to j , i , and μ, the coefficients are provided by
ũj,μ,i = 〈u,ψj,μ,i 〉, where 〈·,·〉 denotes the L2-inner product.
Here, we use Coiflet 12 wavelets having four vanishing
moments. The wavelets are well localized in space around
position 2−j i and scale 2−j , oscillating, and smooth. The scale

2−j is related to the wave number kj as

kj = kψ2j , (7)

where kψ = ∫ ∞
0 k|ψ̂(k)|dk/

∫ ∞
0 |ψ̂(k)|dk is the centroid wave

number of the chosen wavelet. For the Coiflet 12 used here we
have kψ = 0.77.

The contribution of u at scale 2−j and direction μ can
be reconstructed by summation of ũj,μ,iψj,μ,i (x) over all
positions i :

uj,μ(x) =
2j −1∑

i1,i2,i3=0

ũj,μ,iψj,μ,i (x). (8)

The contribution of u at scale 2−j is then obtained by

uj (x) =
7∑

μ=1

uj,μ(x). (9)

For more details on wavelets, we refer the reader to pioneering
work [13,14] and text books, e.g., Mallat [32]. The influence
of the choice of the wavelet on the statistics has been checked
and we found that the results are robust given that the wavelet
has a sufficient number of vanishing moments; see, e.g., the
discussion in Ref. [15].

B. Scale-dependent statistics

1. Energy spectra, spatial fluctuations, and flatness

To study the scale-dependent directional statistics compo-
nent by component 
 = 1,2,3, we first define the qth-order
moments of the scale-dependent vector sj (x) = (s(1)

j ,s
(2)
j ,s

(3)
j ),

which is here either the velocity field at scale 2−j and direction
μ, u

(
)
j,μ, or the velocity field at scale 2−j , u

(
)
j ,

Mq

[
s

(
)
j

] = 〈(
s

(
)
j

)q 〉
, (10)

noting that by construction the mean value satisfies 〈s(
)
j 〉 = 0.

The relation between these scale-dependent moments and the
qth-order structure functions is given in Ref. [15]. Here, we
consider the second-order moment M2[s(
)

j ], which is a scale-

dependent mean intensity of s
(
)
j , and the fourth-order moment

M4[s(
)
j ]. These moments are related to the scale-dependent

spatial fluctuations and the flatness factor.
A preferred direction can be defined as we consider low

magnetic Reynolds number turbulence, which is statistically
symmetric with respect to the x3 axis. For the perpendicular
components, 
 = 1,2, we take the average of these two compo-
nents, Mq[s⊥

j ] = {Mq[s(1)
j ] + Mq[s(2)

j ]}/2. The superscript ⊥
represents the perpendicular contribution. We hereafter denote
s

(3)
j by s

‖
j , which is the parallel contribution.

Using M2[s(
)
j ] and Eq. (7), we obtain the wavelet energy

spectrum for s
(
)
j , which is defined by

E
[
s

(
)
j

] = 1

2�kj

M2
[
s

(
)
j

]
, (11)

where �kj = (kj+1 − kj ) ln 2 [14,33]. The wavelet spectrum
E[s(
)

j ] corresponds to a smoothed version of the Fourier
energy spectrum [13,14]. Thanks to the orthogonality of the
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wavelets with respect to scale and direction, we obtain the total
kinetic energy E = ∑


,j E[u(
)
j ] = ∑


,j,μ E[u(
)
j,μ].

The spatial variability of the energy spectrum at a given
wave number kj can be quantified by its standard deviation:

σ
[
s

(
)
j

] = 1

2�kj

√
M4

[
s

(
)
j

] − {
M2

[
s

(
)
j

]}2
. (12)

The scale-dependent flatness factor, which quantifies flow
intermittency at scale 2−j , is defined by

F
[
s

(
)
j

] = M4
[
s

(
)
j

]{
M2

[
s

(
)
j

]}2 . (13)

In Ref. [12] it was shown that the flatness is related to the
energy spectrum (11) and the standard deviation (12) by

F
[
s

(
)
j

] =
(

σ
[
s

(
)
j

]
E

[
s

(
)
j

])2

+ 1. (14)

2. Scale-dependent anisotropy measures

We introduce measures to quantify scale-dependent spa-
tial flow anisotropy and anisotropic flow intermittency. The
anisotropy measure of its scale-dependent mean energy E[s(
)

j ]
can be defined, corresponding to the anisotropy measure based
on the Fourier representation of the flow. The anisotropy
measure of its spatial fluctuations σ [s(
)

j ] is introduced in

analogy with that of E[s(
)
j ]. Then, using Eq. (14), we will

find that these quantities provide measures of various types
of anisotropic flow intermittency. Here, we consider both
component-wise anisotropy and directional anisotropy of the
flow.

Component-wise anisotropy. Scale-dependent component-
wise anisotropy of energy and its fluctuation at scale 2−j is
defined, respectively, by

cE(kj ) = E[u⊥
j ]

E[u‖
j ]

, (15)

cσ (kj ) = σ [u⊥
j ]

σ [u‖
j ]

. (16)

The measure of the scale-dependent mean energy, cE(kj ),
corresponds to a smoothed version of the Fourier represen-
tation of c(k) in Eq. (5). The measure cσ (kj ) yields the degree
of the component-wise anisotropy of the spatial fluctuations.
These measures have an exact relation with the component-
wise flatness factors of u

(
)
j , i.e., F [u⊥

j ] and F [u‖
j ]. Using

Eqs. (14)–(16), we get

�C
j ≡

{
cσ (kj )

cE(kj )

}2

= F [u⊥
j ] − 1

F [u‖
j ] − 1

. (17)

This can be regarded as a scale-dependent measure of
component-wise anisotropic intermittency.

Directional anisotropy. Next, representative measures of
directional anisotropy at scale 2−j are introduced. These

measures are defined as

dL
E (kj ) = E[u⊥

j,L]

E[u‖
j,L]

, (18)

dL
σ (kj ) = σ [u⊥

j,L]

σ [u‖
j,L]

, (19)

dT
E (kj ) = E[u⊥

j,3]

E[u⊥
j,T ]

, (20)

dT
σ (kj ) = σ [u⊥

j,3]

σ [u⊥
j,T ]

, (21)

where L represents the longitudinal direction, i.e., L = μ = 
.
The subscript μ = 3 denotes a transverse direction of the
perpendicular components, while T corresponds to another
transverse direction of the perpendicular components, i.e.,
T = μ = 1 for u

(2)
j,μ or T = μ = 2 for u

(1)
j,μ. For the directional

statistics, we consider here only three principal directions,
i.e., μ = 1, 2, and 3, of the seven possible directions.
The measures dL

E (kj ) and dT
E (kj ) correspond to smoothed

versions of the Fourier representation 2e(3)(k3)/{e(1)(k1) +
e(2)(k2)} and {e(1)(k3) + e(2)(k3)}/{e(1)(k2) + e(2)(k1)}, respec-
tively, if we take into account the interpretation of
the directional statistics in Ref. [12]. These are respec-
tively related to the following expressions in physical
space: 2D(3)(r l̂3)/{D(1)(r l̂1) + D(2)(r l̂2)} and {D(1)(r l̂3) +
D(2)(r l̂3)}/{D(1)(r l̂2) + D(2)(r l̂1)}. Here D(
)(r) = 〈{v(
)(x +
r) − v(
)(x)}2〉, and v(
) consists of contributions of u(
) to
scales larger than or equal to a representative scale 2−j , which
are obtained by low-pass filtering using the 3D scaling function
at scale 2−j . The unit vector of the x
th Cartesian direction is
denoted by l̂
.

Using Eqs. (14) and (18)–(21), we obtain the exact relations

�L
j ≡

{
dL

σ (kj )

dL
E (kj )

}2

= F [u⊥
j,L] − 1

F [u‖
j,L] − 1

, (22)

�T
j ≡

{
dT

σ (kj )

dT
E (kj )

}2

= F [u⊥
j,3] − 1

F [u⊥
j,T ] − 1

. (23)

These quantify the degree of the scale-dependent anisotropic
intermittency in the transverse and longitudinal directions.
Intermittency can thus be measured not only in the plane
perpendicular or in the direction parallel to the magnetic field
B0, but also in the longitudinal or transverse directions. Note
that the departure of these measures from unity indicates the
degree of flow anisotropy, since these measures are equal to
unity for isotropic fields.

IV. NUMERICAL RESULTS

A. Visualization

Visualizing isosurfaces of the modulus of vorticity, |ω| =
const., for different N presented in Fig. 1 yields insight and
an intuitive idea on the flow structure. For N = 0, where there
is no imposed magnetic field, the flow can be regarded as
isotropic hydrodynamic turbulence, and it exhibits entangled
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FIG. 1. (Color online) Visualization of intense vorticity regions
for N = 0 (top), N = 1 (middle), and N = 2 (bottom) at the final
time.

vortex tubes as typically observed in DNS (e.g., [34]) and
laboratory experiments (e.g., [35]). In the case of N �= 0, the
Lorentz force due to the imposed magnetic field B0, which
vanishes for k3 = 0 in wave-number space, gives rise to flow

10-5

10-4

10-3

10-2

10-1

100

 0.001  0.01  0.1  1  10

N=0
N=1
N=2

10-2

10-1

100

 0.01

k
5
/
3

j
E

[u
⊥ j
]

kjη

10-5

10-4

10-3

10-2

10-1

100

 0.001  0.01  0.1  1  10
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/
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σ
[u

⊥ j
]

kjη

FIG. 2. (Color online) Wavelet mean energy spectra k
5/3
j E[u⊥

j ]

(top) and standard deviation spectra k
5/3
j σ [u⊥

j ] (bottom). The Fourier
energy spectra are also plotted as reference in the top figure using
solid black lines. The three lines with filled circles, triangles, and
squares in the inset show the corresponding forcing Fourier spectra
k5/3Ef (k).

anisotropy. We see that the structures for relatively weak
values of N , e.g., N = 1, are similar to those for N = 0, as
already observed in Ref. [8]. For larger values, e.g., N = 2,
the structures differ from those observed for N = 0 and 1.
One may see that many structures are aligned in the direction
parallel to B0, an observation consistent with [5]. Thus the
visualizations illustrate that the flow at N = 2 exhibits a
strong anisotropy, which will be quantified statistically in the
following.

B. Wavelet mean and standard deviation spectra

The spatial average of the local energy at scale 2−j and
its spatial fluctuations are respectively quantified by wavelet
mean spectra and standard deviation spectra. Figure 2 (top)
shows wavelet mean spectra of the perpendicular component,
i.e., E[u⊥

j ] defined by Eq. (11), together with the Fourier
energy spectra of the perpendicular component, i.e., e⊥(k) =
{e(1)(k) + e(2)(k)}/2. All spectra are multiplied by k5/3 in
order to observe the differences of the spectra at small scales
well. We see that the spectra decay with increasing kjη, i.e.,
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decreasing scale 2−j . Each E[u⊥
j ] (dotted lines in Fig. 2) at

a given N is in reasonable agreement with the corresponding
Fourier spectrum e⊥(k) (solid lines in Fig. 2). As N becomes
larger, E[u⊥

j ] decays more rapidly for kjη > 0.1. This rapid
decay of the energy spectra with increasing N is consistent
with [6,7]. The inset in Fig. 2 shows the forcing spectra
defined by Ef (k) = ∑

k−1/2�|q |�k+1/2 û(q) · f̂ (q)∗/3, where
∗ denotes the complex conjugate, the factor 3 is due to the
component-wise average, and then the right-hand side is real
valued for f̂ (k) defined by Eq. (3).

Figure 2 (bottom) depicts the standard deviation spectra
of u⊥

j , i.e., σ [u⊥
j ] defined by Eq. (12). We see that σ [u⊥

j ]
exhibits more rapid decay in terms of scale with increasing
N . Comparing the top and bottom figures shows that the N

dependence of σ [u⊥
j ] is weaker than that of E[u⊥

j ]. The decay
of σ [u⊥

j ] with increasing N is less pronounced than that of
E[u⊥

j ]. In Fig. 2, we plotted only the spectra of u⊥
j , but not the

spectra of the parallel component u‖
j . The latter can be obtained

from the anisotropy measures E[u⊥
j ]/E[u‖

j ] and σ [u⊥
j ]/σ [u‖

j ],
studied below.

C. Scale-dependent component-wise anisotropy

To get a deeper understanding of the scale dependence of
anisotropy, we use the scale-dependent anisotropy measures
defined by Eqs. (15) and (16). One is cE(kj ) showing the
degree of anisotropy of the wavelet mean energy spectrum
at scale 2−j , and the other is cσ (kj ) indicating the degree of
anisotropy of the spatial fluctuations of the local energy at
scale 2−j . These measures are plotted in Figs. 3 (top) and
(bottom), respectively. It is seen that for N = 0, which is the
isotropic case, cE(kj ) � 1 and cσ (kj ) � 1 for kjη > 0.02, as
expected. The departure from unity indicates the degree of flow
anisotropy. In the figures, we focus on their behaviors at small
scales, since the forcing is imposed at large scale kη < 0.02.

Figure 3 (top) shows that for both cases N = 1 and 2 the
values of cE(kj ) are smaller than unity, i.e., the scale-dependent
energy of the parallel component is predominant over that of
the perpendicular component for wave numbers kjη > 0.05.
These component-wise energies show anisotropy which is
persistent at the small scales. The anisotropy becomes more
pronounced with increasing N , because cE(kj ) decreases
when N increases. We observe that cE(kj ) at N = 1 is fairly
independent of scale for kjη > 0.05, and for N = 2 it exhibits
only weak scale dependence. In the dissipation range, i.e.,
kjη > 0.3, it slightly decays. The scale and N dependences
of cE(kj ) are consistent with previous work which examined
c(k) using the Fourier representation [7].

In Fig. 3 (bottom), the values of cσ (kj ) are smaller than unity
for both cases, N = 1 and 2, and hardly vary with scale. The
anisotropy of the spatial fluctuations of the energy is persistent
at small scales, as it is the case for the mean value. We see that
the N dependence of cσ (kj ) is weaker than that of cE(kj ). For
each N , we also find that cE(kj ) < cσ (kj ). Thus the anisotropy
of the spatial fluctuations of energy is weaker than that of its
mean value.

Now, we move on to the scale-by-scale intermittency of the
perpendicular velocity components u⊥

j and the parallel one u
‖
j .

The intermittency can be quantified by the scale-dependent
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FIG. 3. (Color online) Component-wise anisotropy measures
cE(kj ) and cσ (kj ).

flatness factor defined in Eq. (13). Figure 4 (top) shows that
for all N the flatness indeed increases as scale decreases.
For small scales kjη > 0.1 the flatness also increases as N

increases. This shows that the intermittency becomes stronger
for increasing N and for decreasing scale. For comparison the
inset in Fig. 4 (top) shows the scale-by-scale flatness of the
parallel velocity field F [u‖

j ]. We observe a similar behavior as
is the case of F [u⊥

j ].
To quantify the component-wise anisotropy of intermit-

tency at each scale, in Fig. 4 (bottom), we plot the ratio �C
j ,

which can be equivalently defined by (F [u⊥
j ] − 1)/(F [u‖

j ] −
1), that is, {cσ (kj )/cE(kj )}2. For N = 0 the ratio yields nearly
the value one at each scale, as expected from the flow isotropy.
For both, N = 1 and 2, �C

j is larger than unity for kjη > 0.1,
i.e., the perpendicular velocity becomes more intermittent than
the parallel velocity at the smaller scales. For kjη > 0.1 the
ratio �C

j increases as N increases and thus the anisotropy of
intermittency increases. The ratio at N = 2 increases as scale
decreases, while the ratio at N = 1 only weakly depends on
scale. Under the imposed magnetic field, the intermittency
shows anisotropy in contrast to the case of mean energy
and its standard deviation. As mentioned above, in the case
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FIG. 4. (Color online) Flatness factor F [u⊥
j ] and the anisotropy

measure of intermittency �C
j . The inset shows F [u‖

j ].

N �= 0, {cσ (kj )/cE(kj )}2 > 1 as cE(kj ) < cσ (kj ) < 1. This
means that the imposed magnetic field enhances the anisotropy
of the mean energy more than of its spatial fluctuations. The
component-wise anisotropy of the intermittency thus behaves
differently from the anisotropy of the mean energy and its
spatial fluctuations.

D. Scale-dependent directional anisotropy

Next, we examine the flow anisotropy in different directions
at each scale using the measures of directional anisotropy
defined by Eqs. (18)–(21). Figure 5 plots the measures dL

E

and dL
σ , which show the degree of flow anisotropy in the

longitudinal direction for the wavelet mean spectra, and for
their spatial fluctuations, respectively. We also see that these
measures have values larger than unity for N �= 0, while they
remain close to unity for N = 0. For N �= 0, the correlation
of the velocity component parallel to the imposed magnetic
field in its longitudinal direction is suggested to be stronger
than the correlation of the perpendicular components in the
longitudinal direction. This is consistent with the results
obtained by the use of the 1D longitudinal Fourier spectrum
for each velocity component [6]. We observe that the scale

 0

 1

 2

 3

 4

 5

 0.1  1

N=0
N=1
N=2

d
L E
(k

j
)

kjη

 0

 1

 2

 3

 4

 5

 0.1  1

N=0
N=1
N=2

d
L σ
(k

j
)

kjη

FIG. 5. (Color online) Directional anisotropy measures in the
longitudinal direction, dL

E (kj ) and dL
σ (kj ).

dependence of the measures becomes weak for kjη > 0.1 at
nonzero N . The anisotropy of the mean spectra and their
spatial fluctuations in the longitudinal direction are almost
independent of scale for kjη > 0.1, and become stronger as
N increases. The N dependence of dL

σ is weaker than that
of dL

E , as it is the case for the N dependence of anisotropy
measures in terms of the flow components cE and cσ (see
Fig. 3). The scale dependence of dL

E is different from the
scale dependence of anisotropy in the longitudinal direction
reported in Ref. [6]. The difference may be attributed to
the following: (i) Their Taylor microscale Reynolds number,
defined by Rλ{1 + 〈εm〉/〈εν〉}−1/2, is much lower than the Rλ

defined in Sec. II, and (ii) their measure is not exactly the same
as dL

E .
Figure 6 (top) and (bottom) presents plots of the kjη

dependence of the degrees of anisotropy in the transverse
directions for wavelet mean intensities of the perpendicular
velocity components u⊥, dT

E , and for their spatial fluctuations,
dT

σ , respectively. These measures are smaller than unity for
N �= 0, which means that the energy in the transversal direction
is predominant over that in the B0 direction, while they
are almost unity for N = 0. The scale dependence and N
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FIG. 6. (Color online) Directional anisotropy measures in the
transversal direction, dT

E (kj ) and dT
σ (kj ).

dependence of the anisotropy measures in the transverse
directions dT

E and dT
σ are similar to those of the longitudinal

direction dL
E and dL

σ . The scale dependence of the measures
becomes weak for kjη > 0.1 for nonzero values of N . We
also observe that the measure dT

σ is less dependent on N than
for dT

E .
It is suggested that the predominance in dT

E corresponds
to a tendency of alignment of the vorticity structures with
B0, which is compatible with the observations in Fig. 1.
The turbulent flows are statistically axisymmetric with respect
to the direction x3. Identifying u⊥ and T with u(1) and
T = μ = 2, respectively, the quantity dT

E can be recast into
M2[u(1)

j,3]/M2[u(1)
j,2]. The inequality dT

E < 1 implies that the

contribution of M2[u(1)
j,3] becomes small compared to that of

M2[u(1)
j,2]. The wavelet energy of u

(1)
j is weaker in the direction

of μ = 3, i.e., the direction of B0, than in the perpendicular
direction μ = 2.

To quantify the scale-dependent anisotropy of intermittency
in longitudinal and transversal directions, we use the measures
�L

j and �T
j , respectively defined by Eqs. (22) and (23). In

Fig. 7, we observe that both measures are scale dependent
and differ from unity with decreasing scale. This shows that
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FIG. 7. (Color online) Measures of anisotropic intermittency in
the longitudinal direction and the transversal direction, �L

j and �T
j .

the anisotropy of intermittency in longitudinal and transversal
directions becomes stronger as scale decreases.

V. CONCLUSION AND DISCUSSION

The anisotropy and intermittency of incompressible ho-
mogeneous quasistatic MHD turbulence with an imposed
magnetic field B0 have been studied. Wavelet-based statistical
quantities measuring scale and directional dependence of
the flow anisotropy and intermittency have been proposed.
Different turbulent MHD flows at moderate Reynolds number,
computed by DNS with 5123 grid points, for three interaction
parameters, N = 0,1, and 2 have been analyzed. In the
presented work, we focused on directions parallel and perpen-
dicular to B0 and performed flow analysis using orthogonal
wavelets, which yield nonredundant flow information in
space, scale, and direction. The characterization of the scale-
dependent directional intermittency is thus possible, which
especially reveals the importance of the external magnetic field
driving anisotropy and intermittency along its direction.

Generalizing previously developed wavelet-based mea-
sures, introduced by Bos et al. [12], we quantified not only the
anisotropy of mean values, such as kinetic energy, for different
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directions and of different components, but also the anisotropy
of its spatial fluctuations. A relation with the anisotropy
measured by flatness factors has likewise been established. The
anisotropy of fluctuations is shown to be comparable or weaker
than that of the mean quantities. The analyses confirmed that
the role of the imposed magnetic field B0 is twofold: First, its
magnitude plays a significant influence on the flow anisotropy,
and second, it is responsible for amplifying the small-scale
intermittency. This is in contrast to the case of small-scale
intermittency in incompressible rotating turbulence [12] where
the Coriolis effect does not enhance small-scale intermittency.
Preliminary results were reported in the proceedings [25],
where different DNS data considering two values of interaction
parameters and a divergence-free random field were analyzed
without using the advanced anisotropy measures developed
here.

The proposed anisotropy and intermittency measures based
on the orthogonal wavelet decomposition can be applied to
other quantities, such as vorticity and magnetic fields, and can
be used to study anisotropic turbulence encountered in many
applications, for example, in geophysical or astrophysical
flows. The present results also provide useful information for
improving wavelet-based turbulence models for computing
anisotropic flows with a reduced computational cost. For a
review we refer to [24]. A wavelet-based turbulence model,
the coherent vorticity current density simulation (CVCS),
which is based on the deterministic computation of the

coherent contributions of vorticity and current density using
an adaptive wavelet basis, was proposed in Ref. [23]. The
coherent field contributions are obtained by filtering out
the weak wavelet coefficients, which thus directly exploits the
intermittency of turbulence and yields a sparse representation.
This approach is motivated from hydrodynamic turbulence
for which the coherent vorticity simulation (CVS) has been
proposed [36]. We anticipate that CVCS might be more
efficient for anisotropic MHD flows thanks to their increased
magnetic field driven intermittency.
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