
HAL Id: hal-01087694
https://hal.science/hal-01087694v1

Preprint submitted on 26 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Local Yamabe Constant of Einstein Stratified
Spaces

Ilaria Mondello

To cite this version:

Ilaria Mondello. The Local Yamabe Constant of Einstein Stratified Spaces. 2014. �hal-01087694�

https://hal.science/hal-01087694v1
https://hal.archives-ouvertes.fr


The Local Yamabe Constant of Einstein

Stratified Spaces

Ilaria Mondello

Abstract

On a compact stratified space (X, g) there exists a metric of constant

scalar curvature in the conformal class of g, if the scalar curvature Sg

satisfies an integrability condition and if the Yamabe constant of X is

strictly smaller than the local Yamabe constant Yℓ(X), another confor-

mal invariant introduced in the recent work of K. Akutagawa, G. Carron

and R. Mazzeo. Such invariant depends on the local structure of X, in

particular on the links, but its explicit value is not known. We are going

to show that if the links satisfy a Ricci positive lower bound, then we

can compute Yℓ(X). In order to achieve this, we prove a lower bound

for the spectrum of the Laplacian, by extending a well-known theorem

by Lichenrowicz, and a Sobolev inequality, inspired by a result due to D.

Bakry. Furthermore, we prove the existence of an Euclidean isoperimetric

inequality on particular stratified space, with one stratum of codimension

2 and cone angle bigger than 2π.

Introduction

Stratifications of topological spaces have been introduced by H. Whitney [Whi47]
with the basic idea of partitioning a space in simpler elements, like manifolds,
which are glued together in an appropriate way. Stratified spaces have been
largely studied from a topological point of view ([Tho69], [Whi47]). They ap-
pear, for example, in treating the stability of smooth mappings between mani-
folds [Mat73]. Moreover, they give an appropriate setting to formulate Poincaré
duality for intersection homology on singular spaces [GM88].

Analysis on stratified spaces is a quite recent field of investigation, since the
80s with the works by J. Cheeger on the spectral analysis on manifolds with
conical singularities or corners [Che83]. Another interesting approach is given
by R. Merlose’s study of pseudo-differential operators on singular spaces.

Furthermore, stratified spaces also arise in differential geometry, for example
as quotients of compact Riemannian manifolds: the American football with cone
angle 2π/p, for an integer p, is a quotient of the sphere. They appears also
as limits of smooth Riemannian manifolds. Later on in this paper, we give an
example of a stratified space appearing as the limit of smooth complete surfaces:
the cone of angle bigger than 2π over a circle.

We are interested in studying stratified spaces by using classical tools from
Riemannian geometry and geometric analysis. In particular, we consider the
Yamabe problem on a compact stratified space X endowed with an iterated
edge metric g. Let us briefly recall some of the definitions we need in the
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following: we mainly refer to [ACM12], [ACM14] and [ALMP12] for a more
detailed discussion.

The setting: Stratified spaces

A compact stratified space X is a metric space which admits a decomposition
in a finite number of strata Xj

X ⊇ Xn−2 ⊇ Xn−3 ⊇ . . . ⊇ Xj ⊇ . . .

such that for each j, Xj \ Xj−1 is a smooth open manifold of dimension j,
and Ω = X \ Xn−2 is dense in X . By assumption, there is no codimension 1
stratum. We denote by Σ the singular set of X , i.e. Σ = X \Ω. Each connected
component of Xj \ Xj−1 has a tubular neighbourhood Uj which is the total
space of a smooth cone bundle. Its fibre is C(Zj), where Zj is a stratified
space and it is called the link of (connected component of) the stratum. In the
following we assume for simplicity that each stratum is connected, but clearly
our discussion applies to each connected component. We follow [ACM14] in
identifying a neighbourhood of a point x ∈ Xj \ Xj−1 with the cone bundle:
there exists a radius δx, a neighbourhood Ux of x and a homeomorphism

ϕx : Bj(δx)× Cδx(Zj) → Ux

ϕx is a diffeomorphism between (Bj(δx)×Cδx(Zj,reg)) \ (Bj(δx)× {0}) (where
Zj,reg is the regular part of Zj) and the regular part of Ux, i.e. Ux ∩ Ω.

The simplest examples of stratified spaces are manifolds with conical singu-
larities or with simple edges: in this last case each link Zj is compact smooth
manifold.

We define iteratively the notion of depth. If X is a smooth compact manifold,
it has depth equal to 0. If Z is a stratified space of depth k and X is a stratified
space with just one stratum having as link Z, then the depth of X is k + 1.
In general, the depth of a stratified space is the maximal depth of the links of
his strata, plus one. Depth allows us to apply iterative arguments on stratified
spaces and in particular to define admissible metrics on them. An iterated edge
metric g on X is a Riemannian metric on Ω which near to each stratum Xj can
be written as

g = dy2 + dx2 + x2kj + E

where dy2 is the Euclidean metric on Rj , kj is an iterated edge metric on the
link Zj, and E is a perturbation decaying as xγ for some γ > 0.

It is possible to define the Sobolev space W 1,2(X) as the closure of Lipschitz
functions on X with the usual Sobolev norm; the set C1

0 (Ω) is dense in W 1,2(X).
Moreover, it is proved in [ACM12] that the continuous Sobolev embedding of
W 1,2(X) in L

2n
n−2 (X) holds.

The Yamabe Problem on Stratified Spaces

A classical problem in geometric analysis was posed in the 60s by H. Yam-
abe: given a compact smooth manifold (Mn, g), n ≥ 3, is it possible to find a
conformal metric g̃ such that

g̃ = u
4

n−2 g
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for some positive smooth function u, and the scalar curvature Sg̃ of g̃ is con-
stant? The results by Trudinger [Tru68], T.Aubin [Aub76], and finally R. Schoen
[Sch84], led to a positive answer. The solution of the problem strongly depends
on finding a smooth positive function attaining the Yamabe constant:

Y (Mn, [g]) = inf
u∈W 1,2(M)

u>0

∫

M
(|du|2 + anSgu

2)dvg

‖u‖22n
n−2

, an =
(n− 2)

4(n− 1)
.

In particular, T.Aubin proved that for any smooth compact manifold Y (Mn, [g])
is smaller or equal than the Yamabe constant Yn of the standard sphere Sn. Fur-
thermore, when the inequality is strict, then there exists a minimizer attaining
Y (M, [g]). He also proved that for n ≥ 6 and (Mn, g) not locally conformally
flat, the strict inequality holds. In the other cases, his works together with the
proof of the positive mass theorem ([SY79], [SY81], [SY88]), allowed Schoen
to prove that either the inequality is strict, or (Mn, [g]) is conformal to the
standard sphere.

In [ACM12], the authors considered the analogous problem on compact strat-
ified spaces. Since the Sobolev embedding holds on (X, g), it is possible to define
the Yamabe constant of X in the same way as in the smooth case. Nevertheless,
this constant may not be finite if there is not any control the scalar curvature
Sg: we assume that Sg satisfies an integrability condition, i.e. Sg ∈ Lq(X) for
q > n/2. Moreover, [ACM12] introduced another conformal invariant, the local
Yamabe constant. They first define the Yamabe constant of an open ball (or
set) of X : it will be equal to

Y (B(p, r)) = inf

{∫

X

(|du|2 + anSgu
2)dvg, u ∈W 1,2

0 (Ω ∩B(p, r)), ‖u‖ 2n
n−2

= 1

}

.

Then the local Yamabe constant of X is defined as follows:

Yℓ(X) = inf
p∈X

lim
r→0

Y (B(p, r)).

When p belongs to the regular set, the limit as r goes to zero of Y (B(p, r)) is
clearly equal to Yn, so that by definition Yℓ(X) ≤ Yn. Furthermore, thanks to
the local geometry of stratified spaces, the local Yamabe constant turns out to
be equal to:

Yℓ(X) = min
j=0...n

inf
p∈Xj\Xj−1

{

Y (Rj × C(Zj), [dy2 + dx2 + x2(kj)p])
}

(1)

The local Yamabe constant plays the same role as Yn in the classical Yamabe
problem. It is shown in [ACM12] that if the Yamabe constant of a compact
stratified space X is strictly smaller than its local Yamabe constant

Y (X, [g]) < Yℓ(X)

and if the scalar curvature of g satisfies Sg is in Lq(X) for some q > n/2, then
there exists u bounded on X in W 1,2(X) which attains Y (X, [g]) and such that
g̃ = u

4
n−2 g has constant scalar curvature.

The main issue is that the explicit value of the local Yamabe constant is not
known, even in the simplest case of conical singularities, simple edges or only
codimension 2 singular strata. We are going to show that we can compute it in
a large class of stratified spaces under a geometric assumption on the links.
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Main Results

We consider a stratified space (X, g) with Einstein links (Zj , kj) of dimension
dj : by this condition we mean that the metric kj is such that Rickj

= (dj −1)kj
on the regular set of Zj . We observe that this hypothesis on the Ricci tensor is
well justified in view of proving the existence of a Yamabe metric. It is showed
in [ACM12] that, if the scalar curvature of each link is equal to dj(dj − 1), then
we have the integrability condition on the scalar curvature Sg. This is obviously
the case under our assumption.

We show the following:

Theorem. Let (Zd, k) be a stratified space endowed with a metric k such that
Rick = (d− 1)k on the regular set of Z. Then the Yamabe constant of Rn−d ×
C(Zd) is either equal to Yn or to:

(

Volk(Z)

Vol(Sd)

)
2
n

Yn.

This extends to the setting of stratified spaces an analogous result by J.
Petean contained in [Pet09], concerning the Yamabe constant of a cone over a
smooth compact manifold (Mn, g) with Ricg ≥ (n− 1)g.

In order to prove this result, we need to distinguish two cases which depend
on the strata of lowest codimension, i.e. equal to 2. The links of such strata
must be circles S1a with radius a: remark that, when a < 1, the cone C(S1a) is an
Alexandrov space with positive curvature, in the sense of triangle comparison;
when a > 1 the cone is non-positively curved. We refer here to the definition
of curvature bound given in the book by D. Burago, Y. Burago and S. Ivanov
[BBI01].

We first assume (X, g) is compact stratified space which does not posses any
codimension 2 strata with link S1

a for a ≥ 1. If (X, g) satisfies this condition, we
call it an admissible stratified space. In this case, we are able to prove that a
bound by below on the Ricci tensor leads to a bound by below for the spectrum
of the Laplacian.

Theorem. Let (X, g) be an admissible stratified space such that Ricg ≥ (n−1)g.
Then the first non-zero eigenvalue of the Laplacian ∆g is greater or equal than
n.

This is a generalization of Lichnerowicz theorem for smooth compact mani-
folds. Observe that K. Bacher and K-T. Sturm prove in [BS14] a version of Lich-
nerowicz theorem for spherical cones over a smooth compact manifold (Mn, g),
Ricg ≥ (n−1)g, by using a curvature-dimension condition in the sense of Sturm
and Lott-Villani. Our theorem applies in general to cones over any admissible
stratified space.

This spectral gap allows us to extend a result by D. Bakry contained in
[Bak94]: we prove the existence of a Sobolev inequality with explicit constants,
and this gives in turns a lower bound for Y (X, [g]). Furthermore the lower
bound is attained in the Einstein case, so that we are able to compute the
Yamabe constant of an Einstein admissible stratified space.
In order to prove the previous results, we need to study the regularity of a
solution to the Schrödinger equation ∆gu = V u for V ∈ L∞(X) and of its
gradient. A theorem contained in [ACM14] states that such regularity depends
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on the spectral geometry of the links: more precisely, on the first eigenvalue
of the Laplacian on the links. Combining this with our singular version of
Lichnerowicz theorem, we are able to control the L∞-norm of the gradient du
away from a tubular neighbourhood of the singular set Σ.

In the case of a link being S1a with a ≥ 1, and then cone of angle bigger
that 2π, we cannot apply Lichnerowicz theorem, which does not even hold on
S1
a. We will study the isoperimetric profiles of Rn−2 ×C(S1a). Firstly, it is easy

to prove by direct computations that the cone C(S1a) endowed with the metric
dr2 + (ar)2dθ2 can be found as the limit of Cartan-Hadamard surfaces, i.e. R2

endowed with a metric of negative sectional curvature. This gives an example
of a stratified space arising as a limit of smooth manifolds. Moreover we show
that Rn−2 × C(S1a) has the same isoperimetric profiles as the Euclidean space
Rn, and that its isoperimetric domains are the Euclidean balls not intersecting
the singular set Rn−2 × {0}. This allows us to apply a classical argument by
G.Talenti, then to find an optimal Sobolev inequality on Rn−2 × C(S1a) and
finally deduce that its Yamabe constant is equal to the one of the standard
sphere Yn.

Knowing the local Yamabe constant Yℓ(X) opens further questions. We
would like to know under which hypothesis the strict inequality Y (X, [g]) <
Yℓ(X) holds, or what happens in the case of equality. As we recalled above, in
the compact smooth case we know that for dimension n ≥ 6 and if (Mn, g) is
not locally conformally flat, the the strict inequality Y (Mn, [g]) < Yn follows
from a local computation by means of test functions (see [Aub76]). It may be
possible to reproduce the same kind of technique on stratified spaces. Further-
more, in dimension n = 3, 4, 5 and for locally conformally flat manifolds, the
positive mass theorem holds. At present, it is not known whether an equivalent
theorem may be proven in the setting of compact stratified spaces.

Acknowledgements: I would like to thank Benoît Kloeckner, who sug-
gested to use Ros Product Theorem, in the occasion of his geometry seminar at
the Laboratoire de Mathématiques Jean Leray in Nantes.

1 Some technical tools

We start by recalling some useful concepts about the geometry of a compact
stratified space (Xn, g).

First of all, we cannot define the usual tangent space at any point of x ∈ X ,
in particular if x belongs to the singular set Σ. We can nevertheless consider
the tangent cone at x: assume that x ∈ Xj and take the Gromov-Hausdorff
limit of the pointed metric spaces (X, ε−2g, x) as ε tends to zero. We follow
[ACM14] in order to state that this limit is unique at any point and it is a cone
(C(Sx), dr

2 + r2hx), where Sx is the j-fold spherical suspension of the link Zj.
More precisely, if Sj−1 is the canonical sphere of dimension (j − 1) we have:

Sx =
[

O,
π

2

]

× S
j−1 × Zj (2)

hx = dϕ2 + sin2 ϕgSj−1 + cos2 ϕkj (3)

We refer to Sx as the tangent sphere at x. Observe that Sx is a stratified space
of dimension (n− 1).
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The tangent cone (C(Sx), dr
2 + r2hx) is in fact isometric to the product

Rj × C(Zj) with the metric dy2 + dτ2 + τ2kj . We can rewrite the Euclidean
metric dy2 in polar coordinates

dy2 = dρ2 + ρ2gSj−1 .

where gSj−1 is the canonical metric on the sphere of dimension j−1. Then with
the change of coordinates τ = r sin(ϕ), ρ = r cos(ϕ) we get g = dr2 + r2h where
h coincides with the metric on the tangent sphere. This change of variables
gives us the isometry we were looking for.

Observe that, as a consequence, the local Yamabe constant of (X, g) given
in (1) is also equal to:

Yℓ(X) = inf
x∈X

{Y (C(Sx), [dr
2 + r2hx])}.

1.1 Bounds by below for the Ricci tensor

Let (X, g) be a stratified space with strata Xj , j = 1, . . .N and links (Zj , kj).
We give some result about the relations between Ricci bounds for the metric g,
kj and the metrics hx on the tangent spheres Sx.

We observe that through this paper a Ricci bound means that we have a
classical Ricci bound on the regular set Ω, where the metric g is a smooth Rie-
mannian metric and the Ricci tensor Ricg is defined in the usual way. There
exist other approaches based on generalized lower Ricci bounds for metric mea-
sure spaces, as introduced by Sturm and Lott-Villani: see for example [BS14]
for recent developpements in the subject.

Lemma 1.1. Let X be a compact stratified space endowed with a metric g such
that the Ricci tensor is bounded by below, i.e. there exists a constant c ∈ R such
that:

Ricg ≥ cg on Ω

Then for each point x ∈ X the tangent cone has non-negative Ricci tensor.
Furthermore, on each link (Zj , kj) of dimension dj we have Ricdj

≥ (dj − 1)kj.

Proof. As we stated above, the tangent cone at x ∈ Xj is the Gromov-Hausdorff
limit of (X, ε−2g, x) as ε goes to zero. Furthermore, the corvergence is uniform
in C∞ away from the singular set Σ, so that as a consequence we have:

Ricgε = Ricg ≥ cg = ε2cgε on Ω.

Then when we pass to the limit as ε goes to zero the Ricci tensor of the limit
metric dr2 + r2hx must be non-negative. Now it is not difficult to see that this
implies:

Richx
≥ (n− 2)hx

Recall that the metric hx has the form (3), and then kj on the link Zj of the
stratum Xj must satisfy Rickj

≥ (dj − 1)kj . For both of the last two bounds,
we refer to the formulas for the Ricci tensor of warped products and doubly
warped products contained in Chapter 3 of [Pet06].

Viceversa, we can assume that we have a Ricci bound on the links:
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Lemma 1.2. Let (Zd, k) be a compact stratified space such that Rick ≥ (d−1)k.
Consider the metric g = dy2 + dτ2 + τ2k on (Rn−d−1 ×C(Z)) and let S be the
(n− d− 2)-fold spherical suspension of Z

S =
[

0,
π

2

]

× S
n−d−2 × Z.

endowed with the metric:

h = dϕ2 + sin2 ϕgSn−d−2 + cos2 ϕk (4)

Then the cone metric dr2 + r2h on C(S) = (0,∞) × S has non-negative Ricci
tensor. Moreover, (Rn−d−1 × C(Z), g) is conformally equivalent to C(S) =
(0, π)× S endowed with a metric gc such that Ricgc ≥ (n− 1)gc.

Proof. By recalling again [Pet06], Chapter 3, page 71, Rick ≥ (d − 1)k implies
that the metric h defined in (3) has Ricci tensor such that Rich ≥ (n− 2)h. As
a consequence the Ricci tensor of dr2 + r2h is non-negative. Furthermore, we
know that (Rn−d−1 ×C(Z), g) is isometric to (C(S), dr2 + r2h), where C(S) =
(0,+∞)×S. Now dr2+ r2h is conformal to the product metric on R×S, which
in turns is conformal to the metric:

gc = dt2 + sin2(t)h

on (0, π) × S. For this metric Ricgc ≥ (n − 1)gc holds: this concludes the
proof.

adapt their argument In the following we are going to give a bound from
below for the Yamabe constant of a compact stratified space (Xn, g) with Ricci
tensor bounded by below Ricg ≥ (n− 1)g. Thanks to the previous Lemma, we
know that the tangent cones are conformal to a compact stratified space with
this hypothesis on the Ricci tensor. As a consequence, we will also have a result
about the local Yamabe constant of a stratified spaces with links (Zd, k) such
that Rick ≥ (d− 1)k.

1.2 Regularity

We recall that on a compact stratified space (X, g) we can define W 1,p(X) as
the completion of the Lipschitz functions with the norm of W 1,p(X). Following
[ACM12], when p is smaller or equal than the codimension m of the singular
set Σ, we assume that C1

0 (Ω) is dense in W 1,p(X). From Proposition 2.2 in
[ACM12] we also know that the Sobolev inequality holds on (X, g), i.e. there
exist positive constants A,B such that for any u ∈W 1,2(X):

‖u‖22n
n−2

≤ A ‖u‖22 +B ‖du‖22 . (5)

We are going to study the regularity of the gradient du of a function u ∈
W 1,2(X) solving a Schrödinger equation of the form ∆gu = V u, for V ∈ L∞(X).
We show that we can control the L∞-norm of the gradient |du| on Ω depending
on the distance from the singular set.
In order to do this, we need two hypothesis: the first one is that the Ricci tensor
is bounded by below. The second one is a condition on the first eigenvalue λ1(Sx)
of the Laplacian on the tangent spheres Sx (or equivalently, on the links Zj).
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Proposition 1.3. Let (Xn, g) be a compact stratified space such that Ricg ≥
(n−1)g. Assume that for any x ∈ X we have λ1(Sx) ≥ (n−1). Let u ∈W 1,2(X)
be a solution of:

∆gu = V u (6)

for V ∈ L∞(X). Assume that there exists a constant c such that ∆g|du| ≤ c|du|.
Then for any ε > 0 we have:

‖du‖L∞(X\Σε) ≤ C
√

| ln(ε)| (7)

where Σε is an ε-tubular neighbourhood of Σ and C is a positive constant not
depending on ε.

Remark 1.4. Since |du| satisfies the estimate (7), it is in Lp(X) for any p ∈
[1,+∞). In fact, if we denote by m the codimension of the singular set Σ,
which is greater or equal to two, we have:

∫

X

|du|pdvg =

∫

X\Σε

|du|pdvg +
∫

Σε

|du|pdvg

≤ | ln(ε)| p2 Volg(X) + Cp

∫ ε

0

(∫

∂Σt

| ln(t)| p2 dσg
)

dt

≤ | ln(ε)| p2 Volg(X) + C1

∫ ε

0

tm−1| ln(t)| p2 dt.

Where we used that the volume of boundary of the tubular neighbourhood of
size t is bounded by a constant times the (m− 1) power of t. The last integral
is clearly finite, therefore |du| ∈ Lp(X).

The proof of Proposition 1.3 consists of two steps: we state in the following
the results we need to obtain it.

Lemma 1.5 (Moser iteration technique). Let (X, g) be a compact stratified
space and f ∈ L2(X) such that the inequality ∆gf ≤ cf holds on Ω for some
positive constant c. Then there exists a constant c1, only depending on the
dimension n, such that for any x ∈ Ω and 0 < r < dg(x,Σ)/2 we have:

‖f‖L∞(B(x,r/2)) ≤ c1

(

1

rn

∫

B(x,3r/4)

f2dvg

)
1
2

.

where c1 depends on c, on the dimension n and on the constants appearing in
the Sobolev inequality.

Proof. We claim that if ∆gf ≤ cf on Ω then for any γ > 1 we have:

∆g(f
γ) ≤ cγfγ on Ω. (8)

For any ε > 0 define fε =
√

f2 + ε2 > 0. Consider the Laplacian of f2
ε on Ω:

fε∆gfε − |dfε|2 =
1

2
∆g(f

2
ε ) = f∆gf − |df |2 ≤ cf2 − |df |2 ≤ cf2

ε − |dfε|2.

We have shown that fε∆gfε ≤ cf2
ε on Ω. Now for γ > 1 consider ∆g(f

γ
ε ). Since

xγ is a convex function, non-decreasing on R+, on Ω we have:

∆g(f
γ
ε ) = γ(fγ−1

ε ∆gfε − (γ − 1)fγ−2
ε |dfε|2)

≤ γfγ−1
ε ∆gfε

≤ cγfγ
ε .
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where in the last inequality we used the fact that fε∆gfε ≤ cf2
ε on Ω. Now if

we let ε go to zero we obtain (8).
Now let R0 = dg(x,Σ)/2 and choose 0 < r < R < R0. Consider a smooth
function ϕ having compact support in B(x,R0) such that ϕ is equal to one in
B(x, r), it vanishes outside B(x,R) and its gradient satisfies:

|dϕ| ≤ 2

(R− r)

Let us consider ϕf . Then we have:
∫

B(x,R)

|d(ϕf)|2dvg =

∫

B(x,R)

(|dϕ|2f2 + ϕ2f∆gf)dvg

≤
∫

B(x,R)

(|dϕ|2f2 + cϕ2f2)dvg

≤ A1

(R− r)2

∫

B(x,R)

f2dvg.

for some positive constant A1. We then apply the Sobolev inequality (5) to ϕf :

(

∫

B(x,R)

|ϕf | 2n
n−2 dvg

)
n−2
n

≤ A

∫

B(x,R)

ϕ2f2dvg +B

∫

B(x,R)

|d(ϕf)|2dvg

≤ A

∫

B(x,R)

ϕ2f2dvg +
A1

(R− r)2

∫

B(x,R)

f2dvg

≤ A2

(R− r)2
||f ||2L2(B(x,R)

If we denote γ = n
n−2 , we have shown that:

‖f‖L2γ(B(x,r)) ≤
(

A2

(R− r)2

)
1
2

‖f‖L2(B(x,R) (9)

Consider for j ∈ N the sequence of radius

rj =
(1

2
+ 2−(j+3)

)

R0

Rj =
(1

2
+ 2−(j+2)

)

R0.

so that Rj−rj = 2−j−3R0 and Rj+1 = rj . Thanks to (8), we can apply the same
argument we used for ϕf to ϕfγ , and so on iteratively with γj , for j = 1, . . .N .
This leads to:

||f ||L2γN (B(x,rN )) ≤
N−1
∏

j=0

(

22(j+3)A2γ
j

R2
0

)

1

2γj

||f ||L2(B(x,3R0/4)) (10)

When we let N tend to ∞, the left-hand side converges to the L∞-norm of f
on B(x, r) , and the product in the right-hand side converges to a constant C
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divided by R−n/2
0 . In fact we have:

ln





N−1
∏

j=0

(

22(j+3)A2γ
j

R2
0

)

1

2γj



 =
ln(2)

2

N−1
∑

j=0

j + 3

γj
+

ln(γ)

2

N−1
∑

j=0

j

γj

+
1

2
ln

(

A2

R2
0

)N−1
∑

j=0

1

γj
.

The first two sums converges to a constant as N tends to infinity. The last one

tends to
1

1− 1/γ
=
n

2
so that at the end we obtain:

‖f‖L∞(B(x,R0/2))
≤ c1

(

1

Rn
0

∫

B(x,3R0/4)

f2dvg

)
1
2

.

as we wished.

We recall a result contained in [ACM14](see Theorem A and Proposition
4.1): it allows to study the regularity of solutions of the Schrödinger equation
∆gu = V u, for V ∈ L∞(X), depending on the geometry of the tangent spheres.

Proposition 1.6. Let (Xn, g) be a compact stratified space and u ∈ W 1,2(X)
be a solution to

∆gu = V u.

for V ∈ L∞(X). Assume that for any x ∈ X we have λ1(Sx) ≥ n − 1. Then
there exist a constant C and a sufficiently small radius r0 such that for any
x ∈ X and 0 < r < r0 we have:

1

rn

∫

B(x,r)

|du|2dvg ≤ C| ln(r)|. (11)

Remark 1.7. In Section 3.6 of [ACM14], it is shown that asking for any x ∈ X
that λ1(Sx) ≥ (n − 1) is equivalent to ask that for each link (Zj , kj) the first
eigenvalue λ(Zj) of the Laplacian with respect to kj is greater or equal than the
dimension of Zj .

The proof of Proposition 1.3 follows from the previous results:

Proof of Proposition 1.3. Let x ∈ Ω and B(x, r) a ball of radius 0 < r <
dg(x,Σ)/2, which is entirely contained in Ω. Lemma 1.5 allows us to bound
the L∞-norm of |du| on B(x, r/2) with the mean of its L2-norm on a ball of
radius 3r/4. The square of this last quantity is bounded by some constant times
| ln(r)|, thanks to Proposition 1.6. Therefore, we get the desired inequality out-
side an ε tubular neighbourhood of Σ by choosing an appropriate small radius
r.

1.2.1 Applications

Assume that (Xn, g) is a compact stratified spaces which satisfies the hypothesis
of Proposition 1.3, i.e. such that Ricg ≥ (n − 1)g and for any x ∈ X we have
λ1(Sx) = (n − 1). We give two examples of equations to which we can apply
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Proposition 1.3.

Example 1: Let ϕ be a locally Lipschitz function on R and consider u ∈
W 1,2(X) solution of:

∆gu = cϕ(u). (12)

Remark that among these solutions there are clearly the eigenfunctions of the
Laplacian. It is possible to show that u is bounded, by applying Moser iteration
technique as in Proposition 1.8 in [ACM12]. Moreover, it is not difficult to prove
that there exists a constant c1 such that on Ω we have ∆g|du| ≤ c1|du|. This is
done by using Bochner-Lichnerowicz formula, as the following lemma shows.

Lemma 1.8 (Bochner method). Let (Xn, g) be a compact stratified space such
that Ricg ≥ (n − 1)g. Let u ∈ W 1,2(X) be a solution of (12). Then on the
regular set Ω we have:

∆g|du| ≤ c1|du|
for some positive constant c1.

Proof. Since u is a solution to (12), we can assume that it is positive. As we
observed above, u is also bounded. For ε > 0, let us introduce

fε =
√

|du|2 + ε2 > 0

We will consider ∆g(f
2
ε ) in order to obtain an inequality of the type fε∆gfε ≤

cf2
ε : dividing by fε and letting ε tend to zero will allow us to conclude. We

have

fε∆gfε − |dfε|2 =
1

2
∆g(|du|2 + ε2) = (∇∗∇du, du)− |∇du|2.

The Bochner-Lichnerowicz formula holds on the regular set Ω. By applying it
to the equation (12) we get:

∇∗∇du+Ricg(du) = cϕ′(u)du

We can now multiply by du. Since u is bounded, the Ricci tensor Ricg is
bounded by below by (n− 1)g and the derivative of ϕ is bounded on [0, ‖u‖∞],
we obtain:

(∇∗∇du, du) ≤ c1|du|2 − (n− 1)|du|2.
As a consequence we have:

(∇∗∇du, du)− |∇du|2 ≤ c1|du|2 − (n− 1)|du|2 − |∇du|2

≤ c1|du|2 − |∇du|2.

We also observe that, by elementary calculations and Kato’s inequality:

|dfε|2 =
|du|2|∇|du||2
|du|2 + ε2

≤ |∇|du||2 ≤ |∇du|2.

and as a consequence we get:

fε∆gfε − |dfε|2 = (∇∗∇du, du)− |∇du|2

≤ c1|du|2 − |∇du|2

≤ c1f
2
ε − |dfε|2.
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In conclusion fε∆gfε ≤ c1f
2
ε . Since fε is positive everywhere, we can divide and

obtain ∆gfε ≤ cfε. By letting ε go to zero, we deduce the desired inequality on
|du|.

Example 2: When the metric is Einstein and the Ricci tensorRicg is exactly
equal to (n− 1)g, we can also apply Proposition 1.3 to the Yamabe equation:

∆gu+ anSgu = anSgu
n+2
n−2 . (13)

It is proven in [ACM12] that a solution u of the Yamabe equation (13), when
it exists, is in W 1,2(X) ∩ L∞(X). When Ricg = (n − 1)g, the scalar curvature
is constant: thus we can differentiate the equation as we did in Lemma 1.8 and
apply the same technique in order to obtain ∆|du| ≤ c1|du|.

2 Eigenvalues of the Laplacian Operator

The aim of the next session is to show that the condition λ1(Sx) ≥ (n − 1) for
any x ∈ X holds in a large class of stratified spaces. Such class is given by
admissible stratified spaces, that we define as follows:

Definition 1. An admissible stratified space is a compact stratified space (Xn, g)
which satisfies the following assumptions:

(1) If there exists a stratum Xn−2 of codimension 2, its link has diameter
smaller than π.

(2) The iterated edge metric g satisfies Ricg ≥ k(n − 1), for some k > 0, on
the dense smooth set Ω.

A classical result by Lichnerowicz states that for a compact smooth manifold
(Mn, g) with Ricg ≥ k(n− 1) with k > 0, the lowest non-zero eigenvalue of the
Laplacian is greater or equal to kn (see for example [Gal79]).We are going to
extend this result to the case of admissible stratified spaces.

Theorem 2.1. Let (X, g) be an admissible stratified space. Any non-zero eigen-
value λ of the Laplacian ∆g is greater or equal to kn.

Remark 2.2. For smooth Riemannian manifolds, a theorem by Obata charac-
terizes the case of equality (see [Oba62]), i.e. under the same hypothesis of
Lichnerowicz’s theorem, λ1 = kn if and only if (Mn, g) is isometric to the stan-
dard sphere Sn of radius 1/

√
k. In the case of stratified spaces, it would be

interesting to obtain a similar result: we conjecture that if (Xn, g) is an admis-
sibile stratified space and the first non-zero eigenvalue of the Laplacian is equal
to kn, then (Xn, g) must be the spherical suspension of an (n− 1)-dimensional
admissible stratified space.

Remark 2.3. In [BS14] the authors give an analogous Lichnerowicz theorem
for spherical cones Σ(M) (considered as metric measure spaces) on a compact
Riemannian manifold (M, g) with lower Ricci bound Ricg ≥ (n− 1)g. They use
the existence of a curvature dimension condition CD(n, n+ 1) on Σ(M) in the
generalized sense of Sturm and Lott-Villani.
Our theorem applies more generally to cones over any stratified space (X, g)
having a lower Ricci bound on the regular set Ω.
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Proof. Without loss of generality, we can rescale the metric and assume that
k = 1. We proceed by iteration on the dimension n of the space.
If n = 1, by our hypothesis X must be a circle of diameter smaller than π. Then
the first eigenvalue of the Laplacian is greater than 1, and the proposition is
true in dimension 1.

Assume that the statement is true for any dimension until (n− 1) and con-
sider an admissible stratified space X of dimension n. For any x ∈ X , the
tangent sphere Sx is an admissible stratified space of dimension (n − 1). By
Lemma 1.1, the condition Ricg ≥ (n − 1)g implies that for any x the metric
hx satisfies Richx

≥ (n − 2)hx. Therefore, by the iteration argument, for any
x ∈ X :

λ1(Sx) ≥ (n− 1)

As a consequence, the hypothesis of Proposition 1.3 are satisfied by Sx. As
we have shown in the first example of 1.2.1 , we can apply this result to any
eigenfunction ϕ of the Laplacian. Therefore for any ε > 0 we have:

‖dϕ‖L∞(X\Σε) ≤ C
√

| ln(ε)|. (14)

Recall also that by Moser iteration technique ϕ is bounded.
Since we have an estimation of the behaviour of dϕ depending on the distance

from the singular set, the rest of the proof is an adaptation of the classical one by
means of well-chosen cut-off functions. Consider for ε > 0 a cut-off function ρε,
being equal to one outside Σε, vanishing on some smaller tubular neighbourhood
of Σ and such that between the two tubular neighbourhoods 0 ≤ ρε ≤ 1. We
are going to specify the choice of such function in the following.

If ϕ is an eigenfunction relative to the eigenvalue λ, then by the Bochner-
Lichnerowicz formula on Ω we have:

∇∗∇dϕ+Ricg(dϕ) = λdϕ

We then consider the Laplacian of |dϕ|2 and get:

1

2
∆g|dϕ|2 = (∇∗∇dϕ, dϕ) − |∇dϕ|2 ≤ λ|dϕ|2 − (n− 1)|dϕ|2 − |∇dϕ|2. (15)

If we multiply (15) by ρε and integrate by parts we obtain:

∫

X

∆g(ρε)
|dϕ|2
2

dvg ≤
∫

X

ρε((λ − (n− 1))|dϕ|2 − |∇dϕ|2)dvg (16)

We study the right-hand side and we consider the first term. By elementary
calculations and integration by parts formula we can rewrite:

∫

X

ρε|dϕ|2dvg =

∫

X

(d(ρεϕ), dϕ) − ϕ(dρε, dϕ))dvg

=

∫

X

ρεϕ∆gϕdvg −
∫

X

ϕ(dρε, dϕ)dvg

=
1

λ

∫

X

ρε(∆gϕ)
2dvg −

∫

X

ϕ(dρε, dϕ)dvg .

(17)

In order conclude the proof, we need to choose ρε such that when ε goes to zero
we have:
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(i) the left-hand side of (16) tends to zero;

(ii) the last term of the right-hand side in (17) tends to zero.

If we can find such a cut-off function, when we pass to the limit as ε goes to
zero we obtain:

(

1− (n− 1)

λ

)∫

X

(∆gϕ)
2dvg −

∫

X

|∇dϕ|2dvg ≥ 0

Moreover, by Cauchy-Schwarz inequality |∇du|2 ≥ (∆gϕ)
2

n
, so that we finally

have:
(

1− (n− 1)

λ
− 1

n

)∫

X

(∆gϕ)
2dvg ≥ 0.

which leads to λ ≥ n.
It remains to show that it is actually possible to construct a cut-off function
having the properties (i) and (ii). This is done in the following.

Choice of the cut-off functions

We have to distinguish two different cases, whether the codimension m of Σ is
strictly greater than two, or equal to two.

Case 1: Firstly assume m > 2. Consider ε > 0 and the tubular neigh-
bourhoods Σε, Σ2ε. We want to build a cut-off function ρε which is equal to 1
on X \ Σ2ε and vanishes on Σε. Moreover, we need the gradient dρε and the
Laplacian ∆gρε to decay "fast enough" as ε tends to zero. We will obtain ρε
from a harmonic function, as explained in the following.
Let hε be the harmonic extension of the function which is equal to 1 on the
boundary of Σ2ε and vanishes on the boundary of Σε, i.e. hε satisfies:











∆ghε = 0

hε = 1 on ∂Σ2ε

hε = 0 on ∂Σε.

The harmonic extension has a variational characterization, i.e. if we consider
the Dirichlet energy E defined by:

E(ϕ) =
∫

Σ2ε\Σε

|dϕ|2dvg.

then hε attains the infimum of the functional E among all functions ϕ ∈W 1,2(X)
taking values 1 on ∂Σ2ε and vanishing on ∂Σε.
Let r be the distance function from the singular set Σ, i.e. r(x) = dg(x,Σ), and
consider the following function ψε:

ψε(r) =















1 on X \ Σ2ε

r

ε
− 1 on Σ2ε \ Σε

0 on Σε.

|dψε| =
1

ε
.
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It is then easy to estimate the Dirichlet energy of ψε:

E(ψε) =

∫

Σ2ε\Σε

|dψε|2dvg ≤ c′εm−2.

By the variational characterization of hε, E(hε) ≤ E(ψε), so that

E(hε) ≤ c′εm−2. (18)

However, hε is not necessarily smooth. The cut-off function ρε will be obtained
by composing hε with a smooth function ρ vanishing on (−∞, 14 ] end being equal
to one on [ 34 ,+∞): more precisely, ρε = ρ ◦ hε. As a consequence we have:

dρε = (ρ′ ◦ hε)dhε and ∆gρε = −(ρ′′ ◦ hε)|dhε|2.

Since ρ is smooth and chosen independently from ε, there exist two constants
c1, c2, not depending on ε, such that:

|dρε| ≤ c1|dhε|, and |∆ρε| ≤ c2|dhε|2.

We claim that our choice of ρε satisfies (i) and (ii). For what concerns the first
condition we obtain:

∫

Σ2ε\Σε

|∆gρε||dϕ|2dvg ≤ c2

∫

Σ2ε\Σε

|dhε|2|dϕ|2dvg ≤ C2| ln(ε)|εm−2.

which tends to zero as ε goes to zero. As for the second condition (ii), by using
Cauchy-Schwarz inequality twice and the estimate we have on |dρε|, we get:

∫

Σ2ε\Σε

(dρε, dϕ)dvg ≤
∫

Σ2ε\Σε

|dρε||dϕ|dvg

≤
(

∫

Σ2ε\Σε

|dρε|2dvg
)

1
2
(

∫

Σ2ε\Σε

|dϕ|2dvg
)

1
2

≤ c′1ε
m
2

√

| ln(ε)|
(

∫

Σ2ε\Σε

|dhε|2dvg
)

1
2

≤ c
′′

1 ε
m−1

√

| ln(ε)|.

which also tends to zero with ε.

Case 2 : Consider m = 2. The cut-off function ρε will be equal to one outside
Σε and it will vanish in Σε2 , for 0 < ε < 1. In this case too ρε is obtained by
"smoothing" the harmonic function hε being equal to one on ∂Σε and vanishing
on ∂Σε2 . We will be able to show that the Dirichlet energy of ε tends to zero
when ε goes to zero as | ln(ε)|−1. A priori this estimate does not suffices to show
(i) and (ii), but only implies that the two integrals are bounded. For this reason
we will need to give a more detailed study: we are going to prove that in fact
|dϕ| ∈W 1,2(X) ∩ L∞(X). Let hε be the harmonic function solving:











∆ghε = 0

hε = 1 on ∂Σε

hε = 0 on ∂Σε2 .
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We are going to exhibit a test function fε such that the Dirichlet energy E(fε)
is bounded by a constant times | ln(ε)−1|. Let r be the distance function from
Σ as above. We define fε:

fε(r) =















1 on X \ Σε
(

2− ln(r)

ln(ε)

)

on Σε \ Σε2

0 on Σε2 .

|dfε| =
1

r| ln(ε)| .

We claim that there exists a constant A independent of ε such that:
(

∫

Σε\Σε2
|dfε|2dvg

)

≤ A

| ln(ε)| . (19)

Let us assume that − ln(ε) is an integer number N . Then we can decompose
Σε \ Σε2 in the disjoint union:

Σε \ Σε2 =

2N−1
⋃

j=N

Σe−j \Σe−(j+1)

.

As a consequence the integral (19) can be written as the following sum:

1

| ln(ε)|2

(

∫

Σε\Σε2

1

r2
dvg

)

=
1

| ln(ε)|2
2N−1
∑

j=N

∫

Σe−j
\Σe−(j+1)

1

r2
dvg

≤ 1

| ln(ε)|2
2N−1
∑

j=N

∫

Σe−j
\Σe−(j+1)

e2(j+1)dvg

≤ 1

| ln(ε)|2A(N − 1) ≤ A

| ln(ε)| .

which is the estimate we wanted to prove. Then by the variational characteri-
zation of hε we have:

E(hε) ≤ E(fε) ≤
A

| ln(ε)| .

Furthermore, thanks to our estimate on the behaviour of dϕ we obtain:
∫

Σε\Σε2
|dhε|2|dϕ|2dvg ≤ C| ln(ε2)|

∫

Σε\Σε2
|dhε|2dvg

≤ 2C2| ln(ε)|
∫

Σε\Σε2
|dfε|2dvg

≤ 2C2| ln(ε)| A

| ln(ε)| ≤ B.

where B is a positive constant independent of ε.
If we replace ρε by fε in (16) and we let ε go to zero we then obtain a finite

term B1 on the left-hand side; therefore we obtain the following estimate:

B1 ≤
∫

X

((λ − (n− 1))|dϕ|2 − |∇dϕ|2)dvg.
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Recall that ϕ ∈ W 1,2(X), so that the L2-norm of |dϕ| is finite. Then the previ-
ous inequality tells us that also |∇dϕ| must be in L2(X), and so ∇|dϕ| too, since
we have clearly |∇|dϕ|| ≤ |∇dϕ|. As a consequence we have |dϕ| ∈ W 1,2(X).
This allows us to get more regularity on |dϕ|.

Claim: The gradient dϕ belongs to L∞(X).

Proof. Let us call u = |dϕ| for simplicity. We state that u satisfies the weak
inequality

∆gu ≤ cu. (20)

on the whole X . This means that for any ψ ∈W 1,2(X), ψ ≥ 0 we have:
∫

X

(du, dψ)gdvg ≤ c

∫

X

uψdvg. (21)

We already proved that ∆gu ≤ cu strongly on Ω, then we know that for any
ψ ∈ W 1,2(X) we have:

∫

Ω

ψ∆gudvg ≤ c

∫

Ω

uψdvg.

In order to extend this inequality to the whole X and obtain (20), we consider
fε defined as above, 0 ≤ fε ≤ 1 and we replace ψ by fεψ. By integrating by
parts we obtain:

∫

X

(d(fεψ), du)gdvg ≤ c

∫

X

fεψu+

∫

X

ψ(dfε, du)gdvg. (22)

We can use Cauchy-Schwarz inequality twice on the second term and obtain:

∫

X

ψ(dfε, du)gdvg ≤ B2 ‖du‖2
(∫

X

|dfε|2dvg
)

1
2

≤ B3 ‖du‖2
1

√

| ln(ε)|
.

Where we used the estimate (19) that we deduced above on the gradient fε.
Since the L2-norm of the Hessian du = ∇dϕ is finite, the second term in (22)
tends to zero when ε goes to zero. Then letting ε go to zero in (22) implies (21),
as we wished. Since (20) is proven, Moser’s iteration technique in Proposition
1.8 of [ACM12] assures that |dϕ| ∈ L∞(X).

We are finally in the position to show that in codimension m = 2 a cut-off
functions satisfying (i) and (ii) exists: define ρε = ρ ◦ hε for the same smooth
function ρ as before. We have for c1, c2 independent of ε

|dρε| ≤ c1|dhε| |∆gρε| ≤ c2|dhε|2.

The estimate on the Dirichlet energy on hε and the fact that the L∞-norm of
|dϕ| is finite assures that ρε is the desired cut-off function. For the condition (i)
we obtain:

∫

X

|∆gρε||dϕ|dvg ≤ c′2

∫

X

|dhε|2dvg ≤ c′2A

| ln(ε)| .
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which tends to zero as ε goes to zero. For the condition (ii) we use Cauchy-
Schwarz inequality twice and we get:

∫

X

(dρε, dϕ)gdvg ≤
(∫

X

|dρε|2dvg
)

1
2
(∫

X

|dϕ|2
)

1
2

≤ c′1ε

(∫

X

|dhε|2dvg
)

1
2

≤ c
′′

1 ε
√

| ln(ε)|
.

which tends to zero as ε goes to zero.
We have found an appropriate cut-off function for any codimension of the

singular set Σ: this concludes the proof of the theorem.

Remark 2.4. In the discussion above for the choice of the cut-off function in
codimension m > 2 (respectively m = 2), we obtain ρε by smoothing a har-
monic function hε and by considering ρ ◦ ψε (respectively ρ ◦ fε) because we
need a condition on the Laplacian of ρε. The distance function from Σ is not
necessarily smooth: we know that almost everywhere |dr|2 = 1, but we do not
have information on the behaviour of its Laplacian.

Remark 2.5. By our definition of admissible stratified space, we are excluding
the existence of a stratum of codimension 2 whose link is a circle S1a, of radius a
bigger or equal to one. Recall that the classical Lichnerowicz theorem does not
hold for S1a, since the first eigenvalue of the Laplacian is equal to 1/a2 < 1: the
first iterative step in our proof could not be applied.

3 A bound by below for the Yamabe constant

The following theorem is inspired by a result by Dominique Bakry in [Bak94],
which gives a Sobolev inequality with an explicit constant on smooth compact
Riemannian manifolds (M, g) satisfying Ricg ≥ k(n− 1), k > 0.

Theorem 3.1. Let X be an admissible stratified space of dimension n. Then
for any 1 < p ≤ 2n/(n− 2) a Sobolev inequality of the following form holds:

V 1− 2
p ‖f‖2p ≤ ‖f‖22 +

p− 2

nk
‖df‖22 . (23)

where V is the volume of X with respect to the metric g.

The existence of such Sobolev inequality allows us to compute the Yamabe
constant of a compact Einstein stratified space, as the following corollary states.

Corollary 3.2. The Yamabe constant of an admissible stratified space X is
bounded by below:

Y (X, [g]) ≥ nk(n− 2)

4
V

2
n (24)

In particular, if g is an Einstein metric, we have equality.
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Proof. Recall that the Yamabe constant of X is defined by

Y (X, [g]) = inf
u∈W 1,2(X),u6=0

∫

X

(|du|2 + anSgu
2)dvg

‖u‖22n
n−2

.

where an = n−2
4(n−1) and Sg is the scalar curvature. Since Ricg ≥ k(n− 1)g, we

have Sg ≥ kn(n− 1), and as a consequence

anSg ≥ nk(n− 2)

4
.

We denote this constant by γ−1. Remark that if we take p = 2n
n−2 in the

previous theorem, γ is exactly the constant appearing in the right-hand side of
the Sobolev inequality. Then for any u ∈ W 1,2(X) we have:

V
2
n

γ
‖u‖22n

n−2
≤ ‖du‖22 +

1

γ
‖u‖22 ≤ ‖du‖22 +

∫

X

anSg|du|2dvg.

and this easily implies the desired bound by below on the Yamabe constant.
Recall that an equivalent definition for the Yamabe constant is the following:

Y (X, [g]) = inf
g̃∈[g]

Q(g̃), Q(g̃) =

∫

X Sg̃dvg̃

Volg̃(X)1−
2
n

.

Where [g] is the conformal class of g, consisting of all the metrics that can be
written as g̃ = u

4
n−2 g for some function u ∈ C1

0 (Ω). We call Q(g̃) the Yamabe
quotient of g̃. When we consider an Einstein metric g on an admissible stratified
space, its Yamabe quotient attains exactly

Q(g) =
n(n− 2)

4
Volg(X)

2
n (25)

since the scalar curvature of g is constant and equal to n(n− 1). Thanks to our
lower bound and the fact that the Yamabe constant is an infimum, we get the
case of equality in the Einstein case.

We are now going to give the proof of theorem.

Proof. We can always rescale the metric in order to have k = 1. By Theorem
2.1, we know that the first non-zero eigenvalue of the Laplacian is greater than
n; moreover, as we recalled in Section 1, the Sobolev’s inequality holds on X
(see Proposition 2.2 in [ACM12]). From now on, we are using in our calculations
the renormalized measure dµ = V −1dvg, where V = V olg(X).

The lower bound on the spectrum of the Laplacian, the Sobolev’s inequality
and Lemma 4.1 in [Bak94] imply that there exists a positive constant γ such
that

‖f‖22n
n−2

≤ ‖f‖22 + γ ‖df‖22 .

By using interpolation between 2 and 2n
n−2 , it is easy to see that for any p < 2n

n−2
and for any δ > 0 we have the following inequality:

‖f‖2p ≤ (1 + δ) ‖f‖22 + γ0 ‖df‖22
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We denote by γ0 the best constant appearing in the previous inequality. We
are going to show that γ0 is smaller then (p− 2)/n, for any choice of δ > 0. By
coming back to the measure dvg, we will get the power 1 − 2/p of the volume
and therefore the inequality (23) will hold on X.
Consider a minimizing sequence for γ0, i.e. a sequence of positive functions
(fn)n in Lp(X) such that the quotient

‖fn‖2p − (1 + δ) ‖fn‖22
‖dfn‖22

converges to γ0. We can assume without loss of generality that ||fn||2 = 1.
Then (fn)n is bounded in Lp(X) and by the compact embedding of W 1,2(X) in
Lp(X) we can deduce that there exists a positive function f in W 1,2(X) such
that (fn)n converges weakly to f in W 1,2(X), and strongly in Lp(X). Thanks
to the normalization of the L2-norm, f is not vanishing everywhere, and thanks
to the the choice of δ > 0, f cannot be constant. Moreover, it satisfies the
following equation on X :

γ0∆gf + (1 + δ)f = fp−1. (26)

We can apply the Moser iteration technique as in Proposition 1.8 in [ACM12],
in order to show that f is bounded. Since the Ricci tensor is bounded by below,
we can apply the same technique we used in Lemma 1.8 to show that ∆g|df |
is smaller or equal than c|df | on Ω for some positive constant c. Furthermore,
Theorem 2.1 assures that the condition λ1(Sx) ≥ (n− 1) holds for any x ∈ X ,
so that we can apply Proposition 1.3 to f . Then, for any ε > 0 we have:

‖df‖L∞(X\Σε) ≤ C
√

| ln(ε)|.

We can express f as the power of a function u, i.e. f = uα for some α that will
be chosen later. Then u is also positive, bounded and its gradient satisfies the
same estimate as |df | away from a neighbourhood of the singular set Σ.
We can rewrite (26) in the form:

uα(p−2) = (1 + δ) + γ0
∆g(u

α)

uα
= (1 + δ) + αγ0

(

∆gu

u
− (α − 1)

|du|2
u2

)

(27)

Bakry’s proof consists in multiplying this equation for an appropriate factor, and
then by integrating it. He finds a factor depending on γ−1

0 , p and n, multiplies
by the L2-norm of du, and he bounds it by below by some quantity, which is
positive when α is well-chosen. We will proceed in a similar way, by taking care
of introducing a cut-off function, because we are allowed to use the equation
(27) and integration by parts only on the regular set Ω.
If the codimension m > 2 of Σ is strictly greater than 2, consider the cut-off
function ρε chosen in the proof of Theorem 2.1. If m = 2 consider the function
fε defined in the same proof. We must be careful with the codimension m = 2,
since we are still not sure that the Hessian of u is in L2(X): we will be able to
affirm it later in the proof. For m > 2 we multiply (27) by ρεu∆gu and integrate
on X ; respectively for m = 2 we multiply by fεu∆gu. For simplicity we write
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down the computations only for ρε: they are exactly the same for fε.
∫

X

ρεu
1+α(p−2)∆gudµ = (1 + δ)

∫

X

ρεu∆gu

+ γ0α

(∫

X

ρε(∆gu)
2dµ− (α − 1)

∫

X

ρε
∆gu

u
|du|2dµ

)

.

(28)

When integrating by parts the left-hand side we obtain:
∫

X

ρεu
1+α(p−2)∆gudµ =

∫

X

u1+α(p−2)(dρε, du)gdµ

+ (1 + α(p− 2))

∫

X

ρεu
α(p−2)|du|2dµ.

Since u is positive and bounded, we can bound u1+α(p−2) by a positive constant
independent of ε. Then first term, which contains (du, dρε)g, tends to zero as
ε goes to zero as we have shown in the proof of Theorem 2.1. This is true also
for m = 2 when we replace ρε by the function fε. In the second term we will
replace uα(p−2) by its value given by (27).
As for the right-hand side of (28), consider the first term:

∫

X

ρε(u∆gu)dµ =

∫

X

u(du, dρε)gdµ+

∫

X

ρε|du|2dµ.

and when we let ε tends to zero, since as before u is bounded, we simply get
the L2-norm of du, both for the case m > 2 and m = 2.
Therefore, after some elementary computation we obtain:

1 + δ

γ0
(p− 2)

∫

X

ρε|du|2dµ =

∫

X

ρε(∆gu)
2dµ

+ (α− 1)(1 + α(p− 2))

∫

X

ρε
|du|4
u2

dµ

− α(p− 1)

∫

X

ρε
∆gu

u
|du|2dµ+ o(1).

(29)

where we replaced the two terms containing du and dρε by a term o(1) which
tends to zero as ε goes to zero. Let us denote:

I1 =

∫

X

ρε(∆gu)
2dvg.

I2 =

∫

X

ρε
∆gu

u
|du|2dvg.

We are going to bound by below I1 by integrating the Bochner-Lichnerowicz
formula, which holds on the regular set Ω, and to give an alternative expression
for I2 by integrating by parts.
Consider firstly I1. We multiply the Bochner-Lichnerowicz formula

(du, d∆gu)g = ∆g
|du|2
2

+ |∇du|2 +Ricg(du, du) on Ω.
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by the cut-off function ρε and integrate. Recall that by hypothesis we have
Ricg ≥ (n− 1)g.
By rewriting ρε(du, d∆gu)g = (du, d(ρε∆gu))g −∆gu(du, dρε)g and integrating
by parts, we then obtain:

∫

X

ρε(∆gu)
2dµ ≥

∫

x

ρε(|∇du|2dvg + (n− 1)|du|2)dµ

+

∫

X

∆gρε
|du|2
2

dµ+

∫

X

∆gu(du, dρε)gdµ.

(30)

Remark that thanks to (27), and the fact that u is bounded, we know that ∆gu
can be split in the sum of a bounded term and a second term depending on
|du|2: it is equal to

∆gu =
1

α
u

(

∆gf

uα
+ α(α − 1)

|du|2
u2

)

.

We know that u is strictly positive and bounded, then the same is true for
u−1, and ∆gf is bounded too. Furthermore, Remark 1.4 in Section 1, assures
that |du| ∈ Lp(X), for all p ∈ [1; +∞). As a consequence ∆gu also belongs
to Lp(X) for p ∈ [1; +∞). Then we can bound the last term in (30) by using
Cauchy-Schwarz inequality:

∫

X

ρε∆gu(du, dρε)gdµ ≤
(∫

X

(ρε∆gu)
2dµ

)
1
2
(∫

X

(du, dρε)
2
gdµ

)
1
2

.

where the first factor is finite, and the second one tends to zero as ε goes to
zero. Then the last term in (30) tends to zero as ε goes to zero. As for the term
containing ∆gρε, we know that for m > 2 this tends to zero as ε goes to zero.
For m = 2 and fε, we only have that this quantity is bounded: but thanks to
(30) this is enough to state that the L2-norm of ∇du is finite. As in the proof of
Theorem 2.1, this implies |du| ∈ L∞(X) and there exists ρε, vanishing on Σε2 ,
being equal to one away from Σε, and 0 ≤ ρε ≤ 1 on Σε \ Σε2 , such that the
integrals of both (du, dρε)g and ∆gρε|du|2 tend to zero as ε goes to zero. From
now on we are allowed to consider the cut-off function ρε instead of fε also in
the case of m = 2.

We can modify (30) a bit more. We decompose the Hessian ∇du in its
traceless part A plus −(∆gu/n)g, since ∆gu = −tr(∇du). Then the square
norm of ∇du is equal to |A|2 + (∆gu)

2/n, and therefore we get:

∫

X

ρε(∆gu)
2dµ ≥ n

n− 1

∫

X

ρε|A|2dµ+ n

∫

X

ρε|du|2dµ+ o(1). (31)

This will be the appropriate bound by below for I1.
Now consider I2 and integrate by parts:

I2 = 2

∫

X

ρε
∇du(du, du)

u
dµ−

∫

X

ρε
|du|4
u2

dµ+

∫

X

|du|2
u

(dρε, du)gdµ.

With the same observations as before (|du| ∈ Lp(X) for all p ∈ [1 + ∞) and
Cauchy-Schwarz inequality), we can say that the last term in this expression
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tends to zero as ε goes to zero. We can decompose again the Hessian ∇du in
∇du = A− ∆gu

n g. As a consequence we can write:

I2 =
2n

n+ 2

∫

X

ρε
A(du, du)

u
dµ− n

n+ 2

∫

X

ρε
|du|4
u2

dµ+ o(1). (32)

We can now replace this expression for I2 and the bound by below (31) for I1
in (29); after passing to the limit as ε and δ go to zero we obtain:

(

1

γ0
(p− 2)− n

)∫

X

|du|2dµ ≥ n

n− 1

∫

X

|A|2dµ

− α(p− 1)
2n

n+ 2

∫

X

A(du, du)

u
dµ

+ C(α)

∫

X

|du|4
u2

dµ.

(33)

where
C(α) = (α − 1)(1 + α(p− 2)) + α(p− 1)

n

n+ 2
.

The first two terms in the left-hand side of (33) can be interpreted as a part of
a square norm for some convenient coefficient: we can rewrite in fact

(

1

γ0
(p− 2)− n

)∫

X

|du|2dµ ≥ n

n− 1

(

∫

X

∣

∣

∣

∣

A+ β
du⊗ du

u

∣

∣

∣

∣

2

dµ

)

+

(

C(α)− β2 n

n− 1

)∫

X

|du|4
u2

dµ.

where we have chosen:

β = −α(p− 1)
n− 1

n+ 2

We denote by T = du⊗du
u . Then, recalling that A is traceless, we have

|A+ βT |2 ≥ 1

n
tr(A+ βT )2 =

β2

n

|du|4
u2

.

Replacing this in the previous inequality, we finally get:
(

1

γ0
(p− 2)− n

)∫

X

|du|2dµ ≥ (C(α) − β2)

∫

X

|du|4
u2

dµ. (34)

We remark that C(α) − β2 is a quadratic expression in α. Its discriminant
equals:

−4n(p− 1)((n− 2)p− 2n)

(n+ 2)2

which is positive for 1 < p < 2n
n−2 . Therefore, thanks to our hypothesis, we can

choose α in such a way that the right-hand side of (34) is a positive quantity.
As a consequence we get for any 1 < p < 2n

n−2 :

1

γ0
≥ n

p− 2
.

which gives the desired Sobolev inequality. We can pass to the limit as p tends
to 2n

n−2 and get the result for 2n
n−2 too.
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3.1 Some examples

Consider an admissible stratified space (Zd, k) of dimension d with Einstein
metric k. Thanks to Lemma 1.2, we know that X = Rn−d−1 × Z with the
metric g = dy2 + dr2 + r2k is conformally equivalent to (C(S), [dt2 +cos2(t)h]),
where:

S =
[

0,
π

2

]

× S
n−d−2 × Z

h = dϕ2 + cos2(ϕ)gSn−d−2 + sin2(ϕ)k.

Moreover, C(S) is an admissible stratified space endowed with an Einstein met-
ric gc = dt2 + cos2(t)h. Corollary 3.2 states that its Yamabe constant will be
equal to:

Y (X, [g]) = Y (C(S), [gc]) =
n(n− 2)

4
Volgc(C(S))

n
2 . (35)

We claim that:

Lemma 3.3. Let (Zd, k) be an admissible stratified space of dimension d with
Einstein metric k. Then the Yamabe constant of X = Rn−d−1 × Z endowed
with the metric g as above is equal to:

Y (X, [g]) =

(

Volk(Z)

Vol(Sd)

)
2
n

Yn. (36)

Proof. Recall that the Yamabe constant of the sphere Yn is equal to

Yn =
n(n− 2)

4
Vol(Sn)

2
n .

Then by our expression above we have:

Y (X, [g]) = Yn

(

Volgc(C(S))

Vol(Sn)

)
2
n

.

Now the volume of C(S) with respect to gc is clearly equal to:

Volgc(C(S)) = 2Volh(S)

∫ π
2

0

cosn−1(t)dt.

and the volume of S with respect to h is:

Volh(S) = Vol(Sn−d−3)Volk(Z)

∫ π
2

0

cosn−d−2(ϕ) sind(ϕ)dϕ.

By using polar coordinates, the sphere Sn can be viewed as the cone over the
(n− d− 3)-fold spherical suspension of Sd, so that we can express its volume in
the following form:

Vol(Sn) = 2Vol(Sn−d−3)Vol(Sd)

∫ π
2

0

cosn−d−2(ϕ) sind(ϕ)dϕ

∫ π
2

0

cosn−1(t)dt.

Finally by replacing the two expressions for the volumes of C(S) and Sn we get
the desired value of Y (X, [g]).
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Example: In the simplest case of Z being a circle of radius a < 1, C(S1
a) is

a cone of angle α = 2πa. A similar calculation leads to:

Y (Rn−2 × C(S1
a), [g]) = a

2
nYn =

( α

2π

)
2
n

Yn.

Observe that this procedure cannot be applied if Z is a circle with radius bigger
than one, since we excluded the existence of codimension 2 strata with link of
diameter bigger that π. In the next section we are going to give another way to
compute the Yamabe constant of this kind of stratified spaces.

Remark 3.4. Lemma 3.3 extends a result by J. Petean about the Yamabe con-
stant of cones. The author shows in [Pet09] that if M is a compact manifold
of dimension n, endowed with a Riemannian metric such that Ricg = (n− 1)g,
then the Yamabe constant of the cone C(M) = (0, π) ×M endowed with the
cone metric dt2 + sin2(t)g is equal to:

Y (C(M), [dt2 + sin2(t)g]) =

(

Volg(M)

Vol(Sn)

)
2

n+1

Yn+1.

If the spherical suspension S were a compact smooth manifold, our computation
would give exactly the same result.

4 Cones of angle α ≥ 2π

Let (Xn, g) be a stratified space with one singular stratum Xn−2 of codimension
2: we assume that its link is the circle S1a of radius a > 1 and then that the
cone C(S1a) has angle α = a2π ≥ 2π. Such stratified space does not belong to
the class of admissible stratified spaces we defined above, and Theorem 2.1 does
not hold on it. As a consequence, we cannot apply Corollary 3.2 in order to
compute its local Yamabe constant, or, equivalently, the Yamabe constant of
R

n−2 × C(S1a).
We are going to follow another strategy: we will study the isoperimetric profile
of X = Rn−2 × C(S1a), i.e. given a metric g on X we study the function Ig:

Ig(v) = inf{Volg(∂E), E ⊂ X,Volg(E) = v}.

An Euclidean isoperimetric inequality holds on X if there exists a positive con-
stant c such that

I(v) ≥ cv1−
1
n (37)

In the Euclidean space Rn, the constant c is given by the isoperimetric quotient
of euclidean balls. Moreover, it is a well known result that the isoperimetric
inequality in Rn is equivalent to the following Sobolev inequality: for any n > 1
and f ∈W 1,1(Rn)

‖f‖q ≤ C ‖df‖1 , q =
n

n− 1
.

It is also possible to compute the explicit value for the optimal constant appear-
ing in this inequality. Moreover, this inequality leads to the sharp inequalities
for 1 ≤ p < n see for example [Tal76]):

‖f‖q ≤ Cn,p ‖df‖p , q =
np

n− p
(38)
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In the following, we are going to show that the isoperimetric profile of X (with
the appropriate metric) coincides with the isoperimetric profile of Rn. This
will give in turn a sharp Sobolev inequality and then the value of the Yamabe
constant of X = Rn−2 × C(S1a), for a ≥ 1.

4.1 Approaching C(S1

a
) with Cartan-Hadamard manifolds

We are going to find a metric hε on R2, conformal to the Euclidean metric,
that converges to a metric h on R

2 with one conical singularity, which is in turn
isometric to C(S1

a) endowed with the metric dr2 + (ar)2dθ2.

Lemma 4.1. There exists a sequence of metrics hε on R
2, conformal to the

Euclidean metric, with negative sectional curvature, such that hε converges uni-
formly on any compact domain of R2 \ {0} to the cone metric on C(S1a) with
a ≥ 1.

Proof. Consider the following metric on R2:

hε = (ε2 + ρ2)a−1(dρ2 + ρ2dθ2) (39)

We can compute its sectional curvature κε by applying the formulas for confor-
mal changes of metrics (see for example [Bes08]):

g =e2fε(dρ2 + ρ2dθ2), fε =
a− 1

2
ln(ρ2 + ε2)

κε = e−2fε∆gfε = − 2(a− 1)ρ

(ρ2 + ε2)a+1
.

which is non-positive, since by hypothesis a ≥ 1. When ε tends to zero, the
conformal factor (ρ2 + ε2)a−1 converges to ρ2(a−1) pointwise and uniformly in
C∞ on any compact domain. As a consequence hε(ρ, θ) converges to

h(ρ, θ) = ρ2(a−1)(dρ2 + ρ2dθ2)

which is a Riemannian metric on R2 \ {ρ = 0}. Now, R2 endowed with the
metric h is a surface with one conical singularity 0, which is isometric to C(S1a)
endowed with the metric dr2 + (ar)2dθ2: it suffices to apply the change of
variables r = ρa/a.

A Cartan-Hadamard manifold is a complete, simply connected Riemann
manifold with nonpositive sectional curvatures. The following conjecture is
known as the Cartan-Hadamard conjecture or Aubin’s conjecture (see for ex-
ample [Rit05] ):

Conjecture 4.2. Let (Mn, g) be a Cartan-Hadamard manifold, whose sectional
curvatures satisfy κ ≤ c ≤ 0. Then the isoperimetric profile IM of Mn is
bounded from below by the isoperimetric profile Ic of the complete and simply
connected space Mn

c , whose sectional curvatures are equal to c.

This conjecture has been proved in dimension n = 2, 3, 4 by A. Weil [Wei26],
C. Croke [Cro80] and B. Kleiner [Kle92]. In our particular case, (R2, hε) is a
Cartan-Hadamard manifold with c = 0. As a consequence we have:

Lemma 4.3. Let hε be the metric on R2 defined in the previous lemma. Then
the isoperimetric profile Ihε

of (R2, hε) is bounded by below by the isoperimetric
profile I2 of R2 with the Euclidean metric.
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4.2 Isoperimetric profiles

We recall a result known in the literature as Ros Product Theorem and contained
in [Ros05a], about the isoperimetric profiles of Riemannian products.

Proposition 4.4 (Ros Product Theorem). Consider two Riemannian manifolds
(M1, g1) and (M2, g2), dim(M2) = n. Assume that the isoperimetric profile I2
of (M2, g2) is bounded by below by the isoperimetric profile In of Rn. Then the
isoperimetric profile of the Riemannian product (M1 ×M2, g1 + g2) is bounded
by below by the one of (M1 × Rn, g1 + ξ), where ξ is the Euclidean metric.

The idea of the proof is to define an appropriate symmetrization for sets
E ⊂M1 ×M2. Denote for simplicity g = g1 + g2 and g0 = g1 + ξ. We consider
for x ∈ M1 the section E(x) = E ∩ ({x} × M2). Then the symmetrization
Es ⊂M1 × Rn will be the set defined by:

1. if E(x) = ∅, then Es(x) = ∅;

2. if E(x) 6= ∅, then Es(x) = {x} × Br, where Br is an euclidean ball in Rn

such that Volξ(Br) = Volg2(E(x)).

By following Proposition 3.6 in [Ros05a], Es satisfies that Volg0(E
s) = Volg(E)

and Volg0(∂E
s) ≤ Volg(∂E). This is enough to show that if F ⊂ M1 ×M2

realizes the infimum in Ig(v), i.e Volg(F ) = v and Volg(∂F ) = Ig(v), then its
symmetrization F s satisfies Volg0(F

s) = v and

Ig0 (v) ≤ Volg0(∂F
s) ≤ Volg(∂F )

As a consequence, Ig(v) ≥ Ig0(v) for any v > 0.

Proposition 4.5. Let X = Rn−2 × C(S1
a) and denote by g the metric ξ + h.

Let Ig be its isoperimetric profile. Then Ig is coincides with the isoperimetric
profile In of Rn with the Euclidean metric.

Proof. We will show firstly that Ig is bounded by below by In. Consider Rn−2×
R

2 endowed with the metric gε = ξ + hε, and denote by Iε the isometric profile
with respect to this metric. Thanks to Lemma 4.3 and to Ros Product theorem
we deduce that Iε is bounded by below by the isoperimetric profile of Rn−2×R2

with the euclidean metric, i.e. In.
Therefore we have for any bounded domain E ⊂ X , Volgε(Ω) = v, with smooth
boundary ∂E:

Volgε(∂E)

Volgε(E)1−
1
n

≥ Iε(v)

v1−
1
n

≥ cn (40)

where cn is the optimal constant appearing in the isoperimetric inequality in
Rn. When we pass to the limit as ε tends to zero, the volumes of both E and
∂E with respect to gε converge to the volumes with respect to g.

In face, if we denote by dx the n-dimensional Lebesgue measure on Rn and
by dσ the volume element induced on ∂E by the Euclidean metric, we have for
the volume of E:

lim
ε→0

Volgε(E) =

∫

E

(ρ2 + ε2)(a−1)dx = Volg(E)
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since (ρ2 + ε2)(a−1) converges to ρ2(a−1) on any bounded domain. As for the
volume of ∂E we get:

lim
ε→0

Volgε(∂E) = lim
ε→0

∫

∂E

(ρ2 + ε2)(a−1)dσ

= lim
ε→0

∫

∂E\Rn−2×{0}

(ρ2 + ε2)(a−1)dσ

=

∫

∂E\Rn−2×{0}

ρ2(a−1)dσ

=

∫

∂E

ρ2(a−1)dσ = Volg(∂E).

where we used again the convergence of the conformal factor and the fact that
Rn−2 × {0} has zero (n− 1)-dimensional Lebesgue measure.

Therefore when we pass to the limit as ε goes to zero in 40 we obtain:

Volg(∂E)

Volg(E)1−
1
n

≥ cn (41)

Observe that Rn−2×C1(Sa) contains euclidean balls: they are the geodesic balls
Bn not intersecting the singular set Rn−2 × {0}. They realize cn, so that for
any v > 0 the infimum defining Ig(v) is attained by the euclidean geodesic ball
of volume v, i.e. I(v) = cnv

1− 1
n . As a consequence, the isoperimetric profile Ig

coincides with In.

4.3 Yamabe constant of Rn−2 × C(S1

a
)

We have found an optimal constant for the isoperimetric inequality (41) with
respect to a metric g = ξ + h on X = Rn−2 × C(S1

a). Such metric is isometric
to ξ + dr2 + (ar)2dθ2 on X , so they obviously define the same conformal class.
As a consequence, we can compute the Yamabe constant of Rn−2 × C(S1

a), as
the following proposition shows.

Proposition 4.6. The Yamabe constant of X = Rn−2 ×C(S1
a), a > 1, is equal

to the Yamabe constant Yn of the standard sphere of dimension n.

Proof. In the Euclidean space Rn, the existence of the isoperimetric inequality
leads to the existence of a sharp Sobolev inequality: for any 1 < p < n and for
any f ∈ W 1,p(Rn):

‖f‖q ≤ Cn,p ‖df‖p , q =
np

n− p
. (42)

The constant Cn,p is optimal in the sense that it attains:

C−1
n,p = inf

f∈W 1,p(Rn)
f 6=0

‖du‖p
‖u‖q

. (43)

We briefly recall the ideas of the proof given by G. Talenti in [Tal76]. For any
Lipschitz function u we can define the symmetrization u∗ in the following way:
for any t ∈ R, the level sets E∗

t = {x ∈ Rn : u∗(x) > t} of u∗ are Euclidean
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n-balls having the same volume as the level sets Et of u. Then u is spherically
symmetric and Lipschitz. It is possible to show that this kind of symmetrization
makes the ratio (43) decrease: from Lemma 1 in [Tal76] we have that for any
1 < p < n

‖u‖q = ‖u∗‖q and ‖du‖p ≥ ‖du∗‖p .
The first equality is trivial. The second inequality is deduced by using isoperi-
metric inequality and coarea formula, which relates the integral of |du| with the
(n− 1)-measure of the boundaries ∂Et of level sets.
As a consequence, the infimum in (43) is attained by spherically symmetric
functions. Classical argument in the calculus of variations allows to prove that
there exists a minimizer. Moreover, G. Talenti exhibits a family of functions
attaining Cn,p and gives its exact value.
When p = 2, (Cn,2)

−2 coincides with the Yamabe constant Yn of the n-dimensional
sphere. This is shown by pulling back the functions attaining Cn,2 from Rn to
the sphere Sn without the north pole.
In our case, X = R

n−2 × C(
S
1
a) is flat and satisfies the Euclidean isoperimetric

inequality (41). We can then repeat the same argument as Talenti to deduce
that the inequality (42) holds on X with the same optimal constant as in Rn.
Furthermore, by definition of the Yamabe constant, and since Sg = 0, we have:

Y (X, [g]) = inf
u∈W 1,2(X)

u>0

∫

X
|du|2dvg

‖u‖22n
n−2

.

so that Y (X, [g]) is equal to (Cn,2)
−2. We have then proved Y (X, [g]) = Yn.

5 Conclusion

Our results allows us to compute the Yamabe constant of an Einstein admissible
stratified space, as Corollary 3.2 states. Moreover, we can deduce from them
an explicit value for the local Yamabe constant of a stratified space whose links
are endowed with an Einstein metric.

Let (X, g) be a compact stratified space with strata Xj, j = 1 . . . n. Assume
that each of its links Zj admits an Einstein metric kj such that

Rickj
= (dj − 1)kj

where dj is the dimension of Zj . We have two possibilities: either Zj is an
admissible stratified space, or it is a circle of radius a ≥ 1. In both cases we
are able to compute the Yamabe constant of Rn−dj−1 × Zj . This leads to the
following:

Proposition 5.1. Let (X, g) be a compact stratified space with strata Xj, j =
1, . . .N . Assume that each link Zj of dimension dj is endowed with an Einstein
metric kj, such that Rickj

= (dj − 1)kj. Then the local Yamabe constant of X
is given by:

Yℓ(X) = inf

{

Yn,

(

Volk1(Z1)

Vol(Sd1)

)
2
n

Yn, . . .

(

VolkN
(ZN )

Vol(SdN )

)
2
n

Yn

}

.
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