
Five poTAGEs and a COLT for an unrealistic predictor∗

Pierre Michaud

Inria

1 Summary

The predictor we submit to the competition is for explor-

ing the limits of branch prediction, it is not intended to be

implemented in hardware. The proposed predictor con-

sists of 5 huge TAGE predictors which we have tuned for

better accuracy under huge storage budget. The overall

prediction is obtained by combining the 5 TAGE predic-

tions via COLT fusion. One of the 5 TAGE components

takes a conventional global path as input. The 4 other

TAGE components take as input different sorts of first-

level histories. On the CBP-4 traces, the proposed predic-

tor achieves 1.782 MPKI.

2 The TAGE predictor

The predictor we submit to the unlimited-size track is

based on a modified version of the TAGE predictor

[12, 11]. A TAGE predictor consists of several tagged

tables and one tagless table. Each entry of the tagless

table contains a taken/not-taken counter. Each entry of

a tagged table contains a tag, a taken/not-taken counter,

and a u bit. The tagless table is indexed with the address

of (conditional) branches: it provides a default prediction

when none of the tagged table give a hit. The tagged ta-

bles are indexed through a hash on the branch address and

the global path [8]. The path lenghs follow a geometric

progression [10]. TAGE is based on the PPM principle

[1]. In a PPM-like predictor [6], the prediction is always

given by the longest hitting path. However, there are some

situations where the second longest hitting path is likely

to be more accurate than the longest one, especially when

the longest hitting path entry is “fresh”, i.e., it has just

been initialized but not yet updated. TAGE exploits this

fact with a single USE ALT ON NA counter (acting like

a meta-predictor [5]) for selecting between a fresh longest

hitting prediction and the second longest hitting predic-

tion [12]. The u bit in each entry indicates if that entry

is likely to be useful or not. When the u bit is set, it pro-

∗This work was partially supported by the European Research Coun-

cil Advanced Grant DAL No 267175

counters
1024

(5−bit)

prediction
taken/not−taken

33 3 1

first hitthird hit second hit

ctr ctr ctr u

TAGE

10

post−predictor

Figure 1: poTAGE: the post-predictor inputs are the u
bit and taken/not-taken counter of the longest hitting

TAGE entry, and the taken/not-taken counters of the

second and third longest hitting TAGE entries.

tects the entry from being “stolen” [6]. All the u bits are

cleared when it is detected that the predictor is “jammed”

[11]. The u bit is also used to detect if an entry is fresh:

an entry is considered fresh if the u bit is not set and the

taken/not-taken counter value is weak [12].

3 The poTAGE predictor

3.1 Post predictor

The poTAGE predictor, shown in Figure 1, is similar

to TAGE, except that we replace the USE ALT ON NA

mechanism with a post-predictor (poTAGE = post-

predicted TAGE). In the submitted predictor, the

taken/not-taken counter in each TAGE entry is 3-bit wide.

Our post-predictor is a 1024-entry table, each table en-

try holding a 5-bit taken/not-taken counter. The post-

predictor is indexed with the u bit and counter value of

the longest hitting TAGE entry, and the counter values of

the second and third longest hitting TAGE entries (10 in-

dex bits total). The 5-bit counter is used and updated like

a conventional taken/not-taken counter [13].

1

3.2 Ramp-up

In a TAGE predictor, the update is crucial, it must be done

very carefully: only the longest hitting counter is updated

[6], and only a few new entries are allocated upon a mis-

prediction for path lengths greater than the longest hitting

length [12, 11]. However, because we assume a huge pre-

dictor size, it is possible to use a more aggressive update

policy to decrease mispredictions due to cold-start effects:

Instead of updating only the longest hitting counter, we

update all the hitting counters, whether or not the branch

was correctly predicted.

Instead of allocating a few new entries, and only upon a

misprediction, we allocate entries for all the path lengths

greater than the longest hitting length, whether or not the

branch was correctly predicted, and provided the entries

can be stolen (u bit not set). We stop doing aggressive

allocation for path lengths greater than 200 branches when

all the hitting counters are saturated.

We use this aggressive update policy during what we

call the ramp-up period. When the ramp-up period is over,

we switch to the careful update policy implemented in the

ISL-TAGE predictor [11].

The ramp-up period length is roughly proportional to

the predictor size. For the submitted predictor, we set the

ramp-up period to one million mispredictions1. A ramp-

up period might also be useful in (large) real branch pre-

dictors. However the problem in a real predictor is how to

detect when to start the ramp-up.

4 Beyond TAGE

So far, the most accurate branch predictors, including

TAGE, belong to the family of two-level branch predic-

tors [14, 9, 15]. Yeh and Patt provided a taxonomy of

two-level branch predictors [16]. In particular, they dis-

tinguished predictors according to their first history level.

The 2006 and 2011 TAGE predictors [12, 11] are “global”

schemes, as their first-level history consists of a single

global path shared by all the branches.

Global schemes are the most accurate two-level pre-

dictors that we know. However they have some limits.

The footprint of a static branch in a particular TAGE table

grows exponentially with the path length used for that ta-

ble. The footprint also grows very quickly with branch en-

tropy: the more unpredictable the branches, the larger the

footprint [7]. A large footprint incurs cold-start and ca-

pacity misses in a TAGE predictor. Applications exhibit-

ing randomness in their control flow behavior are difficult

1The careful update policy is almost never used in our simulations.

to predict by a global scheme such as TAGE not only be-

cause of their intrinsic randomness, but also because of

the large footprint.

Per-address schemes, i.e., predictors that use per-

branch first-level histories [16], suffer less from this prob-

lem. Indeed, a global path contains some “noise”, i.e.,

some entropy that does not bring any correlation informa-

tion but just grows the footprint [2]. In an ideal (i.e, large

enough) per-address scheme, each static branch is pre-

dicted with its own subpath, which it does not share with

other static branches. Unlike global schemes, per-address

schemes cannot exploit global branch correlations, only

local correlations. However, in a per-address scheme,

hard-to-predict branches do not “pollute” the subpath of

easy-to-predict branches.

Global and per-address schemes are two extreme points

in the set of all possible two-level predictors. Yeh and Patt

also introduced per-set schemes in their taxonomy[16].

Per-set schemes have been largely ignored since their in-

troduction, until recently when Ishii et al. introduced two

per-set schemes in their FTL++ predictor [3]

In a per-set scheme, there are several subpaths like in

a per-address scheme, but a subpath is shared by several

static branches. Subpath sharing generally exists in prac-

tical implementations of per-address schemes because of

the limited storage for first-level histories. However, in a

per-set scheme, subpath sharing is intentional: the goal is

to exploit both local and (to some extent) global correla-

tions, but with a smaller footprint than global schemes.

In a global scheme such as TAGE, hash functions are

applied to the global path for indexing the tagged tables.

Path aliasing can occur if two different global paths map

to the same table entry and tag. In a global scheme, we

generally try to minimize path aliasing by using “good”

hashing functions. Using a per-set scheme can be seen

as intentionally introducing path aliasing for decreasing

the footprint. Blind path aliasing is likely to degrade the

predictor’s ability to exploit global correlation. Still, the

hope is that the benefit of a smaller footprint outweighs

this degradation. This is generally not true for all branches

but for a few of them. This is why per-set schemes should

not be used alone but as components of a hybrid predic-

tor, as Ishii et al. did in the FTL++ predictor. The type

of path aliasing that per-set schemes exploit is based on

the assumption that branches which are statically close to

each other are more likely to be correlated than distant

branches. Other forms of intentional path aliasing can be

imagined (cf. Section 6).

2

poTAGE spectrum spectrum size # tagged min subpath max subpath

type (# subpaths) tables (# branches) (# branches)

P0 global 1 20 7 5000

P1 per address 32 19 5 2000

P2 per 128-byte set 16 19 5 500

P3 per 2-byte set 4 19 5 500

P4 frequency 8 19 5 500

Table 1: The 5 poTAGEs. The poTAGE tables are very large. P0 is roughly twice larger than each of the other

predictors. The COLT table (not listed) is also very large.

P1

(per address)

P2

(per set)

P0

(global)

0/1

0/1

0/1COLT

(per set)

(frequency)

P4

P3

0/1

0/1

0/1

branch address

Figure 2: The multi-poTAGE predictor.

5 The multi-poTAGE predictor

The proposed predictor, called multi-poTAGE, is depicted

in Figure 2. It is a hybrid predictor [5] combining 5 differ-

ent poTAGE predictors P0, P1, P2, P3 and P4. P0 is the

global path poTAGE described in Section 3. The other

predictors do not use a global path:

• P1 uses 32 per-address subpaths

• P2 uses 16 per-set subpaths with 128-byte sets

• P3 uses 4 per-set subpaths with 2-byte sets

• P4 uses 8 frequency-based subpaths

Predictor P4 uses a new sort of first-level history that we

describe later in Section 6.

The 5 poTAGEs are combined using COLT fusion, a

method invented by Gabriel Loh and Dana Henry [4]. The

COLT table is indexed with the branch address. Each

COLT entry holds a 5-bit taken/not-taken counter.

Table 5 gives an overview of the 5 poTAGEs imple-

mented in the submitted multi-poTAGE.

6 Frequency-based path spectrum

P4 uses a new sort of first-level history: frequency-based

subpaths. P4 does not belong to the taxonomy of Yeh and

Patt but to a more general class of two-level predictors.

In a two-level predictor, the first-level history consists

of a set of subpaths that we call a path spectrum. At

prediction time, a subpath Sp is selected from the path

spectrum. Subpath Sp is used to access the second-level

history (here, poTAGE), yielding a prediction. At update

time, the branch updates one of the subpath Su. In the

proposed multi-poTAGE, Sp and Su are always the same.

The spectrum of P0 consists of a single subpath shared

by all the branches, i.e., it is the whole global path. The

spectrum of P1 consists of 32 subpaths, and Sp(= Su) is

selected with the 5 least significant branch address bits 0

to 4 (per-address first level). The spectrum of P2 consists

of 16 subpaths, and Sp(= Su) is selected with branch ad-

dress bits 7 to 10 (per-set first level).

The spectrum of P4 consists of 8 subpaths. The sub-

path Sp(= Su) is selected as follows. The branch address

is used to index a Branch Frequency Table (BFT). If the

BFT is large enough, each static branch uses a distinct

BFT entry. Each BFT entry holds a counter indicating the

current frequency of the static branch. The frequency of

a branch is the number of times the branch has been exe-

cuted until now since the counter was reset2.

Predictor P4 seeks to exploit correlations between

branches having (roughly) the same frequency. Each of

the 8 subpaths S[0] to S[7] corresponds to a distinct fre-

quency bin. Let Fmax be the maximum branch frequency

so far. Branches whose frequency lies in [Fmax/2, Fmax]
are predicted with subpath S[0]. Branches whose fre-

quency lies in [Fmax/4, Fmax/2[use subpath S[1].
Branches whose frequency lies in [Fmax/8, Fmax/4[use

subpath S[2]. And so forth.

Note that, after an initial period, the dynamic instances

of a static branch will generally use the same subpath.

2In the submitted branch prediction algorithm, we reset the frequency

counters only once, when the simulation starts.

3

7 Experimental analysis

P0 is the most accurate of the 5 poTAGEs as a single com-

ponent. Compared with the USE ALT ON NA mecha-

nism used in previous TAGE predictors, the post-predictor

decreases the number of mispredictions by 5% on the

CBP-4 traces. Using a ramp-up period yields a further

4% decrease. To evaluate the importance of each of the 5

poTAGEs in the multi-poTAGE predictor, we selectively

disabled some of them. P2 is the second most important

predictor after P0, followed by P1, P4 and P3 in that order.

Adding P2, P1, P4, and P3 (successively and in that order)

to P0 decreases the number of mispredictions by respec-

tively 5%, 3%, 2.5% and 1%. In total, the multi-poTAGE

predictor has 10% fewer mispredictions than P0 alone.

8 Conclusion

The prediction accuracy of TAGE is very high. Still,

when considering a huge storage budget for limit studies,

a more aggressive update policy can be used. Global path

predictors such as TAGE are theoretically able to cap-

ture all the branch correlations if the global path is long

enough. However, a global path suffers from “noise” from

branches that bring no correlation information but grow

the footprint. To (try to) solve this issue, we combined five

poTAGEs with different first-level histories, using COLT

fusion. This brute force approach may not be reasonable

for a realistic predictor. Future research should try to look

for more cost-effective solutions.

References

[1] I.-C.K. Chen, J.T. Coffey, and T.N. Mudge. Anal-

ysis of branch prediction via data compression. In

Proc. of the 7th Int. Conference on Architectural

Support for Programming Languages and Operat-

ing Systems, 1997.

[2] M. Evers, S. J. Patel, R. S. Chappell, and Y. N. Patt.

An analysis of correlation and predictability: what

makes two-level branch predictors work. In Proc. of

the 25th Int. Symp. on Computer Architecture, 1998.

[3] Y. Ishii, K. Kuroyanagi, T. Sawada, M. Inaba, and

K. Hiraki. Revisiting local history for improving

fused two-level branch prediction. In Proc. of the

2nd JILP Workshop on Computer Architecture Com-

petitions, June 2011.

[4] G. H. Loh and D. S. Henry. Predicting conditional

branches with fusion-based hybrid predictors. In

Proc. of the Int. Conf. on Parallel Architectures and

Compilation Techniques, 2002.

[5] S. McFarling. Combining branch predictors. Tech-

nical Report TN-36, DEC WRL, 1993.

[6] P. Michaud. A PPM-like, tag-based predictor. Jour-

nal of Instruction Level Parallelism, April 2005.

[7] P. Michaud and A. Seznec. A comprehensive study

of dynamic global history branch prediction. Tech-

nical Report RR-4219, Inria, June 2001.

[8] R. Nair. Dynamic path-based branch correlation. In

Proc. of the 28th Int. Symp. on Microarchitecture,

1995.

[9] S.-T. Pan, K. So, and J. T. Rameh. Improving the

accuracy of dynamic branch prediction using branch

correlation. In Proc. of the 5th Int. Conf. on Archi-

tectural Support for Programming Languages and

Operating Systems, 1992.

[10] A. Seznec. Analysis of the O-GEometric History

Length branch predictor. In Proc. of the 32nd Int.

Symp. on Computer Architecture, 2005.

[11] A. Seznec. A new case for the TAGE branch predic-

tor. In Proc. of the 44th Int. Symp. on Microarchi-

tecture, December 2011.

[12] A. Seznec and P. Michaud. A case for (partially)

tagged geometric history length branch prediction.

Journal of Instruction Level Parallelism, February

2006.

[13] J. E. Smith. A study of branch prediction strategies.

In Proc. of the 8th Int. Symp. on Computer Architec-

ture, 1981.

[14] T.-Y. Yeh and Y. N. Patt. Two-level adaptive training

branch prediction. In Proc. of the 24th Int. Symp. on

Microarchitecture, 1991.

[15] T.-Y. Yeh and Y. N. Patt. Alternative implemen-

tations of two-level adaptive branch prediction. In

Proc. of the 19th Int. Symp. on Computer Architec-

ture, 1992.

[16] T.-Y. Yeh and Y. N. Patt. A comparison of dynamic

branch predictors that use two levels of branch his-

tory. In Proc. of the 20th Int. Symp. on Computer

Architecture, 1993.

4

