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Abstract

The estimation of extreme flood quantiles is challenging due to the relative
scarcity of extreme data compared to typical target return periods. Several ap-
proaches have been developed over the years to face this challenge, including
regional estimation and the use of historical flood data. This paper investigates
the combination of both approaches using a multivariate peaks-over-threshold
model, that allows estimating altogether the intersite dependence structure and
the marginal distributions at each site. The joint distribution of extremes at
several sites is constructed using a semi-parametric Dirichlet Mixture model.
The existence of partially missing and censored observations (historical data)
is accounted for within a data augmentation scheme. This model is applied to
a case study involving four catchments in Southern France, for which histori-
cal data are available since 1604. The comparison of marginal estimates from
four versions of the model (with or without regionalizing the shape parameter;
using or ignoring historical floods) highlights significant differences in terms of
return level estimates. Moreover, the availability of historical data on several
nearby catchments allows investigating the asymptotic dependence properties of
extreme floods. Catchments display a a significant amount of asymptotic depen-
dence, calling for adapted multivariate statistical models.
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1 Introduction
Statistical analysis of extremes of uni-variate hydrological time series is a relatively
well chartered problem. Two main representations can be used in the context of ex-
treme value theory (e.g. Madsen et al., 1997a; Coles, 2001): block maxima (typically,
annual maxima) can be modeled using a Generalized Extreme Value (GEV) distri-
bution (see e.g. Hosking , 1985), while flood peaks over a high threshold (POT) are
commonly modeled with a Generalized Pareto (GP) distribution (see e.g. Hosking and
Wallis, 1987; Davison and Smith, 1990; Lang et al., 1999). One major issue in at-site
flood frequency analysis is related to data scarcity (Neppel et al., 2010): as an illus-
tration, most of the recorded flood time series in France are less than 50 years long,
whereas flood return periods of interest are typically well above 100 years. Moreover,
an additional challenge arises if one is interested in multivariate extremes at several
locations. A complete understanding of the joint behavior of extremes at different
locations requires to model their dependence structure as well. While there exists a
multivariate extreme value theory (e.g. Coles and Tawn, 1991; De Haan and De Ronde,
1998), its practical application is much more challenging than with standard univariate
approaches.

1.1 Regional estimation
In order to address the issue of data scarcity in at-site flood frequency analysis, hy-
drologists have developed methods to jointly use data from several sites: this is known
as Regional Frequency Analysis (RFA) (e.g. Hosking and Wallis, 1997; Madsen and
Rosbjerg , 1997; Madsen et al., 1997b). The basis of RFA is to assume that some pa-
rameters governing the distributions of extremes remain constant at the regional scale
(see e.g. the ’Index Flood’ approach of Dalrymple, 1960). All extreme values recorded
at neighboring stations can hence be used to estimate the regional parameters, which
increases the number of available data.

The joint use of data from several sites induces a technical difficulty: the spatial
dependence between sites has to be modeled. A common assumption has been to
simply ignore spatial dependence by assuming that the observations recorded simul-
taneously at different sites are independent, which is often unrealistic (see Stedinger ,
1983; Hosking and Wallis, 1988; Madsen and Rosbjerg , 1997, for appraisals of this
assumption). Alternative approaches include: (i) using an effective number of stations
(e.g. Reed et al. (1999)) or an effective duration (Weiss et al., 2014); (ii) deriving a mu-
tivariate distribution by "skewing" a Gaussian or a Student multivariate distribution
(e.g. Ghizzoni et al. (2012)); (iii) using elliptical copulas (e.g. Renard (2011) ; Sun
et al. (2014)). While these approaches allow moving beyond the spatial independence
assumption, they do not take full advantage of multivariate extreme value theory (see
e.g. Resnick , 1987, 2007; Beirlant et al., 2004). Indeed, the latter ensures that, when
the threshold (resp. the block size) increases, the joint distribution of the multivariate
excesses (resp. the block maxima) converges towards that of a multivariate generalized
Pareto distribution (resp. a multivariate extreme value distribution). The approach of
this paper is to model the joint distribution of excesses using the framework of multi-
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variate extreme value theory. As in the univariate case, using such a dependence model
is a model choice that finds its justification in the asymptotics (see sections 1.3 and 3
below). It is all the more appropriate that the focus is on out-of-sample quantities,
e.g. for uncertainty assessments about regional parameters (in particular about shape
parameters), and, in turn, about extreme quantiles outside the observational range.

1.2 Historical data
Beside regional analysis methods, an alternative way to reduce uncertainty is to take
into account historical flood records to complement the systematic streamflow mea-
surements over the recent period (see e.g. Stedinger and Cohn, 1986; O’Connel et al.,
2002; Parent and Bernier , 2003; Reis and Stedinger , 2005; Naulet et al., 2005; Neppel
et al., 2010; Payrastre et al., 2011; Machado et al., 2015). This results in a certain
amount of censored and missing data, so that any likelihood-based inference ought to
be conducted using a censored version of the likelihood function. Also, in a regional
POT context, some observations may not be concomitantly extreme at each location,
so that the marginal GP distribution does not apply to them. A ‘censored likelihood’
inferential framework for extremes has been introduced to take into account such ob-
servations (Smith, 1994; Ledford and Tawn, 1996; Smith et al., 1997). The information
carried by partially censored data is likely to be all the more relevant in a multivariate,
dependent context, where information at one well gauged location can be transferred
to poorly measured ones.

1.3 Multivariate modeling
The family of admissible dependence structures between extreme events is, by nature,
too large to be fully described by any parametric model (see further discussion in
Section 3.2). For applied purposes, it is common to restrict the dependence model to
a parametric sub-class, such as, for example, the Logistic model and its asymmetric
and nested extensions (Gumbel , 1960; Coles and Tawn, 1991; Stephenson, 2003, 2009).
The main practical advantage is that the censored versions of the likelihood are readily
available, but parameters are subject to non-linear constraints and structural model-
ing choices have to be made a priori, e.g., by allowing only bi-variate or tri-variate
dependence between closest neighbors. An alternative to parametric modeling is to
resort to ‘semi-parametric’ mixture models - some would say ‘non-parametric’ because
it can approach any dependence structure - (Boldi and Davison (2007); Sabourin and
Naveau (2014); Sabourin (2015), see also Fougères et al. (2013) for multivariate mod-
els for maxima). In the Dirichlet mixture model that is used in the present work, the
distribution function characterizing the dependence structure is written as a weighted
average of an arbitrarily large number of simple parametric components. This allows
keeping the practical advantages of a parametric representation while providing a more
flexible model.
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1.4 Objectives: Combining historical data and regional analy-
sis

Our aim is to combine regional analysis and historical data by modeling altogether the
marginal distributions and the dependence structure of excesses above large thresholds
at neighboring locations with partially censored data. Combined historical/regional
approaches have been explored by a few authors (Tasker and Stedinger , 1987, 1989; Jin
and Stedinger , 1989; Gaume et al., 2010; Viglione et al., 2013; Chi Cong et al., 2015).
This paper builds on this previous work and extends it to a multivariate POT context,
where each d-variate observation corresponds to concomitant streamflows recorded at
d sites. This is to be compared with the multivariate annual maxima approach, where
each d-variate observation corresponds to componentwise annual maxima that may
have been recorded during distinct extreme episodes.

In this paper, a multivariate POT model is implemented in order to combine re-
gional estimation and historical data. This model is used to investigate two scien-
tific questions. Firstly, the relative impact of regional and historical information on
marginal quantile estimates at each site is investigated. Secondly, the existence of his-
torical data describing exceptional flood events at several nearby catchments provides
an unique opportunity to investigate the nature and the strength of intersite depen-
dence at very high levels (which would be challenging using short series of systematic
data only, see e.g. Serinaldi et al. (2014)).

Multivariate POT modeling is implemented in a Bayesian, semi-parametric context.
The dependence structure is described using a Dirichlet Mixture (DM) model. The
DM model was first introduced by Boldi and Davison (2007), and its reparametrized
version (Sabourin and Naveau, 2014) allows for Bayesian inference with a varying
number of mixture components. A complete description of the model and of the
reversible-jump Markov Chain Monte-Carlo (MCMC) algorithm used for inference
with non censored data is given in Sabourin and Naveau (2014). The adaptation of
the inferential framework to the case of partially censored and missing data is fully
described from a statistical point of view in (Sabourin, 2015). One practical advantage
of this mixture model is that no additional structural modeling choice needs to be made,
which allows to cover an arbitrary wide range of dependence structures. In this work,
we aim at modeling the multivariate distribution of d = 4 locations. However, the
methods presented here are theoretically valid in any dimension, and computationally
realistic in moderate dimensions (say d ≤ 10 ).

The remainder of this paper is organized as follows: the dataset under consideration
is described in Section 2, and a multivariate declustering scheme is proposed to handle
temporal dependence. Section 3 summarizes the main features of the multivariate
POT model and describes the inferential algorithm. In Section 4, the model is fitted
to the data and results are described. Section 5 discusses the main limitations of this
study and proposes avenues for improvement, while Section 6 summarizes the main
findings.
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2 Hydrological data

2.1 Overview
The dataset under consideration consists of discharge recorded in the area of the ‘Gar-
dons’, in the south of France. Four catchments (Anduze, 540 km2, Alès, 320 km2,
Mialet, 219 km2, and Saint-Jean,154 km2) are considered. They are located relatively
close to each other (see Figure 1). Discharge data (in m3.s−1) were reconstructed
by Neppel et al. (2010) from systematic measurements (recent period) and historical
floods. Neppel et al. (2010) estimated separately the marginal uni-variate extreme
value distributions for yearly maximum discharges, taking into account measurement
and reconstruction errors arising from the conversion of water levels into discharge.
The earliest record dates back to 1604, September 10th and the latest was made in
2010, December 31st.

Saint Jean
Mialet Alès

Anduze

Gauging stations

River network

Gardon total catchment

Gardon subcatchments

Elevation [m]
822
686
547
411
272
136
0

¯
0 10 20 30 405 km

Figure 1: Hydrological map of the area of the Gardons, France

In this work, since we are more interested in the dependence structure between
simultaneous records than between yearly maxima, we model multivariate excesses
over threshold, and the variable of interest becomes (up to declustering) the daily
peakflow. Of course, most of the N = 14 841 daily peaklflows are censored (e.g.,
most historical data are only known to be smaller than the yearly maximum for the
considered year). For the sake of simplicity, we do not take into account any possible
measurement errors.

The geographic proximity of the four considered catchments, and the fact that
they share broadly similar characteristics (in terms of orientation, shapes, elevations,
slopes, geology) suggests that dependence at high levels might be noticeable. This is
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visually confirmed by the pairwise plots in Figure 3, obtained after declustering (see
Section 2).

The marginal data are classified into four different types, numbered from 0 to 3: ‘0’
denotes missing data, ‘1’ indicate an ‘exact’ record. Data of type ‘2’ are right-censored:
the discharge is known to be greater than a given value. Finally, type ‘3’ data are left-
and right-censored: the discharge is known to be comprised between a lower (possibly
0) and an upper bound. Most data on the historical period are of type 3. In the
sequel, j (1 ≤ j ≤ d) denotes the location index and t (1 ≤ t ≤ n) is used for the the
temporal one. A marginal observation Oj,t is a 4-uple Oj,t = (κj,t, Yj,t, Lj,t, Rj,t) ∈
{0, 1, 2, 3}×R3, where κ, Y, L and R stand respectively for the data type, the recorded
discharge (or some arbitrary value if κ 6= 1, which we denote NA), the lower bound (set
to 0 if missing), and the upper bound (set to +∞ if missing).

2.2 Data pre-processing: extracting cluster maxima
Temporal dependence is handled by declustering, i.e. by fitting the model to cluster
maxima instead of the raw daily data. The underlying assumption is that only short
term dependence is present at extreme levels, so that excesses above high thresholds
occur in clusters. Cluster maxima are treated as independent data to which a model
for threshold excesses may be fitted.

Alternative approaches have been investigated for the univariate case, without cen-
sored data: in a frequentist context, Fawcett and Walshaw (2007) propose to use all
the data (not only cluster maxima) and to correct the likelihood with a factor account-
ing for time dependence, so as to obtain reliable confidence intervals. Alternatively,
Ribatet et al. (2009) model the whole cluster process within a Markovian model. Both
approaches allow using more data for inference and hence reducing uncertainty. How-
ever, extending these temporal approaches to the multivariate censored case would
require some extra-care, and for the sake of simplicity, the choice was made not to
pursue this idea any further in the present paper.

For an introduction to declustering techniques, the reader may refer to Coles (2001)
(Chap.5). For more details, see e.g. Leadbetter (1983), or Davison and Smith (1990) for
applications when the quantities of interest are cluster maxima. Also, Ferro and Segers
(2003) propose a method for identifying the optimal cluster size, after estimating the
extremal index. However, this latter approach relies heavily on ‘inter-arrival times’,
which are not easily available in our context of censored data. In this study, we adopt
a simple ‘run declustering’ approach, following Coles and Tawn (1991) or Nadarajah
(2001) : a multivariate declustering threshold v = (v1, . . . vd) is specified (here, v =
(300, 320, 520, 380) respectively for Saint-Jean, Mialet, Anduze and Alès), as well as
a duration τ representative of the hydrological features of the catchment (here τ = 3
days). Following common practice (Coles, 2001), the thresholds are chosen in regions
of stability of the maximum likelihood estimates of the marginal parameters.

In a censored data context, a marginal data Oj,t exceeds vj (resp. is below vj) if
κj,t = 1 and Yj,t > vj (resp. Yj,t < vj), or if κj,t ∈ {2, 3} and Lj,t > vj (resp. κj,t = 3
and Rj,t < vj). If none of these conditions holds, we say that the data point has
undetermined position with respect to the threshold. This is typically the case when
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some censoring intervals intersect the declustering thresholds whereas no coordinate is
above threshold.

A cluster is initiated when at least one marginal observation Oj,t exceeds the cor-
responding marginal threshold vj . It ends only when, during at least τ successive
days, all marginal observations are either below their corresponding threshold, or
have undetermined position. Let {ti , 1 ≤ i ≤ nv} be the temporal indices of clus-
ter starting dates. A cluster maximum C∨ti is the component-wise ‘maximum’ over
a cluster duration [ti, . . . , ti + r]. Its definition require special care in the context
of censoring: the marginal cluster maximum is C∨j,ti =

(
κ∨j,ti , Y

∨
j,ti
, L∨j,ti , R

∨
j,ti

)
, with

Y ∨j,ti = maxti≤t≤ti+r{Yj,t} and similar definitions for L∨j,ti , R
∨
j,ti

. The marginal type
κ∨j,ti is that of the ‘largest’ record over the duration. More precisely, omitting the
temporal index, if Y ∨j > L∨j , then κ∨j = 1. Otherwise, if L∨j < R∨j , then κ∨j = 3 ;
otherwise, if L∨j > 0, then κ∨j = 2 ; If none of the above holds, then the jth cluster
coordinate is missing and κ∨j = 0.

Figure 2 shows the uni-variate projections of the multivariate declustering scheme,
at each location. Points and segments below the declustering threshold indicate situ-
ations when the threshold was not exceeded at the considered location but at another
one.

Anticipating Section 3, marginal cluster maxima below threshold are censored in
the statistical analysis, so that their marginal types are always set to 3, with lower
bound at zero and upper bound at the threshold. This approach, fully described e.g. in
Ledford and Tawn (1996), prevents from having to estimate the marginal distribution
below threshold, which does not participate in the dependence structure of extremes.

After declustering and censoring below threshold, the data set is made of nv = 125
d-variate cluster maxima {C∨ti , 1 ≤ i ≤ nv}. The empirical mean cluster size is τ̂ =
1.248, which is to be used as a normalizing constant for the number of inter-cluster
days. Namely, m dependent inter-cluster observations contribute to the likelihood as
m/τ̂ independent ones would do (see e.g. Beirlant et al. (2004), Chap. 10 or Coles
(2001), Chap. 8). As for those inter-cluster observations, nbel = 7562 data points
are below thresholds and only 9 days are completely missing (no recording at any
location). The remaining n′v = 140 674 days are undetermined, and must be taken
into account in the likelihood expression. They can be classified into 34 homogeneous
temporal blocks (i.e. all the days within a given block contain the same information),
typically, between two recorded annual maxima.

Figure 3 shows bi-variate plots of the extracted cluster maxima together with un-
determined blocks. Exact data are represented by points; One coordinate missing or
censored yields a segment and censoring at both locations results in a rectangle. The
plots show the asymmetrical nature of the problem under study: the quantity of avail-
able data varies from one pair to another (compare, e.g., the number of points available
respectively for the pair Saint-Jean/Mialet and Saint-Jean/Alès). Joint modeling of
excesses thus appears as a way of transferring information from one location to an-
other. Also, the most extreme observations seem to occur simultaneously (by pairs):
They are more numerous in the upper right corners than near the axes, which suggests
the use of a dependence structure model for asymptotically dependent data such as
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Figure 2: Extracted peaks-over-threshold at the four considered stations. Violet seg-
ments and areas represent data of type 2 and 3 available before declustering. Missing
days are shown in red. Gray segments (resp. black points) are data of type 2 and
3 (resp. 1 ) belonging to an extracted multivariate cluster In particular, type 2 data
are vertical gray segments extending up to the green bounding box. The declustering
threshold u is represented by the horizontal black line. Vertical gray lines extending
from 0 to the upper limit of the bounding box are drawn at days which are missing
at the considered location but which belong to a cluster, due to a threshold excess at
another location.
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the Dirichlet mixture (see Section 3.2).
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Figure 3: Bi-variate plots of the 124 simultaneous stream-flow records (censored cluster
maxima) at the four stations, and of the 34 undetermined data blocks defined in
section 2.2, over the whole period 1604-2010. Points represent exact data, gray lines
and squares respectively represent data for which one (resp. two) coordinate(s) is
(are) censored or missing. In particular, gray lines extending throughout the plotting
window (green box) indicate a missing coordinate. Data superposition is represented
by increased darkness. The striped rectangle at the origin is the region where all
coordinates are below threshold.

3 Multivariate peaks-over-threshold model
This section provides a short description of the statistical model used for estimating
the joint distribution of excesses above high thresholds. A more exhaustive statis-
tical description is given in the above mentioned paper (Sabourin, 2015). For some
background about statistical modeling of extremes in hydrology and environmental
sciences, the reader may refer e.g. to Katz et al. (2002). Also, Davison and Smith
(1990) focus on the uni-variate case and Coles and Tawn (1991) review the most clas-
sical multivariate extreme value models. One possible strategy to model joint extremes
is to use a parametric model for the joint distribution of POT or block maxima (see
e.g. Cooley et al. (2010); Sabourin et al. (2013) in a POT context, Stephenson (2009)
for block maxima, Salvadori and De Michele (2010) with a different standardization
–uniform margins instead of Pareto margins– leading to representing the dependence
via an extreme value copula). Alternatively, again in a parametric framework, one may
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resort to conditional models for environmental extremes (Heffernan and Tawn, 2004;
Heffernan and Resnick , 2007; Keef et al., 2009). One advantage of such parametric
models is there interpretability; however, using such models require a-priori modeling
choices –and thus modeling errors that are difficult to quantify. Finally, note that
for a larger number of locations, and in the case where spatial interpolation is de-
sirable, max-stable models have become increasingly popular over the past few years
(Padoan et al., 2010; Wadsworth and Tawn, 2012; Reich and Shaby , 2012; Davison
et al., 2013; Huser and Davison, 2014). The price to pay for being able to interpolate
is, again, a pre-defined parametric dependence structure, and the computational cost.
As mentioned in the introduction, the model used here for the dependence structure
of extremes is non-parametric (it is a density kernel estimator), so that very little as-
sumption is made regarding the true distribution of the data, and that the produced
estimate covers a very wide range of situations.

3.1 Marginal model
After declustering, the extracted cluster maxima are assumed to be independent from
each other. Their margins (values of the cluster maxima at each location considered
separately) can be modeled by a Generalized Pareto distribution above threshold, pro-
vided that the latter is chosen high enough (Davison and Smith, 1990; Coles, 2001).
Let Y ∨j,ti be the (possibly unobserved) maximum water discharge at station j, in cluster
i and let Fv

j the marginal cumulative distribution function (c.d.f.) below threshold.
The marginal probability of an excess above threshold is denoted ζj (1 ≤ j ≤ d).
Following common practice (e.g. Coles and Tawn, 1991; Davison and Smith, 1990;
Ledford and Tawn, 1996), ζj is identified with its empirical estimate ζ̂j , which is ob-
tained as the proportion of intra-cluster days (after uni-variate declustering) among
the non-missing days for the considered margin and threshold. For v as above, it yields
ζ ' (0.0021, 0.0022, 0.0022, 0.0020). The estimated standard errors or the estimates
range between 2.3∗10−4 and 3.4∗10−4, that is, between 10% and 15% of the estimated
values. This error amount was deemed moderate enough to be neglected, compared to
the systematic rating curve errors which are discussed in in Section 5.1. The marginal
models are thus

F
(ξj ,σj)
j (y) = P(Y ∨j,ti < y|ξj , σj) , (1 ≤ j ≤ d)

=

1− ζj
(

1 + ξj
y−vj
σj

)−1/ξ
(if y ≥ vj),

(1− ζj)Fv
j (y) (if y < vj).

The marginal parameters are gathered into a 2d-dimensional vector

χ = (log(σ1), . . . , log(σd), ξ1, . . . , ξd) ,

and the uni-variate c.d.f.’s are denoted by Fχj .
In a context of regional frequency analysis, it is a popular practice to assume that

the shape parameter of the marginal GP distributions is identical for all catchments,
i.e. ξ1 = · · · = ξd. This assumption is further discussed in Sections 4 and 5.
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3.2 Dependence structure
In order to apply probabilistic results from multivariate extreme value theory, it is con-
venient to handle Fréchet distributed variables Xj,ti , so that P (Xj,ti < x) = e−

1
x , x >

0. This is achieved by defining a marginal transformation

T χj (y) = −1/ log
(
Fχj (y)

)
,

and letting Xj,ti = T χj (Yj,ti). The dependence structure is then defined between the
Fréchet-transformed data. Then, under mild assumptions regarding the data’s dis-
tribution (namely, that the data Yt = (Y1,t, . . . , Yd,t) are regularly varying, see e.g.
Resnick (1987, 2007); Beirlant et al. (2004); Coles and Tawn (1991)), we may use two
important results from multivariate extreme value theory: in short, the cumulated
intensity of the standardized variable X above high thresholds can be adequatly mod-
eled by a Pareto distribution, furthermore, the repartition of the intensity between the
different stations is independent from the intensity itself. To get into details, it is con-
venient to switch to a pseudo-polar coordinates system: let R =

∑d
j=1Xj denote the

‘radius’ (this is the above mentioned cumulative intensity) and let W = (X1

R , . . . ,
Xd
R )

denote the angular component of the Fréchet re-scaled data (this is the repartition of
the intensity among the stations). In geometrical terms, W is a point on the simplex
Sd:

∑d
j=1Wj = 1, Wj ≥ 0. The main ingredient of multivariate POT models is that

the distribution of the angle given that the radius is large, P(W ∈ · |R > r0), does
converge to a limit distribution, the so-called ‘angular probability distribution’ of ex-
tremes, that we denote by H. Then, for any ‘angular region’ B ⊂ Sd, and large enough
radial threshold r0,

P(W ∈ B |R > r0) ' H(B) (1)

Thus, H is the distribution of the angles corresponding to large radii. Since in addition,
P(R > r0) ∼

r0→∞
d
r0
, the joint behavior of large excesses is entirely determined by H.

As an illustration of this notion of angular distribution, Figure 4 shows two ex-
amples of simulated bi-variate data sets, with two different angular distributions and
same Pareto-distributed radii. The angular probability density h is represented by the
pale red area. In the left panel, h has most of its mass near the end points of the
simplex (which is, in dimension 2, the segment [(1, 0), (0, 1)], represented in blue on
Figure 4) and the extremes are weakly dependent, so that events which are large in
both components are scarce. In the limit case where H is concentrated at the end-
points of the simplex (not shown), the pair is said to be asymptotically independent.
In contrast, the right panel shows a case of strong dependence: h is concentrated near
the middle point of the simplex and extremes occur mostly simultaneously. Contrary
to the limit distribution of uni-variate excesses, H does not have to belong to any
particular parametric family. The only constraint on H is due to the standard form
of the Xj ’s: in the case where H has a density h on the simplex, then it is a valid
angular distribution if and only if∫

Sd

wjh(w) dw =
1

d
(1 ≤ j ≤ d) . (2)
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Figure 4: Two examples of bivariate dependence structures of excesses above a radial
threshold.
Gray points: simulated bivariate data. Pale red area: density of the angular distri-
bution. Blue point: one randomly chosen angle W, corresponding to the observation
X (black point). Diagonal solid line: radial threshold (for the norm ‖x‖ = x1 + x2)
above which data would typically be considered as extremes

In this paper, h is chosen in the Dirichlet mixture model (Boldi and Davison, 2007),
which can approach any valid angular distribution. In short, a Dirichlet distribution
with shape ν ∈ R+ and center of mass µ ∈ Sd has density

diriν,µ(w) =
Γ(ν)∏d

j=1 Γ(νµj)

d∏
j=1

w
νµj−1
j .

The density of a Dirichlet mixture distribution is therefore a weighted average of
Dirichlet densities. A parameter for a k-mixture is thus of the form

ψ =
(
(p1, . . . , pk), (µ · ,1, . . . ,µ · ,k), (ν1, . . . , νk)

)
,

with weights pm > 0,
∑
m pm = 1, which will be denoted by ψ =

(
p1:k,µ · ,1:k, ν1:k

)
.

The corresponding mixture density is

hψ(w) =

k∑
m=1

pmdiriν,µ · ,m(w) .

As for the moment constraint (2), it is satisfied if and only if

k∑
m=1

pmµ · ,m = (1/d, . . . , 1/d) . (3)

In other terms, the center of mass of the µ · ,1:m’s, with weights p1:m, must lie at the
center of the simplex.
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3.3 Estimation using censored data
Data censorship is the main technical issue in this paper. This section exposes the
matter as briefly as possible. For the sake of readability, technical details and full
statistical justification have been gathered in Sabourin (2015).

In order to account for censored data overlapping threshold and censored or missing
components in the likelihood expression, it is convenient to write the model in terms of
a Poisson point process, with intensity determined by h. More precisely, after marginal
standardization, the time series of excesses above large thresholds can be described as
a Poisson point process (PRM),

n∑
t=1

1(t,Xt) ∼ PRM( ds× dλ) on [0, n]×Au ,

where n is the length of the observation period, Au is the ‘extreme’ region on the
Fréchet scale, Au = [0,∞]d \ [0, u1] × · · · × [0, ud], above Fréchet thresholds uj =
T χj (vj) = −1/ log(1− ζj). The notation ds stands for the Lebesgue measure and λ is
the so-called ‘exponent measure’, which is related to the angular distribution’s density
h via

λ( dx) = d.h(w)r−(d+1)
(
r =

d∑
j=1

xj , w = x/r
)
.

This Poisson model has been widely used for statistical modeling of extremes (Coles,
2001; Coles and Tawn, 1991; Joe et al., 1992). The major advantage in our context is
that it allows to take into account the undetermined data (which cannot be ascertained
to be below nor above threshold), as they correspond to events of the kind

N

{
[ti, ti + ni]×

(
[0,∞]d \ [0, T χ1 (R1,ti)]× . . .

. . .× [0, T χd (Rd,ti)]
)}

= 0 ,

where N{ · } is the number of points from the Poisson process in a given region, ti is
the time of occurence of n undetermined cluster and ni is the cluster’s length.

In our context, h is a Dirichlet mixture density: h = hψ. Let θ = (χ, ψ) represent
the parameter for the joint model, and λψ be the Poisson intensity associated with hψ.
The likelihood in the Poisson model, in the absence of censoring, is

Lv ({yt}1≤t≤n, θ) ∝ e−nλψ(Au)
nv∏
i=1

{ dλψ
dx

(xti)× . . .

. . .
∏

j:yj,ti>vj

Jχj (yj,ti)
}
.

(4)

The Jχj ’s are the Jacobian terms accounting for the transformation y→ x.
The likelihood function in presence of such undetermined data and of censored

data above threshold is obtained by integration of (4) in the direction of censorship.
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These integrals do not have a closed form expression. In a Bayesian context, a Markov
Chain Monte-Carlo (MCMC) algorithm is built in order to sample from the posterior
distribution, and the censored likelihood is involved at each iteration. Rather than
using numerical approximations, whose bias may be difficult to assess, one option is
to use a data augmentation framework (see e.g. Tanner and Wong , 1987; Van Dyk
and Meng , 2001). The main idea is to draw the missing coordinates from their full
conditional distribution in a Gibbs-step of the MCMC algorithm. Again, technicalities
are gathered in Sabourin (2015).

4 Results
In this section, the multivariate extreme model with Dirichlet mixture dependence
structure is fitted to the data from the Gardons, including all historical data and
assuming a regional shape parameter. To assess the impact and the potential added
value of taking into account historical data on the one hand, and of a regional analysis
on the other hand, inference is also made without the regional shape assumption and
considering only the systematic measurement period (starting from January, 1892).
Thus, in total, four model fits are performed.

For each of the four experiments, 6 chains of 106 iterations are run in parallel,
which requires a moderate computation time – The execution time ranged from ap-
proximately 3h30′ to 4h30′ for each chain on a standard processor Intel 3.2 GHz.
Using parallel chains allows to check convergence using standard stationarity and mix-
ing tests (Heidelberger and Welch (1983)’s test , Gelman and Rubin (1992)’s variance
ratio test), available in the R statistical software. In the remainder of this section,
all posterior predictive estimates are computed using the last 8 ∗ 105 iterations of the
chain obtaining the best stationarity score.

4.1 Estimations based on the marginal distributions
The regional hypothesis (identical shape parameter across stations) is confirmed (not
rejected) by a likelihood ratio test performed in a preliminary analysis: the p-value of
the χ2 statistic is 0.16. It should be noticed that the latter test was performed under
the simplifying assumption that the stations were independent, which simplifies the
expression for the likelihood –the latter reduces to a product of marginal contributions.
For illustrative purposes, the regional shape hypothesis was retained in the subsequence
analysis. However, it should be considered with care, since it has a significant impact
both on posterior distributions of marginal parameters (Figure 5) and on predicted
return levels (Figure 6). A possible refinement for this model choice procedure is
discussed in Section 5.2. We emphasize that our goal in the present paper is not to
validate the ‘regional shape parameter’ model against the ‘at-site shape parameter’
model, but rather to show that any of these two marginal models may be used in
combination with a dependence structure model as described in Section 3.

Figure 5 shows posterior histograms of the marginal parameters, together with the
prior density. The posterior distributions are much more concentrated than the priors,
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indicating that marginal parameters are identifiable in each model. Also, the shape and
scale panels are almost symmetric: a posterior distribution granting most weight to
comparatively high shape parameters concentrates on comparatively low scales. This
corroborates the fact that frequentist estimates of the shape and the scale parameter
are negatively correlated (Ribereau et al., 2011). In the regional model as well as in
the local one, the posterior variance of each parameter is reduced when taking into
account historical data (except for the scale parameter at Anduze, for the local model).
This confirms the general fact that taking into account more data tends to reduce the
uncertainty of parameter estimates.

Figure 6 shows posterior mean estimates of the return levels at each location,
together with credible intervals based on posterior 0.05 − 0.95 quantiles, in the four
inferential frameworks. The return levels appear to be very sensitive to model choice:
overall, taking into account the whole period increases the estimated return levels. In
terms of mean estimate, the effect of imposing a global shape parameter varies from
one station to another, as expected. For those return levels, the posterior credibility
intervals seem to depend more on the mean return levels than on the choice of a
regional or local framework. This seems at odds with the previous findings of reduced
intervals for marginal parameters. However, one must note that the width of return
level credibility intervals depends not only on that of the parameters, but also on the
value of the mean estimates. In particular, larger estimates on the shape parameter
involve larger uncertainties in terms of return levels.

Considering Figure 5 and Figure 6 together allows assessing the effect of each
information type on parameter and quantile estimates. First, Figure 6 suggests that
all four models yield similar estimates for small to moderate return periods (10-year
order of magnitude), but strongly diverge for high quantiles (100-year and above). The
largest discrepancies occur for St Jean and Mialet catchments between the two local
estimation schemes (recent and full periods). With recent data only, the posterior pdf
of the shape parameter is concentrated on negative values, thus suggesting a light-
tailed distribution (blue hatched histograms in Figure 5). When the full period is
considered, this posterior pdf moves to high positive values, suggesting a heavy-tailed
distribution (blue histograms in Figure 5). The effect on quantiles is very strong, with
the “recent period” quantile curve (blue hatched curves in Figure 6) being much lower
than, and mostly incompatible with, the “full period” quantile curve (blue curves in
Figure 6).

The “true” distribution remaining unknown, it is difficult to provide a definitive
explanation for these differences. However, the estimates based on the recent period
likely lead to underestimating the tail of the distribution, due to an abnormaly low
number of extreme floods. We based this claim on the following two observations:

• The inclusion of regional information favors the “heavy-tailed” assumption, and
we note that as soon as regional and/or historical information is used, the poste-
rior pdfs from the different estimation schemes are compatible with each other.
By contrast, the “local, recent period” estimates, which use neither regional nor
historical information, stand out.

• Several studies in the French Mediterranean area suggest that both precipita-
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Figure 5: Prior and posterior distributions of the shape parameter (upper panel) and
of the logarithm of the scale parameter (lower panel) at the four locations, estimated
with or without historical data, in a regional framework or not.
N.B. the historical period extends from 1604/09/10 to 1891/12/31 ; the recent one
extends from 1892/01/01 to 2010/12/31.
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tion and streamflow extremes follow heavy-tailed distributions (Neppel et al.,
2007; Kochanek et al., 2014; Neppel et al., 2014). In addition, the specific dis-
charges for the “local, recent period” estimates of the 100-year flood are below
5 m3.s−1.km−2, which seems quite small in this region were specific discharges
generally lie in the 5-10 m3.s−1.km−2 range (Neppel et al., 2010).

4.2 Estimations based on the joint distribution
In addition to uni-variate quantities of interest such as marginal parameters or return
level curves, having estimated the dependence structure gives access to multivariate
quantities.

Figure 7 shows the posterior mean estimates of the angular density. Since the four-
variate version of the angular distribution cannot be easily represented, the bivariate
marginal versions of the angular distribution are displayed instead. Here, the unit
simplex (which was the diagonal blue segment in Figure 4) is represented by the hori-
zontal axis, so that h is a probability density function on [0, 1]. As could be expected
in view of Figure 3, extremes are rather strongly dependent. Moreover, the posterior
distribution is overall well concentrated around the mean estimate.

The predictive angular distribution allows estimating conditional or joint probabil-
ities of exceedance of high thresholds. This estimation is of interest for at least two
reasons:

1. This allows checking the dependence model, by comparing model-computed con-
ditional/joint probabilities with the corresponding conditional/joint frequencies;

2. Such conditional/joint probabilities have a practical interest, in particular for
stakeholders managing several catchments. For instance, a flood event simulta-
neously affecting two catchments does not involve the same response strategy
than managing two distinct events affecting a single catchment at a time. The
former case requires computing the joint (or alternatively the conditional) prob-
ability of occurence.

As an example, figure 8 displays, for the six pairs 1 ≤ j < i ≤ 4, the posterior
estimates of the conditional tail distribution functions P (Y ∨i > y|Y ∨j > vj) at location
i, conditioned upon an excess of the threshold vj at another location j. The predictive
tail functions in the DM model concur with the empirical estimates for moderate
values of y. For larger values, the empirical error grows and no empirical estimate
exists outside the observed domain. However, the DM estimates are still defined and
the size of the error region remains comparatively small.

Finally, one commonly used measure of dependence at asymptotically high levels
between pairs of locations is defined by (Coles et al., 1999):

χi,j = lim
x→∞

P (Xi > x,Xj > x)

P (Xj > x)

= lim
x→∞

P (Xi > x |Xj > x ) ,
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Figure 6: Return level plots at each location using four inferential frameworks with
90% posterior quantiles. Dotted lines and hatched areas: data from the recent period
only (from 1892/01/01 to 2010/12/31); Solid lines and shaded area: Full data set
(from 1604/09/10 to 2010/12/31); Red lines and pale red area: Regional analysis,
global shape parameter; Blue lines and pale blue area: local shape parameters. Black
circles (resp. triangles): observed data plotted at the corresponding empirical return
period using the whole (resp. recent) data set.
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Figure 7: Posterior predictive bi-variate angular densities (black lines) with posterior
0.05− 0.95 quantiles (gray areas).
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Figure 8: Conditional tail distributions. Black line and gray area: posterior mean es-
timate and posterior 90% credible intervals (posterior quantiles); red points: empirical
tail function computed at the recorded points above threshold; pale red area: 90%
Gaussian confidence intervals around the empirical estimates.
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where Xi, Xj are the Fréchet-transformed variables at locations i and j. Since Xi

and Xj are identically distributed, χi,j = χj,i. From its definition, χi,j is comprised
between 0 and 1; small values indicate weak dependence at high levels whereas values
close to 1 are characteristic of strong dependence. In the extreme case χ = 0, the
variables are asymptotically independent. In the case of Dirichlet mixtures, χi,j has
an explicit expression (Boldi and Davison, 2007, eq. (9)). Figure 9 shows posterior
box-plots of χ for the six pairs. The strength of the dependence and the amount
of uncertainty varies from one pair to another, but mean estimates are overall large
(greater than 0.4), indicating strong asymptotic dependence.

It is of interest to compare the paiwise dependence measures shown in Figure 7-
Figure 9 with the properties of the catchments. The most dependent pair is Mialet -
St Jean, which is not surprising considering that both catchments are relatively small,
with a similar size, orientation and elevation range (Figure 1). Figure 7 also suggests
peaky angular densities for the pairs St Jean - Anduze and Mialet - Anduze, wich
may be related to the fact that both St Jean and Mialet catchments are nested in
Anduze catchment. Finally, the Ales catchment seems to stand apart, with much
flatter angular densities. This may be due to the fact that its size is intermediate
between St Jean / Mialet and Anduze, and that it is located on a disctinct branch of
the hydrologic network.
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Figure 9: Dependence measure χi,j for the six pairs of locations: posterior box-plots.

In order to verify the consistency of those results with observed data, empirical
quantities P (Xi > x|Xj > x) have been computed and are displayed in Figure 10.
More precisely, it is easy to see that

P (Xi > x|Xj > x) = P (Y ∨i > (Fχi )−1 ◦ Fχj (y)|Y ∨j > y) ,
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where Fχi , F
χ
j are the marginal c.d.f. for location i and j, and the Y ∨j , Y ∨i ’s are the

observed data (cluster maxima). In Figure 10, the conditioning thresholds y are the
observed values of the conditioning variable Y ∨j above the initial threshold vj , of which
the estimated return period (abscissa of the red points) is taken as its mean estimate
using the marginal parameter components of the posterior sample. For each such y,
(Fχi )−1 ◦ Fχj (y) is estimated by its posterior mean value, again computed from the
marginal posterior sample. Then, the conditional probability of an excess by Y ∨i (Y-
axis value of the red points) is computed empirically. In theory, as the return period
increases, the red points should come closer to the horizontal black line, which is
the mean estimate of χ computed in the Dirichlet mixture dependence model, as in
Figure 9. Note that in the Dirichlet model, the limiting value χ is already reached
at finite levels because the conditional probability of an excess on the Fréchet scale,
P (Xi > x|Xj > x), is constant in x. On the contrary, in an asymptoticallly indepen-
dent model, the conditional exceeedance probability would be decreasing towards zero.
Results in Figure 10 are comforting: the mean values of χ obtained from the Dirichet
model are within the error regions of the empirical estimates. The latter are very large,
compared to the posterior quantiles from the Dirichlet mixture, which illustrates the
usefulness of an extreme value model for computing conditional probabilities of an
excess.

This result has implications for computing the return periods of joint excesses of
high thresholds. Consider, for example, the 10 years marginal return levels at two
stations, (q1, q2). If the excesses above these thresholds were assumed to be indepen-
dent, the probability of an excess above both levels within the same year would be
approximately (1/10)2, which yields a return period of 100 years. On the contrary,
accounting for spatial dependence, for example between the two first stations (St Jean
and Mialet), an estimate for the return period for a joint excess (within the same flood
event) is : 10/χ̂1,2 = 10/0.645 = 15.5 years.

5 Discussion
This section lists the limitations of the model used in this paper and discusses directions
for improvement.

5.1 Other uncertainty sources: impact of systematic rating
curve errors

The use of historical data allows extending the period of record and hence the avail-
ability of extreme flood events. However, historical data are also usually much more
uncertain than recent systematic data, for two reasons: (i) the precision of historical
water stages is limited; (ii) the transformation of these stage values into discharge
values is generally based on a rating curve derived using a hydraulic model, which may
induce large systematic errors.

The model used in the present paper ignores systematic errors (ii). This is be-
cause we focused on multivariate aspects through the use of the DM model to describe
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Figure 10: Observed conditional probability of exceedance of equally scaled thresholds.
Red points: empirical estimates of conditional excesses; pale red regions, empirical
standard error; horizontal black line and gray area, posterior mean and 0.05 − 0.95
quantiles of the theoretical value in the DM model.

intersite dependence. However, systematic errors may have a non-negligible impact
on marginal quantile estimates, as discussed by Neppel et al. (2010). Moreover, in a
multivariate context, the impact of systematic errors on the estimation of the depen-
dence structure is unclear at this stage and requires further evaluation. As an example,
concerning the Anduze catchment, the empirical return level curve obtained with the
historical dataset (black dots in Figure 6) has a non convex shape, which does not
correspond to the expected behaviour of heavy tailed distributions. Also, again for
the Anduze catchment, the empirical conditional exceedance probability curves (red
dots in Figure 8, top-center and bottom-left panels) show a flat part, which is quite
unrealistic. This may partly explain why the model fit in Anduze is poorer than for
the other stations. Future work will therefore aim at incorporating an explicit treat-
ment of systematic errors, using models such as those discussed by Reis and Stedinger
(2005) or Neppel et al. (2010).

Another potential source of uncertainty is the estimation of marginal threshold
exceedance probabilities (parameter ζ, see section 3.1). In this work, it has been
decided not to consider the impact of these errors, since their relative magnitude is
moderate enough, which makes us believe that the main source of uncertainty concerns
the rating curves. It would however certainly be feasible to account for those, e.g. by
treating the exceedance probability as an additional parameter to be estimated in the
MCMC scheme. This would bring d additional parameters in the procedure, which
is not unreasonable compared to the large number of parameters for the dependence
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structure.

5.2 Regional shape
As mentioned in Section 14, the variability across the different sites of the posterior
distributions of marginal quantities suggest a more thorough investigation concern-
ing the hypothesis of a common shape parameter. One possible improvement of the
likelihood ratio test procedure adopted here would be to use a complexity penalty
criterion such as the DIC (Deviance Information Criterion) or one of its variants, see
e.g. Spiegelhalter et al. (2014) or Celeux et al. (2006) and the references therein. In-
deed, the latter criterion does not require precise knowledge of the effective number of
parameters, which is a valuable feature in our context, where the number of mixture
components, thus the number of parameters is let free to vary.

5.3 Comparing several models for intersite dependence
The DM model used in this paper to describe intersite dependence is a valid de-
pendence model according to multivariate extreme value theory (MEVT). Many al-
ternative approaches, not necessarily MEVT-compatible, have been proposed in the
hydrological literature on regional estimation methods. Such approaches include sim-
ply ignoring dependence (e.g. Dalrymple, 1960), the concept of ’equivalent number of
sites’ (Reed et al., 1999) or the use of copulas (e.g. Renard , 2011). This raises the
question of the influence of the approach used to describe dependence on the following
estimates:

• Marginal estimates, typically quantile estimates at each site. While the impact of
ignoring dependence altogether has been studied by several authors (Stedinger ,
1983; Hosking and Wallis, 1988; Madsen and Rosbjerg , 1997; Renard and Lang ,
2007), the impact of alternative dependence models is less clear. In particular,
since marginal estimates do not directly use the dependence model, it remains to
be established whether or not different dependence models (e.g. asymptotically
dependent vs. asymptotically independent) yield significantly different results.

• Joint or conditional estimates, as illustrated in Figures 3, 8 and 10 for instance.
The dependence model obviously plays a much more important role in this case.

Such comparison has not been attempted in this paper because the use of censored
historical data makes the application of standard methods like copulas much more
challenging.

5.4 The treatment of dependence in a highly dimensional con-
text

As illustrated in the case study, the DM model is applicable in moderate dimension
(d = 4 in this particular case study, dimensions up to d ' 10 remain realistic). This
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already covers a range of interesting potential applications beyond the multisite con-
text presented here. In particular, the DM model could be applied in the context of
characterizing flood or drought events using several variables (typically, peak-volume-
duration variables, as described by e.g. Favre et al. (2004) and Genest and Favre
(2007) for floods and as reviewed by Mishra and Singh (2011) for droughts).

However, such semi-parametric approach is admittedly not geared toward highly-
dimensional contexts (e.g. spatial rainfall using dozens or hundreds of rain gauges, or
gridded data sets). Practical approaches for highly-dimensional multivariate extremes
have been mostly proposed in the context of block maxima, using the theory of max-
stable processes (De Haan, 1984; Smith, 1990; Schlather , 2002; Westra and Sisson,
2011). Estimation procedures e.g. using composite likelihood methods exist for such
processes (Padoan et al., 2010), along with descriptive tools e.g. to define and estimate
extremal dependence coefficients such as the madogram (Cooley et al., 2006). However,
the development of models adapted to peaks-over-threshold is still an area of active
research in a highly-dimensional spatial context and full modeling (which would e.g
allow simulation of joint excesses) remain elusive. Recent theoretical advances (Ferreira
and de Haan, 2012; Dombry and Ribatet , 2013) give cause to hope for, and expect,
future development of spatial peaks-over-threshold models.

6 Conclusion
This paper illustrates the use of a multivariate peaks-over-threshold model to combine
regional estimation and historical floods. This model is based on a semi-parametric
Dirichlet Mixture to describe intersite dependence, while Generalized Pareto distribu-
tions are used for margins. A data augmentation scheme is used to enable the inclusion
of censored historical flood data. The model is applied to four catchments in Southern
France where historical flood data are available.

The first objective of this case study was to assess the relative impact of regional
and historical information on marginal quantile estimates at each site. The main
results can be summarized as follows:

• Over the four considered versions of the model, the version ignoring historical
floods and performing local estimation yields estimates that may strongly differ
from the other versions. The three other versions (which either use historical
floods or perform regional estimation or both) yield more consistent estimates.
This illustrates the benefit of extending the at-site sample using either historical
or regional information, or both.

• Compared with the most complete version of the model (which enables both
historical floods and regional estimation), the version only implementing regional
estimation (but ignoring historical floods) yields smaller estimates of the shape
parameter, and hence smaller quantiles. This result is likely specific to this
particular data set, for which many large floods have been recorded during the
historical period.

24



• Compared with the most complete version of the model, the version using his-
torical floods but implementing local estimation yields higher quantiles for three
catchments but lower quantiles on the fourth.

• The uncertainty in parameter estimates generally decreases when more infor-
mation (regional, historical or both) is included in the inference. However, this
does not necessarily result in smaller uncertainty in quantile estimates. This is
because this uncertainty does not only depends on the uncertainty in parameter
estimates, but also on the value taken by the parameters. In particular, a precise
but large shape parameter may result in more uncertain quantiles than a more
imprecise but smaller shape parameter.

The second objective was to investigate the nature of asymptotic dependence in
this flood data set, by taking advantage of the existence of extremely high joint ex-
ceedances in the historical data. Results in terms of predictive angular density suggest
the existence of such dependence between every pairs of catchments of asymmetrical
nature: some pairs are more dependent than others at asymptotic levels. In addition,
the Dirichlet Mixture model allows to compute bi-variate conditional probabilities of
large threshold exceedances, which are poorly estimated with empirical methods. The
limiting values of the conditional probabilities, theoretically obtained with increasing
thresholds, are substantially non zero (they range between 0.4 and 0.65), which con-
firms the strength and the asymmetry of pairwise asymptotic dependence for this data
set and induces multivariate return periods much shorter than they would be in the
asymptotically independent case.
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