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Abstract. The estimation of extreme �ood quantiles is challenging due to
the relative scarcity of extreme data compared to typical target return periods.
Several approaches have been developed over the years to face this challenge,
including regional estimation and the use of historical �ood data. This paper in-
vestigates the combination of both approaches using a multivariate peaks-over-
threshold model, that allows estimating altogether the intersite dependence
structure and the marginal distributions at each site. The joint distribution
of extremes at several sites is constructed using a semi-parametric Dirichlet
Mixture model. The existence of partially missing and censored observations
(historical data) is accounted for within a data augmentation scheme. This
model is applied to a case study involving four catchments in Southern France,
for which historical data are available since 1604. The comparison of mar-
ginal estimates from four versions of the model (with or without regionalizing
the shape parameter; using or ignoring historical �oods) highlights signi�cant
di�erences in terms of return level estimates. Moreover, the availability of his-
torical data on several nearby catchments allows investigating the asymptotic
dependence properties of extreme �oods. Catchments display a a signi�cant
amount of asymptotic dependence, calling for adapted multivariate statistical
models.

Multivariate extremes; censored data; semi-parametric Bayesian inference; mix-
ture models; reversible-jump algorithm

1. Introduction

Statistical analysis of extremes of uni-variate hydrological time series is a rela-
tively well chartered problem. Two main representations can be used in the context
of extreme value theory (e.g. Madsen et al., 1997b; Coles, 2001): block maxima
(typically, annual maxima) can be modeled using a Generalized Extreme Value
(GEV) distribution (see e.g. Hosking, 1985), while �ood peaks over a high thresh-
old (POT) are commonly modeled with a Generalized Pareto (GP) distribution
(see e.g. Hosking and Wallis, 1987; Davison and Smith, 1990; Lang et al., 1999).
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One major issue in at-site �ood frequency analysis is related to data scarcity (Nep-
pel et al., 2010): as an illustration, most of the recorded �ood time series in France
are less than 50 years long, whereas �ood return periods of interest are typically
well above 100 years. Moreover, an additional challenge arises if one is interested in
multivariate extremes at several locations. A complete understanding of the joint
behavior of extremes at di�erent locations requires to model their dependence
structure as well. While there exists a multivariate extreme value theory (e.g.
Coles and Tawn, 1991; De Haan and De Ronde, 1998), its practical application is
much more challenging than with standard univariate approaches.

1.1. Regional estimation. In order to address the issue of data scarcity in at-
site �ood frequency analysis, hydrologists have developed methods to jointly use
data from several sites: this is known as Regional Frequency Analysis (RFA) (e.g.
Hosking and Wallis, 1997; Madsen and Rosbjerg, 1997; Madsen et al., 1997a).
The basis of RFA is to assume that some parameters governing the distributions of
extremes remain constant at the regional scale (see e.g. the 'Index Flood' approach
of Dalrymple, 1960). All extreme values recorded at neighboring stations can
hence be used to estimate the regional parameters, which increases the number of
available data.
The joint use of data from several sites induces a technical di�culty: the spatial

dependence between sites has to be modeled. A common assumption has been
to simply ignore spatial dependence by assuming that the observations recorded
simultaneously at di�erent sites are independent, which is often unrealistic (see
Stedinger, 1983; Hosking and Wallis, 1988; Madsen and Rosbjerg, 1997, for ap-
praisals of this assumption). An alternative approach uses elliptical copulas to
describe spatial dependence (Renard and Lang, 2007; Renard, 2011). While this
approach allows moving beyond the spatial independence assumption, it is not
fully satisfying. Indeed, such copula models are not compatible with multivariate
extreme value theory (Resnick, 1987, 2007; Beirlant et al., 2004). This may alter
uncertainty assessments about regional parameters (in particular for shape param-
eters) and, in turn, about extreme quantiles. In this context, using a dependence
model compatible with multivariate extreme value theory is of interest.

1.2. Historical data. Beside regional analysis methods, an alternative way to
reduce uncertainty is to take into account historical �ood records to complement
the systematic stream�ow measurements over the recent period (see e.g. Stedinger
and Cohn, 1986; O'Connel et al., 2002; Parent and Bernier, 2003; Reis and Ste-
dinger, 2005; Naulet et al., 2005; Neppel et al., 2010; Payrastre et al., 2011). This
results in a certain amount of censored and missing data, so that any likelihood-
based inference ought to be conducted using a censored version of the likelihood
function. Also, in a regional POT context, some observations may not be con-
comitantly extreme at each location, so that the marginal GP distribution does
not apply to them. A `censored likelihood' inferential framework for extremes has
been introduced to take into account such observations (Smith, 1994; Ledford and
Tawn, 1996; Smith et al., 1997). The information carried by partially censored data
is likely to be all the more relevant in a multivariate, dependent context, where
information at one well gauged location can be transferred to poorly measured
ones.



1.3. Multivariate modeling. The family of admissible dependence structures
between extreme events is, by nature, too large to be fully described by any para-
metric model (see further discussion in section 3.2). For applied purposes, it is
common to restrict the dependence model to a parametric sub-class, such as, for
example, the Logistic model and its asymmetric and nested extensions (Gumbel,
1960; Coles and Tawn, 1991; Stephenson, 2003, 2009). The main practical ad-
vantage is that the censored versions of the likelihood are readily available, but
parameters are subject to non-linear constraints and structural modeling choices
have to be made a priori, e.g., by allowing only bi-variate or tri-variate dependence
between closest neighbors. An alternative to parametric modeling is to resort to
`semi-parametric' mixture models (some would say `non-parametric' because it can
approach any dependence structure): the distribution function characterizing the
dependence structure is written as a weighted average of an arbitrarily large num-
ber of simple parametric components. This allows keeping the practical advantages
of a parametric representation while providing a more �exible model.

1.4. Objectives: Combining historical data and regional analysis. Our
aim is to combine regional analysis and historical data by modeling altogether
the marginal distributions and the dependence structure of excesses above large
thresholds at neighboring locations with partially censored data. Combined his-
torical/regional approaches have been explored by a few authors (Tasker and Ste-
dinger, 1987, 1989; Jin and Stedinger, 1989; Gaume et al., 2010). This paper builds
on this previous work and extends it to a multivariate POT context, where each
d-variate observation corresponds to concomitant stream�ows recorded at d sites.
This is to be compared with the multivariate annual maxima approach, where each
d-variate observation corresponds to componentwise annual maxima that may have
been recorded during distinct extreme episodes.
In this paper, a multivariate POT model is implemented in order to combine

regional estimation and historical data. This model is used to investigate two sci-
enti�c questions. Firstly, the relative impact of regional and historical information
on marginal quantile estimates at each site is investigated. Secondly, the existence
of historical data describing exceptional �ood events at several nearby catchments
provides an unique opportunity to investigate the nature and the strength of inter-
site dependence at very high levels (which would not be possible using short series
of systematic data only).
Multivariate POT modeling is implemented in a Bayesian, semi-parametric con-

text. The dependence structure is described using a Dirichlet Mixture ( DM )
model. The DM model was �rst introduced by Boldi and Davison (2007), and
its reparametrized version (Sabourin and Naveau, 2013) allows for Bayesian infer-
ence with a varying number of mixture components. A complete description of the
model and of the reversible-jump Markov Chain Monte-Carlo (MCMC ) algorithm
used for inference with non censored data is given in Sabourin and Naveau (2013).
The adaptation of the inferential framework to the case of partially censored and
missing data is fully described from a statistical point of view in a forthcoming
paper (Sabourin, 2014)1 One practical advantage of this mixture model is that no
additional structural modeling choice needs to be made, which allows to cover an
arbitrary wide range of dependence structures. In this work, we aim at modeling

1preprint available online at http://perso.telecom-paristech.fr/�sabourin/



the multivariate distribution of d = 4 locations. However, the methods presented
here are theoretically valid in any dimension, and computationally realistic in mod-
erate dimensions (say d ≤ 10 ).
The remainder of this paper is organized as follows: the dataset under consider-

ation is described in Section 2, and a multivariate declustering scheme is proposed
to handle temporal dependence. Section 3 summarizes the main features of the
multivariate POT model and describes the inferential algorithm. In Section 4, the
model is �tted to the data and results are described. Section 5 discusses the main
limitations of this study and proposes avenues for improvement, while Section 6
summarizes the main �ndings of this study.

2. Hydrological data

2.1. Overview. The dataset under consideration consists of discharge recorded in
the area of the `Gardons', in the south of France. Four catchments (Anduze, 540
km2, Alès, 320 km2, Mialet, 219 km2, and Saint-Jean,154 km2) are considered.
They are located relatively close to each other (see Figure 1). Discharge data (in
m3.s−1) were reconstructed by Neppel et al. (2010) from systematic measurements
(recent period) and historical �oods. Neppel et al. (2010) estimated separately the
marginal uni-variate extreme value distributions for yearly maximum discharges,
taking into account measurement and reconstruction errors arising from the con-
version of water levels into discharge. The earliest record dates back to 1604,
September 10th and the latest was made in 2010, December 31st.
In this work, since we are more interested in the dependence structure between

simultaneous records than between yearly maxima, we model multivariate excesses
over threshold, and the variable of interest becomes (up to declustering) the daily
peak�ow. Of course, most of the N = 14 841 daily peakl�ows are censored (e.g.,
most historical data are only known to be smaller than the yearly maximum for
the considered year). For the sake of simplicity, we do not take into account any
possible measurement errors.

Figure 1. Hydrological map of the area of the Gardons, France
(Neppel et al., 2010)



The geographic proximity of the four considered stations suggests dependence at
high levels. This is visually con�rmed by the pairwise plots in Figure 3, obtained
after declustering (see Section 2).
The marginal data are classi�ed into four di�erent types, numbered from 0 to

3: `0' denotes missing data, `1' indicate an `exact' record. Data of type `2' are
right-censored: the discharge is known to be greater than a given value. Finally,
type `3' data are left- and right-censored: the discharge is known to be comprised
between a lower (possibly 0) and an upper bound. Most data on the historical
period are of type 3. In the sequel, j (1 ≤ j ≤ d) denotes the location index and
t (1 ≤ t ≤ n) is used for the the temporal one. A marginal observation Oj,t is
a 4-uple Oj,t = (κj,t, Yj,t, Lj,t, Rj,t) ∈ {0, 1, 2, 3} × R3, where κ, Y, L and R stand
respectively for the data type, the recorded discharge (or some arbitrary value if
κ 6= 1, which we denote NA), the lower bound (set to 0 if missing), and the upper
bound (set to +∞ if missing).

2.2. Data pre-processing: extracting cluster maxima. Temporal depen-
dence is handled by declustering, i.e. by �tting the model to cluster maxima
instead of the raw daily data. The underlying assumption is that only short term
dependence is present at extreme levels, so that excesses above high thresholds
occur in clusters. Cluster maxima are treated as independent data to which a
model for threshold excesses may be �tted. For an introduction to declustering
techniques, the reader may refer to Coles (2001) (Chap.5). For more details, see
e.g. Leadbetter (1983), or Davison and Smith (1990) for applications when the
quantities of interest are cluster maxima. Also, Ferro and Segers (2003) propose
a method for identifying the optimal cluster size, after estimating the extremal
index. However, this latter approach relies heavily on `inter-arrival times', which
are not easily available in our context of censored data. In this study, we adopt a
simple `run declustering' approach, following Coles and Tawn (1991) or Nadarajah
(2001) : a multivariate declustering threshold v = (v1, . . . vd) is speci�ed (typically,
v = (300, 320, 520, 380) respectively for Saint-Jean, Mialet, Anduze and Alès), as
well as a duration τ representative of the hydrological features of the catchment
(typically τ = 3 days). Following common practice (Coles, 2001), the thresh-
olds are chosen in regions of stability of the maximum likelihood estimates of the
marginal parameters.
In a censored data context, a marginal data Oj,t exceeds vj (resp. is below vj)

if κj,t = 1 and Yj,t > vj (resp. Yj,t < vj), or if κj,t ∈ {2, 3} and Lj,t > vj (resp.
κj,t = 3 and Rj,t < vj). If none of these conditions holds, we say that the data
point has undetermined position with respect to the threshold. This is typically the
case when some censoring intervals intersect the declustering thresholds whereas
no coordinate is above threshold.
A cluster is initiated when at least one marginal observation Oj,t exceeds the

corresponding marginal threshold vj . It ends only when, during at least τ succes-
sive days, all marginal observations are either below their corresponding threshold,
or have undetermined position. Let {ti , 1 ≤ i ≤ nv} be the temporal indices of
cluster starting dates. A cluster maximum C∨ti is the component-wise `maximum'
over a cluster duration [ti, . . . , ti + r]. Its de�nition require special care in the con-

text of censoring: the marginal cluster maximum is C∨j,ti =
(
κ∨j,ti , Y

∨
j,ti
, L∨j,ti , R

∨
j,ti

)
,



with Y ∨j,ti = maxti≤t≤ti+r{Yj,t} and similar de�nitions for L∨j,ti , R
∨
j,ti

. The marginal

type κ∨j,ti is that of the `largest' record over the duration. More precisely, omitting

the temporal index, if Y ∨j > L∨j , then κ
∨
j = 1. Otherwise, if L∨j < R∨j , then κ

∨
j is

set to = 3; otherwise, if L∨j > 0, then κ∨j = 2 ; If none of the above holds, then the

jth cluster coordinate is missing and κ∨j = 0.
Figure 2 shows the uni-variate projections of the multivariate declustering scheme,

at each location. Points and segments below the declustering threshold indicate
situations when the threshold was not exceeded at the considered location but at
another one.
Anticipating Section 3, marginal cluster maxima below threshold are censored in

the statistical analysis, so that their marginal types are always set to 3, with lower
bound at zero and upper bound at the threshold. This approach, fully described
e.g. in Ledford and Tawn (1996), prevents from having to estimate the marginal
distribution below threshold, which does not participate in the dependence struc-
ture of extremes.
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Figure 2. Extracted peaks-over-threshold at the four considered
stations. Violet segments and areas represent data of type 2 and 3
available before declustering. Missing days are shown in red. Grey
segments (resp. black points) are data of type 2 and 3 (resp. 1 )
belonging to an extracted multivariate cluster. The declustering
threshold is represented by the horizontal black line. Vertical Grey
lines are drawn at days which are missing at the considered location
but which belong to a cluster, due to a threshold excess at another
location.

After declustering and censoring below threshold, the data set is made of nv =
125 d-variate cluster maxima {C∨ti , 1 ≤ i ≤ nv}. The empirical mean cluster size
is τ̂ = 1.248, which is to be used as a normalizing constant for the number of
inter-cluster days. Namely, m dependent inter-cluster observations contribute to
the likelihood as m/τ̂ independent ones would do (see e.g. Beirlant et al. (2004),



Chap. 10 or Coles (2001), Chap. 8). As for those inter-cluster observations,
nbel = 7562 data points are below thresholds and only 9 days are completely
missing (no recording at any location). The remaining n′v = 140 674 days are
undetermined, and must be taken into account in the likelihood expression. They
can be classi�ed into 34 homogeneous temporal blocks (i.e. all the days within a
given block contain the same information), typically, between two recorded annual

maxima. The block sizes are n′i(1 ≤ i ≤ 34), so that
∑34

i=1 n
′
i = n′v.

Figure 3 shows bi-variate plots of the extracted cluster maxima together with un-
determined blocks. Exact data are represented by points; One coordinate missing
or censored yields a segment and censoring at both locations results in a rectangle.
The plots show the asymmetrical nature of the problem under study: the quantity
of available data varies from one pair to another (compare, e.g., the number of
points available respectively for the pair Saint-Jean/Mialet and Saint-Jean/Alès).
Joint modeling of excesses thus appears as a way of transferring information from
one location to another. Also, the most extreme observations seem to occur si-
multaneously (by pairs): They are more numerous in the upper right corners than
near the axes, which suggests the use of a dependence structure model for asymp-
totically dependent data such as the Dirichlet mixture (see Section 3.2).
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Figure 3. Bi-variate plots of the 124 simultaneous stream-�ow
records (censored cluster maxima) at the four stations, and of the 34
undetermined data blocks de�ned in section 2.2, over the whole pe-
riod 1604-2010. Points represent exact data, gray lines and squares
respectively represent data for which one (resp. two) coordinate(s)
is (are) censored. Data superposition is represented by increased
darkness. The striped rectangle at the origin is the region where
all coordinates are below threshold.



3. Multivariate peaks-over-threshold model

This section provides a short description of the statistical model used for esti-
mating the joint distribution of excesses above high thresholds. A more exhaustive
statistical description is given in the above mentioned forthcoming paper. For an
overview of statistical modeling of extremes in hydrology, the reader may refer e.g.
to Katz et al. (2002). Also, Davison and Smith (1990) focus on the uni-variate case
and Coles and Tawn (1991) review the most classical multivariate extreme value
models.

3.1. Marginal model. After declustering, the extracted cluster maxima are as-
sumed to be independent from each other. Their margins (values of the cluster
maxima at each location considered separately) can be modeled by a General-
ized Pareto distribution above threshold, provided that the latter is chosen high
enough (Davison and Smith, 1990; Coles, 2001). Let Y ∨j,ti be the (possibly unob-

served) maximum water discharge at station j, in cluster i and let Fv
j the marginal

cumulative distribution function (c.d.f.) below threshold. The marginal probabil-
ity of an excess above threshold is denoted ζj (1 ≤ j ≤ d). Following common
practice (e.g. Coles and Tawn, 1991; Davison and Smith, 1990; Ledford and Tawn,

1996), ζj is identi�ed with its empirical estimate ζ̂j , which is obtained as the
proportion of intra-cluster days (after uni-variate declustering) among the non-
missing days for the considered margin and threshold. For v as above, it yields
ζ ' (0.0021, 0.0022, 0.0022, 0.0020).
The marginal models are thus

F
(ξj ,σj)
j (y) = P(Y ∨j,ti < y|ξj , σj) , (1 ≤ j ≤ d)

=

1− ζj
(

1 + ξj
y−vj
σj

)−1/ξ
(if y ≥ vj),

(1− ζj)Fv
j (y) (if y < vj).

The marginal parameters are gathered into a 2d-dimensional vector

χ = (log(σ1), . . . , log(σd), ξ1, . . . , ξd) ,

and the uni-variate c.d.f.'s are denoted by Fχj .
In a context of regional frequency analysis, it is further assumed that the shape

parameter of the marginal GP distributions is identical for all catchments, i.e.
ξ1 = · · · = ξd.

3.2. Dependence structure. In order to apply probabilistic results from multi-
variate extreme value theory, it is convenient to handle Fréchet distributed variables

Xj,ti , so that P (Xj,ti < x) = e−
1
x , x > 0. This is achieved by de�ning a marginal

transformation

T χj (y) = −1/ log
(
Fχj (y)

)
,

and lettingXj,ti = T χj (Yj,ti). The dependence structure is then de�ned between the
Fréchet-transformed data. One key assumption underlying multivariate extreme
value models is that random vectors Yt = (Y1,t, . . . , Yd,t) are regularly varying (see
e.g. Resnick, 1987, 2007; Beirlant et al., 2004; Coles and Tawn, 1991). Multivariate
regular variation (MRV) can be expressed as a radial homogeneity property of the
distribution of the largest observations: For any region A ⊂ (R+)d bounded away



from 0, if we denote r.A = {x ∈ Rd : 1
rx ∈ A}, then, for large r0's and for r > r0,

MRV and transformations to unit-Fréchet imply that

rP(X ∈ r.A) ∼
r0→∞,r>r0

r0P(X ∈ r0.A) . (1)

Switching to a pseudo-polar coordinates system, let R =
∑d

j=1Xj denote the

radius and W = (X1
R , . . . ,

Xd
R ) denote the angular component of the Fréchet re-

scaled data. In this context, W is a point on the simplex Sd:
∑d

j=1Wj = 1, Wj ≥
0. Then (1) implies that, for any angular region B ⊂ Sd,

P(W ∈ B |R > r0) −→
r0→∞

H(B) (2)

where H is the so-called `angular probability measure', i.e. the distribution of the
angles corresponding to large radii. Since in addition, P(R > r0) ∼

r0→∞
d
r0
, the

joint behavior of large excesses is entirely determined by H.
As an illustration of this notion of angular distribution, Figure 4 shows two

examples of simulated bi-variate data sets, with two di�erent angular distributions
and same Pareto-distributed radii. H's density is represented by the pale red area.
In the left panel, H has most of its mass near the end points of the simplex (which
is, in dimension 2, the segment [(1, 0), (0, 1)], represented in blue on Figure 4)
and the extremes are weakly dependent, so that events which are large in both
components are scarce. In the limit case where H is concentrated at the end-points
of the simplex (not shown), the pair is said to be asymptotically independent. In
contrast, the right panel shows a case of strong dependence: H is concentrated
near the middle point of the simplex and extremes occur mostly simultaneously.
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Figure 4. Two Examples of bivariate dependence structures of
excesses above a radial threshold.
Grey points: simulated bivariate data. Pale red area: density of
the angular distribution. Blue point: one randomly chosen angle
W, corresponding to the observation X (black point).

Contrary to the limit distribution of uni-variate excesses, H does not have to
belong to any particular parametric family. The only constraint on H is due to



the standard form of the Xj 's: H is a valid angular distribution if and only if∫
Sd

wj dH(w) =
1

d
(1 ≤ j ≤ d) . (3)

In this paper, H is chosen in the Dirichlet mixture model (Boldi and Davison,
2007), which can approach any valid angular distribution. In short, a Dirichlet
distribution with shape ν ∈ R+ and center of mass µ ∈ Sd has density

diriν,µ(w) =
Γ(ν)∏d

j=1 Γ(νµj)

d∏
j=1

w
νµj−1
j .

The density of a Dirichlet mixture distribution is therefore a weighted average of
Dirichlet densities. A parameter for a k-mixture is thus of the form

ψ =
(
(p1, . . . , pk), (µ · ,1, . . . ,µ · ,k), (ν1, . . . , νk)

)
,

with weights pm > 0,
∑

m pm = 1, which will be denoted by ψ =
(
p1:k,µ · ,1:k, ν1:k

)
.

The corresponding mixture density is

hψ(w) =

k∑
m=1

pm diriν,µ · ,m(w) .

As for the moment constraint (3), it is satis�ed if and only if

k∑
m=1

pmµ · ,m = (1/d, . . . , 1/d) . (4)

In other terms, the center of mass of the µ · ,1:m's, with weights p1:m, must lie at
the center of the simplex.

3.3. Estimation using censored data. Data censorship is the main technical
issue in this paper. This section exposes the matter as brie�y as possible. For
the sake of readability, technical details and full statistical justi�cation have been
gathered in the above mentioned unpublished paper.
In order to account for censored data overlapping threshold and censored or

missing components in the likelihood expression, it is convenient to write the model
in terms of a Poisson point process, with intensity measure determined by H. More
precisely, after marginal standardization, the time series of excesses above large
thresholds can be described as a Poisson point process (PRM),

n∑
t=1

1(t,Xt) ∼ PRM( ds× dλ) on [0, n]×Au ,

where n is the length of the observation period, Au is the `extreme' region on
the Fréchet scale, Au = [0,∞]d \ [0, u1] × · · · × [0, ud], above Fréchet thresholds
uj = T χj (vj) = −1/ log(1− ζj). The notation ds stands for the Lebesgue measure

on [0, 1] and λ is the so-called `exponent measure', which is related to the angular
distribution's density h via

dλ

dx
(x) = d.h(w)r−(d+1)

(
r =

d∑
j=1

xj , w = x/r
)
.



This Poisson model has been widely used for statistical modeling of extremes
(Coles, 2001; Coles and Tawn, 1991; Joe et al., 1992). The major advantage in our
context is that it allows to take into account the undetermined data (which cannot
be ascertained to be below nor above threshold), as they correspond to events of
the kind

N
{[
t′i, t
′
i + n′i

]
×
(

[0,∞]d \ [0, T χ1 (R1,t′i
)]× . . . [0, T χd (Rd,t′i)]

)}
= 0 ,

where N{ · } is the number of points from the Poisson process in a given region.
In our context, h is a Dirichlet mixture density: h = hψ. Let θ = (χ, ψ) represent

the parameter for the joint model, and λψ be the Poisson intensity associated with
hψ. The likelihood in the Poisson model, in the absence of censoring, is

Lv ({yt}1≤t≤n, θ) ∝ e−nλψ(Au)
nv∏
i=1

{ dλψ
dx

(xti)
∏

j:yj,ti>vj

Jχj (yj,ti)
}
. (5)

The Jχj 's are the Jacobian terms accounting for the transformation y→ x.
The likelihood function in presence of such undetermined data and of censored

data above threshold is obtained by integration of (5) in the direction of censorship.
These integrals do not have a closed form expression. In a Bayesian context, a
Markov Chain Monte-Carlo (MCMC) algorithm is built in order to sample from
the posterior distribution, and the censored likelihood is involved at each iteration.
Rather than using numerical approximations, whose bias may be di�cult to assess,
one option is to use a data augmentation framework (see e.g. Tanner and Wong,
1987; Van Dyk and Meng, 2001). The main idea is to draw the missing coordinates
from their full conditional distribution in a Gibbs-step of the MCMC algorithm.
Again, technicalities are omitted here.

4. Results

In this section, the multivariate extreme model with Dirichlet mixture depen-
dence structure is �tted to the data from the Gardons, including all historical data
and assuming a regional shape parameter. This regional hypothesis is con�rmed
(not rejected) by a likelihood ratio test: the p-value of the χ2 statistic is 0.16. To
assess the added value of taking into account historical data on the one hand, and
of a regional analysis on the other hand, inference is also made without the re-
gional shape assumption and considering only the systematic measurement period
(starting from January, 1892). Thus, in total, four model �ts are performed.
For each of the four experiments, 6 chains of 106 iterations are run in parallel,

which requires a moderate computation time2. Using parallel chains allows to
check convergence using standard stationarity and mixing tests (Heidelberger and
Welch (1983)'s test , Gelman and Rubin (1992)'s variance ratio test), available in
the R statistical software. In the remainder of this section, all posterior predictive
estimates are computed using the last 8 105 iterations of the chain obtaining the
best stationarity score.
Figure 5 shows posterior histograms of the marginal parameters, together with

the prior density. The posterior distributions are much more concentrated than

2The execution time ranged from approximately 3h30′ to 4h30′ for each chain on a standard
processor Intel 3.2 GHz.



the priors, indicating that marginal parameters are identi�able in each model.
Also, the shape and scale panels are almost symmetric: a posterior distribution
granting most weight to comparatively high shape parameters concentrates on
comparatively low scales. This corroborates the fact that frequentist estimates
of the shape and the scale parameter are negatively correlated (Ribereau et al.,
2011). In the regional model as well as in the local one, the posterior variance of
each parameter is reduced when taking into account historical data (except for the
scale parameter at Anduze, for the local model). This con�rms the general fact
that taking into account more data tends to reduce the uncertainty of parameter
estimates.
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Figure 5. Prior and posterior distributions of the shape parameter
(upper panel) and of the logarithm of the scale parameter (lower
panel) at the four locations, estimated with or without historical
data, in a regional framework or not.

Figure 6 shows posterior mean estimates of the return levels at each location,
together with credible intervals based on posterior 0.05 − 0.95 quantiles, in the



four inferential frameworks. The return levels appear to be very sensitive to model
choice: overall, taking into account the whole period increases the estimated return
levels. In terms of mean estimate, the e�ect of imposing a global shape param-
eter varies from one station to another, as expected. For those return levels, the
posterior credibility intervals seem to depend more on the mean return levels than
on the choice of a regional or local framework. This seems at odds with the pre-
vious �ndings of reduced intervals for marginal parameters. However, one must
note that the width of return level credibility intervals depends not only on that
of the parameters, but also on the value of the mean estimates. Larger parameter
estimates involve larger uncertainty in terms of return levels.
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Figure 6. Return level plots at each location using four inferential
frameworks with 90% posterior quantiles. Dotted lines and hatched
areas: data from he recent period only; Solid lines and shaded
area: Full data set; Black lines and Grey area: Regional analysis,
global shape parameter; Red lines and shaded red area: local shape
parameters. Black (resp. Red) points: observed data plotted at
the corresponding empirical return period using the whole (resp.
recent) data set.

In addition to uni-variate quantities of interest such as marginal parameters
or return level curves, having estimated the dependence structure gives access
to multivariate quantities. Figure 7 shows the posterior mean estimates of the
angular density. Since the four-variate version of the angular distribution cannot
be easily represented, the bivariate marginal versions of the angular distribution are
displayed instead. Here, the unit simplex (which was the diagonal blue segment in
Figure 4) is represented by the horizontal axis, so that H is a distribution function
on [0, 1]. As could be expected in view of Figure 3, extremes are rather strongly
dependent. Moreover, the posterior distribution is overall well concentrated around
the mean estimate.
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Figure 7. Posterior predictive bi-variate angular densities (black
lines) with posterior 0.05− 0.95 quantiles (Grey areas).

The predictive angular distribution allows to estimate conditional probabilities
of exceedance of high thresholds. As an example, �gure 8 displays, for the six
pairs 1 ≤ j < i ≤ 4, the posterior estimates of the conditional tail distribution
functions P (Y ∨i > y|Y ∨j > vj) at location i, conditioned upon an excess of the
threshold vj at another location j. The predictive tail functions in the DM model
concur with the empirical estimates for moderate values of y. For larger values,
the empirical error grows and no empirical estimate exists outside the observed
domain. However, the DM estimates are still de�ned and the size of the error
region remains comparatively small.
Finally, one commonly used measure of dependence at asymptotically high levels

between pairs of locations is de�ned by (Coles et al., 1999):

χi,j = lim
x→∞

P (Xi > x,Xj > x)

P (Xj > x)
= lim

x→∞
P (Xi > x |Xj > x) ,

where Xi, Xj are the Fréchet-transformed variables at locations i and j. Since
Xi and Xj are identically distributed, χi,j = χj,i. From its de�nition, χi,j is
comprised between 0 and 1; small values indicate weak dependence at high levels
whereas values close to 1 are characteristic of strong dependence. In the extreme
case χ = 0, the variables are asymptotically independent. In the case of Dirichlet
mixtures, χi,j has an explicit expression formed of incomplete Beta functions (Boldi
and Davison, 2007, eq. (9)). Figure 9 shows posterior box-plots of χ for the
six pairs. The strength of the dependence and the amount of uncertainty varies
from one pair to another, but mean estimates are overall large (greater than 0.4),
indicating strong asymptotic dependence.
In order to verify the consistency of those results with observed data, empirical

quantities P (Xi > x|Xj > x) have been computed and are displayed in Figure 10.
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Figure 8. Conditional tail distributions. Black line and Grey area:
posterior mean estimate and posterior 90% credible intervals (pos-
terior quantiles); red points: empirical tail function computed at
the recorded points above threshold; pale red area: 90% Gaussian
con�dence intervals around the empirical estimates.
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Figure 9. Dependence measure χi,j for the six pairs of locations:
Posterior box-plot.

More precisely, it is easy to see that

P (Xi > x|Xj > x) = P (Y ∨i > (Fχi )−1 ◦ Fχj (y)|Y ∨j > y) ,

where Fχi , F
χ
j are the marginal cdf for location i and j, and the Y ∨j , Y

∨
i 's are the

observed data (cluster maxima). In Figure 10, the conditioning thresholds y are
the observed values of the conditioning variable Y ∨j above the initial threshold vj ,

of which the estimated return period (abscissa of the red points) is taken as its
mean estimate using the marginal parameter components of the posterior sample.



For each such y, (Fχi )−1 ◦ Fχj (y) is estimated by its posterior mean value, again
computed from the marginal posterior sample. Then, the conditional probability of
an excess by Y ∨i (Y-axis value of the red points) is computed empirically. In theory,
as the return period increases, the red points should come closer to the horizontal
black line, which is the mean estimate of χ computed in the Dirichlet mixture
dependence model, as in Figure 9. Note that in the Dirichlet model, the limiting
value χ is already reached at �nite levels because the conditional probability of an
excess on the Fréchet scale, P (Xi > x|Xj > x), is constant in x. On the contrary,
in an asymptoticallly independent model, the conditional exceeedance probability
whould be decreasing towards zero. Results in Figure 10 are comforting: the mean
values of χ obtained from the Dirichet model are within the error regions of the
empirical estimates. The latter are very large, compared to the posterior quantiles
from the Dirichlet mixture, which illustrates the usefulness of an extreme value
model for computing conditional probabilities of an excess.
This result has implications for computing the return periods of joint excesses

of high thresholds. Consider, for example, the 10 years marginal return levels
at two stations, (q1, q2). If the excesses above these threhsolds were assumed to
be independent, taking into account short term temporal dependence (the mean
cluster size is τ = 1.248), the return period for the joint excess (Y ∨1 > q1, Y

∨
2 > q2)

would be 102 ∗ (365/τ) = 29247.8 years. On the contrary, accounting for spatial
dependence, for example between the two �rst stations (St Jean and Mialet), yields
an estimated return period for a joint excess of 10/χ̂1,2 = 10/0.645 = 15.5 years.
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Figure 10. Observed conditional probability of exceedance of
equally scaled thresholds. Red points: empirical estimates of con-
ditional excesses; pale red regions, empirical standard error; hor-
izontal black line and gray area, posterior mean and 0.05 − 0.95
quantiles of the theoretical value in the DM model.



5. Discussion

This section lists the limitations of the model used in this paper and discusses
directions for improvement.

5.1. Impact of systematic rating curve errors. The use of historical data al-
lows extending the period of record and hence the availability of extreme �ood
events. However, historical data are also usually much more uncertain than recent
systematic data, for two reasons: (i) the precision of historical water stages is lim-
ited; (ii) the transformation of these stage values into discharge values is generally
based on a rating curve derived using a hydraulic model, which may induce large
systematic errors.
The model used in the present paper ignores systematic errors (ii). This is

because we focused on multivariate aspects through the use of the DM model
to describe intersite dependence. However, systematic errors may have a non-
negligible impact on marginal quantile estimates, as discussed by Neppel et al.
(2010). Moreover, in a multivariate context, the impact of systematic errors on
the estimation of the dependence structure is unclear at this stage and requires
further evaluation. Future work will therefore aim at incorporating an explicit
treatment of systematic errors, using models such as those discussed by Reis and
Stedinger (2005) or Neppel et al. (2010).

5.2. Comparing several models for intersite dependence. The DM model
used in this paper to describe intersite dependence is a valid dependence model
according to multivariate extreme value theory (MEVT). Many alternative ap-
proaches, not necessarily MEVT-compatible, have been proposed in the hydrolog-
ical literature on regional estimation methods. Such approaches include simply
ignoring dependence (e.g. Dalrymple, 1960), the concept of 'equivalent number of
sites' (Reed et al., 1999) or the use of copulas (e.g. Renard, 2011). This raises
the question of the in�uence of the approach used to describe dependence on the
following estimates:

• Marginal estimates, typically quantile estimates at each site. While the
impact of ignoring dependence altogether has been studied by several au-
thors (Stedinger, 1983; Hosking and Wallis, 1988; Madsen and Rosbjerg,
1997; Renard and Lang, 2007), the impact of alternative dependence mod-
els is less clear. In particular, since marginal estimates do not directly use
the dependence model, it remains to be established whether or not di�er-
ent dependence models (e.g. asymptotically dependent vs. asymptotically
independent) yield signi�cantly di�erent results.
• Joint or conditional estimates, as illustrated in Figures 3, 8 and 10 for
instance. The dependence model obviously plays a much more important
role in this case.

Such comparison has not been attempted in this paper because the use of censored
historical data makes the application of standard methods like copulas much more
challenging.

5.3. The treatment of intersite dependence in a highly dimensional con-
text. As illustrated in the case study, the DM model is applicable in moderate
dimension d=4. However, such semi-parametric approach is not geared toward



highly-dimensional contexts (e.g. spatial rainfall using dozens or hundreds of rain
gauges, or gridded data sets). Practical approaches for highly-dimensional multi-
variate extremes have been mostly proposed in the context of block maxima, using
the theory of max-stable processes (De Haan, 1984; Smith, 1990; Schlather, 2002;
Westra and Sisson, 2011). Estimation procedures e.g. using composite likelihood
methods exist for such processes (Padoan et al., 2010), along with descriptive tools
e.g. to de�ne and estimate extremal dependence coe�cients such as the madogram
(Cooley et al., 2006). However, the development of models adapted to peaks-over-
threshold is still an area of active research in a highly-dimensional spatial context
and full modeling (which would e.g allow simulation of joint excesses) remain
elusive. Recent theoretical advances (Ferreira and de Haan, 2012; Dombry and
Ribatet, 2013) give cause to hope for, and expect, future development of spatial
peaks-over-threshold models.

6. Conclusion

This paper illustrates the use of a multivariate peaks-over-threshold model to
combine regional estimation and historical �oods. This model is based on a semi-
parametric Dirichlet Mixture to describe intersite dependence, while Generalized
Pareto distributions are used for margins. A data augmentation scheme is used to
enable the inclusion of censored historical �ood data. The model is applied to four
catchments in Southern France where historical �ood data are available.
The �rst objective of this case study was to assess the relative impact of regional

and historical information on marginal quantile estimates at each site. The main
results can be summarized as follows:

• Over the four considered versions of the model, the version ignoring his-
torical �oods and performing local estimation yields estimates that may
strongly di�er from the other versions. The three other versions (which
either use historical �oods or perform regional estimation or both) yield
more consistent estimates. This illustrates the bene�t of extending the
at-site sample using either historical or regional information, or both.
• Compared with the most complete version of the model (which enables both
historical �oods and regional estimation), the version only implementing
regional estimation (but ignoring historical �oods) yields smaller estimates
of the shape parameter, and hence smaller quantiles. This result is likely
speci�c to this particular data set, for which many large �oods have been
recorded during the historical period.
• Compared with the most complete version of the model, the version using
historical �oods but implementing local estimation yields higher quantiles
for three catchments but lower quantiles on the fourth.
• The uncertainty in parameter estimates generally decreases when more in-
formation (regional, historical or both) is included in the inference. How-
ever, this does not necessarily result in smaller uncertainty in quantile
estimates. This is because this uncertainty does not only depends on the
uncertainty in parameter estimates, but also on the value taken by the pa-
rameters. In particular, a precise but large shape parameter may result in
more uncertain quantiles than a more imprecise but lower shape parameter.



The second objective was to investigate the nature of asymptotic dependence in
this �ood data set, by taking advantage of the existence of extremely high joint
exceedances in the historical data. Results in terms of predictive angular density
suggest the existence of such dependence between every pairs of catchments of
asymmetrical nature: some pairs are more dependent than others at asymptotic
levels. In addition, the Dirichlet Mixture model allows to compute bi-variate con-
ditional probabilities of large threshold exceedances, which are poorly estimated
with empirical methods. The limiting values of the conditional probabilities, the-
oretically obtained with increasing thresholds, are substantially non zero (they
range between 0.4 and 0.65), which con�rms the strength and the asymmetry of
pairwise asymptotic dependence for this data set and induces multivariate return
periods much shorter than they would be in the asymptotically independent case.
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