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Chapitre 1

Entropies and entropic criteria

1.1. Introduction

This chapter focuses on the notions of entropy and of maximum entropy
distribution which will be characterized according to different perspectives. Beyond
links with applications in engineering and physics, it will be shown that it is possible
to build regularization functionals based on the use of a maximum entropy technique,
which can then possibly be employed as ad hoc potentials in data inversion problems.

The chapter begins with an overview of the key properties of information
measures, and with the introduction of various concepts and definitions. In particular,
the Rényi divergence is defined, the concept of escort distribution is presented, and
the principle of maximum entropy that will be subsequently used will be commented
on. A conventional engineering problem is then presented, the problem of source
coding, and it shows the benefit of using measures with a different length than the
standard measure, and in particular an exponential measure, which leads to a source
coding theorem whose minimum bound is a Rényi entropy. It is also shown that
optimal codes can be easily calculated with escort distributions. In Section 1.4, a
simple state transition model is introduced and examined. This model leads to an
equilibrium distribution defined as a generalized escort distribution, and as a by-
product leads once again to a Rényi entropy. The Fisher information flow along
the curve defined by the generalized escort distribution is examined and connections
with the Jeffreys divergence are achieved. Finally, various arguments are obtained
which, in this framework, lead to an inference method based on the minimization
of the Rényi entropy under a generalized mean constraint, that is to say, taken with
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regard to the escort distribution. From subsection 1.5.3, the main concern is about the
minimization of the Rényi divergence subject to a generalized average constraint. The
optimal density that solves this problem, and the value of the corresponding optimal
divergence are given and characterized. The main properties of any entropy that
may be related are defined and characterized. Finally, it is shown how to practically
calculate these entropies and how it can be envisaged to use them for solving linear
problems.

1.2. Some entropies in information theory

The concept of information plays a major role in a number of scientific and
technical fields and in their applications. Moreover, information theory, “the
Shannon way”, meets the theories of physics, mutually fertilizing each other; these
interactions have been exploited by Jaynes [JAY 57a, JAY 57b] since 1957, are
discussed for example by Brillouin [BRI 62] and more recently in the fascinating work
of [MER 10]. We will further give a simple model of phase transition that yields a
Rényi entropy.

A fundamental question in information theory is of course the measure, or the
definition, of the information. Several approaches are possible. The first is pragmatic
and accepts as measure of valid information the measures that appear by themselves
when solving a practical problem. The second is axiomatic, which starts with a
certain number of reasonable properties or postulates, and then carries on with the
mathematical derivation of the functions that exhibit these properties. This is the
point of view adopted originally by Shannon, in his fundamental article [SHA 48a,
SHA 48b], and that has led to a number of subsequent developments, among which
[ACZ 75] and [ACZ 84] will be cited (where the author warns against the excesses
of generalizations: “I wish to urge here caution with regard to generalizations in
general, and in particular with regard to those introduced through characterizations.
(...) There is a large number of "entropies" and other "information measures" and
their "characterizations", mostly formal generalizations of (1), (19), (16), (24), (17),
(23) etc. popping up almost daily in the literature. It may be reassuring to know that
most are and will in all probability be completely useless.”

Similarly, Rényi himself [CSI 06, RÉN 65] stressed that only quantities that can
actually be used in concrete problems should be considered as information measures,
in agreement with the pragmatic approach (As a matter of fact, if certain quantities
are deduced from some natural postulates (from "first principles") these certainly need
for their final justification the control whether they can be effectively used in solving
concrete problems).
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1.2.1. Main properties and definitions

We will however remind here the main properties used for the caracterizations
of information measures. If P , Q, R refer to discrete probability distributions for n
events, with pk the probability associated to the k-th event k = 1, . . . , n, then noting
H(P ) = H(p1,p2, . . . , pn) the information measure related to distribution events P ,
the main properties are as follows:

– (P1) symmetry: H(p1,p2, . . . , pn) does not depend on the order of the events;
– (P2) H(p,1− p) is a continuous function of p;
– (P3) H(1/2,1/2) = 1;
– (P4) recursion (branching):

Hn+1(p1q1,p1q2,p2, . . . , pn) = Hn(p1,p2, . . . , pn) + p1H2(q1,q2);
– (P5) expansibility: Hn+1(p1,p2, . . . , pn,0) = Hn(p1,p2, . . . , pn);
– (P6) subadditivity: H(PQ) 6 H(P ) +H(Q)

(and additivity in the independent case: H(PQ) = H(P ) +H(Q));
– (P7) conditional subadditivity: H(PQ|R) 6 H(P |R) +H(Q|R);
– (P8) generalized recursion:
Hn+1(p1q1,p1q2,p2, . . . , pn) = Hn(p1,p2, . . . , pn) +m(p1)H2(q1,q2).

Simple consequences

The first four postulates are Faddeev’s axioms [FAD 56], that suffice to uniquely
characterize the Shannon entropy:

H(P ) = −
n∑
i=1

pi ln pi [1.1]

If the recursion postulate is evaluated but an additivity requirement is added,
then the class of possible solutions is much wider, and includes in particular the
Rényi entropy, which will be referred further in the text. The replacement of
the P4 recursion by a general recursion postulate, P8, with m(p1p2) multiplicative
m(p1p2) = m(p1)m(p2) and especially m(p) = pq leads to the entropy of order q:

Hq(P ) =
1

21−q − 1

(
n∑
i=1

pqi − 1

)
[1.2]

which was introduced by [HAV 67], independently by Daróczy [DAR 70], and then
rediscovered in the field of statistical physics by C. Tsallis [TSA 88]. For q > 1,
these entropies are subadditive, but are not additive. In the case of q = 1, by
l’Hôpital’s rule, the entropy of order q = 1 is none other than the Shannon entropy.
In statistical physics, a significant community has formed around the study of non-
extensive thermodynamics (non-additive in fact) [TSA 09] based on the use of the
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Tsallis entropy, on associated maximum entropy distributions and on the extension of
classical thermodynamics.

In Faddeev’s axiomatics, Rényi [RÉN 61] has proposed to replace the recursion
postulate by the additivity property, and add a property of mean entropy, which
specifies that the entropy of the union of two incomplete probability distributions is
equal to the weighted average of the two entropy distributions. When the mean being
used is an arithmetic mean, the only solution is the Shannon entropy. On the other
hand, by using an exponential mean, the entropy that appears is a Rényi entropy:

Hq(P ) =
1

1− q
ln

n∑
i=1

pqi [1.3]

Another way to apprehend the Rényi entropy is to note that the Shannon entropy is
the arithmetic mean, with weights pi, of the basic information Ii = − ln pi associated
to the different events. By replacing the arithmetic mean by a Kolmogorov-Nagumo
average, the entropy becomes:

Hψ(p1, . . . , pn) = ψ−1
(∑

piψ(− ln pi)
)

Under an additional additivity condition and under the condition limp→0Hψ(p,
1 − p) = 0, this entropy is either the Shannon entropy, the Rényi entropy, with q >
0. Again, by l’Hospital’s rule, the Shannon entropy is met once again for q = 1.
Furthermore, for q = 0, the Rényi entropy becomes the Hartley entropy, the logarithm
of the number of events of non-zero probability.

1.2.2. Entropies and divergences in the continuous case

In the continuous case, the definition used for the Shannon entropy associated with
a density f(x) is:

H[f ] = −
∫
f(x) ln f(x) dx [1.4]

However, it should be noted that this expression only results from the transition
to the limit of the discrete case up to an additive constant tending to infinity (see
for example [PAP 81]). Therefore, the concern is rather about differential entropy.
However, Jaynes has lucidly noted that, since [JAY 63, p. 202], it is necessary to
introduce a measure m(x) accounting for “points density” shifting the procedure to
the limit; this measure conferring in addition a coordinate change invariance to the
resulting information, which is not the case of [1.4]. The corresponding differential
entropy then takes the form:

H[f ] = −
∫
f(x) ln

f(x)

m(x)
dx [1.5]



Entropies and entropic criteria 5

This form is similar to a Kullback-Leibler divergence [KUL 59] (or I-divergence
in Csiszár’s terminology) between two probability distributions with densities f(x)
and g(x) relatively to a common measure µ(x), and which is defined by:

D(f ||g) =

∫
f(x) ln

f(x)

g(x)
dµ(x) [1.6]

by assuming g absolutely continuous relatively to f, and with the convention 0 ln 0 =
0.When g is uniform, with respect to µ, the Kullback divergence becomes, in absolute
value, a µ-entropy. In the case where µ is the Lebesgue measure, the differential
Shannon [1.5] entropy appears once again; in the discrete case, if µ is the counting
measure, then [1.1] will appear again. It is easily shown, by application of Jensen’s
inequality that the Kullback divergence is defined as non-negative, D(f ||g) > 0 with
equality if and only if f = g. It can thus be understood as a distance between
distributions, although it is not symmetric and does not check not the triangle
inequality.

In the same way, continuous versions of Rényi and Tsallis entropies can be defined.
For an entropy index q 6= 1:

Sq[f ] =
1

1− q

(∫
f(x)q dµ(x)− 1

)
[1.7]

is the Tsallis entropy and:

Hq[f ] =
1

1− q
ln

∫
f(x)q dµ(x) [1.8]

that of Rényi. These two entropies are tantamount to the Shannon entropy for q = 1.
Divergence can also be associated to them; for example, the Rényi divergence:

Dq(f ||g) =
1

q − 1
ln

∫
f(x)qg(x)1−q dµ(x) [1.9]

which is also defined as non-negative (by Jensen’s inequality), and is reduced to the
Kullback divergence when q → 1.

1.2.3. Maximum entropy

The principle of maximum entropy is widely used in physics, and can rely on a
large number of arguments: counts, axioms, etc. The principle has been particularly
highlighted by Jaynes [JAY 57a] “Information theory provides a constructive criterion
for setting up probability distributions on the basis of partial knowledge, and leads
to a type of statistical inference which is called the maximum entropy estimate. It
is the least biased estimate possible on the given information; i.e., it is maximally
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noncommittal with regard to missing information”, and we will confine ourselves here
to recall its relevance in terms of statistics, by following Ellis [ELL 99] (theorem 2 for
example).

If fN is the empirical distribution corresponding to the collection of N random
variables according to a density distribution g relatively to µ, then the probability Q
of finding fN in a set B is roughly (see Ellis [ELL 99] for more correct formulations),
and for large N :

Q (fN ∈ B) ≈ exp
(
−N inf

P∈B
D(f ||g)

)
[1.10]

It can be thus derived, by iterating reasoning on subsets of B, that the absolutely
predominant distribution in B is the one that achieves the minimum Kullback distance
to g: there is concentration of all the probability on the closest distribution to g. A
minimum distance Kullback principle can thus be derived, or equivalently, if g is
uniform, a principle of maximum entropy. Among all the distributions of a set B, the
density that minimizes D(f ||g) should be selected. When the point of interest is, as
in statistical physics, the probability of finding an empirical mean xN , that is to say,
the mean under fN , in a set C, then a result with large level 1 deviations is obtained,
which indicates that:

Q (xN ∈ C) ≈ exp
(
−N inf

x∈C
F(x)

)
[1.11]

where F(x) is the rate function F(x) = infP :x=E[X]D(P ||µ). This result suggests
thus to select the most probable element, that which achieves the minimum of F(x)
on C. The shift from a problematics of distributions to a problematics of means is
known as the contraction principle.

1.2.4. Escort distributions

We will also use in the remainder of this chapter the notion of escort distribution.
These escort distributions have been introduced as a tool in the context of multifractals
[BEC 93, CHH 89], with interesting connections with standard thermodynamics.
Escort distributions are proving useful in source coding, where they enable optimal
code words to be obtained whose mean length is bounded by a Rényi entropy
[BER 09]. This is what we will present in 1.3.3. We will then find these escort
distributions in the framework of a state transition problem, Section 1.4.

If f(x) is a probability density, then its escort of order q > 0 is:

fq(x) =
f(x)q∫

f(x)q dµ(x)
[1.12]
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provided that the informational generating function Mq[f ] =
∫
f(x)q dµ(x) is finite.

We can easily see that if fq(x) is the escort of f(x), then f(x) is itself the escort
of order 1/q of fq(x). When q decreases, the escort comes closer to a uniform
distribution whereas when q increases, density modes are amplified. This can be
specified: as a matter of fact, it can be shown, in the compact support case that
D(fq||U) > D(f ||U) for q > 1, and that D(fq||U) < D(f ||U) for q < 1, which
means that fq is further away from the uniform than f when q > 1 and closer
otherwise.

The concept of escort distribution can also be expanded in order to take into
account two densities f(x) and g(x) according to:

fq(x) =
f(x)qg(x)1−q∫

f(x)qg(x)1−q dµ(x)
[1.13]

whenMq[f, g] =
∫
f(x)qg(x)1−q dµ(x) <∞. This generalized escort distribution is

simply a weighted geometrical mean of f(x) et g(x). Of course, if g(x) is a uniform
measure whose support includes that of f(x), then the generalized escort is reduced
to the standard escort [1.12]. This generalized escort appears in the analysis of the
effectiveness of hypotheses tests [CHE 52] and allows the best possible exponent to be
defined in the error probability [COV 06, chapitre 11]. When q varies, the generalized
escort describes a curve that connects f(x) and g(x). Finally, we will call generalized
moments the moments taken with respect to an escort distribution: the generalized of
order p associated to the standard escort of order q will be:

mp,q[f ] =

∫
|x|pfq(x) dx =

∫
|x|pf(x)q dµ(x)∫
f(x)q dµ(x)

[1.14]

1.3. Source coding with escort distributions and Rényi bounds

In this section, the advantage of the Rényi entropy and escort distributions is
illustrated within the framework of source coding, one of the fundamental problems
of information theory. After a very brief reminder of the context of source coding,
a source coding theorem is described linking a new measure of mean length and the
Rényi entropy. It is then shown that it is possible to practically calculate the optimal
codes by using the concept of escort distribution. Details about these elements as well
as other results are given in [BER 09].

1.3.1. Source coding

In source coding, considering a set X = {x1, x2, . . . , xN} of symbols generated
by a source with respective probabilities pi where

∑N
i=1 pi = 1. The role of source
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coding is to associate to each symbol xi a code word ci, with length li, expressed
with an alphabet of D elements. It is well known that if the lengths verify Kraft-Mac
Millan inequality:

N∑
i=1

D−li 6 1 [1.15]

then there exists a uniquely decodable code with these elementary lengths. In addition,
any uniquely decodable code satisfies Kraft-Mac Millan inequality [1.15]. Shannon’s
source coding theorem indicates that the mean length L̄ of word codes is bounded
from below by the source entropy, H1(p), and that the best uniquely decodable code
satisfies:

H1(p) 6 L̄ =
∑
i

pili < H1(p) + 1 [1.16]

where the logarithm used in the Shannon entropy is calculated in base D, and noted
logD. This result indicates that the Shannon entropy H1(p) is a fundamental limit to
the minimal mean length for any code built for the source. The lengths of the optimal
word codes are given by:

li = − logD pi [1.17]

The characteristic of these optimal codes is that they assign the shortest words to
the most probable symbols and the longest words to the rarest symbols.

1.3.2. Source coding with Campbell measure

It is well known that the Huffman algorithm provides a prefix code that minimizes
the mean length and approaches the optimal length limits li = − logD pi. However
other forms of length measurement have also been considered. In particular the first,
that of Campbell [CAM 65], is fundamental. It has been seen, by relation [1.17], that
the lowest probabilities lead to longer word codes. However, the cost of using a code
is not necessarily a linear function of its length, and it is possible that the addition of
a letter to a long word is much more expensive than the addition of the same letter
to a short word. This led Campbell to propose a new measure of mean length, by
introducing an exponential penalty of the lengths of the word codes. This length, the
Campbell length, is a generalized Kolmogorov-Nagumo average associated with an
exponential function:

Cβ =
1

β
logD

N∑
i=1

piD
βli [1.18]

with β > 0. The remarkable result of Campbell is that, in the same way as the Shannon
entropy places a lower bound on the average length of the word codes, the Rényi
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entropy of order q, with q = 1/(β + 1), is the lower bound of the mean Campbell
length [1.18]:

Cβ > Hq(p) [1.19]

A simple demonstration of the result is given in [BER 09]. It is easy to see that
equality is obtained for:

li = − logD Pi = − logD

(
pqi∑N
j=1 p

q
j

)
[1.20]

Clearly, the lengths li obtained in this way can be made smaller than the optimal
Shannon’s lengths, by choosing a quite small parameter q, which then tends to
standardize the distribution, then actually enhancing the the lowest probabilities.
Thus, the procedure effectively penalizes the longest word codes and provides
word codes of different lengths than Shannon’s, with eventually shorter word codes
associated with the low probabilities.

1.3.3. Source coding with escort mean

For the usual mean length measure L̄ =
∑
i pili, there is a linear combination of

the elementary length, weighted by probabilities pi. In order to increase the impact
of the most important lengths associated with low probabilities, the Campbell length
uses an exponential of the elementary lengths. Another idea is to modify the weights
in the linear combination, such that to increase the importance of the words with low
probabilities. A simple way to achieve this is to standardize the initial probability
distribution, and to use the weights achieved by this new distribution rather than pi.
Naturally, this leads to use a mean taken with an escort distribution:

Mq =

N∑
i=1

pqi∑
j p

q
j

li =

N∑
i=1

Pili [1.21]
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In the case of the imaginary source that would have a distribution P the standard
statistics mean isMq , and Shannon’s classical source coding theorem can immediately
be applied:

Mq > H1(P ) [1.22]

with equality if:

li = − logD Pi [1.23]

or exactly the lengths [1.20] obtained for Campbell’s measure. The simple relation
li = − logD Pi obtained for the minimization of Mq under the constraint supplied
by Kraft-Mac Millan’s inequality has an immediate but important application. As
a matter of fact, it simply suffices to provide the escort distribution P rather than
the initial distribution p to an standard encoding algorithm, for example a Huffman
algorithm, to obtain an optimized code for the Campbell length Cβ , or in a similar
manner, for the measurement of length Mq . Table 1.1 gives a simple example with
D = 2 : we have used a standard Huffman algorithm, with the initial distribution, then
its escorts of order q = 0.7 and q = 0.4.

pi q = 1 q = 0,7 q = 0,4

0,48 0 0 00
0,3 10 10 01
0,1 110 1100 100
0,05 1110 1101 101
0,05 11110 1110 110
0,01 111110 11110 1110
0,01 111111 11111 1111

Tableau 1.1. Example of binary codes, for different values of q

It is important to note that specific algorithms have been developed for the mean
Campbell length. The above connection provides an easy and immediate alternative.
Another important point is that these codes have practical applications: they are
optimal for the minimization of the probability of buffer overflowing [HUM 81] or,
with q > 1, for maximizing the probability of receiving a message in single send of
limited size.

1.4. A simple transition model

In the previous section, we have seen emerging, and appreciated the significance
of the Rényi entropy and escort distributions for a source coding problem. In this
section, we will show that these two quantities are also involved in an equilibrium,
or a transition model framework, between two states. It has actually been noted
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that extended thermodynamics, associated to the Tsallis and Rényi entropies, seems
particularly relevant in the case of deviations from the conventional Boltzmann-
Gibbs equilibrium. This suggests then to amend the conventional formulation of the
conventional approach of maximum entropy (or of the the minimum of divergence)
and to imagine an equilibrium characterized by two (and no longer a single)
distributions: rather than selecting the nearest distribution of a reference distribution
under a mean constraint, an intermediary distribution pq(x) is desired, in a sense that
needs clarification, between two references p0(x) et p1(x). This construction, as well
as some of its consequences, are also described in [BER 12].

1.4.1. The model

Considering two density states with probabilities p0(x) and p1(x) at point x of
the phase space, and searching for an intermediate state according to the following
scenario. The initial state system p0, subject to a generalized force, is moved and held
at a distance η = D(p||p0) of p0. On the other hand, the system is attracted towards a
final state p1.As a result, the new intermediate state pq is chosen such that it minimizes
its divergence from the attractor p1 while being maintained at a distance η of p0. As
illustrated in figure 1.1, the intermediate probability density is “aligned” with p0 and
p1 and at the intersection with the set D(p||p0) = η, a circle of radius η centered
on p0. More specifically, by taking densities relatively to the Lebesgue measure, the
problem can be formulated as follows: minp D(p||p1)

under D(p||p0) = η
and

∫
p(x) dx = 1

[1.24]

The solution is given by the following proposition.

PROPOSITION 1.1.– If q is a real positive that D(pq||p0) = η and if Mq(p1,p0) =∫
p1(x)qp0(x)1−q dx <∞, then, the solution of the problem [1.24] is given by:

pq(x) =
p1(x)qp0(x)1−q∫
p1(x)qp0(x)1−q dx

[1.25]

REMARQUE.– When p0 is uniform and with compact support, the standard escort
distribution [1.12] is met once again. If media is not compact and uniform distribution
improper, it is possible to simply change the formulation by taking as a constraint a
fixed entropy H(p) = −η, and then the escort distribution is obtained.
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η

D(p||p1)

D(p||p0)
p0

p1

pq

p

(a) Cas η < D(p1||p0)

η
D(p||p1)

D(p||p0)
p0

p1

pq

p

(b) Cas η > D(p1||p0)

Figure 1.1. Equilibrium between the states p0 and p1: the search for the equilibrium
distribution is carried out in all of the distributions within a difference fixed at p0, D(p||p0) =
η, and at a minimal Kullback distance of p1. The resulting equilibrium distribution pq , the
generalized escort distribution is “aligned” with p0 and p1, and at the intersection of the set
D(p||p0) = η.

Let us evaluate the divergence D(p||pq). For all densities p such that constraint
D(p||p0) = η is satisfied, it yields:

D(p||pq) =

∫
p(x) ln

p(x)

pq(x)
dx =

∫
p(x) ln

p(x)qp(x)1−q

p1(x)qp0(x)1−q dx+ lnMq(p1,p0)

= q

∫
p(x) ln

p(x)

p1(x)
dx+ (1− q)

∫
p(x) ln

p(x)

p0(x)
dx+ lnMq(p1,p0)

= q D(p||p1) + (1− q)η + lnMq(p1,p0) [1.26]

By taking p = pq, the last equality becomes:

D(pq||pq) = q D(pq||p1) + (1− q)η + lnMq(p1,p0) [1.27]

Finally by subtracting [1.26] and [1.27], it gives:

D(p||pq)−D(pq||pq) = q (D(p||p1)−D(pq||p1)) [1.28]

Since q > 0 and D(p||pq) > 0 with equality if and only if p = pq, it finally yields
D(p||p1) > D(pq||p1) which proves the proposition 1.1.

When η varies, the function q(η) is increasing, with stillD(pq||p0) = η. For η = 0
it gives q = 0 and for η = D(p1||p0) it gives q = 1. Therefore, when q varies, pq
defines a curve that links p0 (q = 0) to p1 (q =1), and beyond for q > 1, see figure 1.1.
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REMARQUE.– It is interesting to also note that results have shown that work dissipated
during a transition can be expressed as a Kullback-Leibler divergence [PAR 09]. In
this context, with a Halmitonian pair following the impulse, the constraintD(p||pk) =
η, k = 0 where 1, can be interpreted as a bound on the average work dissipated during
the transition from p to pk.

1.4.2. The Rényi divergence as a consequence

Finally, it is interesting to note that the Rényi divergence appears as a byproduct
of our construction. As a matter of fact, as a direct consequence of [1.27] and of the
definition of the Rényi divergence [1.9], the minimum Kullback information can be
expressed as:

D(pq||p1) =

(
1− 1

q

)
(η −Dq(p1||p0)) [1.29]

By taking a uniform measure for p0, the Rényi entropy is revealed.

D(pq||p1) =

(
1− 1

q

)
(η +Hq [p1]) [1.30]

The Kullback-Leibler divergence is not symmetrical. Since the beginning,
Kullback and Leibler have introduced a symmetrical version, returning again to the
Jeffreys divergence. In our case, this Jeffreys divergence is a simple affine function of
the Rényi divergence:

J(p1,pq) = D(p1||pq) +D(pq||p1) =
(q − 1)2

q
(Dq(p1||p0)− η) [1.31]

This equality is a simple consequence of the relation [1.26], with p = p1, and the
relation [1.27]. It can be noted, as a significant consequence, that the minimization
of the Jeffreys divergence between p1 and pq under certain constraints, is therefore
equivalent to the minimization of the Rényi divergence with the same constraints.

1.4.3. Fisher information for the parameter q

The generalized escort distribution pq defined a curve indexed by q linking
distributions p0 and p1 for q = 0 and q = 1. It is interesting to evaluate the attached
information to the parameter q of the generalized distribution. This Fisher information
is given by:

I(q) =

∫
1

pq(x)

(
dpq(x)

dq

)2

dx =

∫
dpq(x)

dq
ln
p1(x)

p0(x)
dx [1.32]
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where the right term is obtained using the relation:

dpq(x)

dq
= pq(x)

(
ln
p1(x)

p0(x)
− d lnMq

dq

)
[1.33]

and the fact that: ∫
dpq(x)

dq
dx =

d

dq

∫
pq(x) dx = 0

by Leibniz’s rule. It can also be shown that this Fisher information is equal to the
variance, with respect to the distribution pq, of the likelihood ratio.

Finally, it is possible to identify the integral of the Fisher information along the
curve, the “energy” of the curve, at the Jeffreys divergence. More specifically, the
following proposal is given.

PROPOSITION 1.2.– The integral of the Fisher information, from q = r to q = s is
proportional to the Jeffreys divergence between pr and ps:

(s− r)
∫ s

r

I(q) dq = J(ps,pr) = D(ps||pr) +D(pr||ps) [1.34]

With r = 0 et s = 1, it therefore yields that:∫ 1

0

I(q) dq = J(p1,p0) = D(p1||p0) +D(p0||p1) [1.35]

To demonstrate [1.34], it is sufficient to integrate [1.32]:∫ s

r

I(q) dq =

∫ s

r

∫
dpq(x)

dq
ln
p1(x)

p0(x)
dx dq

=

∫
(ps(x)− pr(x)) ln

p1(x)

p0(x)
dx

Taking into account the fact that ln ps/pr = (s− r) ln p1/p0, we then get [1.34].

Finally, if θi, i = 1..M is a set of intensive variables depending on q, then
d ln p
dq =

∑M
i=1

∂ ln p
∂θi

dθi
dq and the Fisher information q can be expressed according to

the Fisher information matrix of θ. In these conditions, and for the generalized escort
distribution, the result is that the “thermodynamic divergence” for the transition is
none other than the Jeffreys divergence [1.35]:

J =

∫ 1

0

I(q) dq =

M∑
i=1

M∑
j=1

∫ 1

0

dθi
dq

[I(θ)]i,j
dθ

dq
dq = D(p1||p0)+D(p0||p1)

[1.36]
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1.4.4. Distribution inference with generalized moment constraint

Assuming now that the p1 distribution is imperfectly known, but that additional
information is available under the form of a mean value, achieved with distribution pq.
This mean is the generalized mean [1.14], which is used in non-extensive statistical
physics; It has here the clear interpretation of a mean obtained from the equilibrium
distribution pq. The problem that arises now is then the determination of the most
general distribution compatible with this constraint.

The idea of minimizing the divergence to p1 can be retained as in the problem
[1.24] which has led us to the equilibrium distribution with generalized escort. Since
the Kullback divergence is directed, the direction will be retained by minimizing
D(pq||p1) for q < 1 and D(p1||pq) for q > 1. In both cases, the divergence is
expressed as an affine function of the Rényi divergence Dq(p1||p0), see [1.29], and
these minimizations are finally equivalent to the minimization of the Rényi divergence
under the generalized mean constraint.

Similarly, the concern could be about the minimization of the symmetric Jeffreys
divergence between pq and p1. However, we have noted in [1.31] that this is also
expressed as a simple affine function of the Rényi divergence: Its minimization is
therefore equivalent to the minimization of the Rényi divergence under a generalized
mean constraint.

Finally, the Jeffreys divergence J(p1,pq) is proportional to the thermodynamic
divergence, the integral of the Fisher information, as shown in [1.34], for q > 1 as
well as for q < 1. Therefore, the minimization of the thermodynamic divergence
between pq and p1 is also equivalent to the minimization of the Rényi divergence.

These different arguments very legitimately lead us to search for distribution p1

as the distribution minimizing the Rényi divergence of index q, under the generalized
mean constraint.
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1.5. Minimization of the Rényi divergence and associated entropies

In previous paragraphs we have described a framework enabling the Rényi
information, the escort distributions and generalized moments to appear naturally. In
addition, we in have derived an inference distribution method: the minimization of the
Rényi information, with information available in the form of generalized moments.
In this section, we will first give the expression for the density that minimizes the
Rényi divergence, then we will describe some properties of the associated partition
functions. Finally, we will show how new entropic functionals can be derived of
which a few examples will be given. Some of these results, but also some extensions
can be referred to in [BER 08].

1.5.1. Minimisation under generalized moment constraint

We will first consider a generalized moment of any order [1.14], whose expression
is mentioned below:

mp,q[f ] =

∫
|x|pfq(x) dµ(x) =

∫
|x|pf(x)qg(x)1−q dµ(x)∫
f(x)qg(x)1−q dµ(x)

[1.37]

The problem is then considered:

Fq(m) =

 minf Dq(f ||g)
under m = mp,q[f ]

and
∫
f(x) dµ(x) = 1

[1.38]

The minimum obtained is of course a function of m, that will be noted Fq(m).
It is a contracted version of the Rényi divergence, which defines an “entropy” in the
space of possible meansm. In [BER 11], we have considered a more general problem,
in which the indices of the generalized moment and of the Rényi divergence are not
identical. In any case, the result here obtained is as follows.

PROPOSITION 1.3.– The density Gγ which achieves the minimum in the
problem [1.38] is given by:

Gγ(x) =
1

Zν(γ,x̄p)
(1− (1− q)γ (|x|p − x̄p))ν+ g(x) [1.39]

or equivalently by:

Gγ̄(x) =
1

Zν(γ̄)
(1− (1− q)γ̄|x|p)ν+ g(x) [1.40]

with ν = 1/(1 − q), x̄p an eventual translation parameter, γ and γ̄ selected scaling
parameters chosen such that the generalized constraint moment is satisfied, and finally
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where (x)+ = max(0,x). Quantities Zν(γ,x̄p) and Zν(γ̄) are partition functions
that allow the standardization of the density. For q = 1, density Gγ(x) becomes an
exponential density:

Gγ(x) =
1

Zν(γ)
exp (−γ (|x|p − x̄p)) g(x) [1.41]

with respect to g(x).

In the case p = 2, a Gaussian density is thus found once again. Density Gγ is
sometimes called “generalized Gaussian”. It should noted once more that γ and γ̄ are
determined by the relation:

γ̄ =
γ

1 + γ
ν x̄p

[1.42]

In the case of expression [1.40], the demonstration is here proposed. The approach
is rather similar in the case of density [1.39].

As in [BER 11], let A(γ̄) = 1/Z(γ̄). It immediately yields:∫
fqG1−q

γ̄ dµ(x) = A(γ̄)1−qMq[f, g]×
∫

(1− (1− q)γ̄|x|p)
+

fqg1−q

Mq[f, g]
dµ(x)

> A(γ̄)1−q (1− (1− q)γ̄ mp,q[f ])Mq[f, g] [1.43]

with Mq[f, g] =
∫
fag1−q dµ(x), where mp,q[f ] refers to the generalized, and

where the inequality results from the fact that the support (1− (1− q)γ̄|x|p)+can
be included in that of fqg1−q. From [1.43] it directly gives, with f = Gγ̄ :

M1[Gγ̄ ] = 1 = A(γ̄)1−q (1− (1− q)γ̄ mq,p[Gγ̄ ])Mq[Gγ̄ , g] [1.44]

Thus, for all distributions f of generalizedmp,q[f ] = m and for γ̄ such thatGγ̄ has
the same moment mp,q[Gγ̄ ] = m, then the combination of [1.43] and [1.44] results
in: ∫

fqG1−q
γ̄ dµ >

Mq[f, g]

Mq[Gγ̄ , g]

Finally the Rényi divergence of order q can thus be expressed as:

Dq(f ||Gγ̄) = ln

(∫
fqG1−q

γ̄ dµ(x)

) 1
q−1

[1.45]

6 ln

(
Mq[f, g]

Mq[Gγ̄ , g]

) 1
q−1

= Dq(f ||g)−Dq(Gγ̄ ||g) [1.46]
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By the non-negativity of the divergence, it thus ensues that:

Dq(f ||g) > Dq(Gγ̄ ||g) [1.47]

for all distributions f of generalized mp,q[f ] = mp,q[Gγ̄ ] = m, and with equality if
and only if f = Gγ̄ .

1.5.2. A few properties of the partition functions

Some important properties of partition functions Zν(γ,x̄p) associated to the
optimal density Gγ are given here (see [BER 08]). These properties will be essential
for the characterization of entropic functionals Fq(x). Eν refers to the statistic mean
taken relatively to the optimum density distribution [1.39], with ν = 1/(1 − q). It is
also important to realize, from now on, that the escort density of order q of [1.39] is
none other than this same density Gγ but with an exponent ν − 1, such that:

mp,q[Gγ̄ ] = Eν−1[X] [1.48]

The successive partition functions are linked by:

Zν(γ,xp) = Eν−1

[
1− γ

ν
(|x|p − xp))

]
Zν−1(γ,x) [1.49]

As a direct result, it can be seen that Zν(γ,xp) = Zν−1(γ,xp) if and only if
xp = Eν−1 [|X|p] .

Using Leibniz’s rule, the derivative with respect to γ can be obtained and is given
by:

d

dγ
Zν(γ,xp) =

(
−Eν−1 [|X|p − xp] + γ

dxp
dγ

)
Zν−1(γ,xp) [1.50]

under the condition that xp is really differentiable with respect to γ. Similarly:

d

dxp
Zν(γ,xp) =

(
− dγ

dx̄p
Eν−1 [|X|p − xp] + γ

)
Zν−1(γ,xp) [1.51]

Thus, if xp = Eν−1 [|X|p] , then taking into account the equality of the partition
functions of rank ν and ν − 1, it gives:

d

dγ
lnZν(γ,xp) = γ

dxp
dγ

[1.52]

or even:

d

dxp
lnZν(γ,xp) = γ [1.53]
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On the other hand, when xp is an independent parameter of γ, say xp = m, then:

d2Zν(γ,m)

dγ2
=
ν − 1

ν
Eν−2

[
(X −m)2

]
Zν−2(γ,m) [1.54]

and similarly:

d2Zν(γ,m)

dm2
=
ν − 1

ν
γ2Eν−2

[
(X −m)2

]
Zν−2(γ,m) [1.55]

which, considering the fact that (ν − 1)/ν = q > 0, the fact that partition functions
are strictly positive, shows that if xp = m and γ are independent, then the partition
Zν(γ,m) is convex in its two variables.

Finally, the solution of the problem [1.38] can be expressed, that is Fq(m), from
the partition function. By direct calculation, it actually yields:

Dq(Gγ ||g) =
1

q − 1
lnZqν(γ,x̄p)−

q

q − 1
lnZν(γ,x̄p) [1.56]

which is simply reduced to:

Fq(m) = Dq(Gγ ||g) = − lnZν(γ,m) = − lnZν−1(γ,m) [1.57]

for the value of γ such that the constraint is satisfied, or mp,q[Gγ̄ ] = Eν−1[X] =
x̄p = m.

1.5.3. Entropic functionals derived from the Rényi divergence

Thus, the solution of the minimization problem of the Renyi divergence of order
q viewed as a function of constraint, defines an “entropic functional”. Different
functionals will be associated with the several specifications of the reference density
g(x), as well as with the various values of the index q. We will see that the functions
in question present interesting properties. Therefore, a set of functions is potentially
available that can be eventually used as objective functions or regularization terms.

The main characterization of Fq(m) is as follows.

PROPOSITION 1.4.– The entropy Fq(m), defined by [1.38], is non-negative, with
a single minimum mg , the average of g, and Fq(mg) = 0. The entropy is a
pseudoconvex function for q ∈ [0,1) and strictly convex for q > 1.

The Rényi divergence Dq(f ||g) is always non-negative, and zero only for f = g.
Since functionals Fq(m) are defined as the minimum of the divergence Dq(f ||g),
they are always non-negative. Based on [1.53], it gives d

dx lnZν(γ,x) = γ. Thus,
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functionals Fq(x) are only presenting a single singular point in γ = 0. For this
value of γ, it yields Gγ=0 = g, and Dq(g||g) = 0. Under these conditions, Fq(x)
has a unique minimum for x = mg , the mean of g, and Fq(mg) = 0. Therefore, it
follows that Fq(x) is unimodal and does not present any points of inflection with a
horizontal tangent; this is sufficient to claim that Fq(x) is pseudo-convex, as referred
to by Mangasarian [MAN 87]. Let us now examine the convexity for q > 1. If fq
is the generalized escort distribution given by [1.13], then the equality Dq(f ||g) =
D1/q(fq||g) holds. Subsequently, searching for the distribution f that achieves the
minimum of Dq(f ||g) with a generalized mean constraint, that is to say, taken with
respect to fq, is equivalent to searching the distribution fq that minimizesD1/q(fq||g),
under a standard moment constraint. In these circumstances, given p1 and p2 the
two densities that minimize D1/q(fq||g) under constraints x1 = Efq [X] and x2 =
Efq [X]. Then, Fq(x1) = D1/q(p||g), and Fq(x2) = D1/q(p2||g). In the same
way, given Fq(µx1 + (1 − µ)x2) = D1/q(P̂ ||Q), where P̂ is the optimal escort
distribution of mean µx1 + (1−µ)x2. Distributions P̂ and µp1 + (1−µ)p2 then have
the same mean. Thus, when D1/q(fq||g) is a strictly convex function fq, that is to
say for q > 1 it follows that D1/q(P̂ ||g) < µD1/q(p1||g) + (1 − µ)D1/q(p2||g), or
Fq(µx1 + (1 − µ)x2) < µFq(x1) + (1 − µ)Fq(x2) and entropy Fq(x) is a strictly
convex function.

Even provided with this interesting characterization, a practical significant
problem still remains: how to analytically or numerically determine the entropies
Fq(x) for a reference density g and a given index entropy q. The problem amounts to
determine the parameter γ such that the optimal generalized mean density [1.39] has
a specified value m. A simple manner of proceeding consist in recalling the fact that
if x̄p is a fixed parameter m, independent of γ, then the derivative relation [1.50] is
reduced to:

d

dγ
Zν(γ,m) = (m− Eν−1 [|X|p])Zν−1(γ,m) [1.58]

Therefore, it can be seen that it suffices to search for the extrema of the partition
function Zν(γ,m) to obtain a γ such that m = Eν−1 [|X|p] . Since we have seen
that Zν(γ,m), with fixed m, is strictly convex, then this extremum is unique and is
a minimum. Finally, the value of the entropy is simply given by [1.57]: Fq(m) =
− lnZν(γ,m).

The search for the expression of Fq(m) therefore requires to compute the partition
function then to solve d

dγZν(γ,m) = 0 with respect to γ. With the exception of a
few special cases, this resolution does not seem analytically possible, and entropy
Fq(m) is given implicitly. In the particular case where g is a Bernoulli measure, it
is possible to obtain an analytic expression for Fq(m), this for any q > 0. For other
reference densities g, it is possible to obtain analytic expressions when q → 1. These
points are detailed in [BER 08], where in addition different densities of reference g are
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studied, and corresponding entropies numerically evaluated according to the scheme
previously mentioned. As an example, the numerical results obtained in the case
where p = 1 and a uniform density in the interval [0,1] are given in Fig. 1.2. For
q > 1, a family of convex functions is correctly obtained over (0,1), minimum for the
mean of g, or 0.5, as we have indicated above. For q < 1, a family of non-negative,
unimodal functions, also minimal in x = mg = 0.5 is obtained.
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Figure 1.2. Entropy Fq(x) for a uniform reference,
respectively for q > 1 and q ∈]0,1[

1.5.4. Entropic criteria

Based on the previous figures, it is apparent that the minimization of Fq(x) under
certain constraints automatically provides a solution in the interval (0,1). In addition,
the parameter q can be used to adjust the curvature of the function or the penalty on
the boundaries of the domain. It is thus interesting to use these entropies when the
purpose is to solve inverse problems. More specifically, an entropy criterion can be
used such as Fq(x) as objective function. The whole of this section will be restricted
to the case p = 1. When considering a linear inverse problem y = Ax, with xk the
components of x, then this can be formulated as:{

minx
∑
k Fq(xk)

under y = Ax
[1.59]

This then corresponds to select among possible solutions the solution whose
components are of minimum entropy. It should be noted that it is assumed here,
implicitly, that the criterion was separable into its components. In reality, if we define
Fq(x) as the Rényi divergence under the generalized mean constraint, then, even when
assuming that components are independent, it yields a density on x similar to [1.39],
which is not separable. In order to obtain a separable criterion, which is both more
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consistent with intuition and easier to use, we amend the formulation by searching the
density product that achieves the minimum of the Rényi divergence under generalized
mean constraint, which leads effectively to the separable criterion. Thus, the previous
problem [1.59] can also be read as: minx

 minf Dq(f ||g)
under f =

∏
k fk

and x = Efq [X]
under y = Ax

[1.60]

where Efq [X] refers to the generalized mean, that is to say, taken with respect to the
escort distribution of order q. The point of concern here is therefore a “maximum
entropy” problem which consists in selecting a solution x, seen as the generalized
mean of a minimum Rényi divergence distribution with a reference density g.
Entropies

∑
k Fq(xk) being pseudo-convex, it is known that minimization under

linear constraints leads to a single minimum (see for example [CAM 08, theorem
4.4.1]). Now let us examine how it is possible to obtain a solution of [1.59], even
in the case where the entropies have no explicit expression. The solution corresponds
to a stationary point of the Lagrangian L(λ,x) associated to the problem [1.59], and
the objective is therefore to solve:

min
x

max
λ

L(λ,x) = min
x

max
λ

∑
k

Fq(xk) + λt (y −Ax) [1.61]

= min
x

max
λ

∑
k

Fq(xk)− ckxk + λty [1.62]

with ck =
[
λtA

]
k
. Using the fact that:

Fq(xk) = − lnZν(γ∗,xk) = − inf
γ

lnZν(γ,xk)

as we have seen in Subsection 1.5.3, it thus gives:

min
x

max
λ

L(λ,x) = min
x

max
λ

∑
k

− lnZν(γ∗,xk)− ckxk + λty [1.63]

= max
λ
λty −

∑
k

max
xk

(lnZν(γ∗,xk) + ckxk) [1.64]

However, by the relation [1.53], it follows:

d

dxk
(lnZν(γ∗,xk) + ckxk) = γ∗ + ck [1.65]

which yields γ∗ = −ck, and xk is the associated generalized mean. Finally, the
concern is therefore about solving:

max
λ
λty −

∑
k

(lnZν(−ck,xk) + ckxk) [1.66]
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where, for any ck, the corresponding generalized mean xk can be calculated as the
unique solution of the problem:

xk = arg min
x

(lnZν(−ck,x) + ckx)

It is thus possible to solve the problem [1.59] which provides a unique “maximum
Rényi entropy” solution to the inverse linear problem y = Ax, problem where various
constraints can be included, including support, through the reference density g, and
where the form of the criteria can be adjusted by means of the index entropy q.

In the case where data y would be imperfect, it is possible to minimize the entropy
criterion under a constraint provided by a statistic (for example, residual χ2) rather
than with an exact constraint. It is also possible to use the entropy criterion with a
data-fidelity term.

In the case where q = 1, the Rényi divergence is reduced to the Kullback
divergence, the generalized moments to the usual moments, and the optimal
density to an exponential density [1.41] with respect to g. Under these
conditions, the log-partition function is written lnZ∞(−ck,xk) = −ckxk +
ln
∫

exp (ckxk) g(xk) dµ(xk), the problem [1.66] becomes:

max
λ
λty −

∑
k

ln

∫
exp (ckxk) g(xk) dµ(xk)

and the optimal solution is given by the derivative of the log-partition function with
respect to ck. This latter approach has been developed in works supervised by Guy
Demoment [LEB 99].
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