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Paris-Est, France
(E-mail: jf.bercher@esiee.fr)

Abstract We begin with two possible extensions of Stam’s inequality and of de
Bruijn’s identity. In both cases, a generalized q-Gaussian plays the same role as the
standard Gaussian in the classical case. These generalized q-Gaussians are important
in several areas of physics and mathematics. A generalized Fisher information also
pops up, playing the same role as the classical Fisher information, but for the extended
identity and inequality.

In the estimation theory context, we give several extensions of the Cramér-Rao
inequality in the multivariate case, with matrix versions as well as versions for general
norms. We define new forms of Fisher information, that reduce to the classical one
in special cases.

In the case of a translation parameter, the general Cramér-Rao inequalities lead to
an inequality for distributions, which involves the same generalized Fisher information
as in the generalized de Bruijn’s identity and Stam’s inequality. This Cramér-Rao
inequality is saturated by generalized q-Gaussian distributions. This shows that the
generalized q-Gaussians also minimize the generalized Fisher information among dis-
tributions with a fixed moment. Similarly, the generalized q-Gaussians also minimize
the generalized Fisher information among distributions with a given q-entropy.
Keywords: Cramér-Rao inequality, Fisher information, generalized q-entropy, gen-
eralized Gaussians, de Bruijn identity.

1 Introduction

Classical information theoretic inequalities, as described for instance in [12,14],
interrelate information measures. These inequalities have proved to be useful
for communication theoretic problems and engineering applications. They are
also connected to uncertainty relations in physics, and to functional inequalities
in mathematics. Thus new, or refinements of existing information theoretic
inequalities, could be fruitful in several fields. Even before recalling the exact
expressions of all the involved information measures, we find useful to first
briefly describe their main interrelations.

The Shannon-Fisher-Gauss setting – The Gaussian distribution is well known
to play a central role with respect to classical information measures and in-
equalities. More precisely, in a particular setting, that we will call the Shannon-
Fisher-Gauss setting, these three quantities are interrelated in many ways. For
instance, the Gaussian distribution maximizes the entropy over all distribu-
tions with the same variance; see [14, Lemma 5]. This can be stated as a



moment-entropy inequality [22]:

m2[f ]
1

2

N [f ]
≥ m2[G]

1

2

N [G]
, (1)

where m2[f ] is the second order moment, N [f ] is the entropy power, defined
by N [f ] := 1

2πe exp
(

2
n
H1[f ]

)

, where H1[f ] is the Shannon entropy of f , and G
denotes the standard Gaussian. Similarly, the Cramér-Rao inequality, see e.g.
[14, Theorem 20], shows that the minimum of the Fisher information among all
distributions with a given variance is attained for the Gaussian distribution:

I2,1[f ]m2[f ] ≥ I2,1[G]m2[G] = n. (2)

Stam’s inequality [26] shows that the minimum of the Fisher information over
all distributions with a given entropy also occurs for the Gaussian distribution:

I2,1[f ]N [f ] ≥ I2,1[G]N [G] (3)

while de Bruijn’s identity states that Fisher information is related to the deriva-
tive of the entropy, with respect to the variance of an additive Gaussian per-
turbation: if Xt = X +

√
2tN , and N ∼ G then

d

dt
H [ft] = I2,1[ft]. (4)

In these expressions, the involved Fisher information is the Fisher information
associated to a location parameter model. We will give the general definition
and further results in what follows.

Clearly, it is both important and attracting to ask whether some similar
inequalities, involving generalized information measures exist. A natural option
is to consider the Rényi entropy, or the Tsallis entropy, which depend on a
real parameter q, instead of the Shannon entropy. Then the answer to the
question is positive: a series of information theoretic inequalities does exist
which leads to a q-entropy-q-Fisher-q-Gaussian setting. This setting involves
not only generalized q-entropies, but also a generalized Gaussian distribution
and a suitable extension of Fisher information. It is one of the objectives of this
paper to give extensions of inequalities (1)-(4), thus defining the q-entropy-q-
Fisher-q-Gaussian setting as an extension of the Shannon-Fisher-Gauss triplet.
Let us first recall some definitions, notations, and introduce the generalized
q-Gaussian distribution.

Regarding q-entropies and generalized q-Gaussian distribution – Let f(x) be a
probability distribution defined on X⊆ R

n. For q ≥ 0,

Mq[f ] =

ˆ

X

f(x)qdx (5)

is the information generating function. With this notation,

Sq[f ] =
1

1− q
(Mq[f ]− 1) (6)



is the Tsallis entropy, and

Hq[f ] =
1

1− q
logMq[f ] (7)

the Rényi entropy. Both entropies reduce to the standard Shannon entropy
H1[f ] = −

´

X
f(x) log f(x)dx for q = 1. We will also note by Nq[f ] the q-

entropy power. It is defined as an exponential of the Rényi entropy Hq[f ]
as

Nq[f ] =Mq[f ]
2

n
1

1−q = exp

(

2

n
Hq[f ]

)

=

(
ˆ

Ω

f(x)qdx

)
2

n
1

1−q

, (8)

for q 6= 1. For q = 1, we set N [f ] = N1[f ] = exp
(

2
n
H1[f ]

)

.
It is well-known that the maximum of the Rényi-Tsallis entropy, among all

distributions with a fixed moment mα = Eg [‖X‖α] , is obtained for a general-
ized q-Gaussian distribution with parameter γ

Gγ(x) ∝
{

(1− (q − 1) γ‖x‖α)
1

q−1

+ for q 6= 1

exp (−γ‖x‖α) for q = 1.
(9)

which is a generalized (or stretched) Gaussian for q = 1, and a standard Gaus-
sian for q = 1, α = 2. This extends the classical result that the standard
Gaussian maximizes Shannon entropy subject to a second order moment con-
straint. Note that γ−

1

α is simply a scale parameter which allows in particular
to fix the moment of order α. For instance, in the case of a standard Euclidean
norm, γ = ((1 + α/n)q − 1)mα. For q > 1, the generalized q-Gaussian dis-
tributions exhibit heavy tails, while they have compact support when q ≤ 1.
The generalized q-Gaussians are used in nonextensive statistical physics, where
they present significant agreement with experimental data. They also appear in
problems involving non-linear diffusion equations (as we will see in the sequel)
and as extremal functions of Sobolev, log-Sobolev or Gagliardo–Nirenberg in-
equalities. The fact that these distributions maximize the q-entropies can be
seen as a consequence of a moment-entropy inequality

mα[f ]
1

2

Nq[f ]
≥ mα[G]

1

2

Nq[G]
(10)

similar to (1), and where the lower bound is attained if f is any generalized
q-Gaussian Gγ as in (9). This general inequality is due to Lutwak, Yang and
Zhang [22]. In (10), we dropped the index γ of the generalized q-Gaussian Gγ

to reflect the fact that the lower bound is scale invariant, i.e. does not depend
on γ.

On Fisher information – The Fisher information I2,1[f ] involved in the Shannon-
Fisher-Gauss setting (1)-(4) is a measure of information attached to the dis-
tribution f. This Fisher information is used in inference and understanding in
physics [16]. It is also used as a tool for characterizing complex signals or sys-
tems, with applications, e.g. [30], [24], [13]. Actually, the Fisher information



has been originally introduced in the wider context of estimation theory. It
measures the information about a parameter θ in a distribution, corresponds
to the Hessian of the log-likelihood and defines, by the Cramér-Rao inequality,
a fundamental lower bound on the variance of any estimator. let f(x; θ) be a
probability density function defined over a subset X of Rn, θ ∈ Θ ⊂ R, h(θ)
a scalar valued function and η(θ) = E[T (X)]. Then, under some regularity
conditions:

E
[

|T (X)− h(θ)|2
]

I2,1[f ; θ] ≥
∣

∣

∣

∣

∂

∂θ
η(θ)

∣

∣

∣

∣

2

, (11)

with

I2,1[f, θ] =

ˆ

X

(

∂ ln f(x; θ)

∂θ

)2

f(x; θ)dx, (12)

and with equality iff ∂
∂θ

ln f(x; θ) = k(θ) (T (x)− h(θ)) . The indexes in the
notation I2,1[f, θ] are for possible extensions of the definition. The first index
corresponds to the quadratic case. Indeed, the definition, here given as the
second order moment of the derivative of the log-likelihood – the score function,
can be extended to other moments, leading to a generalized version of the
Cramér-Rao inequality. This extension, which does not seem to be well known,
can be traced back to Barankin [3, Corollary 5.1] and Vajda [27]. The second
index will correspond to an extension associated with q-entropies. In the case
of a translation family, i.e. f(x; θ) = f(x − θ), that is if the parameter θ is
a location parameter, the Fisher information, expressed at θ = 0, becomes a
characteristic of information in the distribution

I2,1[f, θ = 0] =

ˆ

X

(

d ln f(x)

dx

)2

f(x)dx.

In this case, the Cramér-Rao inequality leads to inequality (2) for the moments
of the distribution, where the equality is achieved by the Gaussian distribution.

A part of this paper will be devoted to extensions of the Cramér-Rao in-
equality for the estimation of a multivariate parameter, in particular with vari-
ations on the way of averaging the estimation error, and on ways for handling
the multivariate case. These new Cramér-Rao inequalities may prove useful in
their own right. A second objective of this paper is to show that the classical
Shannon-Fisher-Gauss setting can be extended to generalized q-entropies, to
the generalized q-gaussian distribution, and a to suitable generalized Fisher
information, that has an estimation theoretic foundation. These ideas have
grown in a series of papers [4], [6], [5], [7]. Of course, some of these results
will be reviewed here. However, many proofs are revisited and the paper also
provides several new results, in particular the matrix versions of the multi-
variate Cramér-Rao inequality and further results on the generalized Fisher
information.

The rest of this paper is organized as follows. In section 2, we give two
possible extensions of Stam’s inequality (3) and of de Bruijn’s identity (4) to the
q-setting. In both cases, the generalized q-Gaussian (9) plays a key role; namely
as a limit case or as the distribution which saturates the inequality. In these two
relations, a generalized Fisher information also pops up, playing the same role



as the classical Fisher information, but for the extended identity and inequality.
In section 3, we turn to the extension of the Cramér-Rao inequality. We first
describe the setting where we consider a moment of any order of the estimation
error, computed with respect to an arbitrary distribution. In section 3.1, we
obtain a matrix version of the Cramér-Rao inequality, in the multivariate case,
where the Fisher information matrix is defined implicitly as a function of a
generalized score function. Special cases are examined. In section 3.2 we also
give other extensions of the Cramér-Rao inequality for general norms of the
estimation error. In the special case of a translation parameter and using the
notion of escort distributions, these generalized Cramér-Rao inequalities lead
to an extension of the Cramér-Rao inequality (2), saturated by generalized q-
Gaussian distributions. Finally, in section 4, we discuss the main contributions
and describe several directions for future work.

2 Extensions of de Bruijn’s identity and of Stam’s

inequality

As mentioned above, a fundamental connection between the Shannon entropy,
Fisher information, and the Gaussian distribution is given by the de Bruijn
identity [26]. We show here that this important connection can be extended to
the q-entropies, a suitable generalized Fisher information and the generalized
q-Gaussian distributions.

The de Bruijn identity states that if Yt = X +
√
2tZ where Z is a standard

Gaussian vector and X a random vector of Rn, independent of Z, then

d

dt
H [fYt

] = I2,1[fYt
] = φ2,1[fYt

], (13)

where fYt
denotes the density of Yt = X +

√
2tZ, and I2,1[fYt

], φ2,1[fYt
] both

denote the classical Fisher information (the meaning of which will be made clear
in the following). Although the de Bruijn identity holds in a wider context, its
classical proof uses the fact that if Z is a standard Gaussian vector, then Yt
satisfies the well-known heat equation ∂f

∂t
= ∆f, where ∆ denotes the Laplace

operator.

Nonlinear versions of the heat equation are of interest in a large number of
physical situations, including fluid mechanics, nonlinear heat transfer or diffu-
sion. Other applications have been reported in mathematical biology, lubrifica-
tion, boundary layer theory, etc; see the series of applications presented in [28,
chapters 2 and 21] and references therein. The porous medium equation and
the fast diffusion equation correspond to the differential equation ∂f

∂t
= ∆fm,

with m > 1 for the porous medium equation and < 1 for the fast diffusion.
These two equations have been exhaustively studied and characterized by J. L.
Vazquez, e.g. in [28,29].

These equations are included as particular cases into the doubly nonlinear
equation, which involves a p-Laplacian operator ∆pf := div

(

|∇f |p−2 ∇f
)

,
and the power m of the porous medium or fast diffusion equation. This doubly



nonlinear equation takes the form

∂

∂t
f = ∆βf

m = div
(

|∇fm|β−2∇fm
)

, (14)

where we use p = β for convenience and coherence with notation in the present
paper. The β-Laplacian typically appears in the minimization of a Dirichlet
energy such as

´

|∇f |βdx which leads to the Euler-Lagrange equation. As we
can see, the doubly nonlinear equation includes the standard heat equation
(β = 2, m = 1), the β-Laplace equation (β 6= 2, m = 1), the porous medium
equation (β = 2, m > 1) and the fast diffusion equation (β = 2, m < 1). It
can be shown, see [29, page 192], that for m(β− 1)+ (β/n)− 1 > 0, (14) has a
unique self-similar solution, called a Barenblatt profile B(), whose initial value
is the Dirac mass at the origin. This fundamental solution is usually given as
a function of m. Here, if we set q = m+ 1− α/β, the solution can be written
as a q-Gaussian distribution:

f(x, t) =
1

t
n
δ

B

(

x

t
1

δ

)

, with B(x) =







(C − k|x|α)
1

q−1

+ for q 6= 1
1
σ
exp

(

− |β−1|
βα |x|α

)

for q = 1
(15)

with δ = n(β − 1)m + β − n > 0, k = m(β−1)−1
β

(

1
δ

)
1

β−1 and α = β
β−1 .

The constants C and σ are uniquely determined by mass conservation, e.g.
´

f(x, t)dx = 1. Of course, we observe that the function B(x) above is analo-
gous to the generalized q-Gaussian (9).

As mentioned above, the doubly nonlinear diffusion equation allows to de-
rive a nice extension of the de Bruijn identity (13), and leads to a possible
definition of a generalized Fisher information. This is stated in the next Propo-
sition. The case β = 2 has been proved in [17].

Proposition 1. [Extended de Bruijn identity, [7]] Let f(x, t) be a probability
distributions defined on a subset X of Rn and satisfying the doubly nonlinear
equation (14). Assume that X is independent of t, that f(x, t) is differentiable
with respect to t, continuously differentiable over X, and that ∂

∂t
f(x, t)q is ab-

solutely integrable and locally integrable with respect to t. Then, for β > 1,
α and β Hölder conjugates of each other, q = m + 1 − α

β
, Mq[f ] =

´

f q and

Sq[f ] =
1

1−q
(Mq[f ]− 1) the Tsallis entropy, we have

d

dt
Sq[f ] = q mβ−1φβ,q[f ] =

(

m

q

)β−1

Mq[f ]
β Iβ,q[f ] (16)

with







φβ,q[f ] =
´

X
f(x)β(q−1)+1

(

|∇f(x)|
f(x)

)β

dx

and Iβ,q[f ] =
1

Mq [f ]β
φβ,q[f ].

(17)

In (17), φβ,q[f ] and Iβ,q[f ] are two possible generalization of Fisher informa-
tion. Of course, the standard Fisher information is recovered in the particular
case α = β = 2, and q = m = 1, and so de Bruijn’s identity (13). The proof
of this result relies on integration by part (actually using the Green identity)



along the solutions of the nonlinear heat equation (14). See [7] for a proof
not repeated here. A variant of the result for β = 2, which considers a free-
energy instead of the entropy above, is well-known in certain commities, see
e.g. [15,10]. Even more, by carefully using calculations in [15], one can check
that d

dt
φ2,q[f ] ≤ 0 for q > 1 − 1

n
, which means the Tsallis entropy is a mono-

tone increasing concave function along the solutions of (14). In their recent
work [25], Savaré and Toscani have shown that in the case β = 2, m = q,
the entropy power, up to a certain exponent, is a concave function of t, thus
generalizing the well-known concavity of the (Shannon) entropy power to the
case of q-entropies. This allows one to obtain as a by-product a generalized
version of the Stam inequality, valid for the solutions of (14).

Actually, this extension of Stam’s inequality, which links the generalized
Fisher information to the q-entropy power (8), holds in a broader context.

Proposition 2. [Generalized Stam inequality, cf [7])] Let n ≥ 1, β and α be
Hölder conjugates of each other, α > 1, and q > max {(n− 1)/n, n/(n+ α)}.
Then for any continuously differentiable probability density on R

n, the following
generalized Stam inequality holds

Iβ,q [f ]
1

β Nq[f ]
1

2 ≥ Iβ,q [G]
1

β Nq[G]
1

2 . (18)

with equality if and only if f is a generalized q-Gaussian (9).

The generalized Stam’s inequality implies that the generalized q-Gaussians
minimize the generalized Fisher information within the set of probability dis-
tributions with a fixed q-entropy power; or alternatively minimize the entropy
power among the distributions with a given (β, q)-Fisher information. A re-
lated, but different, Generalized Stam inequality has been given by Lutwak et
al [22]. Their proof involves optimal transportation of probability measures.
The proof below is quite different.

Proof. We sketch the proof in the case q < 1. The inequality follows from a
sharp Gagliardo-Nirenberg inequality valid for n > 1, due to Cordero et al [11]:

‖∇u‖β‖u‖
1

θ
−1

a(β−1)+1 ≥ K‖u‖
1

θ

aβ

with a > 1 and ‖∇u‖β =
(

´

‖∇u‖β∗dx
)

1

β

, and where K is a sharp constant

attained if and only if u is a generalized Gaussian with exponent 1/(1−a), and
θ = n(a − 1)/a(nβ − (aβ + 1 − a)(n − β)). The idea is to take u = gt, for g
a probability density function, with aβt = 1, and to set q = [a(β − 1) + 1] t.
With these notations, we get that βt = β(q − 1) + 1, and a = 1/βt > 1
implies that q < 1. Rearranging the exponents, (18) follows. Similarly, the case
q > 1 follows from the sharp Gagliardo-Nirenberg inequality with a < 1. In the
case n = 1, the inequality follows similarly from a sharp Gagliardo-Nirenberg
inequality on the real line [1] [23].



3 Extended Cramér-Rao inequalities

Let f(x; θ) be a probability distribution, with x ∈ X ⊆ R
n and θ ∈ R

k. We
will first deal here with the estimation of a scalar function h(θ) of θ, with
T (x) the corresponding estimator. We extend here the classical Cramér-Rao
inequality in two directions: firstly, we give results for a general moment of
the estimation error instead of the second order moment, and secondly we
introduce the possibility of computing the moment of this error with respect
to a distribution g(x; θ) instead of f(x; θ). In estimation theory, the error is
T (X)− h(θ), and the bias can be evaluated as

ˆ

X

(T (x)− h(θ)) f(x; θ)dx = Ef [T (X)− h(θ)] = η(θ) − h(θ),

while a general moment of of the error can be computed with respect to another
probability distribution g(x; θ), as in

Eg

[

|T (X)− h(θ)|β
]

=

ˆ

X

|T (x)− h(θ)|β g(x; θ)dx.

The two distributions f(x; θ) and g(x, θ) can be chosen arbitrarily. However,
one can also build g(x; θ) as a transformation of f(x; θ) that highlights, or on the
contrary scores out, some characteristics of f(x; θ). For instance, g(x; θ) can be
a weighted version of f(x; θ), i.e. g(x; θ) = h(x; θ)f(x; θ), or a quantized version
g(x; θ) = [f(x; θ)] , where [.] denotes the integer part. Another important case
appears when g(x; θ) is defined as the escort distribution of order q of f(x; θ):

f(x; θ) =
g(x; θ)q
´

g(x; θ)qdx
and g(x; θ) =

f(x; θ)q̄
´

f(x; θ)q̄dx
, (19)

where q is a positive parameter, q̄ = 1/q, provided of course that all involved
integrals are finite. These escort distributions are an essential ingredient in
the nonextensive thermostatistics context. When f(x; θ) and g(x; θ) are a pair
of escort distributions we will recover the generalized Fisher information (17)
obtained in the extended de Bruijn identity.

3.1 Multivariate generalized Cramér-Rao inequality – matrix

version

Previous results on generalized Fisher information can be found in [6,5] in
the case of the direct estimation of the parameter θ. We propose here a new
derivation, introducing in particular a notion of generalized Fisher information
matrix, in the case of the estimation of a function of the parameters. Let us
first state the result.

Proposition 3. Let f(x; θ) be a multivariate probability density function de-
fined for x ∈ X⊆ R

n, with parameter θ ∈ Θ ⊆ R
k. Let g(x; θ) denote another

probability density function also defined on (X ;Θ). Assume that f(x; θ) is a
jointly measurable function of x and θ, is integrable with respect to x, absolutely



continuous with respect to θ. Suppose that the derivatives with respect to each
component of θ are locally integrable. Let T (x) be an estimator of a scalar val-
ued function h(θ) : Θ → R and set η(θ) = Ef [T (X)]. Then, for any estimator
T (x) of h(θ), we have

Eg [|T (X)− h(θ)|α]
1

α ≥ sup
A>0

η̇(θ)TA η̇(θ)

Eg

[

|η̇(θ)TAψg(X ; θ)|β
]

1

β

. (20)

Equality in (20) holds if and only if

T (x)− h(θ) = c(θ)sign(η̇(θ)TAψg(x; θ))
∣

∣η̇(θ)TAψg(x; θ)
∣

∣

β−1
(21)

with c(θ) > 0 and where α−1 + β−1 = 1, α > 1, A is a positive definite matrix
and ψg(x; θ) a score function given with respect to g(x; θ) :

ψg(x; θ) :=
∇θf(x; θ)

g(x; θ)
. (22)

Proof. Let η(θ) = Ef [T (X)]. Let us first observe that

Eg[ψg(x; θ)] =
d

dθ

ˆ

X

f(x; θ)dx = 0.

Differentiating η(θ) = Ef [T (X)] with respect to each θi we get

η̇(θ) = ∇θη(θ) = ∇θ

ˆ

X

T (x) f(x; θ)dx

=

ˆ

X

T (x)
∇θf(x; θ)

g(x; θ)
g(x; θ)dx

=

ˆ

X

(T (x)− h(θ)) ψg(x; θ) g(x; θ)dx.

For any positive definite matrix A, multiplying on the left by η̇(θ)TA gives

η̇(θ)TA η̇(θ) =

ˆ

X

(T (x)− h(θ)) η̇(θ)TAψg(x; θ) g(x; θ)dx,

and by the Hölder inequality

Eg [|T (x)− h(θ)|α]
1

α Eg

[

∣

∣η̇(θ)TAψg(x; θ)
∣

∣

β
]

1

β ≥ η̇(θ)TA η̇(θ),

with equality if and only if (T (x)− h(θ)) η̇(θ)TAψg(x; θ) > 0 and |T (x)− h(θ)|α =

k(θ)
∣

∣η̇(θ)TAψg(x; θ)
∣

∣

β
, k(θ) > 0. The latter inequality, in turn, provides us

with the lower bound (20) for the moment of order α of the estimation error,
computed with respect to g .

The inverse of the matrix A which maximizes the right hand side of (20)
is the Fisher information matrix of order β. Unfortunately, we do not have a
closed-form expression for this matrix in the general case. Nevertheless, two
particular cases are of interest.



Corollary 4. [Scalar extended Cramér-Rao inequality] In the scalar case (or
the case of a single component of θ), the following inequality holds

Eg [|T (X)− h(θ)|α]
1

α ≥ |η̇(θ)|

Eg

[

|ψg(X ; θ)|β
]

1

β

, (23)

with equality if and only if T (x)− h(θ) = c(θ)sign(ψg(x; θ)) |ψg(x; θ)|β−1.

In the simple scalar case, we see that A > 0 can be simplified in (20) and
thus that (23) follows. Note that for α = 2, the equality case implies that
Eg[ψg] = 0 = Eg[T (X) − h(θ)], which means that Eg[T (X)] = h(θ), i.e. the
estimator is unbiased (with respect to g) – but this also mean that it will be
generally biased with respect to f . Actually, the inequality (23) recovers at once
the generalized Cramér-Rao inequality we presented in the univariate case [5].
The denominator plays the role of the Fisher information in the classical case,
which corresponds to the case g(x; θ) = f(x; θ), β = 2.

A second interesting case is the multivariate case with α = β = 2. Indeed,
in that case, we get an explicit form for the generalized Fisher information
matrix and an inequality which looks like the classical one.

Corollary 5. [Multivariate Cramér-Rao inequality with α = β = 2] For α =
β = 2, we have

Eg

[

|T (X)− h(θ)|2
]

≥ η̇(θ)T Jg(θ)
−1 η̇(θ) (24)

with Jg(θ) = Eg

[

ψg(X ; θ)ψg(X ; θ)T
]

, and with equality if and only if

|T (X)− h(θ)| = k(θ)
∣

∣η̇(θ)T Jg(θ)
−1 ψg(X ; θ)

∣

∣ . (25)

Proof. The denominator of (20) is a quadratic form and we have

Eg

[

|T (X)− h(θ)|2
]

≥ sup
A>0

(

η̇(θ)TA η̇(θ)
)2

Eg

[

|η̇(θ)TAψg(X ; θ)|2
]

≥ sup
A>0

(

η̇(θ)TA η̇(θ)
)2

η̇(θ)TAEg [ψg(X ; θ)ψg(X ; θ)T ]AT η̇(θ)
. (26)

Let Jg(θ) = Eg

[

ψg(X ; θ)ψg(X ; θ)T
]

and set z(θ) = A
1

2 η̇(θ). Then, using the
inequality (zT z)2 ≤ (zTBz) (zTB−1z) which holds for any B > 0, we obtain
that

η̇(θ)T Jg(θ)
−1 η̇(θ) ≥ sup

A>0

(

z(θ)T z(θ)
)2

z(θ)TA
1

2 Jg(θ)
(

A
1

2

)T

z(θ)

,

with B = A
1

2 Jg(θ)
(

A
1

2

)T

.

Since the upper bound is it readily checked to be attained for A = Jg(θ)
−1,

we finally get (24). Of course, for g = f, the inequality (24) reduces to a
classical multivariate Cramér-Rao inequality.



In the quadratic case, it is also possible to derive an analog of the well
known result that the covariance of the estimation error is greater than the
inverse of the Fisher information matrix (in the Löwner sense). Obviously, the
inequality involves the generalized Fisher information matrix Jg(θ). The proof
follows the lines in [20, pp. 296-297] and we get the following result.

Proposition 6. [Mutivariate Cramér-Rao inequality – covariance version] Con-
sider the quadratic case, with β = 2, and the assumptions of Proposition 3, but
with T (x) vector valued being an estimator of a vector valued function h(θ). Set

η(θ) = Ef [T (X)], denote ψg(x; θ) := ∇θf(x;θ)
g(x;θ) the generalized score function,

and define by Jg(θ) = Eg

[

ψg(X ; θ)ψg(X ; θ)T
]

the Fisher Fisher information
matrix Jg(θ). Assume that Jg(θ) is invertible. Then

Eg

[

(T (X)− h(θ)) (T (X)− h(θ))
T
]

� η̇(θ)T Jg(θ)
−1η̇(θ) (27)

with η̇(θ) = ∇θEf [T (X)T ], and equality if and only if

(T (X)− h(θ)) = η̇(θ)Jg(θ)
−1ψg(X). (28)

Of course, (24) appears as a special case of (27).

Proof. The proof follows the main lines of [20, pp. 296-297] with some small
adaptations. With η(θ) = Ef [T (X)], the transpose of the Jacobian matrix,
here denoted by η̇(θ), is given by η̇(θ) = ∇θEf [T (X)T ], which can be rewritten
as η̇(θ) = Eg[ψg(X)T (X)T ]. Recall that Eg [ψg(X)] = 0. Therefore, for every
vectors u and v of ad hoc dimensions, we have

Eg

[

uT (T (X)− h(θ))ψg(X)T v
]

= uT η̇(θ)T v.

By the Schwarz inequality

(

uT η̇(θ)T v
)2 ≤

(

uTCgu
) (

vT Jgv
)

(29)

with Cg := Eg

[

(T (X)− h(θ)) (T (X)− h(θ))
T
]

. If v = J−1
g η̇(θ)u, then (29)

reduces to
(

uT η̇(θ)T J−1
g η̇(θ)u

)

≤
(

uTCgu
)

, which implies (27). For the case of
equality, simply observe that

Eg

[

(T (X)− h(θ))
(

η̇(θ)T Jgψg(X)
)T
]

= η̇(θ)T J−1
g η̇(θ),

given that Eg [ψg(X)] = 0. Thus

Eg

[

(

T (X)− h(θ)− η̇(θ)T J−1
g ψg(X)

) (

T (X)− h(θ)− η̇(θ)T J−1
g ψg(X)

)T
]

= Eg

[

(T (X)− h(θ)) (T (X)− h(θ))T
]

− η̇(θ)T J−1
g η̇(θ)

which is equal to zero, meaning that the bound is attained in (27) if and only
if η̇(θ)Jg(θ)

−1ψg(X) = (T (X)− h(θ)).



An important consequence of the results above is obtained for a translation
parameter, where the generalized Cramér-Rao inequality induces a new class
of inequalities. Let θ ∈ R be a scalar location parameter, x ∈ X ⊆ R

n, and
define by f(x; θ) the family of density f(x; θ) = f(x−θ1), where 1 is a a vector
of ones. In this case, we have ∇θf(x; θ) = −1T∇xf(x− θ1) (provided that f is
differentiable at x− θ1) and the Fisher information becomes a characteristic of
the information in the distribution. If X is a bounded subset, we will assume
that f(x) vanishes and is differentiable on the boundary ∂X . Without loss of
generality, we can assume that the mean of f(x) is zero. Set h(θ) = θ and take
T (X) = 1TX/n, with of course η(θ) = E[T (X)] = θ and η̇(θ) = 1. Finally,
let us choose the particular value θ = 0. In these conditions, the generalized
Cramér-Rao inequality (23) becomes

Eg

[

∣

∣1TX
∣

∣

α
]

1

α

Eg

[

∣

∣

∣

∣

1T
∇xf(X)

g(X)

∣

∣

∣

∣

β
]

1

β

≥ n, (30)

with equality if and only if 1T ∇xf(x)
g(x) = c(θ)sign(1TX)

∣

∣1TX
∣

∣

α−1
.

3.2 Multivariate generalized Cramér-Rao inequality – general

norms

In the multivariate case, we have another result, which involves an arbitrary
norm of the estimation error. Recall that if ‖.‖ is an arbitrary norm, then its
dual norm ‖.‖∗ is defined by

‖Y ‖∗ = sup
‖X‖≤1

X.Y, (31)

where X.Y is the standard scalar product. For instance, if ‖.‖ is a Lp-norm,
then ‖.‖∗ is the Lq-norm. The multivariate generalized Cramér-Rao inequality
relies on an Hölder-type inequality for vector-valued functions, with arbitrary
norm. This inequality was proved in [6]. Let E = (Rn, ‖.‖) be a n-dimensional
normed space and denote E∗ = (Rn, ‖.‖∗) its dual space. If X(t) and Y (t) are
two functions taking values respectively in E and E∗, and if w(t) is a weight
function, then

(
ˆ

‖X(t)‖αw(t)dt
)

1

α
(
ˆ

‖Y (t)‖β∗ w(t)dt
)

1

β

≥
∣

∣

∣

∣

ˆ

X(t).Y (t)w(t)dt

∣

∣

∣

∣

(32)

with α−1 + β−1 = 1, α ≥ 1. The equality is obtained if

Y (t) = K‖X(t)‖α−1∇X(t)‖X(t)‖, with K > 0. (33)

The condition is also necessary if the dual norm is strictly convex. We can now
state the following result.

Proposition 7. [Generalized Cramér-Rao inequality for arbitrary norms, c.f.
[6]] Let f(x; θ) be a multivariate probability density function defined for x ∈



X⊆ R
n, and θ ∈ Θ ⊆ R

k. Let g(x; θ) denote another probability density func-
tion also defined on (X ;Θ). Assume that f(x; θ) is a jointly measurable func-
tion of x and θ, is integrable with respect to x, is absolutely continuous with
respect to θ, and that its derivatives with respect to each component of θ are
locally integrable. Then, for any estimator θ̂(X) of θ ∈ R

n, and arbitrary
norms,

Eg

[∥

∥

∥
θ̂(X)− θ

∥

∥

∥

α] 1

α

Eg

[

∥

∥

∥

∥

∇θf(X ; θ)

g(X ; θ)

∥

∥

∥

∥

β

∗

]
1

β

≥
∣

∣

∣
∇θ.Ef [θ̂(X)]

∣

∣

∣
(34)

with α−1 + β−1 = 1, α ≥ 1, and where

Iβ [f |g; θ] =
ˆ

X

∥

∥

∥

∥

∇θf(x; θ)

g(x; θ)

∥

∥

∥

∥

β

∗

g(x; θ) dx (35)

is generalized Fisher information of order β on θ taken with respect to g. Equal-
ity occurs in (34) if (and only if the dual norm is strictly convex)

∇θf(x; θ)

g(x; θ)
= K

∥

∥

∥
θ̂(x)− θ

∥

∥

∥

α−1

∇
θ̂(x)−θ

‖θ̂(x) − θ‖, with K > 0. (36)

Proof. (Sketch of proof, see [6]). (a) evaluate the divergence of η(θ) = Ef [θ̂(X)],
i.e. ∇θ.η(θ); (b) average with respect to g and use the fact that the expecta-

tion of the score is zero ∇θ.η(θ) =
´

X

∇θf(x;θ)
g(x;θ) .

(

θ̂(x) − θ
)

g(x; θ)dx, (c) ap-

ply the Hölder inequality (32), with X(x) = θ̂(x) − θ, Y (x) = ∇θf(x;θ)
g(x;θ) , and

w(x) = g(x; θ).

Let us consider again the case of a location parameter, but in the mul-
tivariate case θ ∈ R

n. The translation family is f(x; θ) = f(x − θ). Then
∇θf(x; θ) = −∇xf(x− θ). Let us also assume, without loss of generality, that

f(x) has zero mean. In these conditions, the estimator T (X) = θ̂(X) = X is
unbiased. Finally, taking θ = 0, (34) leads to

Proposition 8. [Functional Cramér-Rao inequality] For any pair of probability
density functions, and under some technical conditions,

(
ˆ

X

‖x‖α g(x) dx

)
1

α

(

ˆ

X

∥

∥

∥

∥

∇xf(x)

g(x)

∥

∥

∥

∥

β

∗

g(x) dx

)
1

β

≥ n, (37)

with equality if (and only if when the dual norm is strictly convex) ∇xf(x) =
−K g(x)‖x‖α−1∇x‖x‖.

Finally, let f(x) and g(x) be a pair of escort distributions such as in (19).
Then, the generalized Fisher information (17) is obtained in the following result,
which also yields a new characterization of q-Gaussian distributions.



Corollary 9. [q-Cramér-Rao inequality] Assume that g(x) is a measurable
differentiable function of x, which vanishes and is differentiable on the boundary
∂X. Suppose that the involved integrals exist and are finite. Then, for the pair
of escort distributions (19), the following q-Cramér-Rao inequality holds

Eg [‖X‖α]
1

α Iβ,q [g]
1

β ≥ n, (38)

with Iβ,q [g] = (q/Mq [g])
β E

[

g(x)β(q−1)

∥

∥

∥

∥

∇xg(x)

g(x)

∥

∥

∥

∥

β

∗

]

,

with equality if and only if g(x) is a generalized q-Gaussian

g(x) ∝ (1− γ(q − 1)‖x‖α)
1

q−1

+ (39)

Proof. The result follows from (37), or (30) with n = 1, and the fact that for
escort distributions,

∇xf(X)

g(X)
=

q

Mq[g]
g(X)q−1∇xg(X)

g(X)
.

The case of equality is obtained by solving the general equality condition
∇xf(x) = −K g(x)‖x‖α−1∇x‖x‖.

As a direct consequence of the q-Cramér-Rao inequality (38), the mini-
mum of the generalized Fisher information among all distributions with a given
moment of order α, say mα = Eg [‖X‖α] , is obtained for g a generalized q-
Gaussian distribution, with parameter γ such that the distribution has the
prescribed moment. This extends the well-known result that the minimum of
Fisher information with a fixed variance is attained for the Gaussian distri-
bution. This parallels, and complements the known fact that the q-Gaussians
maximize the q-entropies subject to a moment constraint, and yields new vari-
ational characterizations of generalized q-Gaussian distributions.

Let us also mention that the inequality (38) is similar, but different, to an
inequality given by Lutwak et al [21] which is also saturated by the generalized
Gaussians (39).

Finally, for a location parameter, the matrix inequality (27) reduces to

Covg [X ] ≥ (Jg)
−1 = Eg

[

ψgψ
t
g

]−1
. (40)

When (f, g) is a pair of escort distributions, the equality condition in Propo-
sition 6 shows that equality occurs if and only if g is a generalized q-Gaussian
with covariance matrix (Jg)

−1.

4 Conclusions

To sum up and emphasize the main results, let us point out that we have
exhibited a generalized Fisher information, both as a by-product of a gen-
eralization of de Bruijn identity and Stam inequality and as a fundamental



measure of information in estimation theory. We have drawn a nice interplay
between q-entropies, generalized q-Gaussians and the generalized Fisher infor-
mation. These interrelations yield the generalized q-Gaussians as minimizers
of the (β, q)-Fisher information under adequate constraints, or as minimizers
of functionals involving q-entropies, (β, q)-Fisher information and/or moments.
This is shown through inequalities and identities involving all quantities and
generalizing classical information relations (Cramér-Rao’s inequality, Stam’s
inequality, De Bruijn’s identity).

In a recent work [8], we introduced a variant of a χα-divergence, which
enables us to interpret the generalized Fisher information as a limit case of
this divergence. Furthermore, this leads to a new derivation of the generalized
Cramér-Rao inequality. More interestingly, this also enables us to derive a
generalization of the Fisher Information Inequality (FII) – an inequality that
characterizes the behavior of the Fisher information under convolution. The
equality case, as usual, occurs for generalized q-Gaussian distributions. Details
will come in a future paper.

The entropy power inequality (EPI) is a remaining important inequality of
information theory, whose proof is difficult. An extension of the EPI to the
q-entropy power

Nq(X + Y ) ≥ cq (Nq(X) +Nq(Y )) (q ≥ 1)

has been proved very recently in the case q ≥ 1 [9], and the subject is very hot
[31]. In the usual case, the EPI can be derived using de Bruijn’s identity and
the FII. Thus it would be very interesting to try to derive it from the results
presented in this paper and the aforementioned FII.

We have obtained general Cramér-Rao inequalities, in the multivariate case,
for a pair of arbitrary densities (f, g). This led us to the definition of a Fisher
information Iβ [f |g; θ] about a parameter θ in f, taken with respect to g. In
the case of a pair of escort distributions, this Fisher information reduces to the
(β, q)-Fisher information Iβ,q[f ; θ], which is associated to the q-entropies and
generalized q-Gaussians. Hence, a natural question would be to search for pos-
sible generalized entropies associated with the generalized Fisher information
Iβ [f |g; θ], and perhaps with other families of maximum entropy distributions.

The extensions presented here rely on the idea of modifying the averaging
distribution in the computation of the moment of the estimation error. A
further step would be to consider general loss functions instead of a simple
power of the estimation error. [18], [19] and a work in progress bring interesting
results in this direction. However, a remaining issue is again to associate some
entropy with the new Cramér-Rao inequalities.

Finally, it would certainly be of interest to go further into estimation and
look for estimators efficient with respect to the new Cramér-Rao bounds.
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