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Sharp L p estimates for second order Riesz transforms on multiply-connected Lie groups

We study a class of combinations of second order Riesz transforms on Lie groups G = G x × G y that are multiply connected, composed of a discrete abelian component G x and a compact connected component G y . We prove sharp L p estimates for these operators, therefore generalizing previous results [13][4].

The proof uses stochastic integrals with jump components adapted to functions defined on the semi-discrete set G x × G y . The analysis shows that Itô integrals for the discrete component must be written in an augmented discrete tangent plane of dimension twice larger than expected, and in a suitably chosen discrete coordinate system. Those artifacts are related to the difficulties that arise due to the discrete component, where derivatives of functions are no longer local.

Introduction

Sharp L p inequalities for pairs of differentially subordinate martingales date back to the celebrated work of Burkholder [START_REF] Burkholder | Boundary value problems and sharp inequalities for martingale transforms[END_REF] in 1984 where the optimal constant is exhibited. See also from the same author [START_REF] Donald | Sharp inequalities for martingales and stochastic integrals[END_REF] [START_REF] Donald | Explorations in martingale theory and its applications[END_REF]. The relation between differentially subordinate martingales and Caldéron-Zygmund operators is known since Gundy-Varopoulos [START_REF] Gundy | Les transformations de Riesz et les intégrales stochastiques[END_REF]. Starting with a test function f , martingales are built using Brownian motion and Poisson extensions in the upper half space R + × R n .

It is shown that the martingale arising from R f , where R is a Riesz transform in R n , is a martinagle transform of that arising from f . The two form a pair of martingales with differential subordination and orthognality. Thus, in the case of Riesz tranforms, the optimal L p constants could be recovered using probabilistic methods. One derives martingale inequalities under hypotheses of strong differential subordination and orthogonality, see Banuelos-Wang [START_REF] Bañuelos | Sharp inequalities for martingales with applications to the Beurling-Ahlfors and Riesz transforms[END_REF].

In the case of second order Riesz transforms, the use of heat extensions in the upper half space instead of Poisson extensions originated in Petermichl-Volberg [START_REF] Petermichl | Heating of the Ahlfors-Beurling operator: weakly quasiregular maps on the plane are quasiregular[END_REF] and was used to prove L p estimates for the second order Riesz transforms based on the results of Burkholder in Nazarov-Volberg [START_REF] Volberg | Heat extension of the Beurling operator and estimates for its norm[END_REF] as part of their best-at-time estimate for the Beurling-Ahlfors operator, whose real and imaginary parts themselves are second order Riesz transforms. The sharpness of the constant for the real part of the Beurling-Alfhors operator is proved using probabilistic methods in conjunction with a technique by Bourgain in Geiss-Montgomery-Saksman [START_REF] Geiss | On singular integral and martingale transforms[END_REF]. See also applications in Banuelos-Baudoin [START_REF] Bañuelos | Martingale Transforms and Their Projection Operators on Manifolds[END_REF] All these martingale inequalities use special functions found in Pichorides [START_REF] Pichorides | On the best values of the constants in the theorems of M. Riesz, Zygmund and Kolmogorov[END_REF], Essén [START_REF] Essén | A superharmonic proof of the M. Riesz conjugate function theorem[END_REF], when orthogonality is present in addition to differential subordination or Burkholder [START_REF] Burkholder | Boundary value problems and sharp inequalities for martingale transforms[END_REF][8] [START_REF] Donald | Sharp inequalities for martingales and stochastic integrals[END_REF], when differential subordination is the only hypothesis.

Deterministic proofs of sharp L p estimates of Caldéron-Zygmund operators that use Burkholder's theorems are available in the literature. The technique of Bellman functions was used in Nazarov-Volberg [START_REF] Volberg | Heat extension of the Beurling operator and estimates for its norm[END_REF] for an L p estimate for certain second order Riesz transforms in the euclidean plane as well as in the recent version on discrete abelian groups [START_REF] Domelevo | Sharp L p estimates for discrete second order Riesz transforms[END_REF].

The aim of the present work is two-fold. On one hand we want to derive a stochastic proof of the latter result on discrete abelian groups. On the other hand, we want to generalize the estimate to second order Riesz transforms acting on multiply connected Lie groups, built as the cartesian product of a discrete abelian group with a connected compact Lie group. Previous works based on stochastic methods for the analysis of Riesz transforms on connected compact Lie groups are in Arcozzi [START_REF] Arcozzi | Riesz transforms on spheres and compact Lie groups[END_REF][2], and sharp L p estimates were proved in this setting in Banuelos-Baudoin [START_REF] Bañuelos | Martingale Transforms and Their Projection Operators on Manifolds[END_REF] for second order Riesz transforms. The novelty of this text is the generalization to the multiply connected setting. In this sense, it is also a generalization of [START_REF] Domelevo | Sharp L p estimates for discrete second order Riesz transforms[END_REF], by regarding each point in the discrete abelain group as a Lie group of dimension zero.

Differential operators and Riesz transforms.

First order derivatives and tangent planes. For a general n-dimensional Riemannian manifold M, the tangent plane T y M at a point y ∈ M is spanned by a local family of vectors (Y 1 (y), ..., Y n (y)). Identifying as usual the vector Y j with the first order derivative Y j = ∂/∂x j , we have for a real function f defined on M, the gradient written as a column vector of size n:

∇ M f (y) := (∂f /∂y 1 , ..., ∂f /∂y n )(y) = (Y 1 f , ..., Y n f )(y) = j =1 n Y j f (y) Y j (y) ∈ T y M.
Now for a Lie group G := G x × G y with G x a discrete group of order m and G y a connected Lie group of dimension n we define the tangent plane

T z G at a point z = (x, y) ∈ (G x × G y ) = G in three steps.
First, let G y be a compact Lie group endowed with a biinvariant Riemannian metric and denote by G y its Lie algebra. Since G y is n-dimensional, we can find a family (Y j ) j =1,...,n of n left invariant vector fields that form an orthonormal basis of G y . If f is a function defined on G y , then the partial derivative of f in the direction Y j at point y ∈ G y is

(∂f /∂y j )(y) := (Y j f )(y) := (∂ j f )(y)
and the gradient accounting for the infinitesimal variations of f about a point y ∈ G y is as before the n-column-vector

∇ y f (y) := (∂f /∂y 1 , ..., ∂f /∂y n )(y) = (Y 1 f , ..., Y n f )(y) = j =1 n Y j f (y) Y j (y) ∈ T y G y
Second, the discrete component G x is of order m and one has m generators G x = (g i ) i=1,...,m . At any point x ∈ G x , and given a direction i ∈ {1, ..., m}, one has two choices of discrete derivatives for each generator, namely the right and the left derivatives:

(∂ + f /∂x i )(z) := f (xg i , y) -f (x , y) := (∂ i + f )(z) (∂ -f /∂x i )(z) := f (xg i -1 , y) -f (x , y) := (∂ i -f )(z).
Comparing with the continuous component, this suggests that the tangent plane T ˆxG x at a point x of the discrete group G x is actually composed of the "right" tangent plane T x + G x and the "left" tangent plance T x -G x . We consequently define the augmented discrete gradient ∇ ˆxf (x) noted with a hat, as the 2m-vector of T ˆxG

x := T x + G x × T x - G
x accounting for all the local variations of the function f in the direct vicinity of x, that is the 2m-column-vector

∇ ˆxf (x) := (X 1 + f , X 2 + f , ..., X 1 -f , X 2 -f , ...)(x) = i=1 m τ =± X i τ f (x) X i τ ∈ T ˆxG x .
We noted the discrete derivatives X i ± f := ∂ i ± f and we noted the discrete 2m-vectors X i ± as the column vectors of Z 2m

X i + = (0, ..., 1, ..., 0) × 0 m , X i -= 0 m × (0, ..., 1, ..., 0),
where the 1's in X i ± are located at the i-th position of respectively the first or the second m-tuple. Notice that those vectors are independent of the point x.

Finally, for a function f defined on the cartesian product G := G x × G y , the (augmented) gradient ∇ ˆzf (z) at the point z = (x, y) is an element of the tangent plane T ˆzG := T ˆxG x × T y G y , that is a (2m + n)-column-vector

∇ ˆzf (z) := ∇ ˆxf (z), ∇ y f (z) = (X 1 + f , X 2 + f , ..., X 1 -f , X 2 -f , ..., Y 1 f , Y 2 f , ...)(z) = i=1 m τ =± X i τ f (z) X ˆiτ + j =1 n Y j f (z) Y ˆj(z)
where X ˆiτ and Y ˆj(z) are now column vectors of size (2m + n) with obvious definitions.

Riesz transforms. Following [START_REF] Arcozzi | Riesz transforms on spheres and compact Lie groups[END_REF][2], recall first that for a general Riemannian manifold M without boundary, one denotes by ∇ M , div M and ∆ M :=div M ∇ M the gradient, the divergence and the Laplacian associated with M, respectively. Then -∆ M is a positive operator and the vector Riesz transform is defined as the linear operator

R M := ∇ M • (-∆ M ) -1/2
acting on L 0 2 (M). It follows that if f is a function defined on M and y ∈ M then R M f (y) is a vector of the tangent plane T y M.

Similarily on M = G, we define ∇ M := ∇ ˆz as before, and then we define the divergence operator as the formal dual, that is -div M =div z := ∇ ˆz * , with respect to the following scalar product of

R (2m+n) : a ˆ, b ˆ L 2 (R 2m+n ) := 1 2 i=1 m ± a i + b i + + j =1 n a j b j
where

a ˆ:= (a 1 + , a 2 + , ..., a 1 - , a 2 - , ..., a 1 , a 2 , ...) ∈ R 2m+n ,
and a similar definition holds for b ^. The factor one-half is necessary so as to ensure a natural isometry between vectors of R 2m+n and vectors of R m+n . Thanks to the duality relations

(X i ± ) * = -X i ∓ and Y j * = -Y j , the divergence operator writes as the (2m + n)-row-vector ∇ ˆz * f (z) := 1 2 ∇ ˆx * f (z), ∇ y * f (z) = - 1 2 i=1 m τ =± X i -τ f (z) X ˆiτ , * - j =1 n Y j f (z) Y ˆj * (z)
where X ˆiτ , * and Y ˆj * (z) are now row vectors of size (2m + n) that are the transpose of X ˆiτ and Y ˆj(z) respectively. It follows that the Laplacian -∆ G is as expected

-∆ z f (z) := ∇ ˆz * f (z) • ∇ ˆzf (z) = 1 2 ∇ ˆx * f (z) • ∇ ˆxf (z) + ∇ y * f (z) • ∇ y f (z) = - i=1 m X i -X i + f (z) - j =1 n Y j 2 f (z) = - i=1 m X i 2 f (z) - j =1 n Y j 2 f (z) =: (-∆ x f )(z) + (-∆ y f )(z)
where we noted X

i 2 := X i + X i -= X i - X i + . The Riesz vector R ˆzf (z) is the (2m + n)-column-vector
of the tangent plane T ˆzG defined as the linear operator

R ˆzf := ∇ ˆzf • (-∆ z f ) -1/2
In particular, we have coordinatewise

R i ± = ∂ i ± • (-∆ z ) -1/2 and R j = ∂ j • (-∆ z ) -1/2 .

Main results.

In this text, we are concerned with second order Riesz transforms and combinations thereof. We first define the square Riesz transform in the (discrete) direction i to be

R i 2 := R i + R i -= R i - R i + .
Then, given α := ((α i x ) i=1...m , (α jk y ) j ,k=1...n ) ∈ C m × C n×n , we define R α 2 to be the following combination of second order Riesz transforms:

R α 2 := i=1 m α i x R i 2 + j ,k=1 n α jk y R j R k ,
where the first sum involves squares of discrete Riesz transforms as defined above, and the second sum involves products of continuous Riesz transforms. This combination is written in a condensed manner as the quadratic form

R α 2 = R ˆz, A α R ˆz where A α is the (2m + n) × (2m + n) block matrix A α := A α x 0 0 A α y with A α x = diag(α 1 x , ..., α m x , α 1 x , ..., α m x ) ∈ C 2m×2m , A α y = (α j k y ) j ,k=1...n ∈ C n×n .
When p and q are conjugate exponents, let p * = max {p, q }. Our main results are Theorem 1. Let G be a Lie group as defined before. Let R α 2 : L p (G, C) → L p (G, C) be a combination of second order Riesz transforms as defined above. This operator enjoys the estimate

R α 2 A α 2 (p * -1).

The estimate above is sharp when the group

G = G x × G y and dim (G y ) + dim ∞ (G x ) 2, where dim ∞ (G x ) denotes the number of infinite components of G x . Notice that A α 2 = max ( A α x 2 , A α y 2 ) = max (|α 1 x |, ..., |α m x |, A α y 2 ).
In the case where G = G x only consists of the discrete component, this whas proved in [START_REF] Domelevo | Sharp L p estimates for discrete second-order Riesz transforms[END_REF][13] using the deterministic Bellman function technique. In the case where G = G y is a connected compact Lie group, this was proved by Banuelos-Baudouin [START_REF] Bañuelos | Martingale Transforms and Their Projection Operators on Manifolds[END_REF] using Brownian motions defined on manifolds and projections of martingale transforms.

In the case where the function f is real valued, we obtain better estimates involving the Choi constants. Compare with Banuelos-Osekowski [START_REF] Banuelos | Martingales and sharp bounds for Fourier multipliers[END_REF] and with [START_REF] Domelevo | Sharp L p estimates for discrete second order Riesz transforms[END_REF].

Theorem 2. Assume that aI

A α bI in the sense of quadratic forms, where a, b are real numbers. Then R α

2 : L p (G, R) → L p (G, R) enjoys the norm estimate R α 2 p
C a,b,p , where these are the Choi constants.

The Choi constants (see [START_REF] Choi | A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in L p (0, 1)[END_REF]) are not explicit, except C -1,1,p = p * -1. An approximation of C 0,1,p is known and writes as

C 0,1,p = p 2 + 1 2 log 1 + e -2 2 + β2 p + ...., with β 2 = log 2 1 + e -2 2 + 1 2 log 1 + e -2 2
-2

e -2 1 + e -2 2 .

Plan of the paper.

In the next subsection, we recall the weak formulations characterizing the combinations of semidiscrete second order Riesz transforms we are interested in. Section 2 is devoted to the stochastic integrals for semi-discrete functions f defined on G, together with their martingale transforms. Finally, the proofs of the main results are given in Section 3.

Weak formulations.

Let f : G → C be given. The heat extension f ˜(t) of f is defined as f ˜(t) := e t∆z f =: P t f . We have therefore f ˜(0) = f . The aim of this section is to derive weak formulations for the second order Riesz transforms. We start with the weak formulation of the identity operator I.

Lemma 3. Assume f and g in L 0 2 (G), then (If , g) := (f , g) = 2 0 ∞ ∇ ˆzP t f , ∇ ˆzP t g L 2 (G;T G) dt = 2 0 ∞ z ∈G    i=1 m τ =± (X i τ P t f )(z) (X i τ P t g)(z) + j =1 n (Y j P t f )(z) (Y j P t g)(z)    dt
and the sums and integrals that arise converge absolutely.

Proof. This classical formula can be obtained by observing that d t P t = ∆ z P t and writing the ODE satisfied by φ(t) := (P t f , P t g).

In order to pass to the weak formulation for the squares of Riesz transforms, we need the following hypothesis and commutation properties.

Hypothesis. We assume everywhere in the sequel: 

Y j • ∆ z = ∆ z • Y j X i τ • ∆ z = ∆ z • X i τ , τ ∈ {+, -, 0, 2} Proof. Since G = G x × G y is a cartesian product, we have [Y j , X i τ ] =
(R α 2 f , g) = -2 0 ∞ A α ∇ ˆPt f , ∇ ˆPt g L 2 G;T ˆG dt = -2 0 ∞ z ∈G 1 2 i=1 m τ =± α i x (X i τ P t f )(z) (X i τ P t g)(z) + j =1 n α j k y (Y j P t f )(z) (Y k P t g)(z)    dt
and the sums and integrals that arise converge absolutely.

Proof. We apply the previous Lemma to R α 2 f instead of f and we are left with integrands of the form

∇ ˆzP t R α 2 f , ∇ ˆzP t g = (-∆ z )P t R α 2 f , P t g = i,τ α i x (-∆ z )P t R i 2 f , P t g + j ,k α j ,k y (-∆ z )P t R j R k f , P t g = i,τ α i x (-∆ z )P t X i - (-∆ z ) -1/2 X i + (-∆ z ) -1/2 f , P t g + j ,k α j ,k y (-∆ z )P t X j (-∆ z ) -1/2 X k (-∆ z ) -1/2 f , P t g = i,τ α i x X i ± P t f , X i ± P t g + j ,k α j ,k y X j P t f , X k P t g
where we used successively the commutation properties of the Laplacian ∆ z with the vector fields and the commutation properties of the vector fields with P t = e t∆z . This yields the desired result.

Stochastic integrals and martingale transforms

In all what follows, we assume that we have a complete probability space (Ω, F , P) with a càdlàg (i.e. right continuous left limit) filtration (F t ) t 0 of sub-σ-algebras of F . We assume as usual that F 0 contains all events of probability zero. All random walks and martingales are adapted to this filtration.

We define below a semi-discrete random walk Z t := (X t , Y t ) ∈ G x × G y with generator L = ∆ z . The jump component X t is built thanks to compound Poisson jump processes on the discrete set G x wheras the continuous component Y t involves standard brownian motions on the manifold G y . Then, Itô's formula ensures that semi-discrete "harmonic" functions f : R + × G → C solving the backward heat equation (∂ t + ∆ z )f = 0 are actually martingales M t f := f (t, Z t ) for which we define a class of martingale transforms.

Stochastic integrals on Riemannian manifolds and Itô integral. Following Emery

[15] [START_REF] Emery | An Invitation to Second-Order Stochastic Differential Geometry[END_REF], see also Arcozzi [START_REF] Arcozzi | Riesz transforms on spheres and compact Lie groups[END_REF][2], we define the Brownian motion Y t on G y , a compact Riemannian manifold, as the process Y t : Ω → (0, T ) × G y such that for all smooth functions f :

G y → R, the quantity f (Y t ) -f (Y 0 ) - 1 2 0 t (∆ y f )(Y s ) ds =: (I df ) t (1) 
is an R-valued continuous martingale. For any adapted continuous process Ψ with values in the cotangent space

T * G y of G y , if Ψ t (ω) ∈ T Yt(ω) *
G y for all t 0 and ω ∈ Ω, then one can define the continuous Itô integral I Ψ of Ψ as

(I Ψ ) t := 0 t Ψ s , dY s so that in particular (I df ) t = 0 t d y f (Y s ), dY s The integrand therefore involves the 1-form of T y * G y d y f (y) := j (∂ j f )(y) dy j = j (X j f )(y) X j *
Discrete random walks and jump processes. We define the discrete m-dimensional random walk X t on the discrete abelian group G x as a tuple of the form X t = (X t 1 , ..., X t m ) where each X t i , 1 i m is a compound jump process defined as follows: i. For any 1 i m, let N t i be a càdlàg Poisson process of parameter λ, that is

∀t, P(N t i = n) = (λt) n n! e -λt
The sequence of instants where jumps occur is noted (T k i ) k∈N , with the convention T 0 i = 0.

ii. Let (τ k ) k∈N be a sequence of independent Bernouilli variables

∀k, P(τ k = 1) = P(τ k = -1) = 1/2
We set

N t = i=1 m N t i
Almost surely the instants of jumps ((T k i ) k∈N ) i=1,...,m are disjoints. Let (T k ) k∈N = ∪ i=1 m (T k i ) k ∈N the sequence of instants of jumps of N t , and let i Nt (ω) be the index of the coordinate where the jumps occurs at time t,

dN t = i=1 m dN t i = dN t iN t
The random walk X t started at X 0 ∈ G x is the càdlàg compound Poisson process (see e.g. Protter [START_REF] Protter | Stochastic integration and differential equations[END_REF], Privault [START_REF] Privault | Notes on Stochastic Finance[END_REF]) defined as

X t (ω) := X 0 + k=1 Nt X ˆik(ω) τk(ω)
where we used an additive notation for the discrete abelian group. In differential form, we have ∀t, dX t = X ˆiN t τN t dN t Stochastic integrals on discrete groups. We recall for the convenience of the reader the derivation of stochastic integrals for jump processes. We will emphasize the fact that the corresponding Itô's formula involves the action of a discrete 1-form written in a well-chosen local coordinate system of the discrete augmented cotangent plane (see details below). Let 1 k N t and let (T k , i k , τ k ) be respectively the instant, the axis and the direction of the k-th jump. We set

T 0 = 0. Let f := f (t, x), t ∈ R + , x ∈ G x a function defined on R + × G x . Then f (t, X t ) = f (t, X t ) -f (t, X TN t ) + k=1 Nt {f (t, X Tk ) -f (t, X Tk-1 )} = f (t, X t ) -f (t, X TN t ) + k=1 Nt {f (t, X Tk ) -f (t, X Tk-) + f (t, X Tk-) -f (t, X Tk-1 )} = TN t t (∂ t f )(s, X s )ds + k=1 Nt f (t, X T k ) -f (t, X T k -) + Tk-1 Tk (∂ t f )(s, X s )ds = 0 t (∂ t f )(s, X s )ds + 0 t (f (s, X s ) -f (s, X s-)) dN s = 0 t (∂ t f )(s, X s )ds + i=1 m 0 t (f (s, X s ) -f (s, X s-)) dN s i
At an instant s = T k of jump, the integrand in the last term writes as

(f (s, X s ) -f (s, X s-)) dN s i = f s, X s-+ τ Ns X ˆi -f (s, X s-) dN s i = (X i τN s f )(X s-) dN s i = 1 2 {(X i 2 f )(X s-) + τ Ns (X i 0 f )(X s-)} dN s i
where we introduced, for all 1 i m,

X i 0 := (X i + + X i -)/2 X i 2 := (X i + -X i -)/2.
Notice that, for any given 1 i m, up to a normalisation factor, the system of coordinate

(X i 2 , X i 0 )
is obtained thanks to a rotation of π/4 of the canonical system of coordinate

(X i + , X i - ). Finally, f (t, X t ) = 0 t (∂ t f )(s, X s )ds + 1 2 i=1 m 0 t {(X i 2 f )(X s-) + τ Ns (X i 0 f )(X s-)} dN s i = 0 t (∂ t f )(s, X s ) + λ 2 (∆ x f )(s, X s ) ds + + 1 2 i=1 m 0 t (X i 2 f )(s, X s-) d(N s i -λs) + (X i 0 f )(s, X s-) dX s i = 0 t (∂ t f )(s, X s ) + λ 2 (∆ x f )(s, X s ) ds + 0 t d ˆf (s, X s-), dW ˆs =: 0 t (∂ t f )(s, X s ) + λ 2 (∆ x f )(s, X s ) ds + I d ˆf x t , (2) 
where we set dX s i := τ Ns dN s i . Here and in the sequel, we take λ = 2.

Discrete Itô integral. The stochastic integral above shows that Itô formula (1) for continuous processes has a discrete counterpart involving stochastic integrals for jump processes, namely we have the discrete Itô integral

I d ˆf x t := 1 2 i=1 m 0 t (X i 2 f )(s, X s -) d(N s i -λs) + (X i 0 f )(s, X s -) dX s
This has a more intrinsic expression similar to the continuous Itô integral (1). If we regard the discrete component G x as a "discrete Riemannian" manifold, then this discrete Itô integral involves discrete vectors (resp. 1-forms) defined on the augmented discrete tangent (resp. cotangent) space T ˆxG x (resp. T ˆx * G x ) of dimension 2m defined as

T ˆxG x = span{X 1 + , X 2 + , ..., X 1 -, X 2 -, ...} = span{X 1 2 , X 2 2 , ..., X 1 0 , X 2 0 , ...} T ˆx * G x = span{(X 1 + ) * , (X 2 + ) * , ..., (X 1 -) * , (X 2 -) * , ...} = span{(X 1 2 ) * , (X 2 2 
) * , ..., (X 1 0 ) * , (X 2 0 ) * , ...} Indeed, let dW ˆs ∈ T ˆX s G x be the vector and d ˆf ∈ T ˆX s * G x be the 1-form respectively defined as:

dW ˆs = d(N s 1 -λs) X 1 2 + ... + d(N s m -λs) X m 2 + dX s 1 X 1 0 + ... + dX s m X m 0 d ˆxf = X 1 2 f (X 1 2 ) * + ... + X m 2 f (X m 2 ) * + X 1 0 f (X 1 0 ) * + ... + X m 0 f (X m 0 ) *
We have with these notations

I d ˆf x t := d ˆxf , dW ˆs T ˆx * G x ×T ˆxG x
where the factor 1/2 is included in the pairing •, • T ˆx * Gx×T ˆxGx .

Semi-discrete stochastic integrals. Let finally Z t = (X t , Y t ) be a semi-discrete random walk on the cartesian product G = G x × G y , where X t is the random walk above defined on G x with generator ∆ x and where Y t is the Brownian motion defined on G y with generator ∆ y . For f := f (t, z) = f (t, x, y) defined from R + × G onto C, we have easily the stochastic integral involving both discrete and continuous parts:

f (t, Z t ) = 0 t {(∂ t f )(s, Z s ) + (∆ z f )(s, Z s )} ds + I d ˆzf t
where the semi-discrete Itô integral writes as Martingale transforms. We are interested in martingale transforms allowing us to represent second order Riesz transforms. Let f (t, z) be a solution to the heat equation ∂ t -∆ z = 0. Fix T > 0 and Z 0 ∈ G. Then define

I d ˆzf t := I d ˆxf t + (I d y f ) t := 0 t d ˆxf (s, Z s -), dW ˆs T ˆX s * G x ×T ˆX s G x + 0 t d y f (s, Z s -),
∀0 t T , M t T ,Z0,f = f (T -t, Z t ).
This is a martingale since f (Tt) solves the backward heat equation ∂ t + ∆ z = 0, and we have in terms of stochastic integrals

M t f ,T ,Z0 = f (T -t, Z t ) = f (T , Z 0 ) + 0 t d ˆzf (T -s, Z s -), dZ s
Given A α the C (2m+n)×(2m+n) matrix defined earlier, we note M t α,f ,T ,Z0 the martingale transform

A α * M t f ,T ,Z0 defined as M t α,f ,T ,Z0 := f (T , Z 0 ) + 0 t A α ∇ ˆf (s, Z s-), dZ s = f (T , Z 0 ) + 0 t d ˆzf (T -s, Z s-)A α * , dZ s
where the first integral involves the L2 scalar product on T ˆzG × T ˆzG and the second integral involves the duality T ˆz * G × T ˆzG. In differential form:

dM t α,f ,T ,Z0 = A α ∇ ˆf (s, Z s -), dZ s = i=1 m ± α i x {(X i 2 f )(T -t, Z t-) d(N t i -λt) + (X i 0 f )(t, Z t-) dX t i } + j =1 n α j ,k y (X j f )(T -t, Z t-) dY t k
Quadratic covariation and subordination. We have the quadratic covariations (see Protter [START_REF] Protter | Stochastic integration and differential equations[END_REF], Dellacherie-Meyer [START_REF] Dellacherie | Probabilities and potential. B[END_REF], or Privault [START_REF] Privault | Notes on Stochastic Finance[END_REF])

d[N i -λt, N i -λt] t = dN t i d[N i -λt, X i ] t = τ Nt dN t i d[X i , X i ] t = dN t i d[Y j , Y j ] t = dt,
the other quadratic covariations being zero. For any two martingales M t f and M t g defined as above thanks to their respective heat extensions P t f et P t g, we have the quadratic covariations 

d[M f , M g ] t = i=1 m (X i 2 f )(T -t, Z t-) (X i 2 g)(T -t, Z t-) d[N i -λt, N i -λt] t + i=1 m (X i 0 f )(T -t, Z t-) (X i 0 g)(T -t, Z t-) d[X i , X i ] t + i=1 m (X i 2 f )(T -t, Z t -) (X i 0 g)(T -t, Z t -) d[N i -λt, X i ] t + i=1 m (X i 0 f )(T -t, Z t-) (X i 2 g)(T -t, Z t-) d[X i , N i -λt] t + j =1 n (X j f )(T -t, Z t-) (X j g)(T -t, Z t-) d[Y j , Y j ] t = i=1 m { (X i + f ) (X i + g)(T -t, Z t-) 1(τ Nt = 1) + (X i -f ) (X i -g)(T -t, Z t-) 1(τ Nt = -1) } dN t i + (∇ y f , ∇ y g)(T -t, Z t -)
d[M α,f , M α,f ] t = i=1 m |α i x | 2 { (X i + f ) 2 (T -t, Z t-) 1(τ Nt = 1) + (X i -f ) 2 (T -t, Z t-) 1(τ Nt = -1) } dN t i + (A α y ∇ y f , A α y ∇ y f )(T -t, Z t 

Proofs of the main results

Proof. (of Theorem 1)

The proof uses the well-known connection between martingale transforms and singular operators, through the use of projection operators. We refer to Gundy-Varopoulos [START_REF] Gundy | Les transformations de Riesz et les intégrales stochastiques[END_REF] as well as [3][4]. Following the same strategy, the random trajectories (B t ) -T t 0 defined on the band [-T , 0] × G by B t := (-t, Z t ), B -∞ = (T , Z -T ), -T t 0, Z -T ∈ G are replaced by random trajectories (B t ) -∞ t 0 defined on the upper half space R + × G B t := (-t, Z t ), B -∞ = (∞, Z -∞ ), -∞ t 0, Z -∞ ∈ G.

The latter are therefore trajectories starting at time t = -∞ from a point Z -∞ ∈ G chosen at random uniformly, and finishing at time t = 0, when hitting the boundary G of the upper half space. If f (t) = P t f is as in the previous section, then M t f = f (B t ), -∞ t 0 is a martingale and M t α,f its martingale transform as defined previously. The Gundy-Varopoulos approach adapted to second order Riesz transforms -see also [START_REF] Bañuelos | Martingale Transforms and Their Projection Operators on Manifolds[END_REF] yields the projection operator T α defined as ∀z ∈ G, (T α f )(z) := M 0 α,f Z 0 = z , so that using quadratic covariations as above, one observes that ∀g, (T α f , g) = -2

0 ∞ A α ∇ ˆPt f , ∇ ˆPt g L 2 G;T ˆG dt.
Thanks to Lemma 5, this means T α = R α 2 . Thanks to Wang's result [START_REF] Wang | Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities[END_REF] (see Theorem 6 and Lemma 7 above) we have easily

R α 2 f p = T α f p A α 2 (p * -1) f p ,
which concludes the proof of Theorem 1.

The proof of Theorem 2 follows exactly the same procedure. Recall Choi's result [START_REF] Choi | A sharp inequality for martingale transforms and the unconditional basis constant of a monotone basis in L p (0, 1)[END_REF] for discrete martingales.

Theorem 8. (Choi, 1992) Let (Ω, (F ) n∈N , P) a probability space and X n an adapted real valued martingale. Let (α n ) n∈N be a predictable sequence taking values in [0, 1]. Let Y := α * X be the martingale transform of X defined for almost all ω ∈ Ω as Y 0 (ω) = X 0 (ω), and (Y n+1 -Y n )(ω) = α n (X n+1 -X n )(ω).

1 .

 1 The discrete component G x of the Lie group G is an abelian group 2. The connected component G y of the Lie group G is a compact Lie group Lemma 4. (Commutation relations) Assume the Hypothesis above. Then, we have

Lemma 5 . 2 (

 52 0 and as a consequence [Y j , ∆ x ] = 0 and [X i τ , ∆ y ] = 0. Moreover [Y j , ∆ y ] = 0 thanks to the existence of a biinvariant metric on the compact Lie group G y from which we chose the vector fields Y j . This yields [Y j , ∆ z ] = 0. Finally, since G x is abelian we have [X i τ , ∆ x ] = 0 and therefore [X i τ , ∆ z ] = 0. Assume the Hypothesis and the Commutation lemma above. Assume f and g in L 0

2 . 1 .

 21 dY s T ˆYs * Gy ×T ˆYs Gy Martingale transforms and quadratic covariations.

dt

  Differential subordination. Following Wang[START_REF] Wang | Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities[END_REF], given two adapted càdlàg Hilbert valued martingales X t and Y t , we say that Y t is differentially subordinate by quadratic variation toX t if |Y 0 | H |X 0 | H and [Y , Y ] t -[X ,X] t is nondecreasing nonnegative for all t. As a consequence, the estimate

  -) dt A ˆαshows that the martingale transform Y t := M t α is differentially subordinate (by quadratic variation) to the martingale X t := A ˆα 2 M t f . The following result of Wang[START_REF] Wang | Differential subordination and strong differential subordination for continuous-time martingales and related sharp inequalities[END_REF]: Let X t and Y t be two adapted càdlàg Hilbert-valued martingales such that Y t is differentially subordinate by quadratic covariation to X t For 1 < p < ∞, Y t p (p * -1) X t p and the constant p * -1 is best possible. Strict inequality holds when 0 < X p < ∞ and p = / 2,

	Theorem 6. (Wang, 1995) implies in our situation that					
	Lemma 7. Let M t f and M t α,f as defined above. We have	
	∀t,	M t α,f	p	A ˆα	2 (p * -1) M t f	p .
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d[M f , M f ] t (3)

Sharp L p estimates for second order Riesz transforms on multiply-connected Lie groups

Then there exists a constant C p depending only on p such that Y p C p X p and the estimate is best possible.

The previous result from Choi is only for discrete martingales. For continuous-in-time martingales, we invoke Theorem 1.6 from the paper [START_REF] Banuelos | Martingales and sharp bounds for Fourier multipliers[END_REF], namely Lemma 9. (Banuelos-Osekowski, 2012) Let X t and Y t be two real-valued martingales satisfying

t for all t 0. Then for all 1 < p < ∞, we have Y p C p X p .

Proof. (of Theorem 2)

The result is now a corollary of Lemma 9 above with X t = M t f and

. It is not difficult to prove that the difference of quadratic variations above writes in terms of a jump part and a continuous part as

which is nonpositive since we assumed aI A α bI. This proves the result.
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