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Sharp Lp estimates for second order Riesz transforms

on multiply–connected Lie groups

N. Arcozzi K. Domelevo S. Petermichl

November 21, 2014

Abstract. We study a class of combinations of second order Riesz transforms on Lie groups

G= Gx × Gy that are multiply connected, composed of a discrete abelian component Gx

and a compact connected component Gy. We prove sharp Lp estimates for these operators,

therefore generalizing previous results [13][4].

The proof uses stochastic integrals with jump components adapted to functions defined

on the semi-discrete set Gx × Gy. The analysis shows that Itô integrals for the discrete

component must be written in an augmented discrete tangent plane of dimension twice

larger than expected, and in a suitably chosen discrete coordinate system. Those artifacts

are related to the difficulties that arise due to the discrete component, where derivatives of

functions are no longer local.

1. Introduction

Sharp Lp inequalities for pairs of differentially subordinate martingales date back to the celebrated
work of Burkholder [7] in 1984 where the optimal constant is exhibited. See also from the same
author [9][10]. The relation between differentially subordinate martingales and Caldéron-Zygmund
operators is known since Gundy–Varopoulos [19]. Starting with a test function f , martingales
are built using Brownian motion and Poisson extensions in the upper half space R+×Rn.

It is shown that the martingale arising from Rf , where R is a Riesz transform in Rn, is
a martinagle transform of that arising from f . The two form a pair of martingales with dif-
ferential subordination and orthognality. Thus, in the case of Riesz tranforms, the optimal Lp

constants could be recovered using probabilistic methods. One derives martingale inequalities
under hypotheses of strong differential subordination and orthogonality, see Banuelos–Wang [6].

In the case of second order Riesz transforms, the use of heat extensions in the upper half space
instead of Poisson extensions originated in Petermichl-Volberg [20] and was used to prove Lp

estimates for the second order Riesz transforms based on the results of Burkholder in Nazarov–
Volberg [24] as part of their best-at-time estimate for the Beurling-Ahlfors operator, whose
real and imaginary parts themselves are second order Riesz transforms. The sharpness of the
constant for the real part of the Beurling-Alfhors operator is proved using probabilistic methods
in conjunction with a technique by Bourgain in Geiss–Montgomery–Saksman [18]. See also
applications in Banuelos–Baudoin [4]

All these martingale inequalities use special functions found in Pichorides [21], Essén [17],
when orthogonality is present in addition to differential subordination or Burkholder [7][8][9],
when differential subordination is the only hypothesis.

Deterministic proofs of sharp Lp estimates of Caldéron-Zygmund operators that use Burk-
holder’s theorems are available in the literature. The technique of Bellman functions was used
in Nazarov–Volberg [24] for an Lp estimate for certain second order Riesz transforms in the
euclidean plane as well as in the recent version on discrete abelian groups [13].

The aim of the present work is two–fold. On one hand we want to derive a stochastic proof of
the latter result on discrete abelian groups. On the other hand, we want to generalize the estimate
to second order Riesz transforms acting on multiply connected Lie groups, built as the cartesian
product of a discrete abelian group with a connected compact Lie group. Previous works based
on stochastic methods for the analysis of Riesz transforms on connected compact Lie groups are
in Arcozzi [1][2], and sharp Lp estimates were proved in this setting in Banuelos–Baudoin [4]
for second order Riesz transforms. The novelty of this text is the generalization to the multiply
connected setting. In this sense, it is also a generalization of [13], by regarding each point in the
discrete abelain group as a Lie group of dimension zero.
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1.1. Differential operators and Riesz transforms.

First order derivatives and tangent planes. For a general n–dimensional Riemannian mani-
fold M, the tangent plane TyM at a point y ∈M is spanned by a local family of vectors (Y1(y), ...,
Yn(y)). Identifying as usual the vector Yj with the first order derivative Yj= ∂/∂xj, we have for a
real function f defined on M, the gradient written as a column vector of size n:

∇Mf(y) := (∂f/∂y1, ..., ∂f/∂yn)(y)= (Y1f , ..., Ynf)(y)=
∑

j=1

n

Yjf(y) Yj(y) ∈ TyM.

Now for a Lie group G :=Gx×Gy with Gx a discrete group of order m and Gy a connected Lie
group of dimension n we define the tangent plane TzG at a point z = (x, y) ∈ (Gx ×Gy) =G in
three steps.

First, let Gy be a compact Lie group endowed with a biinvariant Riemannian metric and
denote by Gy its Lie algebra. Since Gy is n–dimensional, we can find a family (Yj)j=1,...,n of n

left invariant vector fields that form an orthonormal basis of Gy. If f is a function defined on Gy,
then the partial derivative of f in the direction Yj at point y ∈Gy is

(∂f/∂yj)(y) := (Yjf)(y) := (∂jf)(y)

and the gradient accounting for the infinitesimal variations of f about a point y ∈Gy is as before
the n–column–vector

∇yf(y) := (∂f/∂y1, ..., ∂f/∂yn)(y)= (Y1f , ..., Ynf)(y)=
∑

j=1

n

Yjf(y) Yj(y) ∈ TyGy

Second, the discrete component Gx is of order m and one has m generators Gx= (gi)i=1,...,m.
At any point x∈Gx, and given a direction i∈{1, ...,m}, one has two choices of discrete derivatives
for each generator, namely the right and the left derivatives:

(∂+f/∂xi)(z) := f(xgi, y)− f(x , y) := (∂i
+f)(z)

(∂−f/∂xi)(z) := f(xgi
−1, y)− f(x , y) := (∂i

−f)(z).

Comparing with the continuous component, this suggests that the tangent plane T̂xGx at a point

x of the discrete group Gx is actually composed of the “right” tangent plane Tx
+
Gx and the “left”

tangent plance Tx
−
Gx. We consequently define the augmented discrete gradient ∇̂xf(x) noted with

a hat , as the 2m–vector of T̂xGx := Tx
+
Gx × Tx

−
Gx accounting for all the local variations of the

function f in the direct vicinity of x, that is the 2m–column–vector

∇̂xf(x) := (X1
+f ,X2

+f , ...,X1
−f ,X2

−f , ...)(x)=
∑

i=1

m
∑

τ=±

Xi
τf(x) Xi

τ ∈ T̂xGx.

We noted the discrete derivatives Xi
±f := ∂i

±f and we noted the discrete 2m–vectors Xi
± as the

column vectors of Z2m

Xi
+=(0, ..., 1, ..., 0)×0m, Xi

−=0m× (0, ..., 1, ..., 0),

where the 1’s in Xi
± are located at the i–th position of respectively the first or the second m–tuple.

Notice that those vectors are independent of the point x.

Finally, for a function f defined on the cartesian product G := Gx × Gy, the (augmented)

gradient ∇̂zf(z) at the point z = (x, y) is an element of the tangent plane T̂zG := T̂xGx × TyGy,
that is a (2m+n)–column–vector

∇̂zf(z) :=
(

∇̂xf(z),∇yf(z)
)

=(X1
+f ,X2

+f , ..., X1
−f ,X2

−f , ..., Y1f , Y2f , ...)(z)

=
∑

i=1

m
∑

τ=±

Xi
τf(z) X̂i

τ
+
∑

j=1

n

Yjf(z) Ŷj(z)
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where X̂i
τ
and Ŷj(z) are now column vectors of size (2m+n) with obvious definitions.

Riesz transforms. Following [1][2], recall first that for a general Riemannian manifold M

without boundary, one denotes by ∇M, divM and ∆M :=divM∇M the gradient, the divergence
and the Laplacian associated with M, respectively. Then −∆M is a positive operator and the
vector Riesz transform is defined as the linear operator

RM :=∇M ◦ (−∆M)−1/2

acting on L0
2(M). It follows that if f is a function defined on M and y ∈ M then RMf(y) is a

vector of the tangent plane TyM.

Similarily on M=G, we define ∇M :=∇̂z as before, and then we define the divergence operator

as the formal dual, that is −divM=− divz := ∇̂z
∗
, with respect to the following scalar product of

R
(2m+n):

(

â , b̂
)

L2(R2m+n)
:=

1

2

∑

i=1

m
∑

±

ai
+bi

++
∑

j=1

n

ajbj

where

â := (a1
+, a2

+, ..., a1
−, a2

−, ..., a1, a2, ...)∈R2m+n,

and a similar definition holds for b̂ . The factor one–half is necessary so as to ensure a natural
isometry between vectors of R2m+n and vectors of Rm+n. Thanks to the duality relations (Xi

±)∗=

−Xi
∓ and Yj

∗=−Yj, the divergence operator writes as the (2m+n)–row–vector

∇̂z
∗
f(z) :=

(

1

2
∇̂x

∗
f(z),∇y

∗f(z)

)

= −
1

2

∑

i=1

m
∑

τ=±

Xi
−τf(z) X̂i

τ ,∗
−
∑

j=1

n

Yjf(z) Ŷj
∗
(z)

where X̂i
τ ,∗

and Ŷj
∗
(z) are now row vectors of size (2m + n) that are the transpose of X̂i

τ
and

Ŷj(z) respectively. It follows that the Laplacian −∆G is as expected

−∆zf(z) := ∇̂z
∗
f(z) · ∇̂zf(z)=

1

2
∇̂x

∗
f(z) · ∇̂xf(z)+∇y

∗f(z) ·∇yf(z)

= −
∑

i=1

m

Xi
−Xi

+f(z) −
∑

j=1

n

Yj
2f(z)

= −
∑

i=1

m

Xi
2f(z) −

∑

j=1

n

Yj
2f(z)

=: (−∆xf)(z) + (−∆yf)(z)

where we noted Xi
2 :=Xi

+Xi
−=Xi

−Xi
+. The Riesz vector

(

R̂zf
)

(z) is the (2m+n)–column–vector

of the tangent plane T̂zG defined as the linear operator

R̂zf :=
(

∇̂zf
)

◦ (−∆zf)
−1/2

In particular, we have coordinatewise

Ri
±= ∂i

± ◦ (−∆z)
−1/2 and Rj= ∂j ◦ (−∆z)

−1/2.

1.2. Main results.

In this text, we are concerned with second order Riesz transforms and combinations thereof.
We first define the square Riesz transform in the (discrete) direction i to be

Ri
2 :=Ri

+Ri
−=Ri

−Ri
+.
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Then, given α := ((αi
x)i=1...m, (αjk

y )j,k=1...n) ∈ Cm × Cn×n, we define Rα
2 to be the following

combination of second order Riesz transforms:

Rα
2 :=

∑

i=1

m

αi
xRi

2+
∑

j,k=1

n

αjk
y

RjRk,

where the first sum involves squares of discrete Riesz transforms as defined above, and the second
sum involves products of continuous Riesz transforms. This combination is written in a condensed
manner as the quadratic form

Rα
2 =

〈

R̂z,AαR̂z

〉

where Aα is the (2m+n)× (2m+n) block matrix

Aα :=

(

Aα
x

0

0 Aα
y

)

with

Aα
x =diag(α1

x, ..., αm
x , α1

x, ..., αm
x ) ∈C2m×2m, Aα

y =(αjk
y )j,k=1...n ∈Cn×n.

When p and q are conjugate exponents, let p∗=max {p, q}. Our main results are

Theorem 1. Let G be a Lie group as defined before. Let Rα
2 : Lp(G, C) → Lp(G, C) be a

combination of second order Riesz transforms as defined above. This operator enjoys the estimate

‖Rα
2 ‖6 ‖Aα‖2 (p∗− 1).

The estimate above is sharp when the group G=Gx×Gy and dim (Gy) + dim∞ (Gx)> 2, where
dim∞ (Gx) denotes the number of infinite components of Gx.

Notice that ‖Aα‖2=max (‖Aα
x‖2, ‖Aα

y‖2)=max (|α1
x|, ..., |αm

x |, ‖Aα
y‖2).

In the case where G=Gx only consists of the discrete component, this whas proved in [14][13]
using the deterministic Bellman function technique. In the case where G = Gy is a connected
compact Lie group, this was proved by Banuelos–Baudouin [4] using Brownian motions defined
on manifolds and projections of martingale transforms.

In the case where the function f is real valued, we obtain better estimates involving the Choi

constants. Compare with Banuelos–Osekowski [5] and with [13].

Theorem 2. Assume that aI 6 Aα 6 bI in the sense of quadratic forms, where a, b are real

numbers. Then Rα
2 :Lp(G,R)→Lp(G,R) enjoys the norm estimate ‖Rα

2 ‖p6 Ca,b,p, where these

are the Choi constants.

The Choi constants (see [11]) are not explicit, except C−1,1,p = p∗ − 1. An approximation of
C0,1,p is known and writes as

C0,1,p=
p

2
+

1

2
log

(

1+ e−2

2

)

+
β2

p
+ ...., with β2= log2

(

1+ e−2

2

)

+
1

2
log

(

1+ e−2

2

)

− 2
(

e−2

1+ e−2

)

2
.

1.3. Plan of the paper.

In the next subsection, we recall the weak formulations characterizing the combinations of semi-
discrete second order Riesz transforms we are interested in. Section 2 is devoted to the stochastic
integrals for semi-discrete functions f defined on G, together with their martingale transforms.
Finally, the proofs of the main results are given in Section 3.

1.4. Weak formulations.
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Let f :G→C be given. The heat extension f̃ (t) of f is defined as f̃ (t) := et∆zf =: Ptf . We
have therefore f̃ (0)= f . The aim of this section is to derive weak formulations for the second order
Riesz transforms. We start with the weak formulation of the identity operator I.

Lemma 3. Assume f and g in L0
2(G), then

(If , g) := (f , g)

= 2

∫

0

∞
〈

∇̂zPtf , ∇̂zPtg
〉

L2(G;TG)
dt

= 2

∫

0

∞
∑

z∈G







∑

i=1

m
∑

τ=±

(Xi
τPtf)(z) (Xi

τPtg)(z)+
∑

j=1

n

(YjPtf)(z) (YjPtg)(z)







dt

and the sums and integrals that arise converge absolutely.

Proof. This classical formula can be obtained by observing that dtPt=∆zPt and writing the ODE
satisfied by φ(t) := (Ptf , Ptg). �

In order to pass to the weak formulation for the squares of Riesz transforms, we need the
following hypothesis and commutation properties.

Hypothesis. We assume everywhere in the sequel:

1. The discrete component Gx of the Lie group G is an abelian group

2. The connected component Gy of the Lie group G is a compact Lie group

Lemma 4. (Commutation relations) Assume the Hypothesis above. Then, we have

Yj ◦∆z = ∆z ◦Yj

Xi
τ ◦∆z = ∆z ◦Xi

τ , τ ∈{+,−, 0, 2}

Proof. Since G = Gx × Gy is a cartesian product, we have [Yj , Xi
τ ] = 0 and as a consequence

[Yj ,∆x]=0 and [Xi
τ ,∆y]=0. Moreover [Yj ,∆y]=0 thanks to the existence of a biinvariant metric

on the compact Lie group Gy from which we chose the vector fields Yj. This yields [Yj ,∆z] = 0.
Finally, since Gx is abelian we have [Xi

τ ,∆x] = 0 and therefore [Xi
τ ,∆z] = 0. �

Lemma 5. Assume the Hypothesis and the Commutation lemma above. Assume f and g in L0
2(G) ,

then

(Rα
2f , g) = −2

∫

0

∞
〈

Aα∇̂Ptf , ∇̂Ptg
〉

L2
(

G;T̂G
)dt

= −2

∫

0

∞
∑

z∈G

{

1

2

∑

i=1

m
∑

τ=±

αi
x (Xi

τPtf)(z) (Xi
τPtg)(z)

+
∑

j=1

n

αjk
y (YjPtf)(z) (YkPtg)(z)







dt

and the sums and integrals that arise converge absolutely.

Proof. We apply the previous Lemma to Rα
2f instead of f and we are left with integrands of the

form
〈

∇̂zPtRα
2f , ∇̂zPtg

〉

= 〈(−∆z)PtRα
2f , Ptg〉

=
∑

i,τ

αi
x〈(−∆z)PtRi

2f , Ptg〉+
∑

j,k

αj,k
y 〈(−∆z)PtRjRkf , Ptg〉

=
∑

i,τ

αi
x
〈

(−∆z)PtXi
−(−∆z)

−1/2Xi
+(−∆z)

−1/2f , Ptg
〉

+
∑

j,k

αj,k
y

〈

(−∆z)PtXj(−∆z)
−1/2Xk(−∆z)

−1/2f , Ptg
〉

=
∑

i,τ

αi
x 〈Xi

±Ptf ,Xi
±Ptg〉 +

∑

j,k

αj,k
y 〈XjPtf ,XkPtg〉
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where we used successively the commutation properties of the Laplacian ∆z with the vector fields
and the commutation properties of the vector fields with Pt=et∆z. This yields the desired result. �

2. Stochastic integrals and martingale transforms

In all what follows, we assume that we have a complete probability space (Ω,F ,P) with a càdlàg
(i.e. right continuous left limit) filtration (F t)t>0 of sub-σ–algebras of F . We assume as usual that
F0 contains all events of probability zero. All random walks and martingales are adapted to this
filtration.

We define below a semi-discrete random walk Zt := (X t,Y t)∈Gx×Gy with generator L=∆z.
The jump component X t is built thanks to compound Poisson jump processes on the discrete set
Gx wheras the continuous component Yt involves standard brownian motions on the manifold Gy.
Then, Itô’s formula ensures that semi-discrete “harmonic” functions f : R+ × G → C solving the
backward heat equation (∂t+∆z)f =0 are actually martingales Mt

f := f(t,Zt) for which we define
a class of martingale transforms.

Stochastic integrals on Riemannian manifolds and Itô integral. Following Emery

[15][16], see also Arcozzi [1][2], we define the Brownian motion Yt on Gy, a compact Rieman-
nian manifold, as the process Yt : Ω → (0, T ) × Gy such that for all smooth functions f :
Gy→R, the quantity

f(Y t)− f(Y0)−
1

2

∫

0

t

(∆yf)(Ys) ds=: (Idf)t (1)

is an R–valued continuous martingale. For any adapted continuous process Ψ with values in the
cotangent space T ∗Gy of Gy, if Ψt(ω)∈ TYt(ω)

∗
Gy for all t> 0 and ω ∈Ω, then one can define the

continuous Itô integral IΨ of Ψ as

(IΨ)t :=

∫

0

t

〈Ψs,dYs〉

so that in particular

(Idf)t=

∫

0

t

〈dyf(Ys),dYs〉

The integrand therefore involves the 1–form of Ty
∗
Gy

dyf(y) :=
∑

j

(∂jf)(y) dy
j=

∑

j

(Xjf)(y) Xj
∗

Discrete random walks and jump processes. We define the discrete m–dimensional random
walk X t on the discrete abelian group Gx as a tuple of the form X t=(X t

1, ...,X t
m) where each X t

i,
16 i6m is a compound jump process defined as follows:

i. For any 16 i6m, let N t
i be a càdlàg Poisson process of parameter λ, that is

∀t, P(N t
i=n)=

(λt)n

n!
e−λt

The sequence of instants where jumps occur is noted (Tk
i)k∈N, with the convention T0

i=0.

ii. Let (τk)k∈N be a sequence of independent Bernouilli variables

∀k, P(τk=1)=P(τk=−1)= 1/2

We set

N t=
∑

i=1

m

N t
i
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Almost surely the instants of jumps ((Tk
i)k∈N)i=1,...,m are disjoints. Let (Tk)k∈N = ∪i=1

m (Tk
i)k∈N

the sequence of instants of jumps of N t, and let iNt
(ω) be the index of the coordinate where the

jumps occurs at time t,

dN t=
∑

i=1

m

dN t
i=dN t

iNt

The random walk X t started at X 0∈Gx is the càdlàg compound Poisson process (see e.g. Protter
[23], Privault [22]) defined as

X t(ω) :=X 0+
∑

k=1

Nt

X̂ik(ω)
τk(ω)

where we used an additive notation for the discrete abelian group. In differential form, we have

∀t, dX t= X̂iNt

τNt dN t

Stochastic integrals on discrete groups. We recall for the convenience of the reader the
derivation of stochastic integrals for jump processes. We will emphasize the fact that the cor-
responding Itô’s formula involves the action of a discrete 1–form written in a well-chosen local
coordinate system of the discrete augmented cotangent plane (see details below). Let 16 k 6N t

and let (Tk, ik, τk) be respectively the instant, the axis and the direction of the k–th jump. We set
T0=0. Let f := f(t, x), t∈R+, x∈Gx a function defined on R+×Gx. Then

f(t,X t) = f(t,X t)− f(t,X TNt
)+

∑

k=1

Nt

{f(t,X Tk
)− f(t,X Tk−1

)}

= f(t,X t)− f(t,X TNt
)+

∑

k=1

Nt

{f(t,X Tk
)− f(t,X Tk−

)+ f(t,X Tk−
)− f(t,X Tk−1

)}

=

∫

TNt

t

(∂tf)(s,X s)ds+
∑

k=1

Nt

{

f(t,X Tk
)− f(t,X Tk−

)+

∫

Tk−1

Tk

(∂tf)(s,X s)ds

}

=

∫

0

t

(∂tf)(s,X s)ds+

∫

0

t

(f(s,X s)− f(s,X s−
)) dN s

=

∫

0

t

(∂tf)(s,X s)ds+
∑

i=1

m ∫

0

t

(f(s,X s)− f(s,X s−)) dN s
i

At an instant s=Tk of jump, the integrand in the last term writes as

(f(s,X s)− f(s,X s−)) dN s
i =

(

f
(

s,X s−+ τNs
X̂i

)

− f(s,X s−)
)

dNs
i

= (Xi
τNsf)(X s−

) dN s
i

=
1
2
{(Xi

2f)(X s−
) + τNs

(Xi
0f)(X s−)} dN s

i

where we introduced, for all 16 i6m,

Xi
0 := (Xi

++Xi
−)/2

Xi
2 := (Xi

+−Xi
−)/2.

Notice that, for any given 16 i6m, up to a normalisation factor, the system of coordinate (Xi
2,Xi

0)

is obtained thanks to a rotation of π/4 of the canonical system of coordinate (Xi
+, Xi

−). Finally,

f(t,X t) =

∫

0

t

(∂tf)(s,X s)ds+
1

2

∑

i=1

m ∫

0

t

{(Xi
2f)(X s−) + τNs

(Xi
0f)(X s−

)} dN s
i

=

∫

0

t
{

(∂tf)(s,X s)+
λ

2
(∆xf)(s,X s)

}

ds+

+
1

2

∑

i=1

m ∫

0

t

(Xi
2f)(s,X s−) d(N s

i −λs)+ (Xi
0f)(s,X s−) dX s

i

=

∫

0

t
{

(∂tf)(s,X s)+
λ

2
(∆xf)(s,X s)

}

ds+

∫

0

t
〈

d̂f(s,X s−),dŴs

〉

=:

∫

0

t
{

(∂tf)(s,X s)+
λ

2
(∆xf)(s,X s)

}

ds+
(

I
d̂f
x

)

t
, (2)
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where we set dX s
i := τNs

dN s
i . Here and in the sequel, we take λ=2.

Discrete Itô integral. The stochastic integral above shows that Itô formula (1) for continuous
processes has a discrete counterpart involving stochastic integrals for jump processes, namely we
have the discrete Itô integral

(

I
d̂f
x

)

t
:=

1

2

∑

i=1

m ∫

0

t

(Xi
2f)(s,X s−) d(N s

i −λs)+ (Xi
0f)(s,X s−

) dX s

This has a more intrinsic expression similar to the continuous Itô integral (1). If we regard the
discrete component Gx as a “discrete Riemannian” manifold, then this discrete Itô integral involves
discrete vectors (resp. 1–forms) defined on the augmented discrete tangent (resp. cotangent) space

T̂xGx (resp. T̂x
∗
Gx) of dimension 2m defined as

T̂xGx = span{X1
+,X2

+, ...,X1
−,X2

−, ...}

= span{X1
2,X2

2, ...,X1
0, X2

0, ...}

T̂x
∗
Gx = span{(X1

+)∗, (X2
+)∗, ..., (X1

−)∗, (X2
−)∗, ...}

= span{(X1
2)∗, (X2

2)∗, ..., (X1
0)∗, (X2

0)∗, ...}

Indeed, let dŴs∈ T̂X s
Gx be the vector and d̂f ∈ T̂X s

∗
Gx be the 1–form respectively defined as:

dŴs = d(Ns
1−λs) X1

2+ ...+d(Ns
m−λs) Xm

2 + dXs
1 X1

0+ ...+dXs
m Xm

0

d̂
x
f = X1

2f (X1
2)∗+ ...+Xm

2 f (Xm
2 )∗+X1

0f (X1
0)∗+ ...+Xm

0 f (Xm
0 )∗

We have with these notations
(

I
d̂f
x

)

t
:=

〈

d̂
x
f , dŴs

〉

T̂x
∗
Gx×T̂xGx

where the factor 1/2 is included in the pairing 〈·, ·〉T̂x
∗
Gx×T̂xGx

.

Semi-discrete stochastic integrals. Let finally Zt = (X t, Yt) be a semi-discrete random
walk on the cartesian product G=Gx ×Gy, where X t is the random walk above defined on Gx

with generator ∆x and where Yt is the Brownian motion defined on Gy with generator ∆y. For
f := f(t, z)= f(t,x, y) defined from R+×G onto C, we have easily the stochastic integral involving
both discrete and continuous parts:

f(t,Zt) =

∫

0

t

{(∂tf)(s, Zs)+ (∆zf)(s, Zs)} ds+
(

I
d̂
z
f

)

t

where the semi-discrete Itô integral writes as
(

I
d̂

z
f

)

t
:=

(

I
d̂

x
f

)

t
+(Idyf)t

:=

∫

0

t
〈

d̂xf(s,Zs−),dŴs

〉

T̂Xs

∗
Gx×T̂XsGx

+

∫

0

t

〈dyf(s,Zs−), dYs〉T̂Ys

∗
Gy×T̂YsGy

2.1. Martingale transforms and quadratic covariations.

Martingale transforms. We are interested in martingale transforms allowing us to represent
second order Riesz transforms. Let f(t, z) be a solution to the heat equation ∂t−∆z=0. Fix T >0
and Z0∈G. Then define

∀06 t6T , Mt
T ,Z0,f = f(T − t, Zt).

This is a martingale since f(T − t) solves the backward heat equation ∂t+∆z=0, and we have in
terms of stochastic integrals

Mt
f ,T ,Z0= f(T − t, Zt)= f(T ,Z0)+

∫

0

t
〈

d̂zf(T − s, Zs−
),dZs

〉
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Given Aα the C(2m+n)×(2m+n) matrix defined earlier, we note Mt
α,f ,T ,Z0 the martingale transform

Aα∗Mt
f ,T ,Z0 defined as

Mt
α,f ,T ,Z0 := f(T ,Z0)+

∫

0

t
(

Aα∇̂f(s, Zs−), dZs

)

= f(T ,Z0)+

∫

0

t
〈

d̂zf(T − s, Zs−)Aα
∗ , dZs

〉

where the first integral involves the L2 scalar product on T̂zG × T̂zG and the second integral

involves the duality T̂z
∗
G× T̂zG. In differential form:

dMt
α,f ,T ,Z0 =

(

Aα∇̂f(s, Zs−),dZs

)

=
∑

i=1

m
∑

±

αi
x {(Xi

2f)(T − t, Zt−) d(Nt
i−λt)+ (Xi

0f)(t, Zt−) dXt
i}

+
∑

j=1

n

αj,k
y (Xjf)(T − t, Zt−) dYt

k

Quadratic covariation and subordination. We have the quadratic covariations (see Protter
[23], Dellacherie–Meyer [12], or Privault [22])

d[N i−λt,N i−λt]t = dN t
i

d[N i−λt,X i]t = τNt
dN t

i

d[X i,X i]t = dN t
i

d[Y j ,Y j]t = dt,

the other quadratic covariations being zero. For any two martingales Mt
f and Mt

g defined as above
thanks to their respective heat extensions Ptf et Ptg, we have the quadratic covariations

d[M f ,M g]t =
∑

i=1

m

(Xi
2f)(T − t,Zt−) (Xi

2g)(T − t,Zt−) d[N
i−λt,N i−λt]t

+
∑

i=1

m

(Xi
0f)(T − t,Zt−) (Xi

0g)(T − t,Zt−) d[X
i,X i]t

+
∑

i=1

m

(Xi
2f)(T − t,Zt−) (Xi

0g)(T − t,Zt−) d[N
i−λt,X i]t

+
∑

i=1

m

(Xi
0f)(T − t,Zt−) (Xi

2g)(T − t,Zt−) d[X
i,N i−λt]t

+
∑

j=1

n

(Xjf)(T − t,Zt−) (Xjg)(T − t,Zt−) d[Y
j ,Y j]t

=
∑

i=1

m

{ (Xi
+f) (Xi

+g)(T − t,Zt−) 1(τNt
=1)

+ (Xi
−f) (Xi

−g)(T − t,Zt−) 1(τNt
=−1) } dN t

i

+(∇yf ,∇yg)(T − t,Zt−) dt

Differential subordination. Following Wang [25], given two adapted càdlàg Hilbert valued
martingales Xt and Yt, we say that Yt is differentially subordinate by quadratic variation to Xt if
|Y0|H6 |X0|H and [Y , Y ]t − [X,X ]t is nondecreasing nonnegative for all t. As a consequence, the
estimate

d[Mα,f ,Mα,f]t =
∑

i=1

m

|αi
x|2 { (Xi

+f)2(T − t,Zt−) 1(τNt
=1)

+ (Xi
−f)2(T − t,Zt−) 1(τNt

=−1) } dN t
i

+(Aα
y
∇yf ,Aα

y
∇yf)(T − t,Zt−) dt

6
∥

∥Âα

∥

∥

2
2 d[M f ,M f]t (3)
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shows that the martingale transform Yt :=Mt
α is differentially subordinate (by quadratic variation)

to the martingale Xt :=
∥

∥Âα

∥

∥

2
Mt

f. The following result of Wang [25]:

Theorem 6. (Wang, 1995) Let Xt and Yt be two adapted càdlàg Hilbert–valued martingales such

that Yt is differentially subordinate by quadratic covariation to Xt For 1< p<∞,

‖Yt‖p6 (p∗− 1)‖Xt‖p

and the constant p∗− 1 is best possible. Strict inequality holds when 0< ‖X‖p<∞ and p=/ 2,

implies in our situation that

Lemma 7. Let Mt
f
and Mt

α,f
as defined above. We have

∀t,
∥

∥Mt
α,f

∥

∥

p
6
∥

∥Âα

∥

∥

2 (p∗− 1)
∥

∥Mt
f
∥

∥

p
.

3. Proofs of the main results

Proof. (of Theorem 1) The proof uses the well-known connection between martingale transforms
and singular operators, through the use of projection operators. We refer to Gundy–Varopoulos
[19] as well as [3][4]. Following the same strategy, the random trajectories (Bt)−T6t60 defined on
the band [−T , 0]×G by

Bt := (−t,Zt), B−∞=(T ,Z−T), −T 6 t6 0, Z−T ∈G

are replaced by random trajectories (Bt)−∞6t60 defined on the upper half space R+×G

Bt := (−t,Zt), B−∞=(∞,Z−∞), −∞6 t6 0, Z−∞∈G.

The latter are therefore trajectories starting at time t = −∞ from a point Z−∞ ∈ G chosen at
random uniformly, and finishing at time t = 0, when hitting the boundary G of the upper half

space. If f(t)=Ptf is as in the previous section, then Mt
f = f(Bt), −∞6 t6 0 is a martingale and

Mt
α,f its martingale transform as defined previously. The Gundy-Varopoulos approach adapted

to second order Riesz transforms – see also [4] yields the projection operator T α defined as

∀z ∈G, (T αf)(z) :=
(

M0
α,f

∣

∣ Z0= z
)

,

so that using quadratic covariations as above, one observes that

∀g, (T αf , g)=−2

∫

0

∞
〈

Aα∇̂Ptf , ∇̂Ptg
〉

L2
(

G;T̂G
)dt.

Thanks to Lemma 5, this means T α = Rα
2 . Thanks to Wang’s result [25] (see Theorem 6 and

Lemma 7 above) we have easily

‖Rα
2f ‖p= ‖T αf ‖p6 ‖Aα‖2 (p∗− 1) ‖f ‖p,

which concludes the proof of Theorem 1. �

The proof of Theorem 2 follows exactly the same procedure. Recall Choi’s result [11] for discrete
martingales.

Theorem 8. (Choi, 1992) Let (Ω, (F)n∈N,P) a probability space and Xn an adapted real valued

martingale. Let (αn)n∈N be a predictable sequence taking values in [0, 1]. Let Y := α∗X be the

martingale transform of X defined for almost all ω ∈Ω as

Y0(ω)=X0(ω), and (Yn+1−Yn)(ω)=αn (Xn+1−Xn)(ω).

10 Sharp Lp estimates for second order Riesz transforms on multiply–connected Lie groups



Then there exists a constant Cp depending only on p such that ‖Y ‖p6 Cp‖X‖p and the estimate

is best possible.

The previous result from Choi is only for discrete martingales. For continuous-in-time martin-
gales, we invoke Theorem 1.6 from the paper [5], namely

Lemma 9. (Banuelos–Osekowski, 2012) Let Xt and Yt be two real-valued martingales satis-

fying

d

[

Y −
a+ b

2
X,Y −

a+ b

2
X

]

t

6 d

[

b− a

2
X,

b− a

2
X

]

t

for all t> 0. Then for all 1< p<∞, we have ‖Y ‖p6Cp‖X‖p.

Proof. (of Theorem 2) The result is now a corollary of Lemma 9 above with Xt = Mt
f and

Yt = Mt
α,f. It is not difficult to prove that the difference of quadratic variations above writes in

terms of a jump part and a continuous part as

d

[

Y −
a+ b

2
X, Y −

a+ b

2
X

]

t

− d

[

b− a

2
X,

b− a

2
X

]

t

=
∑

i=1

m
∑

±

(αi
x− a)(αi

x− b) (Xi
±f)2(Bt) 1(τNt

=±1) dN t
i

+ 〈(Aα
y − aI)(Aα

y − bI) ∇yf(Bt) , ∇yf(Bt)〉 dt,

which is nonpositive since we assumed aI 6Aα6 bI . This proves the result. �
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