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ABSTRACT 

We investigated the use of output from Bayesian stable isotope mixing models as 

constraints for a linear inverse food web model of a temperate intertidal seagrass system 

in the Marennes-Oléron Bay, France.  Linear inverse modeling (LIM) is a technique that 

estimates a complete network of flows in an under-determined system using a 

combination of site-specific data and relevant literature data.  This estimation of complete 

flow networks of food webs in marine ecosystems is becoming more recognized for its 

utility in understanding ecosystem functioning.  However, diets and consumption rates of 

organisms are often difficult or impossible to accurately and reliably measure in the field, 

resulting in a large amount of uncertainty in the magnitude of consumption flows and 

resource partitioning in ecosystems.  In order to address this issue, this study utilized 

stable isotope data to help aid in estimating these unknown flows.  δ13C and δ15N isotope 

data of consumers and producers in the Marennes-Oléron seagrass system was used in 

Bayesian mixing models.  The output of these mixing models was then translated as 

inequality constraints (minimum and maximum of relative diet contributions) into an 

inverse analysis model of the seagrass ecosystem.  We hypothesized that incorporating 

the diet information gained from the stable isotope mixing models would result in a more 

constrained food web model.  In order to test this, two inverse food web models were 

built to track the flow of carbon through the seagrass food web on an annual basis, with 

units of mg C m-2 d-1.  The first model (Traditional LIM) included all available data, with 

the exception of the diet constraints formed from the stable isotope mixing models.  The 

second model (Isotope LIM) was identical to the Traditional LIM, but included the SIAR 

diet constraints.  Both models were identical in structure, and intended to model the same 
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Marennes-Oléron intertidal seagrass bed.  Each model consisted of 27 compartments (24 

living, 3 detrital) and 175 flows.  Comparisons between the outputs of the models showed 

the addition of the SIAR-derived isotopic diet constraints further constrained the solution 

range of all food web flows on average by 26%.  Flows that were directly affected by an 

isotopic diet constraint were 45% further constrained on average.  These results 

confirmed our hypothesis that incorporation of the isotope information would result in a 

more constrained food web model, and demonstrated the benefit of utilizing multi-tracer 

stable isotope information in ecosystem models.  

 

Keywords: Ecological model; Stable isotope; Inverse analysis; Food web; Seagrass 

 

1. INTRODUCTION 

Current ecological questions are often complex in nature, requiring a holistic 

perspective in order to adequately address the multitude of variables and relationships.  

There is thus an ever-increasing pressure on ecologists to address these questions at the 

ecosystem scale.  Quantitative food web models, representing partial or whole ecosystem 

flux networks, are a promising methodology to address ecological questions (Christian et 

al., 2009; Leslie and McLeod, 2007).  These models are able to simultaneously explore 

effects of environmental changes on ecosystem structure and function, as well as 

emergent properties such as system dependencies, recycling, and efficiencies (Niquil et 

al., 2012).  Banašek-Richter et al. (2004) showed that ecosystem descriptors based on 

quantified systems models are more accurate than their qualitative counterparts.  

Estimation of complete flux networks of food webs in marine ecosystems is recognized 
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for its utility to understand ecosystem functioning (Niquil et al., 2012).   However, many 

components of ecosystem models are understood conceptually, but difficult or impossible 

to measure in the field, and therefore must be estimated (Niquil et al., 1998; van Oevelen 

et al., 2010; Vezina and Platt, 1988).  

Inverse analysis is a powerful quantitative modeling method for estimating 

unmeasured components in ecosystem structures (Legendre and Niquil, 2012) and has 

been widely used for this reason in food web modeling (Breed et al., 2004; Daniels et al., 

2006; Degré et al., 2006; Donali et al., 1999; Eldridge et al., 2005; Eldridge and Jackson, 

1993; Grami et al., 2008; 2011; Jackson and Eldridge, 1992; Kones et al., 2009; 

Leguerrier et al., 2007; 2003; Niquil et al., 1998; 2006).  It has become commonly 

referred to as Linear Inverse Modeling (LIM). Similarly to ECOPATH with ECOSIM 

(Christensen and Pauly, 1992; Pauly, 2000; Walters et al., 1997), LIM produces a static, 

mass-balanced, temporally integrated snapshot of the complete food web.  Recent 

methodological advances have resulted in moving from models being solved with a 

single objective function (frequently a minimization function, (Vezina and Platt, 1988); 

Legendre and Niquil, 2012), to utilizing stochastic Markov Chain Monte Carlo methods 

to produce probability distributions of model results (LIM-MCMC) (Kones et al., 2009; 

2006; Van den Meersche et al., 2009; van Oevelen et al., 2010).  This technique avoids 

underestimates in both the size and complexity of the modeled food web as a result of the 

parsimony principle (Johnson et al., 2009; Kones et al., 2006).  A more thorough review 

on the subject is covered by Niquil et al. (2012). Few applied studies have made use of 

recent methodological advances in this field, despite the relevance to informing 
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conservation and environmental management decisions (Christian et al., 2009);Jorgensen 

2007). 

 Stable isotopes are commonly used to study trophodynamics in ecosystems.  

Stable isotope analyses allow determination of food sources actually assimilated in the 

tissues of consumers over time, properly reflecting their trophodynamics depending on 

food source availability (Fry, 2006).  Consumption rates are often difficult or impossible 

to accurately measure in the field, especially for smaller organisms, resulting in a large 

uncertainty in the magnitude of consumption flows and trophic resource partitioning in 

ecosystem models.  Stable isotope data can be utilized to estimate these unmeasured 

flows (Navarro et al., 2011; van Oevelen et al., 2010).  While the use of stable isotopes in 

diet studies has become standard practice (Moore and Semmens, 2008; Post, 2002), the 

integration of stable isotope data with whole food web network models has not been 

utilized frequently (Baeta et al., 2011; Navarro et al., 2011).  The merits of this technique 

have been discussed recently in the literature (Navarro et al., 2011; van Oevelen et al., 

2010).  

Until now, only one stable isotopic marker (δ13C or δ15N) at a time has been 

incorporated into inverse analysis models (Eldridge et al., 2005; Jackson and Eldridge, 

1992; Oevelen et al., 2010; van Oevelen et al., 2006).  Using two or more isotopic 

markers significantly increases model structure complexity and greatly increases model 

run time.  This problem is compounded in situations where Monte Carlo methods are 

used to run the inverse analysis thousands of times (Kones et al., 2009; Niquil et al., 

2012; van Oevelen et al., 2010).  This has significant implications when attempting to 
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add stable isotope information into food web models solved using the new Linear Inverse 

Model-Markov Chain Monte Carlo techniques (Kones et al., 2009; Niquil et al., 2012). 

  Therefore, the goal of this study was to find a way to incorporate information 

from multiple stable isotope elements (i.e., 13C, 15N, etc.) into food web models using the 

LIM-MCMC technique, with minimum added complexity.  In order to do this, we used 

the R package SIAR (Parnell et al., 2010) to analyze Bayesian mixing models using δ13C 

and δ15N data to estimate food source distributions of the compartments in an inverse 

food web model of an intertidal seagrass bed.  This information was then integrated into 

the LIM-MCMC food web model.  Results of this model were compared with a 

corresponding model of the same system that excluded the isotope information obtained 

with the SIAR mixing models.  We hypothesized that incorporating the food source 

information gained from the stable isotope information into the LIM-MCMC model 

would result in a significantly more constrained food web model, with reduced 

uncertainty associated with each flow. 

 

2. METHODS 

2.1 Marennes-Oléron Bay study site and model data 

The seagrass system studied was an intertial Zostera noltii meadow located in 

Marennes-Oléron Bay, on the Atlantic coast of France (45°54’N, 1°12’W) (Figure 1).  

This is a semi-enclosed, macrotidal bay, which receives freshwater inputs from the 

Charente River (15-500 m3 s-1) (Ravail-Legrand et al., 1988).  The seagrass bed studied 

extends for 15km along the eastern shore of Oléron Island, and is 1.5km at its widest.   
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Primary producer biomass, benthic consumer biomass, and stable isotope data 

used in this model were obtained from (Lebreton et al., 2012; 2009).  Sampling was 

conducted at two stations (a high flat station and a low flat station) in 2006 and 2007 

(Figure 1) and the results were averaged (Table 1). Each station was a homogeneous area 

of 100 m2 parallel to the coastline, about 250 m from the upper and lower limits of the 

seagrass bed, respectively.  The stations were each broken up into 100 plots of 1 m2 for 

sampling.  Both sampling sites were exposed at every low tide, with the higher in 

elevation of the two sites being exposed for 5 hours longer on average (Lebreton et al., 

2009).  Average emersion times on the seagrass bed were computed for this study using 

bathymetric data and tidal measurements, and those processes (i.e., phytoplankton 

production, bird grazing, zooplankton grazing, etc.) affected by the tidal cycle were 

scaled accordingly in the food web model.  

 

2.2 Linear Inverse Model (LIM-MCMC) formulation 

Two inverse food web models were built to track the flow of carbon through the 

seagrass food web on an annual basis, with units of mgC m-2 d-1.  The first model 

(Traditional LIM) included all available data, with the exception of the diet constraints 

formed from the stable isotope mixing models.  The second LIM (Isotope LIM) was 

identical to the Traditional LIM, but included the SIAR diet constraints.  Both models 

were identical in structure, and intended to model the same Marennes-Oleron intertidal 

seagrass bed. 

First, an a priori topological model was formulated of the food web based on 

local expert knowledge and previous studies (Leguerrier et al., 2003; 2004), defining the 
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compartments and all probable connections between them.  All macrofaunal species 

sampled in the system were included which had a biomass of at least 0.05 g ash-free dry 

weight m-2.  This biomass threshold value resulted in 96.5% of the total measured 

biomass during sampling being included in the inverse food web model.  The benthic and 

pelagic fauna of the system were parsed into compartments based on similarity of 

species-specific characteristics such as taxonomy, habitat, known feeding habits, known 

predators, and stable isotope (δ13C and δ15N) values.  Priority was placed on aggregating 

species into the compartments in such a way so as to balance between maintaining the 

true trophic complexity of the ecosystem versus the need to keep the model simple 

enough that solutions could be produced in a timely manner.  As the complexity of the 

model scales exponentially with the number of compartments, some aggregation was 

necessary.  However, loss in precision of stable isotope data due to aggregation of species 

with dissimilar signatures was considered to be undesirable for the mixing models, and 

was therefore avoided. Previous studies found that a priori model aggregation at low 

trophic levels has a greater effect on inverse model results than does aggregation of 

higher trophic levels (Johnson et al., 2009).  In light of these results, primary producers, 

bacteria, and non-living carbon pools (e.g., dissolved organic carbon) were each given 

their own compartment.  The resulting a priori food web model consisted of 26 

compartments (23 living, 3 detrital) (Table 1) and 175 flows among compartments (Table 

2). 

The Traditional LIM and Isotope LIM were run using a Matlab routine that was a 

translation of  the R packages limSolve and xsample (Kones et al., 2009; Van den 

Meersche et al., 2009; van Oevelen et al., 2010).  The routine uses a Markov Chain 
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Monte Carlo (MCMC) algorithm to sample the LIM solution space using random jumps 

of a user-defined length.  A “mirror” algorithm within the Matlab program creates a set of 

hyperplanes that form a convex solution space based on the equality and inequality 

constraints, out of which the sampling procedure cannot exit (Van den Meersche et al., 

2009).  These hyperplanes act as mirrors, which the random jumps are reflected by, and 

that ensure the samples are always taken from within the LIM feasible solution space.  

This procedure reduces the number of iterations required to fully characterize the solution 

space when compared with a solution procedure whose searching is not constrained to 

within the feasible solution space, as all samples of the mirror algorithm procedure are 

feasible solutions.  Adequate sampling of the solution space and convergence was 

ensured through visual inspection of the sampling and results for each flow of the food 

web model.  Note that the models were solved using the LIM-MCMC technique as 

described above, but will be referred to as the Traditional LIM and Isotope LIM for 

simplicity. 

 

2.3 Stable isotope mixing models 

The analytical precision of the stable isotope measurements was <0.15‰ and 

<0.2‰ for δ13C and δ15N values, respectively (Lebreton et al., 2012). Trophic 

enrichment factors used were 0.5‰ +/- 0.5 for δ13C and 2.5‰ +/- 1.0 for δ15N (Vander 

Zanden and Rasmussen, 2001)(Vander Zanden and Rasmussen, 2001).   

The SIAR isotopic mixing model (Parnell et al., 2010) was used to characterize 

the proportions of food sources used by the consumers in the seagrass bed.  SIAR is an 

open-source R package that uses Bayesian inference to address natural variation and 
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uncertainty of stable isotope data in order to generate probability distributions of food 

source contributions as percentages of the total diet. SIAR allows for multiple dietary 

sources, incorporates variability in source, consumer and trophic enrichment factors. As a 

result, output probability estimates reflect uncertainties in the data better than previous 

mixing models (Parnell et al., 2010; Phillips and Gregg, 2003; 2001; Phillips et al., 2005).   

A critical assumption of isotope mixing models is that all food sources are included in the 

analysis.  Excluding a food source will bias the apparent proportions of the other sources 

that were included in the analysis, and may yield a diet with apparent food source 

proportions inconsistent with the observed isotopic composition of the consumer (Parnell 

et al., 2012; Phillips, 2012).  In order to meet this assumption, SIAR mixing models were 

only run for those LIM compartments whose food sources all had both δ13C and δ15N 

values. Models were not run for those LIM compartments whose food sources were not 

all described by both δ13C and δ15N data.  For example, because the fish in the seagrass 

bed are known to be transitory, it cannot be assumed that all of their food sources are 

described by isotope data only collected from the within the seagrass bed.  SIAR mixing 

models were therefore not run for this compartment.  Of the 20 heterotrophic 

compartments in the LIM for which mixing models could potentially be used, 12 

compartments met the assumptions required for a SIAR model to be run (Table 2).  The 

5% and 95% credible bounds of the generated probability density functions (PDF), 

expressed as percent contribution to the mixture for each food source, were recorded and 

used as input to the inverse model, as explained below. Credible intervals are used in 

Bayesian statistics to define the domain of a posteriori probability distribution used for 

interval estimation (e.g., if the 0.90 CI of a contribution value ranges from A to B, it 
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means that there is a 90 % chance that the contribution value lies between A and B) 

(Lebreton et al., 2012). 

 

 

2.3 Incorporation of mixing model data into the food web model 

 The 5% and 95% credible bounds of the PDF for each food source were used as 

lower and upper bounds, respectively, to constrain the relative contributions of each food 

source to the 12 consumer compartments modeled using SIAR.  In order to be 

incorporated into the food web model, these lower and upper bounds were transformed 

into linear inequalities of the form: 

 

lower bound:  Ci,j  - l *∑C.,j ≥ 0 

upper bound:  h*∑C.,j - Ci,j   ≥ 0 

 

where, Ci,j  is the flow of carbon from source i to consumer j, ∑C.,j is the sum of all source 

flows to consumer j, l is the 5% credible bound for % mixture contribution, and h is the 

95% credible bound for % mixture contribution.  Using this methodology, if consumer j 

had three potential food sources, six inequalities were entered into the food web model to 

describe consumer j’s diet.  Note that while the food web model used carbon as the 

currency for mass flow, and these isotopic inequalities were written following this form, 

the values were informed by both δ13C and δ15N data via the SIAR modeling process.   

 

2.4 Investigating effects of isotopic constraints on the food web model 
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 Two versions of the food web model were created to investigate the effects of 

using isotopic constraints on the estimated mass flows among compartments within the 

food web.  A first model (Traditional LIM) was built using all available data except the 

isotopic constraints.  The second model (Isotope LIM) was identical to the first model, 

but included the SIAR-derived isotopic constraints. Each model was run for 50,000 

solutions using the LIM-MCMC technique, and convergence to the marginal probability 

density function (mPDF) for individual flows was verified for both models.  Non-

convergence manifests itself as a drift in the mPDF with increased iterations (Kones et 

al., 2009).   

Network indices were calculated for both food web models following the 

techniques of ecological network analysis (ENA) (Baird et al., 2009; Christian et al., 

2009; Ulanowicz, 2004).  These indices describe ecosystem network properties, 

interactions, and emergent properties of the system that are not otherwise directly 

observable (Fath et al., 2007).  Indices computed were total system throughput, average 

path length, internal ascendency, internal development capacity, ascendency, 

development capacity, Finn cycling index and the comprehensive cycling index (Baird et 

al., 2004; Ulanowicz, 2004).  

  

3. RESULTS 

3.1 SIAR mixing models 

 SIAR mixing models for the 12 consumer compartments whose food sources 

were fully described with δ13C and δ15N data resulted in probability distributions of food 

source proportions for each compartment.  The 5% and 95% credible bounds for each 
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potential food source were used as lower and upper bounds of relative contribution to the 

consumer diet.  These resulting 90% credible intervals used in the LIM-MCMC are 

shown in Table 2.   

 

3.2 Effects of isotopic constraints on the food web model 

  Sixty-four of the 175 flows in the Isotope LIM were constrained using SIAR-

derived dietary constraints. The mean value for each flow and the corresponding 90% 

interquantile range (95% credible interval value – 5% credible interval value) are 

presented in Table 3.  Seventy-nine (45%) and 43 (24%) of the means for the 175 flows 

were different between the Isotope and the Traditional LIMs by at least 10% and 25%, 

respectively (Table 3).  Of the 64 flows which were constrained with SIAR-derived 

dietary constraints, 50 had their means change by at least 10%, and 31 had their means 

change by at least 25%.  On average, all flows had a 23% absolute mean difference for 

the Isotope LIM in comparison with the Traditional; similarly the 90% interquantile 

ranges of the flows were reduced by 26% for the Isotope LIM in comparison with the 

Traditional LIM (Table 4).   Flows constrained in the Isotope LIM using SIAR-derived 

diet constraints had, on average, a 42% absolute mean difference in comparison with the 

corresponding Traditional LIM flows, and their 90% interquantile ranges were reduced 

45%.  Additionally, the remaining 111 flows (those that were not directly constrained 

with SIAR-derived diet constraints in the Isotope LIM) had, on average, a 12% absolute 

mean difference, and 90% interquantile ranges were reduced by 15% on average. 

 All network indices (total system throughput, average path length, internal 

ascendency, internal development capacity, ascendency, development capacity, Finn 
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cycling index and comprehensive cycling index) calculated from the Traditional and 

Isotope LIMs had small differences in their means (Table 5). Changes in the 90% 

interquantile ranges with the addition of the SIAR-derived isotope constraints in the 

Isotope LIM were small when compared with the Traditional LIM (Table 5).  

 

4. DISCUSSION 

4.1 Comparison of single flows and integrative indices between LIMs  

Both individual flows and integrative indices as calculated from ENA parameters 

were changed as a result of the addition of the SIAR-derived dietary constraints in the 

Isotope LIM.  However, the comparison of the ENA indices showed smaller differences 

in the means, uncertainty (90% interquantile ranges), and marginal probability 

distributions between the Traditional and Isotope LIMs when compared to those 

differences between individual flows.  This agrees with the findings of Kones et al. 

(2009), who found that whole network indices are better constrained and more robust 

than the food webs from which they are calculated.  Differences between the two models 

were more apparent when looking at the individual flow level as compared to a more 

aggregate, whole system measure (i.e., ENA indices).  This suggests that the integration 

of the stable isotope data has the largest effect when looking at specific flows within the 

food web.  Linear inverse models are most often utilized to quantify systems with a large 

number of unknown flows and data deficiencies.  The fact that the integrative indices 

calculated from the Traditional and Isotope LIMs show small differences suggests that 

the LIM-MCMC technique is a robust method for assessing whole-ecosystem properties, 

even in the absence of site-specific stable isotope data.   
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Generally, the largest differences seen between the Traditional and Isotope LIMs 

were in those flows which were directly constrained by SIAR-derived diet constraints 

(Table 4).  However, flows not directly constrained with isotope data were still affected, 

as evidenced by the reduced uncertainty and changes in means.  This demonstrates the 

interconnected nature of the food web, as well as how constraining some flows with 

isotope data can have widespread effects on reducing uncertainty in LIM-MCMC models. 

 

4.2 Integration of stable isotope data in food web models 

The goal of this study was to find a way to incorporate information from multiple 

stable isotope elements (i.e., 13C, 15N, etc.) into food web models using the LIM-MCMC 

technique, with minimum added complexity.  The technique of using SIAR-derived food 

source contribution constraints successfully integrated δ13C and δ15N information into the 

LIM-MCMC models.  Analysis of LIM-MCMC output showed the Isotope LIM to be 

significantly different, as well as significantly more precise, than the Traditional LIM.  

Thus, the integration of δ13C and δ15N data into the food web model through isotope 

mixing model diet constraints succeeded in reducing the uncertainty of the food web 

model solution.  Van Oevelen et al. (2006) found, similarly, that inclusion of δ13C data 

significantly constrained a conventional LIM of a benthic intertidal flat food web.  This 

study builds on this finding by simultaneously including stable isotope information from 

two markers (δ13C and δ15N), as well as using stochastic techniques to fully describe the 

food web model solution space and associated uncertainty.   

 The use of the SIAR mixing models allowed for incorporation of uncertainty in 

both the measured stable isotope values, as well as the fractionation factors.  
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Incorporating the 90% credible intervals from the mixing models into the LIM-MCMC in 

the form of inequalities agrees well with conventional practices for building linear 

inverse models and is relatively simple to do,  but comes at the cost of losing information 

regarding the tails of the marginal posterior distributions.  Future models may choose to 

incorporate this information in a similar fashion to Hosack and Eldridge (2009), though 

this would add significant complexity.  This methodology allows for data from multiple 

isotopic markers to be used in order to estimate contributions from all likely food sources 

to each consumer.  It is well established that a multiple marker approach (δ13C and δ15N) 

is significantly more informative when estimating diet contributions when compared to a 

single marker (δ13C or δ15N) (Parnell et al., 2012; Phillips, 2012).  Due to this, use of 

stable isotope mixing models in ecosystem-level food web studies can be advantageous 

for quantifying consumption flows.  These same food web flows are often the most 

difficult to directly observe and measure as well, making isotopic mixing models a 

powerful tool for coupling with ecosystem-level food web models.     This study used 

only two isotopic markers (δ13C and δ15N), as this was the only data available at the time, 

although the SIAR mixing models allow for incorporation of more than two (Parnell et 

al., 2010).  However, use of isotopic mixing models utilizing more than three markers 

becomes problematic, as it is difficult to determine the model fit and visualize the mixing 

space (this would require > three dimensions) (Parnell et al., 2012).  

Additionally, the use of the stable isotope mixing models helped validate the a 

priori food web model by verifying that the consumer diet networks were possible, and 

not missing a potential food source as indicated by the isotope data.  While no statistical 

test exists for missing food sources (Parnell et al., 2012), visualization of the iso-space 
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for food web compartments is a tool that ecologists can use to identify probable predator-

prey relationships.  As mentioned, multiple isotopic markers help to better elucidate these 

relationships.   Perhaps most importantly, though, is the fact that the stable isotope data 

specifically constrain consumption flows, which are often the most difficult to obtain 

reliable data on.  This difficulty in obtaining reliable data leads to many ecosystem 

network models using diet data not specific to the study site of interest, such as from 

databases like FishBase (www.fishbase.org) (Coll et al., 2011).  This can be a dangerous 

practice, as it has been shown that there can be considerable inter-site variability in the 

diet of members of the same species.  We recommend the use of local diet information in 

the construction of food web models, as can be provided by mixing models utilizing site-

specific stable isotope markers.  It is important to note that stable isotope data obtained 

from the literature or other sites is not useful when building a food web model, as values 

are site-specific and only comparable within the site and appropriate temporal period 

from which the stable isotope samples were gathered.   

 

4.3 Effects of SIAR-derived food source constraints on the modeled food web 

Integration of mixing model constraints into LIM-MCMC models address an 

obvious weakness of stable isotope mixing models: current commonly used mixing 

models do not take into account the availability of food sources (Parnell et al., 2010; 

Phillips and Gregg, 2003; Semmens et al., 2009).  Mixture partitioning is dictated purely 

by the stable isotope signatures of the consumer and food sources, regardless of whether 

or not there are enough of those food sources in the system to support the level of 

consumption suggested by the mixing model.  The LIM-MCMC model deals with this 
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issue through mass balance of each compartment, and incorporating field-measured 

biomass estimates for each compartment into the model.  This constrains the biomass of 

each compartment in the model, and therefore the amount available for consumption. 

While a simple concept, this is nonetheless an important attribute of ecosystem models, 

and an example of how the combination of isotope mixing models with inverse food web 

models is quite beneficial.   

The use of the Markov-Chain Monte Carlo method (van Oevelen et al., 2010) to 

solve the models enabled the statistical comparison to be done between the Traditional 

and Isotope models.  Previous techniques, which relied on minimization of an objective 

function to choose one answer for a model, did not allow for statistically rigorous 

comparisons between models (Vezina and Platt, 1988).  Comparison of the mPDFs of 

each flow allowed for utilization of all solution data from the models, as well as taking 

into account the uncertainty associated with each flow.  The same concept applied to the 

comparisons of the ENA indices.  The LIM-MCMC technique also allows for the 

repeatability of model solutions, which is imperative for future comparative ecosystem 

studies.   
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Table 1. Food web compartments, along with their biomasses and stable isotope values 

used in the Traditional and Isotope LIMs. 

Compartment 
Compartment 

abbreviation 
Biomass (mgC m

-2
) 

δ
13

C 

mean 

δ
13

C 

SD 

δ
15

N 

mean 

δ
15

N 

SD 

AUTOTROPHS            

Microphytobenthos mpb 9,250 -14.00 1.07 5.68 1.29 

Zostera noltii zos 6,133 -10.98 1.06 8.46 1.53 

Phytoplankton phy 254.5 -23.70 2.37 4.90 0.49 

DETRITUS            

Dissolved Organic 

Carbon 
doc 

1,850 - - - - 

Sediment Organic Matter som 27,560 -19.00 0.92 5.80 1.08 

Particulate Organic 

Matter 
pom 

1,044 -21.09 2.84 5.80 1.08 

HETEROTROPHS            

Benthic Bacteria bba 4,718 - - - - 

Pelagic Bacteria pba 157.3 - - - - 

Zooplankton zoo 160.0 -24.35 2.43 7.39 0.74 

Hydrobia ulvae hyd 3,752 -12.02 1.03 9.73 0.64 

Nematodes nem 2,748 -12.83 0.61 9.80 0.73 

Tapes spp tap 844.1 -16.94 1.79 9.15 0.79 

Cerastoderma edule cer 352.5 -16.99 1.19 9.83 0.97 

Copepods cop 359.0 -15.45 1.10 7.80 0.42 

Gastropod grazers gas 325.0 -11.50 1.11 10.18 1.29 

Scrobicularia plana scr 258.3 -14.28 0.71 9.98 1.06 

Mytilus galoprovincialis myt 127.1 -18.14 1.86 9.47 0.75 

Abra spp abr 69.59 -13.52 1.07 11.47 1.91 

Macoma balthica mac 48.31 -13.38 0.53 11.07 2.23 

Cerebratulus marginatus ceb 14.22 -14.67 2.24 10.00 0.42 

Carcinus maenas car 25.96 -12.58 0.82 11.44 0.46 

Crangon crangon cra 10.66 -12.99 1.02 12.92 0.59 

Notomastus latericeus not 18.10 -13.87 1.16 13.10 2.18 

Arenicola marina are 11.15 -13.68 0.58 11.31 0.14 

Fish fsh 195.0 -15.11 3.29 13.08 2.14 

Birds brd 7.00 - - - - 

 



Table 2. SIAR-derived dietary contribution matrix.  Lower and upper bounds of the 90% credible intervals are given, with consumers 

by row and prey items by column. Values are in units of percent contribution to total diet. 
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Abra spp 0-60 21-69 
                       

9-45 

Carcinus 
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0-8 0-13 0-13 

  
0-10 0-13 0-15 0-13 0-10 0-21 0-20 0-14 0-10 0-18 0-11 0-14 0-11 
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0-40 1-54 

Cerebratulus 

marginatus 
1-37 0-30 
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0-35 
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Crangon 

crangon      
0-8 0-13 0-13 

 
0-14 0-12 0-14 0-17 
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Scrobicularia 

plana 
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Tapes spp 39-65 
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Mytilus 

galoprovincialis 
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Hydrobia ulvae 12-53 34-70 
 

0-24 
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Gastropod 

grazers 
21-34 59-83 
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Arenicola 

marina 
0-41 21-60 
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Copepods 38-98 
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Table 3. Flow means and 90% interquantile ranges of the Traditional and Isotope LIMs.  

Statistics are calculated with n=50,000 for each model (the number of Monte-Carlo 

simulations).  90% interquantile ranges are calculated as the 95% quantile value minus the 5% 

interquantile value.  Units are mg C m-2 d-1.  Each flow is composed of the abbreviation of the 

source compartment (see table 1) TO the abbreviation of the sink compartment. gpp = gross 

primary production, imp = import, exp = export and res = respiration. 

Flow (sourceTOsink) 

Traditional Model  Isotopic Model 

mean 
90% interquantile 

range mean 
90% interquantile 

range 

1 gppTOmpb 1357 339 1355 338 

2 gppTOzos 55.0 19.9 55.3 13.4 

3 gppTOphy 58.4 43.9 57.6 45.5 

4 impTOpba 88.5 16.0 88.4 15.9 

5 impTOphy 150 21.4 150 21.6 

6 impTOzoo 94.0 13.6 94.0 13.7 

7 impTOfsh 160 96.6 159 96.4 

8 impTObrd 4.6 2.7 4.7 2.5 

9 impTOpom 598 106 598 106 

10 impTOdoc 1067 185 1064 186 

11 mpbTOres 323 229 324 228 

12 mpbTOdoc 695 214 695 214 

13 mpbTObba 142 235 146 208 

14 mpbTOabr* 0.8 1.9 1.0 0.8 

15 mpbTOare** 0.2 0.4 0.1 0.2 

16 mpbTObrd** 7.9 19.5 0.2 0.4 

17 mpbTOcer** 2.6 6.4 4.5 3.3 

18 mpbTOceb 0.0 0.1 0.0 0.1 

19 mpbTOcop** 21.7 43.2 30.8 28.0 

20 mpbTOfsh 40.0 7.2 40.0 7.2 

21 mpbTOgas* 2.0 4.8 1.5 0.9 

22 mpbTOhyd* 47.2 114 52.2 26 

23 mpbTOmac 0.2 0.6 0.2 0.6 

24 mpbTOmyt* 1.2 2.8 1.5 1.2 

25 mpbTOnem** 63.8 150 41.7 101 



26 mpbTOnot 0.4 0.8 0.4 0.8 

27 mpbTOscr** 2.0 4.7 5.3 1.9 

28 mpbTOtap** 6.9 15.7 10.6 6.2 

29 zosTOres** 10.9 15.2 7.5 13.4 

30 zosTOdoc** 2.0 2.4 0.9 0.3 

31 zosTOexp** 5.7 15.2 0.1 0.2 

32 zosTOsom** 5.8 15.6 0.1 0.2 

33 zosTOabr** 0.8 1.8 0.6 0.3 

34 zosTOare 0.2 0.4 0.2 0.1 

35 zosTObrd** 22.8 23.7 0.4 0.5 

36 zosTOceb** 0.0 0.1 0.0 0.0 

37 zosTOgas** 1.6 4.1 3.5 0.5 

38 zosTOhyd** 5.4 14.7 42.2 0.5 

39 phyTOres 11.3 18.2 11.2 18.2 

40 phyTOdoc 6.1 4.2 6.0 4.4 

41 phyTOexp 139 21.3 140 21.5 

42 phyTOpom* 24.2 44.5 29.5 48.6 

43 phyTOcer** 2.6 6.3 1.2 2.2 

44 phyTOmac 0.2 0.6 0.2 0.6 

45 phytOmyt** 1.2 2.8 0.8 1.4 

46 phyTOscr** 2.0 4.6 0.3 0.6 

47 phyTOtap** 6.5 15.1 2.2 4.2 

48 phyTOzoo* 14.6 35.0 16.2 38.5 

49 docTOexp 1036 185 1038 185 

50 docTOpba 72.5 162 72.8 162 

51 docTObba 937 426 937 423 

52 pomTOexp 348 456 367 456 

53 pomTOsom 436 403 433 407 

54 pomTOcer* 2.6 6.5 2.0 3.7 

55 pomTOmac 0.2 0.6 0.2 0.6 

56 pomTOmyt* 1.3 2.8 1.5 1.9 

57 pomTOpba 87.9 176 86.2 174 

58 pomTOscr** 2.1 4.6 0.5 0.9 

59 pomTOtap 7.1 15.9 7.7 7.0 

60 pomTOzoo 21.6 54.1 21.1 53.5 

61 somTOexp 167 392 172 398 

62 somTOpom 166 399 169 401 

63 somTOabr* 0.8 1.9 0.7 0.7 

64 somTObba 237 416 218 397 



65 somTOcar 0.1 0.2 0.1 0.1 

66 somTOceb* 0.0 0.1 0.0 0.1 

67 somTOcer 2.6 6.4 2.7 4.5 

68 somTOcra 0.1 0.2 0.1 0.1 

69 somTOgas** 2.0 4.8 0.3 0.6 

70 somTOhyd** 49.0 118 10.9 18 

71 somTOmac 0.2 0.6 0.2 0.6 

72 somTOnot 0.4 0.8 0.4 0.8 

73 bbaTOres 626 234 623 220 

74 bbaTOdoc 103 50.9 103 50.8 

75 bbaTOare* 0.2 0.4 0.2 0.2 

76 bbaTOcop** 25.3 44.0 16.2 26.6 

77 bbaTOgas** 2.0 4.8 0.4 0.7 

78 bbaTOhyd** 72.0 135 18.5 24 

79 bbaTOnem* 487 170 540 107 

80 pbaTOres 38.7 92.4 38.7 92.5 

81 pbaTOdoc 44.0 99.9 43.4 99.2 

82 pbaTOexp 90.3 16.0 90.3 16.0 

83 pbaTOzoo 75.9 62.3 75.1 62.7 

84 zooTOres 51.7 16.6 51.8 16.5 

85 zooTOdoc 35.4 32.7 35.6 32.8 

86 zooTOexp 88.0 13.7 88.0 13.7 

87 zooTOpom 10.4 21.4 10.4 21.4 

88 zooTOcar** 0.1 0.2 0.0 0.1 

89 zooTOcra** 0.1 0.2 0.0 0.1 

90 zooTOfsh 20.5 26.7 20.5 26.7 

91 abrTOres 1.3 0.2 1.3 0.2 

92 abrTOsom* 0.9 0.8 0.7 0.7 

93 abrTOcar 0.1 0.2 0.1 0.1 

94 abrTOcra 0.1 0.2 0.1 0.1 

95 abrTOfsh 0.1 0.2 0.1 0.2 

96 areTOres 0.2 0.0 0.2 0.0 

97 areTOsom 0.2 0.1 0.2 0.1 

98 areTObrd* 0.0 0.0 0.0 0.0 

99 areTOcar* 0.0 0.0 0.0 0.0 

100 areTOcra* 0.0 0.0 0.0 0.0 

101 areTOfsh 0.0 0.0 0.0 0.0 

102 brdTOres** 24.3 29.1 0.7 1.3 

103 brdTOsom** 14.6 19.2 0.4 0.6 



104 brdTOexp 4.5 2.7 4.3 2.5 

105 carTOres 0.4 0.1 0.4 0.1 

106 carTOsom 0.4 0.2 0.4 0.2 

107 carTOcra** 0.0 0.1 0.1 0.1 

108 carTofsh* 0.1 0.1 0.1 0.1 

109 cerTOres 5.3 0.6 5.3 0.6 

110 cerTOsom 3.8 3.2 3.8 3.2 

111 cerTOcar** 0.1 0.2 0.0 0.1 

112 cerTOcra* 0.1 0.2 0.1 0.1 

113 cerTOfsh 1.1 0.4 1.1 0.3 

114 cebTOres 0.1 0.0 0.1 0.0 

115 cebTOsom 0.1 0.1 0.1 0.0 

116 cebTOcar 0.0 0.0 0.0 0.0 

117 cebTOcra 0.0 0.0 0.0 0.0 

118 cebTOfsh 0.0 0.0 0.0 0.0 

119 copTOres 26.7 3.4 26.7 3.4 

120 copTOdoc 12.4 17.0 12.5 17.0 

121 copTOsom 7.7 16.3 7.7 16.3 

122 copTOcar 0.1 0.2 0.1 0.1 

123 copTOceb* 0.0 0.1 0.0 0.1 

124 copTOcra* 0.1 0.2 0.1 0.1 

125 craTOres 0.4 0.1 0.4 0.1 

126 craTOsom 0.4 0.2 0.4 0.2 

127 craTOcar* 0.0 0.1 0.0 0.1 

128 craTOfsh* 0.0 0.1 0.0 0.1 

129 fshTOres 160 79.6 164 74.6 

130 fshTOpom 108 91.2 112 92.9 

131 fshTOexp 172 95.4 174 95.3 

132 fshTOcar** 0.1 0.2 0.0 0.1 

133 gasTOres* 3.5 0.9 3.0 0.3 

134 gasTOsom** 2.5 2.1 1.3 0.4 

135 gasTOcar** 0.1 0.2 0.1 0.2 

136 gasTOcra** 0.1 0.2 0.1 0.2 

137 gasTOfsh* 1.4 0.5 1.2 0.4 

138 hydTOres* 83.0 18.1 71.9 0.6 

139 hydTOsom** 59.9 49.8 26.2 0.7 

140 hydTObrd** 8.1 19.8 0.1 0.3 

141 hydTOcar** 0.1 0.2 0.1 0.2 

142 hydTOcra* 0.1 0.2 0.1 0.1 



143 hydTOfsh* 22.3 22.6 25.4 0.7 

144 macTOres 0.5 0.0 0.5 0.0 

145 macTOsom 0.3 0.3 0.3 0.3 

146 macTOcar* 0.0 0.1 0.0 0.1 

147 macTOcra* 0.0 0.1 0.0 0.1 

148 macTOfsh* 0.0 0.1 0.0 0.1 

149 mytTOres 1.9 0.2 1.9 0.2 

150 mytTOsom 1.4 1.2 1.4 1.2 

151 mytTOcar** 0.1 0.2 0.0 0.1 

152 mytTOcra** 0.1 0.2 0.0 0.1 

153 mytTOfsh* 0.3 0.3 0.3 0.2 

154 nemTOres 198 71.4 207 49.7 

155 nemTOdoc 80.8 158 87.4 166 

156 nemTOsom 80.8 158 88.5 167 

157 nemTOcar** 0.1 0.2 0.1 0.2 

158 nemTOceb 0.0 0.1 0.0 0.1 

159 nemTOcra* 0.1 0.2 0.1 0.1 

160 nemTOfsh 192 87.9 199 85.8 

161 notTOres 0.4 0.1 0.4 0.1 

162 notTOsom 0.3 0.3 0.3 0.3 

163 notTOcar* 0.0 0.1 0.0 0.1 

164 notTOcra* 0.0 0.1 0.0 0.1 

165 notTOfsh* 0.1 0.1 0.0 0.1 

166 scrTOres 3.2 0.2 3.2 0.2 

167 scrTOsom 2.2 1.9 2.2 1.9 

168 scrTOcar 0.1 0.2 0.1 0.1 

169 scrTOcra 0.1 0.2 0.1 0.1 

170 scrTOfsh 0.6 0.3 0.6 0.2 

171 tapTOres 10.8 0.7 10.8 0.7 

172 tapTOsom 7.6 6.4 7.6 6.4 

173 tapTOcar** 0.1 0.2 0.0 0.1 

174 tapTOcra* 0.1 0.2 0.1 0.1 

175 tapTOfsh 2.1 0.6 2.1 0.5 

Bold: flow with corresponding SIAR diet constraint 
* means of Isotope and Traditional LIM >10% different 
** means of Isotope and Traditional LIM >25% different 
 



 
Table 4. Comparison of means and 90% interquantile ranges for the Traditional and Isotope 

LIMs.  The absolute mean difference for each flow was calculated as the absolute value of the 

difference between Traditional and Isotope LIM mean flow values.  Negative values indicate a 

reduction in the interquantile range of the Isotope LIM when compared with the Traditional 

LIM. 

Average change in statistic after incorporation of isotope information 

All food web flows Flows with SIAR constraints Flows without SIAR constraints 

Absolute mean 
difference 

90% 
Interquantile 

range 
Absolute mean 

difference 

90% 
Interquantile 

range 
Absolute mean 

difference 

90% 
Interquantile 

range 

23% -26% 42% -45% 12% -15% 

 



Table 5. Comparison of the means and 90% interquantile (IQ) ranges of the Ecological Network 

Analysis indices for each of the models.  Negative values for the percent change of 90% IQ 

Range represent a reduction in the range of the Isotope LIM when compared with the 

Traditional LIM. 

ENA Index 

Traditional LIM Isotope LIM % Change 

Mean 90% IQ Range Mean 90% IQ Range Absolute Mean Difference 
90% IQ 
Range 

Total System Throughput 11,911 1,392 11,801 1,373 0.9% -1.4% 

Average Path Length 2.28 0.26 2.26 0.25 1.1% -3.8% 

Internal Ascendency 9,486 2,372 9,325 2,369 1.7% -0.1% 

Internal Development Capacity 30,733 3,860 30,047 3,770 2.2% -2.3% 

Ascendency 19,111 2,790 18,904 2,762 1.1% -1.0% 

Development Capacity 36,955 4,510 36,219 4,413 2.0% -2.2% 

Finn Cycling Index 0.052 0.041 0.051 0.043 0.7% 4.9% 

Comprehensive Cycling Index 0.059 0.047 0.058 0.050 0.7% 6.4% 

 

 



Figure 1. Overview of Marennes-Oléron Estuary study site, including the intertidal seagrass bed that was modeled.  Sampling 

locations indicated as HFS (High Flat Site) and LFS (Low Flat Site).  

 



Figure 2. Food web diagram of the Marennes-Oléron intertidal seagrass system, formed using the mean flows from the Isotope 

LIM.  Width of arrows corresponds to relative magnitude of flow in units of mgC m-2 d-1. Arrows pointing away from center of 

the web represent respiration and exports from the system.  Abbreviations for food web compartments are in Table 1.



 

 


