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Abstract

This paper proposes a new reduced basis algorithm for the metamodelling of parametrised
elliptic problems. The developments rely on the Constitutive Relation Error (CRE), and the
construction of separate reduced order models for the primal variable (displacement) and flux
(stress) fields. A two-field Greedy sampling strategy is proposed to construct these two fields
simultaneously and efficient manner: at each iteration, one of the two fields is enriched by increasing
the dimension of its reduced space in such a way that the CRE is minimised. This sampling
strategy is then used as a basis to construct goal-oriented reduced order modelling. The resulting
algorithm is certified and “tuning-free”: the only requirement from the engineer is the level of
accuracy that is desired for each of the outputs of the surrogate. It is also one order of magnitude
more efficient in terms of computational expenses than competing methodologies.

Keywords: two-field reduced basis method (TF-RBM); model order reduction; constitutive
relation error; goal-oriented Greedy sampling; a posteriori error estimation

1 Introduction

Model order reduction is an increasingly popular family of metamodelling techniques for parametrised
boundary value problems (BVP) solved using numerical methods [1, 2, 3, 4, 5]. As opposed to response
surface methodologies, the output of the computation is not interpolated directly over the parameter
domain. Instead, one constructs an approximation of the BVP that can be solved efficiently, and from
which the quantities of interest can be post-processed. The applicability of reduced order modelling
requires a certain smoothness of the solution to the original BVP over the parameter domain.

Reduced order modelling (ROM) can be performed in several ways (see for instance [6, 7, 8, 9, 10, 11]),
but we will focus our discussion on the popular case of projection-based ROM. In this context, the
reduced model is obtained by the projection of the original boundary value problem in a space of
small dimension. Three ingredients are required for the metamodel to be efficient: (i) a reliable way
to construct the projection space, (ii) an efficient (if possible optimum) projection of the solution to
the BVP in this space and (iii) a method to decompose the numerical complexity of tasks (i) and
(ii) in an “offline/online” manner. The latter point means that the expensive operations should be
performed in advanced (“offline”), whilst the solution of the reduced model itself (“online”) should
remain computationally inexpensive.
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The most popular way to extract the projection subspace is probably the Empirical Proper
Orthogonal Decomposition (POD) [12, 13, 14]. The idea is to solve a finite number of realisations
of the parametrised BVP to be reduced, and perform a spectral analysis of the space spanned by
the corresponding solutions (i.e. the “snapshot”). This procedure delivers a hierarchy of subspaces
in which the snapshots are best approximated in an average sense. The online stage then consists
in projecting the BVP into one of these subspaces using a Galerkin [15, 16, 17], Petrov-Galerkin
[18, 19, 20] or residual minimising formulation [21, 22]. The success of this approach lies in the fact
that it is very general with regard to the nature of the original BVP. In particular, it remains the
main candidate for the projection-based ROM of nonlinear problems [23, 21, 2]. However, it suffers
from two drawbacks: (i) it is a priori difficult to choose the location of the snapshots, although some
authors have recently addressed this issue, and (ii) the optimality of this procedure is established on
the average over the parameter domain, and consequently its accuracy may be sensitive to outliers.

The reduced basis method (RBM) [24] is a powerful alternative to POD-based methodologies. It
overcomes the two limitations mentioned previously by construction. The main idea is to construct
the reduced spaces in such a way that the maximum error of projection of the solution over the
entire parameter domain is minimised. As this problem is not solvable using direct algebraic tools,
its solution is approximated by means of a Greedy algorithm [24, 25, 26]. Typically, one-dimensional
enrichments of the reduced space are looked for by identifying the point of the parameter domain that
displays the largest projection error. The solution corresponding to this point is computed and its
projection error is reduced by adding some of its components to the reduced basis. The main difficulty
of the approach is to evaluate the projection error in an affordable and efficient manner over the entire
parameter domain. This can be done efficiently in the case of affinely parametrised linear elliptic or
parabolic problems, as reliable and inexpensive error bounds are available. This is the setting in which
the RBM has been the most successful so far, but extensions to linear hyperbolic problems or more
complex settings have been proposed, for instance using direct search [27, 28], global optimisation [29]
or gradient-based on optimisation [30].

In the context of affinely parametrised elliptic PDEs [24, 31, 32], the reduced basis method proceeds
as follows. Given a certain projection subspace, one evaluates an upper bound of the projection error
(measured in “energy norm”) over an exhaustive sampling of the parameter domain. The solution
of the BVP is computed at this point and added to the basis of the previous reduced space after an
orthonormalisation. Efficient upper bounds have been developed over the years, and the most widely
used is probably the Successive Constraint Method (SCM) approach [33, 34]. Once the projection
subspace is sufficiently large (i.e. the maximum error of projection over the parameter domain is
sufficiently small), this “offline” Greedy algorithm is stopped. The metamodel can then be used online
by performing a simple Galerkin projection of the original BVP in the reduced space.

In this paper, we propose an alternative to this procedure, based on our previous work on the
Constitutive Relation Error (CRE) [17] and goal-oriented reduced basis sampling [27]. The first idea is
to create two separate ROMs: one for the primal field of the elliptic BVP and an other one for the flux
field. The primal ROM is required to deliver continuous solutions that satisfy the Dirichlet boundary
conditions, whilst the flux ROM satisfies the balance equation of the flux and the Neuman boundary
conditions. In this context, the Prager-Synge theorem gives us a relationship between the projection
errors of the two fields and a certain distance between the primal and flux reduced solutions (i.e. the
CRE [35]). A remarkable fact is that this distance can be computed in an inexpensive manner, and
gives us (a) a joint indication of the accuracy of the two ROMs (b) an upper bound for the projection
error in terms of primal variable and (c) an upper bound for the projection error in terms of flux. In
view of remark (b), the CRE could be used as an alternative to the SCM in the traditional RBM
algorithm, as argued in the perspectives of our previous work [17]. However, we will propose a different,
more elegant approach, the two-field reduced basis (TF-RBM). The CRE will be used as an indication
of accuracy of the two ROMs over the entire parameter domain, following remark (a). The training
phase of the proposed reduced basis method is a greedy algorithm, whereby we enrich either one of the
two ROMs, depending on which one of these operations yields the largest decrease in the CRE. The
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practical advantage of this procedure, compared to the SCM-based RBM, is that we do not need to
train and compute an upper bound for the projection error of the primal field. The training stage is a
single “for” loop, simple to implement, that only requires operations related to the solution of the
two ROMs. Numerically, we observe that (i) the convergence rate of the training stage, as a function
of the dimension of the projection space, is similar to the one obtained when using the SCM-based
approach and (ii) the online computational costs are reduced by more than one order of magnitude.

In order to be fully operational, this strategy is integrated in a goal-oriented setting, whereby the
reduced spaces are constructed in such a way that the uncertainty in the outputs of the metamodel are
minimised, as opposed to an arbitrary measure of the projection error of the primal field [36, 37, 30, 38,
27]. In this context, we need to construct additional two-field reduced models for the adjoint problems
related to each of the outputs. The greedy sampling is then performed as follows. One first identifies
which of the quantity of interest displays the largest level of uncertainty, and the corresponding point
of the parameter domain. Then, either of the corresponding four ROMs are enriched, depending on
which of these operations reduces this uncertainty most. The goal-oriented greedy algorithm is stopped
whenever all the outputs of interest are approximated with a sufficient level of accuracy over the whole
parameter domain.

Though the combination of the CRE-based greedy approach and goal-oriented setting, the proposed
goal-oriented TF-RBM is certified and “tuning-free”: the only input of the algorithm is the level of
accuracy that is required for each of the quantities of interest. Moreover, it inherits the properties of
the TF-RBM: it is simple to implement and exhibits similar convergence rates of the quantities of
interest than what can be expected from an SCM-based procedure, for significantly reduced online
costs. All the developments and examples will be formally dedicated to linear elasticity, but they can
be extended in a straitghtforward manner to any affinely parametrised linear elliptic BVP (steady
temperature diffusion, electro-statics or magnetics, ...). Extensions to linear parabolic problems should
be possible, as the CRE has successfully been applied to certify proper generalised decomposition in
this context [39].

The paper is organised as follows. In section 2, we introduce necessary definitions and notations
and state the exact parametrised elasticity BVP and its finite element approximation. In section 3, we
describe our reduced order modelling approximations of displacement and stress fields. We emphasise
that the description of these two ROMs is presented in a completely parallel manner. Section 4 is
devoted to the constitutive relation error and the proposed TF-RBM. Goal-oriented error bounds, and
the extension of the TF-RBM to the goal-oriented sampling setting are presented in section 5. We
verify the performance of all the proposed algorithms by investigating a 2D material homogenisation
problem in section 6. Finally, we provide some concluding remarks in section 7.

2 Parametrised problem of linear elasticity

2.1 Exact formulation

We consider a domain Ω ∈ Rd (d = 1, 2 or 3) with Lipschitz continuous boundary ∂Ω. We look for a
displacement field u ∈ U(Ω) = H1(Ω)∗ that satisfies (nonhomogeneous) Dirichlet boundary conditions
u = w on the part ∂Ωw of the boundary ∂Ω. Any displacement field that satisfies the conditions of
regularity and Dirichlet boundary conditions is said to be kinematically admissible and belongs to
space UAd(Ω) ⊂ U(Ω). We introduce the Cauchy stress tensor field σ, which belongs to a space S(Ω)
of sufficiently regular second-order tensor fields. A density of surface tractions t is applied on the
boundary part ∂Ωt = ∂Ω\∂Ωw of the domain; and a density of body forces b is applied over Ω.

We define a set of input parameters D ⊂ RP , a typical point of which is denoted by µ ≡ (µ1, . . . , µP ).
In particular, the force densities b and t, the Dirichlet boundary conditions w and the material properties

∗H1(Ω) =
{
v | v ∈ L2(Ω),∇v ∈ (L2(Ω))d

}
is a Hilbert space and L2(Ω) is the space of square integrable functions

over Ω.
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of the structure may be functions of parameter µ. We assume that Ω and ∂Ωw do not undergo any
parametric changes.

For a given parameter µ, a kinematically admissible displacement field will be sought in UAd(Ω;µ) ={
v ∈ U(Ω) | v|∂Ωw = w(µ)

}
. Similarly, a statically admissible stress field σ(µ) ∈ SAd(Ω;µ) will satisfy

the parametrised principle of virtual work:

−
∫

Ω

σ(µ) : ε(v) dΩ +

∫
Ω

b(µ) · v dΩ +

∫
∂Ωt

t(µ) · v dΓ = 0, ∀v ∈ UAd,0(Ω). (1)

Here, UAd,0(Ω) =
{
v ∈ U(Ω) | v|∂Ωw = 0

}
; and ε(v) = 1

2 (∇v + ∇vT ) is the symmetric part of the
displacement gradient (i.e. the strain field). The solution to the parametrised problem of elasticity is

an admissible pair
(
u(µ), σ(µ)

)
∈ UAd(Ω;µ)× SAd(Ω;µ) that verifies the isotropic linear constitutive

law

σ(µ) = λ(µ) Tr
(
ε (u(µ))

)
Id + 2G(µ) ε(u(µ)) =: D(µ) : ε(u(µ)), (2)

where λ(µ) and G(µ) are the Lamé constants. D(µ) is the fourth-order Hooke’s elasticity tensor and
Id is the second-order identity tensor. The inverse of this constitutive law reads

ε(u(µ)) =
1 + ν(µ)

E(µ)
Tr
(
σ(µ)

)
Id −

ν

E(µ)
σ(µ) =: C(µ) : σ(µ), (3)

with E and ν the Young’s modulus and Poisson’s ratio, respectively, which are linked to the Lamé
constants by the relationships λ = Eν

(1+ν)(1−2ν) and G = E
2(1+ν) , and C(µ) = D(µ)−1 the compliance

tensor.
By substituting (2) into (1), the parametric problem of elasticity can be written in the following

primal variational form: for any µ ∈ D, find the displacement field u(µ) ∈ U(Ω) such that

a (u(µ), v;µ) = f (v;µ) , ∀v ∈ UAd,0(Ω), (4)

In the above equations, the parametrised bilinear and linear forms associated with the problem of
elasticity are defined as

a (u, v;µ) =

∫
Ω

ε(u) : D(µ) : ε(v) dΩ, (5a)

f (v;µ) =

∫
Ω

b(µ) · v dΩ +

∫
∂Ωt

t(µ) · v dΓ, (5b)

respectively. We recall that a : UAd,0(Ω) × UAd,0(Ω) × D is a symmetric, continuous and coercive
parametrised bilinear form; and we assume that f : UAd,0(Ω)×D is a continuous, bounded linear form.
Under these conditions, there exists a unique “weak” solution u(µ) ∈ U(Ω) to equation (4).

Multiple quantities of interest (QoI) can be extracted from u(µ) as

Qi(µ) = `i (u(µ)) , 1 ≤ i ≤ nQ. (6)

with `i : UAd,0(Ω)×D, 1 ≤ i ≤ nQ continuous, bounded linear forms. Outputs `i, 1 ≤ i ≤ nQ may be
compliant or noncompliant linear functionals.

A crucial assumption to efficiently deal with parametrised problems is the affine decomposition
property of the operators that governs our problem. In particular, ∀u, v ∈ UAd,0(Ω), µ ∈ D, we require
that

a (u, v;µ) =

Qa∑
q=1

Θq
a(µ)aq(u, v), (7a)
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f (v;µ) =

Qf∑
q=1

Θq
f (µ)fq(v), (7b)

`i (v;µ) =

Q`i∑
q=1

Θq
`i

(µ)`qi (v), 1 ≤ i ≤ nQ, (7c)

for some (preferably) small integers Qa,f,`i . Here, the smooth functions Θq
a,f,`i

(µ) : D → R depend on

µ, but the bilinear and linear forms aq, fq and `qi do not depend on the parameter. In particular, such
a affine decomposition is at hand if the parametrised data are originally given in the form of separate
variables, namely

D(x, µ) =

nd∑
i=1

γd
i (µ) D̄i(x), ∀µ ∈ D, x ∈ Ω, (8a)

t(x, µ) =

nt∑
i=1

γt
i (µ) t̄i(x), ∀µ ∈ D, x ∈ ∂Ωt, (8b)

b(x, µ) =

nb∑
i=1

γb
i (µ) b̄i(x), ∀µ ∈ D, x ∈ Ω, (8c)

w(x, µ) =

nw∑
i=1

γw
i (µ) w̄i(x), ∀µ ∈ D, x ∈ ∂Ωw. (8d)

Here γd,t,b,w
i (µ) : D → R are explicitly known functions of the parameter µ, whilst D̄i(x), t̄i(x), b̄i(x),

w̄i(x) are operators/functions that do not depend on µ.

2.2 Finite element discretization

We approximate the solutions of exact problem (4) by using the classical finite element method. We
introduce the finite element space Uh(Ω) ⊂ U(Ω). Since we assume that the domain Ω does not depend
on the parameter µ, we can construct a unique finite element space for all the realisations of problem
(4). The finite element space is defined as

Uh(Ω) =
{
v ∈ U(Ω) | ∀j ∈ {1, . . . , d}, vj ∈ span

{
N̂i, 1 ≤ i ≤ nn

}}
, (9)

where vj denotes the jth component of the vector field v and functions N̂i, 1 ≤ i ≤ nn are compactly
supported finite element shape functions belonging to U(Ω); nn is the number of nodes in the finite
element mesh; and N denotes the dimension of the finite element space, respectively.

Let Uh,0(Ω) = Uh(Ω) ∩ UAd,0(Ω) be the space of finite element fields that vanish on ∂Ωw, and let
up(µ) be a particular field of UAd(Ω;µ), for any µ ∈ D. The finite element approximation uh(µ) of
u(µ) is the solution to the following variational problem [40]: find uh(µ) ∈ Uh,0(Ω) + {up(µ)} such that

a
(
uh(µ), v;µ

)
= f (v;µ) , ∀v ∈ Uh,0(Ω). (10)

We will assume in this paper that the parametrised Dirichlet boundary conditions conform to the
finite element space, which means that Uh,Ad(Ω;µ) = Uh(Ω) ∩ UAd(Ω;µ) 6= {}. In this context, up(µ)
can always be chosen in the finite element space Uh(Ω).

Now, the variational problem (10) can be recast in the following form:

a
(
uh,0(µ), v;µ

)
= f (v;µ)− a (up(µ), v;µ) , ∀v ∈ Uh,0(Ω). (11)

As up(µ) is known, let us denote f̂ (v;µ) = f (v;µ)− a (up(µ), v;µ) then the final variational form will
be: for a given µ ∈ D, find uh,0(µ) ∈ Uh,0(Ω) such that
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a
(
uh,0(µ), v;µ

)
= f̂ (v;µ) , ∀v ∈ Uh,0(Ω), (12)

and the finite element solution is obtained by using the lifting identity uh(µ) = uh,0(µ) + up(µ).
Under standard assumptions, linear system (12) possesses a unique solution. The FE quantities of
interest (QoI) can then be evaluated as

Qh
i (µ) = `i

(
uh(µ)

)
, 1 ≤ i ≤ nQ. (13)

In the following, we assume that the finite element space is sufficiently fine so that any relevant
measure of the finite element error eh(µ) = u(µ)− uh(µ) is very small for all µ ∈ D. In this context,
we can assume that the FE output quantities are the ones that should be reproduced with a sufficient
level of accuracy when using the metamodelling technique described in the next sections.

3 Reduced basis approximations for displacement and stress
fields

The basic idea of projection-based reduced order modeling relies on the fact that the solutions of the
parametrised boundary value problem reside on a smooth and low-dimensional parametrically induced
manifold. The governing equations can then be projected in this manifold, leading to a reduced system
of equations that can be solved inexpensively for any parameter set.

We assume in this section that the relevant projection subspaces have been identified, and we show
how to perform the optimal projections. The novelty of our approach is that it relies on the reduced
order modelling of both the displacement and stress fields. For the displacement, an optimal projection
(in the sense of the energy norm) is classically obtained by the Galerkin formulation of the governing
equation in a reduced space of kinematically admissible functions. For the stress, we can proceed
in the same way, by minimising the projection error in a space of functions that satisfies the weak
equilibrium a priori. This leads to a dual formulation, as shown in [17].

In this section, we emphasize the symmetry between displacement and stress optimal projections.
We also show that the stress ROM can be solved efficiently by using an “offline/online” decomposition,
which was claimed but not fully implemented in our previous work. This decomposition of the numerical
complexity, restricted to the case of affine parameter dependencies, is key to ensuring that solving
both reduced order models remain inexpensive (i.e. independent of the dimension of the underlying
fine finite element space).

3.1 Reduced order model for the displacement field

3.1.1 Homogeneous/non-homogeneous separation of the displacement field

In order to apply the reduced basis method for general nonhomogeneous Dirichlet boundary condition
problems, we first perform a lifting of the finite element solution over the parameter domain

uh(µ) = uh,0(µ) + uh,p(µ), ∀µ ∈ D. (14)

In equation (14), uh,0(µ) ∈ Uh,0(Ω), which means that the displacement fields uh,0(µ) vanishes on ∂Ωw

for any µ ∈ D, whilst uh,p(µ) ∈ Uh(Ω) satisfies the nonhomogeneous Dirichlet boundary conditions.
This equation is to be understood as follows: given a valid lifting uh,p(µ), the complementary part
uh,0(µ) can be formally calculated from the knowledge of uh(µ).

We will approximate uh,0(µ) by its projection in a reduced vector space, as explained later on,
whilst the lifting uh,p(µ) will be an explicit function of the parameters, as described in the next section.
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3.1.2 Nonhomogeneous Dirichlet boundary conditions in reduced order modeling

We use a global lifting technique as described in [17]. The technique makes use of the assumed affine
form of the prescribed displacements (8d). In the offline stage of the method, we compute a set of nw

finite element displacement fields ψi ∈ Uh(Ω), 1 ≤ i ≤ nw that satisfy{
a(ψi, v;µ0) = 0, ∀v ∈ Uh,0(Ω),

ψi(x) = w̄i(x), ∀x ∈ ∂Ωw,
1 ≤ i ≤ nw. (15)

This set of fields is obtained by solving nw standard finite element problems with nonhomogeneous
boundary conditions. The choice of µ0 ∈ D is arbitrary.

The finite element lifting function uh,p(µ), which satisfies exactly the nonhomogeneous Dirichlet
boundary conditions for any µ ∈ D, can now be defined by the affine expansion

uh,p(µ) =

nw∑
i=1

γw
i (µ)ψi, ∀µ ∈ D. (16)

3.1.3 Displacement reduced basis surrogate

We assume the availability of nested parameter sets SN = {µ1 ∈ D, . . . , µN ∈ D} , 1 ≤ N ≤ Nmax,
and associated nested Lagrange RB spaces U r,0

N (Ω) = span {φn, 1 ≤ n ≤ N} , 1 ≤ N ≤ Nmax, where

φn ∈ U r,0
N (Ω), 1 ≤ n ≤ Nmax are mutually orthonormal RB basis functions with respect to a particular

norm using a Gram-Schmidt process. The procedure to construct efficiently the sets SN and U r,0
N (Ω)

will be discussed in section 4.2.2 afterwards.

For any µ ∈ D, we look for an approximation ur(µ) to uh(µ) in the form

uh(µ) ≈ ur(µ) = ur,0(µ) + uh,p(µ), where ur,0(µ) =

N∑
n=1

αn(µ)φn, (17)

and αn(µ) are interpolation weights, called “reduced variables”. Our RB approximation ur,0(µ) to
uh,0(µ) is optimally (in the sense of the energy norm, see Céa Lemma) obtained by a standard Galerkin
projection: given µ ∈ D, we look for ur,0(µ) that satisfies

a(ur,0(µ), v;µ) = f̂(v;µ), ∀v ∈ U r,0
N (Ω), µ ∈ D. (18)

This typically very small system of linear equations can be solved on demand, for any parameter set of
interest.

The RB quantities of interest can then be evaluated from the reduced solution as

Qr
i(µ) = `i (ur(µ)) , 1 ≤ i ≤ nQ. (19)

3.1.4 Offline-Online computational procedures for the reduced variables

In this section, we recall the usual offine-online computational procedures for the Galerkin ROM, which
is necessary in order to fully exploit the dimensional reduction of the problem [25, 41, 27].

Inserting (17) and v = φn, 1 ≤ n ≤ N into (18) and recalling the definition (11) of f̂(v;µ), we
obtain the following small system of N coupled equations in the reduced variables αn(µ), 1 ≤ n ≤ N

N∑
m=1

a (φm, φn;µ)αm(µ) = f(φn;µ)− a
(
uh,p(µ), φn;µ

)
, 1 ≤ n ≤ N. (20)

The RB quantities of interest are then evaluated by inserting (17) into (19) as
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Qr
i(µ) = `i

(
N∑
n=1

αn(µ)φn + uh,p(µ)

)
, 1 ≤ i ≤ nQ. (21)

Finally, invoking the affine decomposition (7), (8), equations (20) and (21) can be expressed explicitly
as

N∑
m=1

(
Qa∑
q=1

Θq
a(µ)aq(φm, φn)aq(φm, φn)aq(φm, φn)

)
αm(µ) =

Qf∑
q=1

Θq
f (µ)fq(φn)fq(φn)fq(φn)

−
Qa∑
q=1

nw∑
i=1

Θq
a(µ)γw

i (µ)aq (ψi, φn)aq (ψi, φn)aq (ψi, φn), 1 ≤ n ≤ N, (22)

and

Qr
i(µ) =

N∑
n=1

Q`i∑
q=1

Θq
`i

(µ)αn(µ)`qi (φn)`qi (φn)`qi (φn) +

nw∑
j=1

Q`i∑
q=1

γw
j (µ)Θq

`i
(µ)`qi (ψj)`qi (ψj)`qi (ψj), 1 ≤ i ≤ nQ, (23)

respectively.
The parameter-independent quantities (in bold typeface) are rewritten as follows

(Aq
N )mn = aq(φm, φn), 1 ≤ m,n ≤ N, 1 ≤ q ≤ Qa; (24)

(FqN )n = fq(φn), 1 ≤ n ≤ N, 1 ≤ q ≤ Qf ; (25)

(Fp,q
N,i)n = aq(ψi, φn), 1 ≤ n ≤ N, 1 ≤ i ≤ nw, 1 ≤ q ≤ Qa; (26)

Qi
q,n = `qi (φn), 1 ≤ n ≤ N, 1 ≤ q ≤ Q`i , 1 ≤ i ≤ nQ; (27)

Qp,i
q,j = `qi (ψj), 1 ≤ j ≤ nw, 1 ≤ q ≤ Q`i , 1 ≤ i ≤ nQ. (28)

Here, Aq
N ∈ RN×N are the RB “stiffness” matrices (which are also symmetric positive definite following,

for instance, the proof in Proposition 5.1 page 136 of [42]), FqN ∈ RN are the RB “load” vectors due
to body forces and surface tractions, Fp,q

N,i ∈ RN are the RB “load” vectors due to nonhomogeneous

Dirichlet boundary conditions, Qi
q,n is the output component due to RB basis functions’ contribution

and Qp,i
q,j is the output component due to nonhomogeneous Dirichlet boundary conditions’ contribution,

respectively.
From the above analysis, the computational procedures are now clear: an expensive µ-independent

Offline stage performed only once and a cheap Online stage for any chosen parameter value µ ∈ D. In
the Offline stage, the terms {ψi, 1 ≤ i ≤ nw} and the RB basis functions ZN = {φn, 1 ≤ n ≤ N} , 1 ≤
N ≤ Nmax are computed first; then all the terms in (24)–(28) are computed and stored. In the Online
stage, for any given µ, all the coefficients Θa,f,`i(µ) and γw,d(µ) are evaluated, and the linear system
(22) is assembled and solved to find the RB coefficients αn(µ), 1 ≤ n ≤ N . Then, the RB QoI are
obtained through the simple scalar products (23). Although being dense (rather than sparse as in the
FE case), the system matrix is very small, with a size (N ×N) completely independent of the FE
space dimension N .

The Online operation count is O
(
QaN

2
)

to assemble the system and O
(
N3
)

to invert the matrix
in (22). The RB QoI is then evaluated with the cost of O (N) from (23). Therefore, the Online
operation count to evaluate µ→ Qr

i(µ), 1 ≤ i ≤ nQ is completely independent of N .
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3.2 Reduced order model for the stress field

3.2.1 Homogeneous/non-homogeneous separation of the stress field

The principles underlying the construction of the stress surrogate are parallel to those employed for
the construction of the displacement surrogate [17].

We first recall that the “exact” finite element stress field σh(µ) := D(µ) : ε(uh(µ)), satisfies the
equilibrium in the finite element sense, namely, it verifies

−
∫

Ω

σh(µ) : ε(v) dΩ +

∫
Ω

b(µ) · v dΩ +

∫
∂Ωt

t(µ) · v dΓ = 0, ∀v ∈ Uh,0(Ω). (29)

We will denote by Sh,Ad(Ω;µ) the space of stresses satisfying the parametrised equilibrium in the finite
element sense (29).

The construction of the stress surrogate relies on the separation of the finite element stress field
into two parts:

σh(µ) = σh,0(µ) + σh,p(µ), ∀µ ∈ D. (30)

The first part σh,0(µ) belongs to the space Sh,0(Ω) of stress fields satisfying the following homogeneous
equilibrium conditions ∫

Ω

σh,0(µ) : ε(v) dΩ = 0, ∀v ∈ Uh,0(Ω), µ ∈ D. (31)

whilst the second part belongs to Sh,Ad(Ω;µ) and therefore satisfies the equation

−
∫

Ω

σh,p(µ) : ε(v) dΩ +

∫
Ω

b(µ) · v dΩ +

∫
∂Ωt

t(µ) · v dΓ = 0, ∀v ∈ Uh,0(Ω). (32)

Equation (30) is to be understood as follows: given a valid equilibrated stress σh,p(µ), then the
complementary part σh,0(µ) can be formally calculated from the knowledge of the exact finite element
stress σh(µ).

The stress field σh,p(µ) ∈ Sh,Ad(Ω;µ) will be explicitly defined as a function of the parametrised
body forces and surface tractions, which is detailed in the next section. The complementary part
σh,0(µ) will be approximated by its projection in a reduced vector space.

3.2.2 Treatment of body forces and surface tractions

This section is to compute the particular stress field σh,p(µ) for any given parameter µ ∈ D.
We showed in [17] that σh,p(µ) could be constructed as

σh,p(µ) = D(µ0) : ε
(
ũh,p(µ)

)
, (33)

where ũh,p(µ) ∈ Uh,0(Ω) is the dual representation of the finite element stress with respect to the
fixed bilinear form a(·, ·;µ0). This representation satisfies

a
(
ũh,p(µ), v;µ0

)
=

nb∑
i=1

γb
i (µ)

∫
Ω

b̄i(x) · v dΩ +

nt∑
i=1

γt
i (µ)

∫
∂Ωt

t̄i(x) · v dΓ, ∀v ∈ Uh,0(Ω), (34)

and it can be obtained by solving the following “offline” set of subproblems

a
(
ψ̃b
i , v;µ0

)
=

∫
Ω

b̄i(x) · v dΩ, ∀v ∈ Uh,0(Ω), 1 ≤ i ≤ nb, (35a)
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a
(
ψ̃t
i , v;µ0

)
=

∫
∂Ωt

t̄i(x) · v dΓ, ∀v ∈ Uh,0(Ω), 1 ≤ i ≤ nt, (35b)

where homogeneous Dirichlet boundary conditions are systematically applied over ∂Ωw. Finally,
ũh,p(µ) and σh,p(µ) are obtained as the simple linear combinations

ũh,p(µ) =

nb∑
i=1

γb
i (µ) ψ̃b

i +

nt∑
i=1

γt
i (µ) ψ̃t

i , (36a)

σh,p(µ) = D(µ0) : ε
(
ũh,p(µ)

)
= D(µ0) : ε

(
nb∑
i=1

γb
i (µ) ψ̃b

i +

nt∑
i=1

γt
i (µ) ψ̃t

i

)
, (36b)

respectively.

Based on (36b) we can define the affine form of σh,p(µ) as follows

σh,p(µ) =

ñp∑
i=1

γ̃p
i (µ)σp

i , (37)

where ñp = nb + nt;

γ̃p
i (µ) =

{
γb
i (µ), 1 ≤ i ≤ nb,
γt
i−nb

(µ), nb + 1 ≤ i ≤ nb + nt;
(38)

and

σp
i =

 D(µ0) : ε
(
ψ̃b
i

)
, 1 ≤ i ≤ nb,

D(µ0) : ε
(
ψ̃t
i−nb

)
, nb + 1 ≤ i ≤ nb + nt.

(39)

3.2.3 Stress reduced basis surrogate

We introduce the nested parameter sets S̃Ñ = {µ̃1 ∈ D, . . . , µ̃Ñ ∈ D} , 1 ≤ Ñ ≤ Ñmax, and as-

sociated nested Lagrange RB spaces Sr,0

Ñ
(Ω) = span

{
φ̃m, 1 ≤ m ≤ Ñ

}
, 1 ≤ Ñ ≤ Ñmax, where

φ̃m ∈ Sr,0

Ñ
(Ω), 1 ≤ m ≤ Ñmax are mutually orthonormal RB basis functions with respect to a particular

norm using a Gram-Schmidt process. Details on how to construct efficiently the sets S̃Ñ and Sr,0

Ñ
(Ω)

will be discussed in section 4.2.2 later.
As mentioned in section 3.2.1, we will construct the surrogate stress field σ̂(µ) as

σh(µ) ≈ σ̂(µ) = σr,0(µ) + σh,p(µ), ∀µ ∈ D, where σr,0(µ) =

Ñ∑
i=1

α̃i(µ) φ̃i (40)

where α̃(µ) ∈ RÑ are (unknown) generalised coefficients to be obtained by the projection.

More precisely, the generalised coefficients are required to satisfy the optimum property:

σ̂(µ) = arg min
σ?∈Sr(Ω;µ)

∥∥σ? − σh(µ)
∥∥
C(µ)

, (41)

where the admissible space for reduced stress field is defined by Sr(Ω;µ) = {σ? ∈ S(Ω) |σ? =∑Ñ
i=1 α

?
i φ̃i + σh,p(µ), ∀α? ∈ RÑ}; ‖ · ‖C(µ) is the so-called energy norm for the stress fields and is

defined in Proposition 4.1.
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Using the constitutive relation (2), the optimization problem (41) can be recast in the following
variational form: find σ̂(µ) ∈ Sr(Ω;µ) such that

−
∫

Ω

σ̂(µ) : C(µ) : σ? dΩ +

∫
Ω

ε
(
uh(µ)

)
: σ? dΩ = 0, ∀σ? ∈ Sr,0(Ω), (42)

where the space Sr,0(Ω) is defined as Sr,0(Ω) = {σ? ∈ S(Ω) |σ? =
∑Ñ
i=1 α

?
i φ̃i, ∀α? ∈ RÑ}. Now,

substituting equations (40) and (14) into (42) and noting (31), we obtain the variational form that we
will use to compute the stress field σr,0(µ):

∫
Ω

σr,0(µ) : C(µ) : σ? dΩ =

∫
Ω

ε
(
uh,p(µ)

)
: σ? dΩ−

∫
Ω

σh,p(µ) : C(µ) : σ? dΩ, ∀σ? ∈ Sr,0(Ω).

(43)
Finally, inserting the expression of σr,0(µ) (in (40)) and σ? = φ̃j into (43), we obtain the following

small linear system of Ñ coupled equations in the reduced variables α̃i(µ), 1 ≤ i ≤ Ñ

Ñ∑
i=1

(∫
Ω

φ̃i : C(µ) : φ̃j dΩ

)
α̃i(µ) =

∫
Ω

ε
(
uh,p(µ)

)
: φ̃j dΩ−

∫
Ω

σh,p(µ) : C(µ) : φ̃j dΩ, 1 ≤ j ≤ Ñ .

(44)

3.2.4 Offline-Online computational procedures for the dual ROM

Thanks to the affine properties of uh,p(µ) eq. (16) and σh,p(µ) eq. (37), we see that equation (44) can
also be decomposed into Offline-Online computational procedures if the operator C(µ) is also affine,
which we will assume:

C(x, µ) =

nc∑
i=1

γc
i (µ) C̄i(x), ∀µ ∈ D, x ∈ Ω. (45)

Invoking (16), (37) and (45), equation (44) can then be written as

Ñ∑
i=1

nc∑
k=1

γc
k(µ)

(∫
Ω

φ̃i : C̄k : φ̃j dΩ

∫
Ω

φ̃i : C̄k : φ̃j dΩ

∫
Ω

φ̃i : C̄k : φ̃j dΩ

)
α̃i(µ) =

nw∑
k=1

γw
k (µ)

(∫
Ω

ε(ψk) : φ̃j dΩ

∫
Ω

ε(ψk) : φ̃j dΩ

∫
Ω

ε(ψk) : φ̃j dΩ

)

−
ñp∑
k=1

nc∑
l=1

γ̃p
k (µ) γc

l (µ)

(∫
Ω

σp
k : C̄l : φ̃j dΩ

∫
Ω

σp
k : C̄l : φ̃j dΩ

∫
Ω

σp
k : C̄l : φ̃j dΩ

)
, 1 ≤ j ≤ Ñ , (46)

The parameter-independent terms (in bold typerface) from the above equation are

(Ã
k

Ñ )ij =

∫
Ω

φ̃i : C̄k : φ̃j dΩ, 1 ≤ i, j ≤ Ñ , 1 ≤ k ≤ nc; (47)

(F̃
p,k

Ñ )j =

∫
Ω

ε(ψk) : φ̃j dΩ, 1 ≤ j ≤ Ñ , 1 ≤ k ≤ nw; (48)

(F̃
k,l

Ñ )j =

∫
Ω

σp
k : C̄l : φ̃j dΩ, 1 ≤ j ≤ Ñ , 1 ≤ k ≤ ñp, 1 ≤ l ≤ nc. (49)

Here, Ã
k

Ñ ∈ RÑ×Ñ are the RB stress matrices, F̃
p,k

Ñ ∈ RÑ are the RB stress vectors due to nonhomo-

geneous Dirichlet boundary conditions, and F̃
k,l

Ñ ∈ RÑ are the RB stress vectors due to body force
and surface traction, respectively.
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From the above analysis, the computational procedures are now clear: an expensive µ-independent
Offline stage performed only once and a cheap Online stage for any chosen parameter value µ ∈ D.
In the Offline stage, the terms {ψi, 1 ≤ i ≤ nw}, {σp

k , 1 ≤ k ≤ ñp} and the RB stress basis functions

Z̃Ñ = {φ̃n, 1 ≤ n ≤ Ñ}, 1 ≤ Ñ ≤ Ñmax are computed first; then all the terms in (47)–(49) are
computed and stored. In the Online stage, for any given µ, all the coefficients γc(µ), γw(µ) and γ̃p(µ)
are evaluated, and the linear system (46) is assembled and solved, in order to obtain the RB coefficients
α̃n(µ), 1 ≤ n ≤ Ñ . The system matrix is very small, with a size (Ñ × Ñ) completely independent of

the FE space dimension N †. The Online operation count is O
(
ncÑ

2
)

to assemble the system and

O
(
Ñ3
)

to invert the matrix in (46). Therefore, the Online operation count to evaluate µ→ α̃(µ) is

also independent of N .

4 Constitutive relation error and two-field Greedy sampling
strategy (TF-RBM)

We have presented the construction of separate reduced order models for the displacement and stress
fields. Now, we will propose a new algorithm to find efficient projection spaces for both fields, based on
the CRE. We recall the principle of the CRE in the context of projection-based ROM [17] in section 4.1,
and then provide a detailed methodology for our new greedy sampling algorithm in section 4.2.

4.1 Constitutive relation error (CRE)

4.1.1 Formulation

We consider a realisation of the parametrised problem of elasticity corresponding to an arbitrary
parameter µ ∈ D, which is solved approximately using the two reduced basis surrogates described in
section 3. The displacement reduced order model delivers a kinematically admissible displacement field,
whilst the stress reduced order model delivers an approximated solution that satisfies the equilibrium
in the FE sense. In this context, we have the following remarkable property:

Proposition 4.1. Let eu(µ) = uh(µ) − ur(µ) and eσ(µ) = σh(µ) − σ̂(µ) be the RB errors for the

displacement and stress fields, respectively; ‖σ?‖C(µ) =

(∫
Ω

σ? : C(µ) : σ? dΩ

)1/2

be the energy norm

associated to an arbitrary stress field σ? ∈ S(Ω) and ‖v‖D(µ) =

(∫
Ω

ε(v) : D(µ) : ε(v) dΩ

)1/2

be the

energy norm associated to an arbitrary displacement field v ∈ Uh,0(Ω).
Then, the square of the distance ∆CRE(µ) between the RB stress field σr(µ) ∈ S(Ω) and the

surrogate stress field σ̂(µ) ∈ Sh,Ad(Ω;µ), measured in energy norm, will be equal exactly to the sum of
square of energy norms of the RB errors of the displacement and stress fields as follows

∆CRE(µ)
2

:= ‖σr(µ)− σ̂(µ)‖2C(µ) = ‖eu(µ)‖2D(µ) + ‖eσ(µ)‖2C(µ) . (50)

Proof. The proof is repeated for the sack clarity but can be found in [17] and is essentially an
extension of the classical proof used to bound the discretization error in the context of finite element
approximations [35]. We start by expanding the distance between the reduced basis stress field σr(µ)
and the surrogate stress field σ̂(µ) by using the following identity

‖σr(µ)− σ̂(µ)‖2C(µ) =
∥∥(σr(µ)− σh(µ)

)
+
(
σh(µ)− σ̂(µ)

)∥∥2

C(µ)
, (51)

†More precisely, N here should be the dimension of the FE stress field – not that of the FE displacement field. We
avoid using further symbols for simplicity.
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where σh(µ) = D(µ) : ε
(
uh(µ)

)
is the truth finite element stress field. Then, by using the constitutive

relation (2) and the definition of energy norm given previously, (51) can be expanded as

‖σr(µ)− σ̂(µ)‖2C(µ) =
∥∥ur(µ)− uh(µ)

∥∥2

D(µ)
+
∥∥σh(µ)− σ̂(µ)

∥∥2

C(µ)

+ 2

∫
Ω

(
σh(µ)− σ̂(µ)

)
:
(
ε (ur(µ))− ε

(
uh(µ)

))
dΩ. (52)

We recall that both the finite element stress field σh(µ) and the surrogate stress field σ̂(µ) are
equilibrated in the finite element sense (i.e, verify (29)). Thus, the following identity holds∫

Ω

(
σh(µ)− σ̂(µ)

)
: ε(v) dΩ = 0, ∀v ∈ Uh,0(Ω), µ ∈ D, (53)

together with (14) and (17), we obtain that the last term in (52) vanishes, which, using the
definitions introduced in the proposition 4.1.1, concludes the proof.

It is important to understand from (50) that the RB errors ‖eu(µ)‖D(µ) and ‖eσ(µ)‖C(µ) are
individually uncomputable, but the sum of their squares is computable in an a posteriori manner.
In the next subsection, we show that its computation is in fact very efficient within the context of
Offline-Online computational procedures. From another point of view, ∆CRE(µ) can also be considered
as an upper bound for the RB errors in both displacement field and stress field, that is,

∆CRE(µ) ≥ ‖eu(µ)‖D(µ) ≥ 0, and ∆CRE(µ) ≥ ‖eσ(µ)‖C(µ) ≥ 0, (54)

respectively.

We define the effectivities of CRE error bound for the displacement and stress fields as follows

ηCRE
u (µ) =

∆CRE(µ)

‖uh(µ)− ur(µ)‖D(µ)
, and ηCRE

σ (µ) =
∆CRE(µ)

‖σh(µ)− σ̂(µ)‖C(µ)
, (55)

respectively.

4.1.2 Offline-Online computational procedures for ∆CRE(µ)

Similar to the well-known SCM (or coercivity) error bound [25, 32], the a posteriori CRE error defined
in (50) can also be computed very efficiently by an Offline-Online strategy. For the clarity of the paper,
we leave the details of this procedure in appendix A and discuss its computational cost in the following.

In the Offline stage, the terms {ψi, 1 ≤ i ≤ nw}, {σp
k , 1 ≤ k ≤ ñp} and the RB basis functions

ZN = {φn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, Z̃Ñ = {φ̃m, 1 ≤ m ≤ Ñ}, 1 ≤ Ñ ≤ Ñmax are computed first;
then all the offline terms in (74)–(81) are computed and stored. In the Online stage, for any given
µ, we first solve (22) to get αn(µ), 1 ≤ n ≤ N ; then solve (46) to get α̃m(µ), 1 ≤ m ≤ Ñ ; and finally
assemble all the remaining terms to compute ∆CRE

N,Ñ
(µ) from (71).

For any given µ, the Online operation count at this stage includes (excluding the Online counts
described in section 3.1.4 and section 3.2.4): O

(
QaN

2
)

operations to assemble and compute RR(µ)

in (74), O
(
ncÑ

2
)

operations to assemble and compute HH(µ) in (78), and O
(
NÑ

)
operations to

assemble and compute RH(µ) in (80). Therefore, the Online operation count to evaluate µ→ ∆CRE
N,Ñ

(µ)

is also independent of N .
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Remark 4.2. In summary, from (71) and (74)–(81), the computation of ∆CRE(µ) can be performed
very efficiently through Offline-Online procedures. In fact, several offline terms were already computed
in the offline stages of RB displacement and stress fields: the offline terms of RRss(µ) (75), RRst(µ)
(76), HHss(µ), HHst(µ) (79), and RHts(µ) (81) were already computed from (24), (26), (47), (49)
and (48), respectively. Therefore, for a very general problem with nonhomogeneous Dirichlet boundary
conditions together with nonzero body force and surface traction, there are totally 5 remaining terms
need to be computed and stored: RRtt(µ); HHtt(µ); and RHss(µ), RHst(µ), RHtt(µ), respectively.

4.2 Two-field, CRE-based greedy sampling

4.2.1 Principle

In view of our previous exposition of the Constitutive Relation Error in the context of reduced
modelling, the main ideas underlying the construction of our projection subspaces are very simple.
Equation (50) shows that the accuracy of both stress and displacement ROMs is controlled by the
CRE. Therefore, it is natural to set the minimisation of the maximum CRE over the parameter domain
as our target for the construction of the projection spaces.

Of course, such a minimisation problem is not directly solvable, and we will make use of a Greedy
algorithm, as proposed in the original RBM. The method proceeds iteratively by assuming the existence
of projection subspaces for both displacement and stress and performing a rank-one correction in such
a way that the maximum of the CRE over the parameter domain is approximately minimised. As the
CRE is a bound for both RB displacement and stress errors, the algorithm can be stopped whenever
the CRE is sufficiently low over the entire parameter domain.

The rank-one update is performed as follows. First, we identify the point of the parameter domain
where the CRE is at its largest. Then, we compute the corresponding exact displacement and stress
fields, taking care of subtracting their respective nonhomogeneous parts. Finally, we enrich either the
displacement or the stress ROM by adding the corresponding solution (after orthonormalisation), to
the corresponding existing reduced basis. The choice of the field to enrich is simply based on testing
which one of the enrichments would result in the largest decrease in the CRE at this particular point
of the parameter domain.
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4.2.2 TF-RBM algorithm: two-field Greedy sampling procedure

Algorithm 1: Two-field Greedy sampling strategy.

INPUT: Ξtrain, εtol (or Nmax)
OUTPUT: ZN = {φn, 1 ≤ n ≤ N}; Z̃Ñ = {φ̃m, 1 ≤ m ≤ Ñ}

1: φ1 =
uh,0(µ1)

‖uh,0(µ1)‖D(µ0)
; Z1 = {φ1}; N = 1;

2: φ̃1 =
σh,0(µ̃1)

‖σh,0(µ̃1)‖C(µ0)
; Z̃1 = {φ̃1}; Ñ = 1;

3: while ∆CRE,max > εtol do

4: • Compute αN (µ), α̃Ñ (µ) and ∆CRE
N,Ñ

(µ), ∀µ ∈ Ξtrain from (71);

5: • Set: ∆CRE,max = max
µ∈Ξtrain

∆CRE
N,Ñ

(µ); µ? = arg max
µ∈Ξtrain

∆CRE
N,Ñ

(µ);

6: • Compute


uh(µ?) ⇒ ‖eu(µ?)‖D(µ?)

(
=: ∆CRE

N,Ñ+1
(µ?)

)
;

σh(µ?) ⇒ ‖eσ(µ?)‖C(µ?)

(
=: ∆CRE

N+1,Ñ
(µ?)

)
;

7: if ‖eu(µ?)‖D(µ?) > ‖eσ(µ?)‖C(µ?) then

8: φN+1 = GSdisp
(
uh(µ?)− uh,p(µ?),ZN

)
;

9: ZN+1 ← ZN ∪ φN+1; N ← N + 1;
10: else

11: φ̃N+1 = GSstress
(
σh(µ?)− σh,p(µ?), Z̃Ñ

)
;

12: Z̃Ñ+1 ← Z̃Ñ ∪ φ̃Ñ+1; Ñ ← Ñ + 1;
13: end if
14: end while

GSdisp: φN+1 ← uh,0(µ?)−
N∑
n=1

(
uh,0(µ?), φn

)
D(µ0)

φn;

φN+1 ←
φN+1

‖φN+1‖D(µ0)
;

GSstress: φ̃Ñ+1 ← σh,0(µ?)−
Ñ∑
m=1

(
σh,0(µ?), φ̃m

)
C(µ0)

φ̃m;

φ̃Ñ+1 ←
φ̃Ñ+1

‖φ̃Ñ+1‖C(µ0)

;

We are given εtol, which can be set either directly or through a maximum RB dimension Nmax; and
a training sample Ξtrain ⊂ D, which is a discrete set representing a very fine sample of ntrain = |Ξtrain|
points in the parameter domain. The two-field Greedy sampling algorithm is presented in Algorithm 1.

As observed from Algorithm 1, there are two sets of RB basis functions to be built: the RB
displacement set (ZN ) and the RB stress set (Z̃Ñ ). The two-field Greedy algorithm starts with

arbitrarily chosen parameters µ1, µ̃1 ∈ Ξtrain to construct Z1 = {φ1} and Z̃1 = {φ̃1}, respectively
(lines 1–2). We now analyse each Greedy iteration in detail as follows. We compute the CRE
error indicators ∆CRE

N,Ñ
(µ),∀µ ∈ Ξtrain based on the current RB displacement and stress spaces, i.e.,

U r,0
N (Ω) = span{φn, 1 ≤ n ≤ N} and Sr,0

Ñ
(Ω) = span{φ̃m, 1 ≤ m ≤ Ñ} (line 4). The “worst” parameter
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point µ? which induces the maximum error indicator thus can be found (line 5). We then perform
two following tests by applying equation (50) at µ?. First, we compute the exact displacement error
‖eu(µ?)‖D(µ?) via the FE displacement uh(µ?). Note that this exact error will equal exactly the
CRE error indicator ∆CRE

N,Ñ+1
(µ?) which is evaluated (at µ?) after enriching the current RB stress

space with φ̃(µ?). Second, we compute the exact stress error ‖eσ(µ?)‖C(µ?) via the FE stress σh(µ?).
Note also that this exact error will equal exactly the CRE error indicator ∆CRE

N+1,Ñ
(µ?) which is

evaluated (at µ?) after enriching the current RB displacement space with φ(µ?) (line 6). These two
exact errors are then compared with each other, and the actual enrichment is decided based on this
comparison. If ∆CRE

N,Ñ+1
(µ?) > ∆CRE

N+1,Ñ
(µ?), this implies that the “testing” displacement enrichment

helps to decrease the CRE error indicator at µ? more than the “testing” stress enrichment does; and
hence “actual” displacement enrichment will be performed (lines 8–9). In a completely opposite way,
the fact ∆CRE

N,Ñ+1
(µ?) ≤ ∆CRE

N+1,Ñ
(µ?) implies that the “testing” stress enrichment reduces the CRE

error indicator at µ? more than the “testing” displacement enrichment does; and hence “actual” stress
enrichment will be performed (lines 11–12). The algorithm is iterated and stopped when the stopping
criteria satisfies (line 3). Lastly, GSdisp and GSstress are two functions which construct next RB basis
functions for displacement and stress fields using Gram-Schmidt orthogonalization process, respectively.

The basic idea of this proposed algorithm is that we use only one single Greedy loop to build
simultaneously two RB spaces (U r,0

N (Ω) and Sr,0

Ñ
(Ω)) in an optimal way. At one Greedy iteration,

the particular set of RB basis functions will be chosen for “actual” enrichment depending on the
performance of its “testing” enrichment set on µ?: which “testing” set decreases ∆CRE(µ?) the most
will be chosen.

Finally, we also mention the inner products and norms used in the Gram-Schmidt process for the
displacement field as

(u, v)D(µ0) =

∫
Ω

ε(u) : D(µ0) : ε(v) dΩ, ∀u, v ∈ Uh,0(Ω),

‖v‖D(µ0) = (v, v)
1/2
D(µ0) ,

(56)

and for the stress field

(σ1, σ2)C(µ0) =

∫
Ω

σ1 : C(µ0) : σ2 dΩ, ∀σ1, σ2 ∈ Sh,0(Ω),

‖σ‖C(µ0) = (σ, σ)
1/2
C(µ0) ,

(57)

where µ0 is a prescribed parameter chosen as in (15) and (33).

5 Goal-oriented TF-RBM: “tuning-free” sampling strategy

Several authors have shown the advantage of devising goal-oriented sampling strategies to construct
the projection spaces used in reduced order modelling [37, 27]. Instead of aiming at minimising the
maximum over the parameter domain of an arbitrary measure of the error, one aims at minimising the
error in the quantity or quantities of interest. This type of approach has been shown to lead to faster
convergence rates of the greedy algorithm in terms input-output maps.

There is an other advantage of using such approaches. They permit to devise construction algorithms
that are “tuning-free”: algorithms that do not require any hidden calibration from the user. Ideally,
the only input of a reduced basis algorithm should be the error that the engineer is willing to accept
on the accuracy of the output(s) of the ROM. This is the point of view that we are going to follow in
this section.

We first show that the errors in quantities of interest can be written in terms of errors measured in
energy norms, using standard adjoint techniques [43, 44, 45, 25, 46, 17]. In turn, computable bounds
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can be obtained by substituting these exact error measures by the CRE. From there, it is relatively
easy to derive a goal-oriented variant of the greedy sampling strategy exposed in the previous section.
One simply locates the point of the parameter domain that yields the largest error in quantity of
interest. Next, a (sub-)optimal rank-one update of the projection subspaces is defined by enriching
one, and only one of the bases, displacement/stress of the primal or displacement/stress of one of the
adjoint problems, by its corresponding exact solution. Again, the choice of which of the ROMs to
enrich will be guided by the minimisation of the errors in quantities of interest.

5.1 Bounds for the engineering quantities of interest (QoI)

For each one of the quantities of interest, we define a finite element dual (or adjoint) problem as follows

a
(
zh,0
i (µ), v;µ

)
= `i (v;µ) , ∀v ∈ Uh,0(Ω), 1 ≤ i ≤ nQ, (58)

where zh,0
i (µ) ∈ Uh,0, 1 ≤ i ≤ nQ is the FE dual displacement field corresponding to output functional

`i, which is required to satisfy homogeneous Dirichlet boundary conditions.
We solve this problem approximately by projection-based ROM, which is obtained by the reduced

Galerkin formulation: find zr,0
i (µ) ∈ Uh,0(Ω) such that

a
(
zr,0
i (µ), v;µ

)
= `i (v;µ) , ∀v ∈ U r,0

z,i (Ω), 1 ≤ i ≤ nQ, (59)

where U r,0
z,i (Ω) ⊂ Uh,0(Ω) is the reduced basis space for the dual displacement field associated with

output functional `i; and generally U r,0
z,i (Ω) 6= U r,0

N (Ω), 1 ≤ i ≤ nQ. For consistency, we also define the

sets of RB basis functions for dual displacements Zdui
Ndui

= {φdui
n , 1 ≤ n ≤ Ndui}, and that for dual

stresses Z̃dui
Ñdui

= {φ̃dui
m , 1 ≤ m ≤ Ñdui}, 1 ≤ i ≤ nQ for the i-th QoI, respectively.

Now, the following expression is classically obtained to link the error in quantity of interest as a
function of the error in energy norm:

Qh
i (µ)−Qr

i(µ) = a (ez,i(µ), eu(µ);µ) +R
(
zr,0
i (µ);µ

)
, 1 ≤ i ≤ nQ, (60)

where ez,i(µ) := zh
i (µ)− zr

i (µ) and R : Uh,0(Ω)×D → R is the residual form of (18) defined as

R(v;µ) = f̂(v;µ)− a(ur,0(µ), v;µ), ∀v ∈ Uh,0(Ω), ∀µ ∈ D. (61)

Applying the Cauchy-Schwarz inequality to separate the errors in primal and dual problems, and
substituting the CRE as a computable bound for exact errors in energy norm, we obtain

Qr,−
i (µ) ≤ Qh

i (µ) ≤ Qr,+
i (µ), (62)

where

 Qr,−
i (µ) = Qr

i(µ) +R
(
zr,0
i (µ);µ

)
−∆CRE(µ) ∆CRE

z,i (µ)

Qr,+
i (µ) = Qr

i(µ) +R
(
zr,0
i (µ);µ

)
+ ∆CRE(µ) ∆CRE

z,i (µ)
, 1 ≤ i ≤ nQ.

Equation (62) is fundamental to our sampling strategy. It provides an interval in which the exact
output, which is not computable, is guaranteed to be found. We will call this interval “uncertainty
gap”, and our aim will be to control and minimise its length through our sampling algorithm. In fact,
we will use a relative measure of this gap defined as

gapi(µ) =

∣∣Qr,+
i (µ)−Qr,−

i (µ)
∣∣

1/2
(
|Qr,+

i (µ)|+ |Qr,−
i (µ)|

) , ∀µ ∈ D, 1 ≤ i ≤ nQ, (63)

for the i-th QoI.
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Remark 5.1. For the special case of a compliant output, dual and primal solutions coincide to a
multiplicative constant. In this case, we naturally choose to use a unique two-field ROM for both primal
and dual problems. Inequality (62) can therefore be sharpened as

Qr(µ) ≤ Qh(µ) ≤ Qr(µ) + ∆CRE(µ)2. (64)

5.2 Goal-oriented Greedy sampling strategy

Algorithm 2: The goal-oriented Greedy sampling strategy.

INPUT: Ξtrain, εgap,tol (or Npr
max)

OUTPUT: Zpr
Npr = {φpr

n , 1 ≤ n ≤ Npr}; Z̃pr

Ñpr
= {φ̃pr

m , 1 ≤ m ≤ Ñpr};
Zdui
Ndui

= {φdui
n , 1 ≤ n ≤ Ndui}; Z̃dui

Ñdui
= {φ̃dui

m , 1 ≤ m ≤ Ñdui}; 1 ≤ i ≤ nQ.

1: φpr
1 =

uh,0(µpr
1 )

‖uh,0(µpr
1 )‖D(µ0)

; Zpr
1 = {φpr

1 }; Npr = 1;

2: φ̃pr
1 =

σh,0(µ̃pr
1 )

‖σh,0(µ̃pr
1 )‖C(µ0)

; Z̃pr
1 = {φ̃pr

1 }; Ñpr = 1;

3: φdui
1 =

zh,0
i (µdui

1 )

‖zh,0
i (µdui

1 )‖D(µ0)

; Zdui
1 = {φdui

1 }; Ndui = 1;

4: φ̃dui
1 =

σh,0
z,i (µ̃dui

1 )

‖σh,0
z,i (µ̃dui

1 )‖C(µ0)

; Z̃dui
1 = {φ̃dui

1 }; Ñdui = 1;

5: while gapmax > εgap,tol do

6: • Compute αpr
Npr(µ), α̃pr

Ñpr
(µ), αdui

Ndui
(µ), α̃dui

Ñdui
(µ); and ∆CRE

Npr,Ñpr(µ), ∆CRE,z

Ndui ,Ñdui
(µ);

7: ⇒ gapi(µ), ∀µ ∈ Ξtrain, 1 ≤ i ≤ nQ from (63);

8: • Set: gapmax = max
µ∈Ξtrain,1≤i≤nQ

gapi(µ); (µ?, I) = arg max
µ∈Ξtrain,1≤i≤nQ

gapi(µ);

9: • ComputeExactErrors; (see Algorithm 3)

10: if δ1 = min{δj , 1 ≤ j ≤ 4} then

11: φ̃pr

Ñpr+1
= GSstress

(
σh(µ?)− σh,p(µ?), Z̃pr

Ñpr

)
;

12: Z̃pr

Ñpr+1
← Z̃pr

Ñpr
∪ φ̃pr

Ñpr+1
; Ñpr ← Ñpr + 1;

13: else if δ2 = min{δj , 1 ≤ j ≤ 4} then

14: φpr
Npr+1 = GSdisp

(
uh(µ?)− uh,p(µ?),Zpr

Npr

)
;

15: Zpr
Npr+1 ← Z

pr
Npr ∪ φpr

Npr+1; Npr ← Npr + 1;

16: else if δ3 = min{δj , 1 ≤ j ≤ 4} then

17: φ̃duI
ÑduI+1

= GSstressdu
(
σh
z,I(µ

?)− σh,p
z,I (µ?), Z̃duI

ÑduI

)
;

18: Z̃duI
ÑduI+1

← Z̃duI
ÑduI

∪ φ̃duI
ÑduI+1

; ÑduI ← ÑduI + 1;

19: else if δ4 = min{δj , 1 ≤ j ≤ 4} then

20: φduI
NduI+1

= GSdispdu
(
zh
I (µ?)− zh,p

I (µ?),ZduI
NduI

)
;

21: ZduI
NduI+1

← ZduI
NduI

∪ φduI
NduI+1

; NduI ← NduI + 1;

22: end if
23: end while
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Algorithm 3: ComputeExactErrors

1: ◦ Compute uh(µ?) ⇒ ‖epr
u (µ?)‖D(µ?)

(
=: ∆CRE

Npr,Ñpr+1
(µ?)

)
;

2: then recompute ∆CRE
Npr,Ñpr+1

(µ?)∆CRE,z

NduI ,ÑduI
(µ?)→ δ1;

3: ◦ Compute σh(µ?) ⇒ ‖epr
σ (µ?)‖C(µ?)

(
=: ∆CRE

Npr+1,Ñpr(µ
?)
)

;

4: then recompute ∆CRE
Npr+1,Ñpr(µ

?)∆CRE,z

NduI ,ÑduI
(µ?)→ δ2;

5: ◦ Compute zh
I (µ?) ⇒ ‖eduI

z (µ?)‖D(µ?)

(
=: ∆CRE,z

NduI ,ÑduI+1
(µ?)

)
;

6: then recompute ∆CRE
Npr,Ñpr(µ

?)∆CRE,z

NduI ,ÑduI+1
(µ?)→ δ3;

7: ◦ Compute σh
z,I(µ

?) ⇒ ‖eduI
σ (µ?)‖C(µ?)

(
=: ∆CRE,z

NduI+1,ÑduI
(µ?)

)
;

8: then recompute ∆CRE
Npr,Ñpr(µ

?)∆CRE,z

NduI+1,ÑduI
(µ?)→ δ4;

GSdispdu: φdui
Ndui+1

← zh,0
i (µ?)−

Ndui∑
n=1

(
zh,0
i (µ?), φdui

n

)
D(µ0)

φdui
n ;

φdui
Ndui+1

←
φdui
Ndui+1

‖φN+1‖D(µ0)
;

GSstressdu: φ̃dui
Ñdui+1

← σh,0
i (µ?)−

Ñdui∑
m=1

(
σh,0
z,i (µ?), φ̃dui

m

)
C(µ0)

φ̃dui
m ;

φ̃dui
Ñdui+1

←
φ̃dui
Ñdui+1

‖φ̃dui
Ñdui+1

‖C(µ0)

;

We are given εgap,tol, which can be set either directly or through a maximum RB primal dimension
Npr

max; and a training sample Ξtrain which contains ntrain = |Ξtrain| discrete points in the parameter
domain. The goal-oriented Greedy strategy aims to build the sets of RB basis functions such that
the “uncertainty gaps” of nQ QoI are minimised by using one single Greedy loop. For an i-th general
noncompliant QoI, there are 4 sets of RB basis functions to be built: the RB primal displacement
set (Zpr

Npr), RB primal stress set (Z̃pr

Ñpr
), RB dual displacement set (Zdui

Ndui
) and RB dual stress set

(Z̃dui
Ñdui

). The Greedy loop will manipulate simultaneously these 4 sets, as presented in Algorithm 2.

The goal-oriented Greedy algorithm starts with arbitrarily chosen parameters µpr
1 , µ̃pr

1 , µdui
1 ,

µ̃dui
1 ∈ Ξtrain to construct Zpr

1 = {φpr
1 }, Z̃

pr
1 = {φ̃pr

1 }, Z
dui
1 = {φdui

1 } and Z̃dui
1 = {φ̃dui

1 }, 1 ≤ i ≤ nQ

(Algorithm 2, lines 1–4). Then, at each Greedy iteration, we will compute the QoI gaps gapi(µ),
∀µ ∈ Ξtrain, 1 ≤ i ≤ nQ eq. (63), based on the current RB primal/dual displacement/stress spaces

which have dimensions Npr, Ñpr, Ndui and Ñdui (Algorithm 2, lines 6–7). The “worst” parameter
point µ? and QoI index I which induce the maximum gap thus can be found (Algorithm 2, line 8). With
µ? and I at hand, we will compute the exact errors at µ? as described in Algorithm 3. In particular,
the energy norms at µ? of exact errors of primal displacement, primal stress, I-th dual displacement
and I-th dual stress are computed in turn; and note that these values essentially are primal/dual CRE
errors which are evaluated at µ? after enriching RB primal stress, RB primal displacement, RB I-th
dual stress and RB I-th dual displacement, respectively. Next, we recompute correspondingly the
product ∆CRE(µ?)∆CRE,z(µ?) for each of the 4 computations above since the numerator of gapi(µ)
(eq. (63)) is proportional to this product. These 4 resulting values are then compared to each other,
and the actual enrichment will be decided based on this comparison: which “testing” set decreases this
product the most will be chosen for the “actual” enrichment (Algorithm 2, lines 10–22). For instance,
if δ3 = min{δj , 1 ≤ j ≤ 4}, this implies that the I-th dual stress enrichment would reduce the product

19



∆CRE(µ?)∆CRE,z(µ?) the most among 4 “testing” enrichments; and hence “actual” I-th dual stress
enrichment will be performed (Algorithm 2, lines 17–18). The algorithm will iterate and stop when
the stopping criteria is satisfied (line 5).

We observe that even for multiple QoI, at each Greedy iteration we only “test” 4 sets of RB basis
functions which are associated with the I-th QoI; and then enrich only one of these four sets. This is
due to the contributions of Zpr

Npr and Z̃pr

Ñpr
to ∆CRE(µ?), and that of ZduI

NduI
and Z̃duI

ÑduI
to ∆CRE,z

I (µ?);

and these ultimately contribute to gapI(µ
?). This property makes the algorithm very efficient and

attractive for multiple-QoI problems.
In comparison with the two-field Greedy algorithm, the goal-oriented Greedy strategy has three

main differences which are the objective function, the total number of RB sets to be built and the
number of RB sets tested at each Greedy iteration. First, we try to minimize the “uncertainty gap”
gapi(µ), 1 ≤ i ≤ nQ rather than the CRE error ∆CRE(µ). Second, we need to build all RB spaces for
displacement/stress fields which are associated with nQ QoI. Finally, at each Greedy iteration, we
need to consider simultaneously 4 RB sets instead of 2 RB sets as in the two-field Greedy algorithm.
However, the principle to choose and enrich RB sets is completely similar to that of the two-field
Greedy algorithm. Namely, the particular RB set will be chosen depending on the performance of
its new “testing” set on µ?: which “testing” set decreases gapI(µ

?) the most will be selected for the
“actual” enrichment.

6 Numerical example

In this section, we will apply the TF-RBM algorithm to the metamodelling of computational models
of elastic heterogeneous materials, under 2D plane strain assumption. The heterogeneous material of
interest is made of two isotropic linear elastic phases possessing distinct elastic properties: circular
inclusions and surrounding matrix (fig. 1). The positions and diameters of the inclusions are distributed
randomly. The aim is to determine the so-called “overall” (or “effective”) elasticity tensor as a function
of some characteristics µm ∈ Dm of the material heterogeneities. In other words, we want to build
a virtual chart of the overall homogenised properties of the class of composite materials under
investigation.

6.1 Finite element discretization

We consider a 2D statistical volume element (SVE) model under plane strain assumption in fig. 2. The
domain Ω is a unit square which is defined by Ω = [0, 1]× [0, 1]. The model is composed of two distinct
material phases: the circular inclusions characterized by Young’s modulus Einc and the surrounding
matrix characterized by Young’s modulus Emat. Both phases are assumed to have elastic and isotropic
behavior. The random distribution of positions and diameters of the inclusions is performed via the
package [47, 48]. There are no body force nor surface traction – the only load applying to the model is
via parametrised Dirichlet boundary conditions.

The SVE boundary value problem is parametrised by the material parameters µm and the load
parameters µl as: µ =

(
µm, µl

)
≡
(
µm, µl

1, µ
l
2, µ

l
3

)
≡ (µ1, µ2, µ3, µ4). We assume in this example that

the material heterogeneities are only parametrised by the elastic contrast µm ≡ µ1 = Einc

Emat . The
load parameters µl are constituted by the independent components of the effective strain tensor εM,

where εM ∈ R2 × R2 and εM = εM
T

. More precisely, we define µl
1 ≡ µ2 = εM11, µl

2 ≡ µ3 = εM22 and
µl

3 ≡ µ4 = εM12. The affine representation of the Dirichlet boundary conditions is thus defined as

w(x, µ) = εM(µl)(x− x̄)

=

((
1 0
0 0

)
µ2 +

(
0 0
0 1

)
µ3 +

(
0 1
1 0

)
µ4

)
(x− x̄), ∀µ ∈ D, x ∈ ∂Ωw,

(65)
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Figure 1: Schematic representation of the computational homogenisation framework for composite
materials. The elastic contrast of the particulate composite is parametrised.

with x̄ the barycenter of Ω (i.e.,
∫

Ω
(x− x̄)dΩ = 0).

The “truth” finite element SVE problem reads: find uh,0(µ) ∈ Uh,0(Ω) such that

∫
Ω

ε
(
uh,0(µ)

)
: D(µ) : ε(v) dΩ = −

∫
Ω

ε
(
uh,p(µ)

)
: D(µ) : ε(v) dΩ,

= f̂(v), ∀v ∈ Uh,0(Ω),

(66)

where uh,p(x, µ) = w(x, µ),∀µ ∈ D, x ∈ ∂Ωw is a known displacement field as described above, and
uh,0(µ) is the unknown displacement field which will be approximated using RB method. The “truth”
effective Lamé constants GM,h(µm) ≡ Gh(µ) and λM,h(µm) ≡ λh(µ) are computed as (see Chapter 7.2
[49])

Gh(µ) = `G
(
uh(µ)

)
=

1

|Ω|

∫
Ω

ΣG : D(µ) : ε(uh(µ)) dΩ, (67a)

λh(µ) = `λ
(
uh(µ)

)
=

1

|Ω|

∫
Ω

Σλ : D(µ) : ε(uh(µ)) dΩ, (67b)

where ΣG and Σλ are field extractors such that `G(v) = − 1
|Ω| f̂(v) and `λ(v) 6= f̂(v). Hence, Gh(µ)

and λh(µ) are compliant and noncompliant outputs, respectively.
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Figure 2: The finite element discretization of the parametrised SVE.

The elastic contrast µm ranges from 0.1 (soft inclusions) to 10 (hard inclusions). The Poisson’s
ratios of both phases are set to ν = 0.3. In this context, the affine representation of the Hooke’s
elasticity tensor over the parameter domain reads:

D(x, µ) = Dmat + (µ1 − 1)H inc(x)Dmat, ∀µ ∈ D, x ∈ Ω. (68)

In equation (68) above, the function H inc is the indicator function of the inclusion phase. Namely,
it is equal to 1 for a point located in an inclusion and 0 elsewhere. The elasticity tensor of the matrix
phase Dmat is defined by equation (2), with Emat = 1 and νmat = 0.3. The affine representation of the
compliance tensor over the parameter domain becomes

C(x, µ) = Cmat +

(
1

µ1
− 1

)
H inc(x)Cmat, ∀µ ∈ D, x ∈ Ω, (69)

where Cmat is the compliance tensor of the matrix phase.

We now note that by solving {(66), (67)}, setting µ ≡ µG =
(
µ1, 0, 0,

1
2

)
, ΣG =

(
0 1

2
1
2 0

)
will

render Gh(µ); while setting µ ≡ µλ =
(
µ1, 1, 0,

1√
2

)
, Σλ =

(
1 − 1√

2

− 1√
2

0

)
will render λh(µ),

respectively. Therefore, the only “actual” parameter of this problem is µ1 = Einc

Emat ∈ D ≡ [0.1, 10]; and
note that each µ1 provides correspondingly one µG and one µλ as described above. The (very fine)
finite element mesh consists of 7728 nodes and 15184 linear triangular elements as shown in fig. 2. The
FE space to approximate the 2D homogenization problem is of dimension N = 14916. The reference
parameter used in this work is chosen as µ0 = (1, 0, 0, 0). The entire work is implemented using the
software Matlab R2012b. We show the FE displacement field in fig. 3 and the corresponding FE stress

field in fig. 4 with µtest ≡ µλ =
(

5, 1, 0, 1√
2

)
, respectively.

In order to implement the sampling strategies which were described in section 4.2.2 and section 5.2,
we first create the training sample set Ξtrain. In particular, the range D ≡ [0.1, 10] is divided
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Figure 3: FE displacement field in x-direction (a), and y-direction (b), with µtest ≡ µλ =
(

5, 1, 0, 1√
2

)
.

by a logarithmically equidistant distribution with 500 sample points µm; and each µm provides
correspondingly one µG and one µλ. Hence, the training sample set Ξtrain contains a total of 1000
sample points which are 500 pairs (µG, µλ) logarithmically equidistant distributed.

6.2 Two-field Greedy algorithm

We first test our implementation of the TF-Greedy (two-field Greedy) algorithm described in sec-
tion 4.2.2. In fig. 5(a), we present the convergence of the algorithm for the parametrised SVE problem.
In fig. 5(a), we show the value of the maximum of CRE error ∆CRE,max = max

µ∈Ξtrain

∆CRE(µ), the

displacement error εmax
u = max

µ∈Ξtrain

‖eu‖D(µ) and stress error εmax
σ = max

µ∈Ξtrain

‖eσ‖C(µ) over Ξtrain as a

function of the Greedy iteration number. In fig. 5(b), we report the displacement and stress effectivities
at µ?: ηCRE

u (µ?) and ηCRE
σ (µ?) as a function of the greedy iterations, while in fig. 5(c), we show the

evolution of the displacement and stress reduced basis, ZN and Z̃Ñ respectively.

a) From fig. 5(a), we see that the TF-RBM converges both in stress and displacement, as it is designed
to converge in the CRE error measure, which is a combination of the exact error in these two fields.
The “stair” shape of the convergence curves of the stress and displacement errors is easily explained:
we have chosen to correct only one of the surrogates at each greedy iteration.

For comparison purpose, we also show the behaviour of the RB method using the well-known
Successive Constraint Method (SCM) upper error bound [33, 25, 32] in fig. 6 (The SCM error
bound is presented briefly in appendix B for reference). Comparing fig. 5(a) and fig. 6(a), we see
that the convergent rate of our proposed TF-Greedy strategy is similar to that of the SCM-based
Greedy strategy. This statement is made on the basis that the dimension of each of the TF-RBM
surrogate is approximately equal to the number of greedy iterations divided by two. Therefore, if
we consider the displacement surrogate as “master” surrogate in the TF-RBM, whilst the “stress”
surrogate is considered as a tool for certification purposes, then the displacement convergence rate
of the two methods as a function of the dimension of the corresponding reduced basis is similar. We
acknowledge the fact that comparing the convergence of the two methods in such a way is arguable
are they are conceptually different. However, it does show that the TF-RBM extracts attractive
subspaces at a speed that is at least comparable to that of the SCM-based RBM.
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Figure 4: FE stress field σxx (a), σyy (b), and σxy (c), with µtest ≡ µλ =
(

5, 1, 0, 1√
2

)
.

b) The effectivites of the TF-RBM bounds of the stress and displacement errors automatically “balance
themselves” out . When the stress error is larger than the displacement error, the algorithm
increases the dimension of the stress surrogate at the next greedy iteration, thereby increasing
the effectivity of the displacement error bound, while the effectivity of the stress error bound is
left free to degrade. This property appears more clearly in fig. 5(b)). We see that the two curves
ηCRE
u (µ?) and ηCRE

σ (µ?) develop in opposite directions from one Greedy iteration to the next one:
when ηCRE

u (µ?) increases, ηCRE
σ (µ?) decreases and vice versa.

This is in contrast to the the SCM-based RBM, which, by design, requires a uniformly sharp
effectivity for the displacement error bound (see figure fig. 6). This sharp error bound needs to
be trained in advance during the offline stage, while the error bounds of the TF-RBM “train
themselves” during the greedy iterations. In facts, the error bounds of the TF-RBM are an outcome
of the training process, and not a requirement for the training to be performed, which is what
makes this method appealing and easy to implement.

c) We now present some results in terms of “online” and “offline” computational time for the SVE
problem. All computations were performed on a desktop Intel(R) Core(TM) i7-3930K CPU
@3.20GHz 3.20GHz, RAM 32GB, 64-bit Windows 7 Operating System.

We first report the “online” CPU time of the computation µ → ∆X(µ) where either X=CRE
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or X=SCM in fig. 7(a), which involves solving the reduced order model(s) and computing the

error indicator. In order to do this, we choose a test parameter point µtest ≡ µλ =
(

5, 1, 0, 1√
2

)
.

Then, for each order of reduced basis surrogates obtained by the TF-RBM and SCM-based greedy
processes, we compute µtest → ∆CRE(µtest) and µtest → ∆SCM(µtest) and measure the corresponding
computational time. These operations are performed repeatedly 1000 times and report the average
cost in terms of CPU time. In,fig. 7(a) this recorded time (normalized by tFEM) is plotted as
functions of the measures of accuracy ∆CRE,max and ∆SCM,max, respectively.

From observing fig. 7(a), we see that the speed-up of ∆CRE(µ) is about 20 times larger than
that of ∆SCM(µ). This is intuitively explainable: the SCM-based approach requires solving an
optimization problem to compute ∆SCM(µ) (via the SCM coercivity coefficient αNLB(µ)), which
takes more computing resources than inverting the (Ñ × Ñ) matrix required to obtain ∆CRE(µ).
In short, when “online” certification of the reduced basis approach is required, we can conclude
that the TF-RBM is more the one order of magnitude faster than the SCM-based approach.

However, this statement should be mitigated. Indeed, the requirement for certification is arguable.
Firstly, if the training set samples the parameter domain in a sufficiently fine way, then we can
trust the the online error for an arbitrary set of parameters will be smaller than the maximum
error over the training set. Secondly, the usefulness of certification depends on the ability of the
engineer to increase the accuracy of the reduced model after it has been constructed, which is
highly application-dependant. However, ‘this ‘online” speed-up may have a significant impact in
applications where high-dimensional parameter domains are considered, as fine training sets may
be out of reach. An other particularly interesting case is the family of “on-the-fly” model order
reduction (e.g. [7, 2, 50]), where “offline/online” decomposition of the computational effort is
irrelevant. In this case, the training is performed “online”, for instance directly on the trajectory of
a gradient-based optimisation algorithm or during the iterations of a Monte-Carlo algorithm [50].

In terms of “offline” CPU time, the cost of the construction of the TF-RBM surrogate is similar
to the cost of the SCM-based RBM. This is due to the fact that the mass of the computational
resources required “offline” is concentrated in full-order operations such as computing exact finite
element solutions or assembling the terms of the various affine decompositions. The speed-up
obtained by the TF-RBM when exploring the parameter domain is lost due to such overheads.
Moreover, the SCM-based RBM is very efficient when a fixed training set is used throughout the
greedy process, as the expensive part of the SCM error bound computation, the optimisation of
the lower bound of the coervicity constant, is computed only once for each of the training points.
We have tested the idea of using varying random training sets, which has been shown in recent
investigations to allow for a more efficient sampling of the parameter domain [29]. In this case,
the TF-RBM can be faster than the SCM-based RBM in the “offline” stage. With 1000 randomly
distributed training points, we have observed that the construction costs of the TF-RBM model are
halved compared to the SCM-based approach.

6.3 Goal-oriented Greedy algorithm

a) The QoI gaps of the homogenization problem are defined as (63), i.e.,

gapG ≡ gap(µG) =
2
∣∣Gr,+(µG)−Gr,−(µG)

∣∣
|Gr,+(µG)|+ |Gr,−(µG)|

, (70a)

gapλ ≡ gap(µλ) =
2
∣∣λr,+(µλ)− λr,−(µλ)

∣∣
|λr,+(µλ)|+ |λr,−(µλ)|

, (70b)

where Gr,+(µ), Gr,−(µ) are defined as in (64), and λr,+(µ), λr,−(µ) are defined as in (62) for
compliant and noncompliant outputs, respectively. In addition, there is a dual equation associated
with λh(µ), and no dual equation associated with Gh(µ) due to this reason.
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Figure 5: (a) Maximum of CRE error ∆CRE,max, displacement RB error εmax
u and stress RB error

εmax
σ over Ξtrain, (b) displacement and stress effectivities at µ?, and (c) sizes of the sets ZN and Z̃Ñ as

functions of Greedy iterations (only first 32 iterations are shown in fig. 5(b) and fig. 5(c)).

b) We now implement the proposed goal-oriented Greedy sampling strategy (section 5.2). The results
are shown in fig. 8. In particular, we present the maximum of gaps gapmax

G,λ = max
µ∈Ξtrain

{gapG, gapλ}

together with gapmax
G = max

µG∈Ξtrain

gapG and gapmax
λ = max

µλ∈Ξtrain

gapλ in fig. 8(a). Fig. 8(b) shows

the sizes of Zpr, Z̃pr, Zdu and Z̃du as functions of GO-Greedy iterations (first 30 iterations),
respectively. For reference, we also present the maximum of gaps which are post-processed with
Npr = Ndu using primal and dual SCM-Greedy algorithms‡ in fig. 9.

It is observed from fig. 8(a) that the proposed GO-Greedy strategy converges “goal-orientedly”: the
strategy only enriches necessary RB basis functions (primal/dual displacement/stress) to minimize
the QoI gaps. Fig. 8(b) shows that the primal displacement/stress RB basis functions are enriched

‡We choose this specific configuration (Npr = Ndu) since there is no available goal-oriented algorithm for SCM-Greedy
algorithm, and this configuration is most commonly used for noncompliant outputs [25, 32].

26



0 5 10 15 20
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

N

M
a
x
e
r
r
o
r
s
o
v
e
r
Ξ
t
r
a
in

 

 

∆
SCM,max

εmax
u

(a)

0 2 4 6 8 10 12 14 16
1

1.5

2

2.5

3

3.5

4

4.5

5

N

E
ff
ec
ti
v
it
ie
s
at

µ
⋆

 

 

η
SCM
u

(µ⋆)

(b)

Figure 6: (a) Maximum of SCM upper error bound ∆SCM,max and displacement RB error εmax
u over

Ξtrain, and (b) displacement effectivity at µ? as functions of N (only first 16 iterations are shown in
fig. 6(b)).
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Figure 7: Speed-up as functions of max error indicators for ∆max (a), and for gapmax (b) (tFEM = 0.1209
sec).

more than the dual ones. This may be because Zpr and Z̃pr help to improve both gaps, i.e.,
{gapG, gapλ}; while Zdu and Z̃du will contribute to the improvement of gapλ only. This is in fact
consistent with and also explains fig. 9: since we use a relatively high Ndu compared with a Npr

(Npr = Ndu), gapλ is thus much smaller than gapG with one specific Npr = Ndu. Fig. 10 and
fig. 11 illustrate the virtual charts of G(µ) and λ(µ) as functions of the material heterogeneity

µm = Einc

Emat after first 9 GO-Greedy iterations, respectively.

c) We finally report the online computational time of the computation µ→ gapX(µ), where X=TF-RB
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or X=SCM-RB in fig. 7(b). (Here, TF-RB implies two-field goal-oriented reduced basis, and
SCM-RB means successive constraint method reduced basis.) In particular, by repeating the
same procedure as in paragraph c) of section 6.2 above, we can obtain the recorded time to
compute µtest → gapTF−RB(µtest) (after implementing the proposed GO-Greedy algorithm) and
µtest → gapSCM−RB(µtest) (after post-processing two SCM-Greedy algorithms), respectively. We
then plot this recorded time (normalized with respect tFEM to obtain the speed-up) as functions of
gapTF−RB,max and gapSCM−RB,max in fig. 7(b), respectively.

By observation, fig. 7(b) is very consistent with fig. 7(a). We recall from (62) that the computation
of gap(µ) essentially contains ∆X(µ), ∆X

z (µ) and R
(
zr,0(µ)

)
where X=CRE or X=SCM. Therefore,

the (online) computational time of gap(µ) will be a little more than two times of that of ∆X(µ);
and this fact is reflected clearly in fig. 7. In conclusion, as similar to the case ∆X above, the online
computational time of our proposed GO-Greedy strategy is O(10) times smaller than that of the
(post-processing) SCM-Greedy approach.
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Figure 8: (a) Maximum of gapG,λ, gapG and gapλ over Ξtrain, and (b) sizes of the sets Zpr, Z̃pr, Zdu

and Z̃du as functions of GO-Greedy iterations (only first 30 iterations are shown in fig. 8(b)).

7 Conclusion

A new reduced basis framework has been proposed for the metamodelling of parametrised elasticity
problems. The first novel idea is to use the Constitutive Relation Error as an indication of accuracy of
the reduced order model, in order to (i) construct the projection spaces based on a greedy sampling
of the parameter domain and (ii) certify the final reduced order model. The method requires the
construction of separate reduced order models for the primal (displacement) and flux (stress) fields.
The greedy sampling algorithm is designed to jointly construct optimum projection subspaces for these
two fields. We have shown that the numerical efficiency of the resulting reduced order model is more
than one order of magnitude higher than state-of-the-art existing methodologies. We have also shown
that the construction of this model is considerably simplified due to the fact that the reduced order
model and the relevant measures of accuracy are trained together, in a single greedy loop.

The second key idea is to extend this concept to the context of goal-oriented sampling. In this case,
the greedy algorithm is aimed at the minimisation of the error in quantity of interest. We have shown
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that this concept, coupled with the CRE-driven adaptivity, leads to the construction of a metamodel
that is “tuning-free”, in the sense that the user needs only to specify the desired accuracy for the
quantities of interest. There is no other calibration parameter in the proposed algorithm. We have
shown that this goal-oriented algorithm permits to construct reduced order models that are directly
certified in terms of input/output maps, and extremely efficient in terms of computational expenses.
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Figure 11: Virtual charts of λ(µ) with respect to the variations of material heterogeneity after first 9
GO-Greedy iterations.
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A Offline-Online computational procedures for ∆CRE(µ)

We first expand (50) and noting the definition of ‖ · ‖C(µ) (Proposition 4.1) as follows§

∆CRE
N,Ñ

(µ)
2

:= ‖σr(µ)− σ̂(µ)‖2C(µ) =

∫
Ω

(σr(µ)− σ̂(µ)) : C(µ) : (σr(µ)− σ̂(µ)) dΩ

=

∫
Ω

σr(µ) : C(µ) : σr(µ) dΩ +

∫
Ω

σ̂(µ) : C(µ) : σ̂(µ) dΩ− 2

∫
Ω

σr(µ) : C(µ) : σ̂(µ) dΩ

= RR(µ) + HH(µ)− 2 RH(µ).

(71)

Now, we expand the expressions for σr(µ) by using (2), (17) and (16)

σr(µ) = D(µ) : ε
(
ur,0(µ) + uh,p(µ)

)
= D(µ) : ε

 N∑
i=1

αi(µ)φi +

nw∑
j=1

γw
j (µ)ψj


= D(µ) : ε

(
N∑
i=1

αi(µ)φi

)
+D(µ) : ε

 nw∑
j=1

γw
j (µ)ψj

 = �+4,

(72)

§We denote ∆CRE
N,Ñ

(µ) to imply that this error bound depends on N – the number of RB displacement basis functions

and Ñ – the number of RB stress basis functions.
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and σ̂(µ) by using (40), (37)

σ̂(µ) = σr,0(µ) + σh,p(µ) =

Ñ∑
i=1

α̃i(µ) φ̃i +

ñp∑
j=1

γ̃p
j (µ)σp

j = �+ N. (73)

1. Let us first consider the term RR(µ) in (71) (using (72))

RR(µ) =

∫
Ω

σr(µ) : C(µ) : σr(µ) dΩ =

∫
Ω

(�+4) : C(µ) : (�+4) dΩ

=

∫
Ω

� : C(µ) : � dΩ + 2

∫
Ω

� : C(µ) : 4 dΩ +

∫
Ω

4 : C(µ) : 4 dΩ

= RRss(µ) + 2 RRst(µ) + RRtt(µ).

(74)

The term RRss(µ) can be computed as follows:

RRss(µ) =

∫
Ω

(
D(µ) : ε

(
N∑
i=1

αi(µ)φi

))
: C(µ) :

D(µ) : ε

 N∑
j=1

αj(µ)φj

 dΩ

=

∫
Ω

ε

(
N∑
i=1

αi(µ)φi

)
: D(µ) : ε

 N∑
j=1

αj(µ)φj

 dΩ, (as D(µ) : C(µ) = I)

=

N∑
i,j=1

αi(µ)

(∫
Ω

ε(φi) : D(µ) : ε(φj) dΩ

)
αj(µ)

=

N∑
i,j=1

αi(µ) a (φi, φj ;µ) αj(µ), (from (5a))

=

N∑
i,j=1

αi(µ)

(
Qa∑
q=1

Θq
a(µ)aq(φi, φj)aq(φi, φj)aq(φi, φj)

)
αj(µ), (from (7a)) .

(75)

We observe from the last line of (75) that the term aq(φi, φj) (in bold typeface) can be pre-
computed and stored in the Offline stage; and then in the Online stage RRss(µ) can be
estimated rapidly with the computational cost independent of N by assembling all remaining
terms. Applying the same trick to other terms, we obtain the following results (note that all the
offline terms will be in bold typeface):

RRst(µ) =

N∑
i=1

nw∑
j=1

αi(µ)

(
Qa∑
q=1

Θq
a(µ)aq(φi, ψj)aq(φi, ψj)aq(φi, ψj)

)
γw
j (µ), (76)

and

RRtt(µ) =

nw∑
i,j=1

γw
i (µ)

(
Qa∑
q=1

Θq
a(µ)aq(ψi, ψj)aq(ψi, ψj)aq(ψi, ψj)

)
γw
j (µ). (77)
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2. Similarly, the term HH(µ) in (71) can be written as (using (73))

HH(µ) =

∫
Ω

σ̂(µ) : C(µ) : σ̂(µ) dΩ =

∫
Ω

(�+ N) : C(µ) : (�+ N) dΩ

=

∫
Ω

� : C(µ) : � dΩ + 2

∫
Ω

� : C(µ) : N dΩ +

∫
Ω

N : C(µ) : N dΩ

= HHss(µ) + 2 HHst(µ) + HHtt(µ).

(78)

Using the same method as above: substituting the expressions for � and N (from (73)), expanding
and assembling the µ-independent terms, we finally obtain

HHss(µ) =

Ñ∑
i,j=1

α̃i(µ)

(
nc∑
q=1

γc
q(µ)

∫
Ω

φ̃i : C̄q : φ̃j dΩ

∫
Ω

φ̃i : C̄q : φ̃j dΩ

∫
Ω

φ̃i : C̄q : φ̃j dΩ

)
α̃j(µ),

HHst(µ) =

Ñ∑
i=1

ñp∑
j=1

α̃i(µ)

(
nc∑
q=1

γc
q(µ)

∫
Ω

φ̃i : C̄q : σp
j dΩ

∫
Ω

φ̃i : C̄q : σp
j dΩ

∫
Ω

φ̃i : C̄q : σp
j dΩ

)
γ̃p
j (µ),

HHtt(µ) =

ñp∑
i,j=1

γ̃p
i (µ)

(
nc∑
q=1

γc
q(µ)

∫
Ω

σp
i : C̄q : σp

j dΩ

∫
Ω

σp
i : C̄q : σp

j dΩ

∫
Ω

σp
i : C̄q : σp

j dΩ

)
γ̃p
j (µ).

(79)

3. Finally, for the term RH(µ) in (71), we also have

RH(µ) =

∫
Ω

σr(µ) : C(µ) : σ̂(µ) dΩ =

∫
Ω

(�+4) : C(µ) : (�+ N) dΩ

=

∫
Ω

� : C(µ) : � dΩ +

∫
Ω

� : C(µ) : N dΩ +

∫
Ω

4 : C(µ) : � dΩ +

∫
Ω

4 : C(µ) : N dΩ

= RHss(µ) + RHst(µ) + RHts(µ) + RHtt(µ),

(80)

where

RHss(µ) =

N∑
i=1

Ñ∑
j=1

αi(µ)

(∫
Ω

ε(φi) : φ̃j dΩ

∫
Ω

ε(φi) : φ̃j dΩ

∫
Ω

ε(φi) : φ̃j dΩ

)
α̃j(µ),

RHst(µ) =

N∑
i=1

ñp∑
j=1

αi(µ)

(∫
Ω

ε(φi) : σp
j dΩ

∫
Ω

ε(φi) : σp
j dΩ

∫
Ω

ε(φi) : σp
j dΩ

)
γ̃p
j (µ),

RHts(µ) =

nw∑
i=1

Ñ∑
j=1

γw
i (µ)

(∫
Ω

ε(ψi) : φ̃j dΩ

∫
Ω

ε(ψi) : φ̃j dΩ

∫
Ω

ε(ψi) : φ̃j dΩ

)
α̃j(µ),

RHtt(µ) =

nw∑
i=1

ñp∑
j=1

γw
i (µ)

(∫
Ω

ε(ψi) : σp
j dΩ

∫
Ω

ε(ψi) : σp
j dΩ

∫
Ω

ε(ψi) : σp
j dΩ

)
γ̃p
j (µ).

(81)
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B SCM (coercivity) error bound

The technique to derive this bound is well-established and has been described in many papers (see
for instance [25, 32, 51]). Hence the proof and detailed computation will not be shown here, we only
recall the basic components and then formulate this error bound.

In order to define properly this error bound, we shall introduce two different inner products and
norms for members of Uh,0(Ω), inherited from UAd,0(Ω) (section 2.1). First, an energy inner product
and energy norm are defined respectively as¶

(u, v)µ = a(u, v;µ), ∀u, v ∈ UAd,0(Ω), (82a)

‖v‖µ = (v, v)1/2
µ , ∀v ∈ UAd,0(Ω). (82b)

Second, the X-inner product and norm, are defined as follows: for given µ0 ∈ D and (non-negative)
real τ ,

(u, v)X = (u, v)µ0
+ τ(u, v)L2(Ω), ∀u, v ∈ UAd,0(Ω), (83a)

‖v‖X = (v, v)
1/2
X , ∀v ∈ UAd,0(Ω), (83b)

where µ0 here is the same as that in section 3.1.2 and section 3.2.2; and the L2-norm is defined as
(u, v)L2(Ω) =

∫
Ω
u v dΩ.

B.1 Basic components

There are two basic components which constitute the SCM error bound: the dual norm of the residual
and the lower bound of the FE coercivity constant. In order to obtain the former, we start from the
error residual relationship. The residual R(v;µ) which is associated with (18) is defined as in equation
(61). Together with (12) and the bilinearity of a, the error residual relationship for the RB error
e0(µ) = uh,0(µ)− ur,0(µ) ∈ Uh,0(Ω) can be established as follows

a
(
e0(µ), v;µ

)
= R(v;µ), ∀v ∈ Uh,0(Ω). (84)

We then introduce the Riesz representation of R(v;µ): ê0(µ) ∈ Uh,0(Ω) satisfies(
ê0(µ), v

)
X

= R(v;µ), ∀v ∈ Uh,0(Ω). (85)

Thus we can write (84) as

a
(
e0(µ), v;µ

)
=
(
ê0(µ), v;µ

)
X
, ∀v ∈ Uh,0(Ω), (86)

and it follows that the dual norm of the residual can be computed through the Riesz representation
[51, 25]:

‖R(·;µ)‖(Uh,0(Ω))′ = sup
v∈Uh,0(Ω)

R(v;µ)

‖v‖X
= ‖ê0(µ)‖X . (87)

The second basic component is a parametric lower bound function αNLB(µ) for αN (µ) – the FE
coercivity constant defined as

αN (µ) = inf
v∈Uh,0(Ω)

a(v, v;µ)

‖v‖2X
. (88)

Hence, we have

¶Note that this energy norm is exactly the same as the ‖v‖D(µ) in Proposition 4.1.
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0 < αNLB(µ) ≤ αN (µ), ∀µ ∈ D, (89)

where the online computational time to evaluate µ→ αNLB(µ) has to be independent of N . The
computation of αNLB(µ) is given by an efficient algorithm so-called Successive Constraint Method
(SCM), which is widely analyzed in [33, 34]. The SCM algorithm also comprises of Offline-Online
computational procedures: an expensive N–dependent Offline stage and a cheap N–independent
Online stage. Specifically, in the Online stage a small optimization problem needs to be solved with
the cost independent of N for any given parameter µ.

B.2 Error bound

The SCM error estimator for the field variable in the energy norm is defined as

∆SCM(µ) =
‖ê0(µ)‖X√
αNLB(µ)

. (90)

We also introduce the effectivity associated with this error estimator as

ηSCM(µ) =
∆SCM(µ)

‖uh,0(µ)− ur,0(µ)‖µ
. (91)

Following the proof as in [25, 32], we obtain that for any N = 1, . . . , Nmax, the effectivity satisfies‖

1 ≤ ηSCM(µ), ∀µ ∈ D. (92)

It is important to emphasize that the Online computation of ∆SCM(µ) in (90) is efficient: its
computational cost is completely independent of N [32, 25]. In addition, we also note from the settings
(14), (17) that the RB error for the field variable will be er(µ) = uh(µ)−ur(µ) = uh,0(µ)−ur,0(µ) = e0(µ).
Therefore, the error estimations for e0(µ), which is completely equivalent to that for er(µ), are sufficient
for our considerations.

‖Interested readers should note that there is also an upper bound for this effectivity [25, 32] – which depends on the
continuity and coercivity constants; we skipped it here as it is not the focus of this paper.
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