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Introduction

Model order reduction is an increasingly popular family of metamodelling techniques for parametrised boundary value problems (BVP) solved using numerical methods [START_REF] Niroomandi | Model order reduction for hyperelastic materials[END_REF][START_REF] Kerfriden | Local/global model order reduction strategy for the simulation of quasi-brittle fracture[END_REF][START_REF] Chevreuil | Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics[END_REF][START_REF] Chen | Accurate and efficient evaluation of failure probability for partial different equations with random input data[END_REF][START_REF] Radermacher | A comparison of projection-based model reduction concepts in the context of nonlinear biomechanics[END_REF]. As opposed to response surface methodologies, the output of the computation is not interpolated directly over the parameter domain. Instead, one constructs an approximation of the BVP that can be solved efficiently, and from which the quantities of interest can be post-processed. The applicability of reduced order modelling requires a certain smoothness of the solution to the original BVP over the parameter domain.

Reduced order modelling (ROM) can be performed in several ways (see for instance [START_REF] Rixen | A dual Craig-Bampton method for dynamic substructuring[END_REF][START_REF] Ryckelynck | On the a priori model reduction: overview and recent developments[END_REF][START_REF] Amsallem | An Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity[END_REF][START_REF] Ladevèze | The LaTIn multiscale computational method and the Proper Generalized Decomposition[END_REF][START_REF] Xiao | Model reduction by CPOD and Kriging[END_REF][START_REF] Chinesta | Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models[END_REF]), but we will focus our discussion on the popular case of projection-based ROM. In this context, the reduced model is obtained by the projection of the original boundary value problem in a space of small dimension. Three ingredients are required for the metamodel to be efficient: (i) a reliable way to construct the projection space, (ii) an efficient (if possible optimum) projection of the solution to the BVP in this space and (iii) a method to decompose the numerical complexity of tasks (i) and (ii) in an "offline/online" manner. The latter point means that the expensive operations should be performed in advanced ("offline"), whilst the solution of the reduced model itself ("online") should remain computationally inexpensive.

The most popular way to extract the projection subspace is probably the Empirical Proper Orthogonal Decomposition (POD) [START_REF] Kunisch | Optimal snapshot location for computing POD basis functions[END_REF][START_REF] Braconnier | Towards an Adaptive POD/SVD Surrogate Model for Aeronautic Design[END_REF][START_REF] Kerfriden | A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics[END_REF]. The idea is to solve a finite number of realisations of the parametrised BVP to be reduced, and perform a spectral analysis of the space spanned by the corresponding solutions (i.e. the "snapshot"). This procedure delivers a hierarchy of subspaces in which the snapshots are best approximated in an average sense. The online stage then consists in projecting the BVP into one of these subspaces using a Galerkin [START_REF] Kunisch | Galerkin Proper Orthogonal Decomposition Methods for a General Equation in Fluid Dynamics[END_REF][START_REF] Amsallem | Error estimates for galerkin reduced-order models of the semi-discrete wave equation[END_REF][START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF], Petrov-Galerkin [START_REF] Barrault | An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations[END_REF][START_REF] Ryckelynck | Hyper-reduction of mechanical models involving internal variables[END_REF][START_REF] Astrid | Missing point estimation in models described by proper orthogonal decomposition[END_REF] or residual minimising formulation [START_REF] Carlberg | Efficient non-linear model reduction via a leastsquares Petrov-Galerkin projection and compressive tensor approximations[END_REF][START_REF] Constantine | Residual minimizing model interpolation for parameterized nonlinear dynamical systems[END_REF]. The success of this approach lies in the fact that it is very general with regard to the nature of the original BVP. In particular, it remains the main candidate for the projection-based ROM of nonlinear problems [START_REF] Kerfriden | Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems[END_REF][START_REF] Carlberg | Efficient non-linear model reduction via a leastsquares Petrov-Galerkin projection and compressive tensor approximations[END_REF][START_REF] Kerfriden | Local/global model order reduction strategy for the simulation of quasi-brittle fracture[END_REF]. However, it suffers from two drawbacks: (i) it is a priori difficult to choose the location of the snapshots, although some authors have recently addressed this issue, and (ii) the optimality of this procedure is established on the average over the parameter domain, and consequently its accuracy may be sensitive to outliers.

The reduced basis method (RBM) [START_REF] Prud'homme | Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods[END_REF] is a powerful alternative to POD-based methodologies. It overcomes the two limitations mentioned previously by construction. The main idea is to construct the reduced spaces in such a way that the maximum error of projection of the solution over the entire parameter domain is minimised. As this problem is not solvable using direct algebraic tools, its solution is approximated by means of a Greedy algorithm [START_REF] Prud'homme | Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Haasdonk | Reduced basis method for finite volume approximations of parametrized linear evolution equations[END_REF]. Typically, one-dimensional enrichments of the reduced space are looked for by identifying the point of the parameter domain that displays the largest projection error. The solution corresponding to this point is computed and its projection error is reduced by adding some of its components to the reduced basis. The main difficulty of the approach is to evaluate the projection error in an affordable and efficient manner over the entire parameter domain. This can be done efficiently in the case of affinely parametrised linear elliptic or parabolic problems, as reliable and inexpensive error bounds are available. This is the setting in which the RBM has been the most successful so far, but extensions to linear hyperbolic problems or more complex settings have been proposed, for instance using direct search [START_REF] Hoang | An efficient goal-oriented sampling strategy using reduced basis method for linear elastodynamic problems[END_REF][START_REF] Amsallem | A posteriori error estimators for linear reduced-order models using krylov-based integrators[END_REF], global optimisation [START_REF] Paul-Dubois-Taine | An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models[END_REF] or gradient-based on optimisation [START_REF] Bui-Thanh | Goal-oriented, modelconstrained optimization for reduction of large-scale systems[END_REF].

In the context of affinely parametrised elliptic PDEs [START_REF] Prud'homme | Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods[END_REF][START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF], the reduced basis method proceeds as follows. Given a certain projection subspace, one evaluates an upper bound of the projection error (measured in "energy norm") over an exhaustive sampling of the parameter domain. The solution of the BVP is computed at this point and added to the basis of the previous reduced space after an orthonormalisation. Efficient upper bounds have been developed over the years, and the most widely used is probably the Successive Constraint Method (SCM) approach [START_REF] Huynh | A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants[END_REF][START_REF] Huynh | A natural-norm successive constraint method for inf-sup lower bounds[END_REF]. Once the projection subspace is sufficiently large (i.e. the maximum error of projection over the parameter domain is sufficiently small), this "offline" Greedy algorithm is stopped. The metamodel can then be used online by performing a simple Galerkin projection of the original BVP in the reduced space.

In this paper, we propose an alternative to this procedure, based on our previous work on the Constitutive Relation Error (CRE) [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF] and goal-oriented reduced basis sampling [START_REF] Hoang | An efficient goal-oriented sampling strategy using reduced basis method for linear elastodynamic problems[END_REF]. The first idea is to create two separate ROMs: one for the primal field of the elliptic BVP and an other one for the flux field. The primal ROM is required to deliver continuous solutions that satisfy the Dirichlet boundary conditions, whilst the flux ROM satisfies the balance equation of the flux and the Neuman boundary conditions. In this context, the Prager-Synge theorem gives us a relationship between the projection errors of the two fields and a certain distance between the primal and flux reduced solutions (i.e. the CRE [START_REF] Ladevèze | Mastering calculations in linear and non linear mechanics[END_REF]). A remarkable fact is that this distance can be computed in an inexpensive manner, and gives us (a) a joint indication of the accuracy of the two ROMs (b) an upper bound for the projection error in terms of primal variable and (c) an upper bound for the projection error in terms of flux. In view of remark (b), the CRE could be used as an alternative to the SCM in the traditional RBM algorithm, as argued in the perspectives of our previous work [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF]. However, we will propose a different, more elegant approach, the two-field reduced basis (TF-RBM). The CRE will be used as an indication of accuracy of the two ROMs over the entire parameter domain, following remark (a). The training phase of the proposed reduced basis method is a greedy algorithm, whereby we enrich either one of the two ROMs, depending on which one of these operations yields the largest decrease in the CRE. The practical advantage of this procedure, compared to the SCM-based RBM, is that we do not need to train and compute an upper bound for the projection error of the primal field. The training stage is a single "for" loop, simple to implement, that only requires operations related to the solution of the two ROMs. Numerically, we observe that (i) the convergence rate of the training stage, as a function of the dimension of the projection space, is similar to the one obtained when using the SCM-based approach and (ii) the online computational costs are reduced by more than one order of magnitude.

In order to be fully operational, this strategy is integrated in a goal-oriented setting, whereby the reduced spaces are constructed in such a way that the uncertainty in the outputs of the metamodel are minimised, as opposed to an arbitrary measure of the projection error of the primal field [START_REF] Willcox | Balanced Model Reduction via the Proper Orthogonal Decomposition[END_REF][START_REF] Meyer | Efficient model reduction in non-linear dynamics using the Karhunen-Loeve expansion and dual-weighted-residual methods[END_REF][START_REF] Bui-Thanh | Goal-oriented, modelconstrained optimization for reduction of large-scale systems[END_REF][START_REF] Janon | Goal-oriented error estimation for reduced basis method, with application to certified sensitivity analysis[END_REF][START_REF] Hoang | An efficient goal-oriented sampling strategy using reduced basis method for linear elastodynamic problems[END_REF]. In this context, we need to construct additional two-field reduced models for the adjoint problems related to each of the outputs. The greedy sampling is then performed as follows. One first identifies which of the quantity of interest displays the largest level of uncertainty, and the corresponding point of the parameter domain. Then, either of the corresponding four ROMs are enriched, depending on which of these operations reduces this uncertainty most. The goal-oriented greedy algorithm is stopped whenever all the outputs of interest are approximated with a sufficient level of accuracy over the whole parameter domain.

Though the combination of the CRE-based greedy approach and goal-oriented setting, the proposed goal-oriented TF-RBM is certified and "tuning-free": the only input of the algorithm is the level of accuracy that is required for each of the quantities of interest. Moreover, it inherits the properties of the TF-RBM: it is simple to implement and exhibits similar convergence rates of the quantities of interest than what can be expected from an SCM-based procedure, for significantly reduced online costs. All the developments and examples will be formally dedicated to linear elasticity, but they can be extended in a straitghtforward manner to any affinely parametrised linear elliptic BVP (steady temperature diffusion, electro-statics or magnetics, ...). Extensions to linear parabolic problems should be possible, as the CRE has successfully been applied to certify proper generalised decomposition in this context [START_REF] Ladevèze | On the verification of model reduction methods based on the proper generalized decomposition[END_REF].

The paper is organised as follows. In section 2, we introduce necessary definitions and notations and state the exact parametrised elasticity BVP and its finite element approximation. In section 3, we describe our reduced order modelling approximations of displacement and stress fields. We emphasise that the description of these two ROMs is presented in a completely parallel manner. Section 4 is devoted to the constitutive relation error and the proposed TF-RBM. Goal-oriented error bounds, and the extension of the TF-RBM to the goal-oriented sampling setting are presented in section 5. We verify the performance of all the proposed algorithms by investigating a 2D material homogenisation problem in section 6. Finally, we provide some concluding remarks in section 7.

2 Parametrised problem of linear elasticity

Exact formulation

We consider a domain Ω ∈ R d (d = 1, 2 or 3) with Lipschitz continuous boundary ∂Ω. We look for a displacement field u ∈ U(Ω) = H 1 (Ω) * that satisfies (nonhomogeneous) Dirichlet boundary conditions u = w on the part ∂Ω w of the boundary ∂Ω. Any displacement field that satisfies the conditions of regularity and Dirichlet boundary conditions is said to be kinematically admissible and belongs to space U Ad (Ω) ⊂ U(Ω). We introduce the Cauchy stress tensor field σ, which belongs to a space S(Ω) of sufficiently regular second-order tensor fields. A density of surface tractions t is applied on the boundary part ∂Ω t = ∂Ω\∂Ω w of the domain; and a density of body forces b is applied over Ω.

We define a set of input parameters D ⊂ R P , a typical point of which is denoted by µ ≡ (µ 1 , . . . , µ P ). In particular, the force densities b and t, the Dirichlet boundary conditions w and the material properties of the structure may be functions of parameter µ. We assume that Ω and ∂Ω w do not undergo any parametric changes.

For a given parameter µ, a kinematically admissible displacement field will be sought in

U Ad (Ω; µ) = v ∈ U(Ω) | v |∂Ω w = w(µ)
. Similarly, a statically admissible stress field σ(µ) ∈ S Ad (Ω; µ) will satisfy the parametrised principle of virtual work:

- Ω σ(µ) : (v) dΩ + Ω b(µ) • v dΩ + ∂Ω t t(µ) • v dΓ = 0, ∀v ∈ U Ad,0 (Ω). (1) 
Here, U Ad,0 (Ω) = v ∈ U(Ω) | v |∂Ω w = 0 ; and (v) = 1 2 (∇v + ∇v T ) is the symmetric part of the displacement gradient (i.e. the strain field). The solution to the parametrised problem of elasticity is an admissible pair u(µ), σ(µ) ∈ U Ad (Ω; µ) × S Ad (Ω; µ) that verifies the isotropic linear constitutive law

σ(µ) = λ(µ) Tr (u(µ)) I d + 2G(µ) (u(µ)) =: D(µ) : (u(µ)), (2) 
where λ(µ) and G(µ) are the Lamé constants. D(µ) is the fourth-order Hooke's elasticity tensor and I d is the second-order identity tensor. The inverse of this constitutive law reads

(u(µ)) = 1 + ν(µ) E(µ) Tr σ(µ) I d - ν E(µ) σ(µ) =: C(µ) : σ(µ), (3) 
with E and ν the Young's modulus and Poisson's ratio, respectively, which are linked to the Lamé constants by the relationships λ =

Eν (1+ν)(1-2ν) and G = E 2(1+ν)
, and C(µ) = D(µ) -1 the compliance tensor.

By substituting (2) into (1), the parametric problem of elasticity can be written in the following primal variational form: for any µ ∈ D, find the displacement field u(µ) ∈ U(Ω) such that

a (u(µ), v; µ) = f (v; µ) , ∀v ∈ U Ad,0 (Ω), (4) 
In the above equations, the parametrised bilinear and linear forms associated with the problem of elasticity are defined as

a (u, v; µ) = Ω (u) : D(µ) : (v) dΩ, (5a) 
f (v; µ) = Ω b(µ) • v dΩ + ∂Ω t t(µ) • v dΓ, (5b) 
respectively. We recall that a : U Ad,0 (Ω) × U Ad,0 (Ω) × D is a symmetric, continuous and coercive parametrised bilinear form; and we assume that f : U Ad,0 (Ω) × D is a continuous, bounded linear form. Under these conditions, there exists a unique "weak" solution u(µ) ∈ U(Ω) to equation [START_REF] Chen | Accurate and efficient evaluation of failure probability for partial different equations with random input data[END_REF].

Multiple quantities of interest (QoI) can be extracted from u(µ) as

Q i (µ) = i (u(µ)) , 1 ≤ i ≤ n Q . ( 6 
)
with i : U Ad,0 (Ω) × D, 1 ≤ i ≤ n Q continuous, bounded linear forms. Outputs i , 1 ≤ i ≤ n Q may be compliant or noncompliant linear functionals.
A crucial assumption to efficiently deal with parametrised problems is the affine decomposition property of the operators that governs our problem. In particular, ∀u, v ∈ U Ad,0 (Ω), µ ∈ D, we require that

a (u, v; µ) = Qa q=1 Θ q a (µ)a q (u, v), (7a) 
f (v; µ) = Q f q=1 Θ q f (µ)f q (v), ( 7b 
) i (v; µ) = Q i q=1 Θ q i (µ) q i (v), 1 ≤ i ≤ n Q , (7c) 
for some (preferably) small integers Q a,f, i . Here, the smooth functions Θ q a,f, i (µ) : D → R depend on µ, but the bilinear and linear forms a q , f q and q i do not depend on the parameter. In particular, such a affine decomposition is at hand if the parametrised data are originally given in the form of separate variables, namely

D(x, µ) = n d i=1 γ d i (µ) Di (x), ∀µ ∈ D, x ∈ Ω, (8a) t(x, µ) = nt i=1 γ t i (µ) ti (x), ∀µ ∈ D, x ∈ ∂Ω t , (8b) b(x, µ) = n b i=1 γ b i (µ) bi (x), ∀µ ∈ D, x ∈ Ω, (8c) w(x, µ) = nw i=1 γ w i (µ) wi (x), ∀µ ∈ D, x ∈ ∂Ω w . (8d) 
Here γ d,t,b,w i (µ) : D → R are explicitly known functions of the parameter µ, whilst Di (x), ti (x), bi (x), wi (x) are operators/functions that do not depend on µ.

Finite element discretization

We approximate the solutions of exact problem (4) by using the classical finite element method. We introduce the finite element space U h (Ω) ⊂ U(Ω). Since we assume that the domain Ω does not depend on the parameter µ, we can construct a unique finite element space for all the realisations of problem (4). The finite element space is defined as

U h (Ω) = v ∈ U(Ω) | ∀j ∈ {1, . . . , d}, v j ∈ span Ni , 1 ≤ i ≤ n n , (9) 
where v j denotes the j th component of the vector field v and functions Ni , 1 ≤ i ≤ n n are compactly supported finite element shape functions belonging to U(Ω); n n is the number of nodes in the finite element mesh; and N denotes the dimension of the finite element space, respectively. Let U h,0 (Ω) = U h (Ω) ∩ U Ad,0 (Ω) be the space of finite element fields that vanish on ∂Ω w , and let u p (µ) be a particular field of U Ad (Ω; µ), for any µ ∈ D. The finite element approximation u h (µ) of u(µ) is the solution to the following variational problem [START_REF] Gunzburger | Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data[END_REF]:

find u h (µ) ∈ U h,0 (Ω) + {u p (µ)} such that a u h (µ), v; µ = f (v; µ) , ∀v ∈ U h,0 (Ω). ( 10 
)
We will assume in this paper that the parametrised Dirichlet boundary conditions conform to the finite element space, which means that U h,Ad (Ω; µ) = U h (Ω) ∩ U Ad (Ω; µ) = {}. In this context, u p (µ) can always be chosen in the finite element space U h (Ω). Now, the variational problem (10) can be recast in the following form:

a u h,0 (µ), v; µ = f (v; µ) -a (u p (µ), v; µ) , ∀v ∈ U h,0 (Ω). ( 11 
)
As u p (µ) is known, let us denote f (v; µ) = f (v; µ) -a (u p (µ), v; µ) then the final variational form will be: for a given µ ∈ D, find u h,0 (µ) ∈ U h,0 (Ω) such that a u h,0 (µ), v; µ = f (v; µ) , ∀v ∈ U h,0 (Ω), [START_REF] Kunisch | Optimal snapshot location for computing POD basis functions[END_REF] and the finite element solution is obtained by using the lifting identity u h (µ) = u h,0 (µ) + u p (µ). Under standard assumptions, linear system [START_REF] Kunisch | Optimal snapshot location for computing POD basis functions[END_REF] possesses a unique solution. The FE quantities of interest (QoI) can then be evaluated as

Q h i (µ) = i u h (µ) , 1 ≤ i ≤ n Q . ( 13 
)
In the following, we assume that the finite element space is sufficiently fine so that any relevant measure of the finite element error e h (µ) = u(µ) -u h (µ) is very small for all µ ∈ D. In this context, we can assume that the FE output quantities are the ones that should be reproduced with a sufficient level of accuracy when using the metamodelling technique described in the next sections.

Reduced basis approximations for displacement and stress fields

The basic idea of projection-based reduced order modeling relies on the fact that the solutions of the parametrised boundary value problem reside on a smooth and low-dimensional parametrically induced manifold. The governing equations can then be projected in this manifold, leading to a reduced system of equations that can be solved inexpensively for any parameter set. We assume in this section that the relevant projection subspaces have been identified, and we show how to perform the optimal projections. The novelty of our approach is that it relies on the reduced order modelling of both the displacement and stress fields. For the displacement, an optimal projection (in the sense of the energy norm) is classically obtained by the Galerkin formulation of the governing equation in a reduced space of kinematically admissible functions. For the stress, we can proceed in the same way, by minimising the projection error in a space of functions that satisfies the weak equilibrium a priori. This leads to a dual formulation, as shown in [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF].

In this section, we emphasize the symmetry between displacement and stress optimal projections. We also show that the stress ROM can be solved efficiently by using an "offline/online" decomposition, which was claimed but not fully implemented in our previous work. This decomposition of the numerical complexity, restricted to the case of affine parameter dependencies, is key to ensuring that solving both reduced order models remain inexpensive (i.e. independent of the dimension of the underlying fine finite element space).

Reduced order model for the displacement field

Homogeneous/non-homogeneous separation of the displacement field

In order to apply the reduced basis method for general nonhomogeneous Dirichlet boundary condition problems, we first perform a lifting of the finite element solution over the parameter domain

u h (µ) = u h,0 (µ) + u h,p (µ), ∀µ ∈ D. (14) 
In equation ( 14), u h,0 (µ) ∈ U h,0 (Ω), which means that the displacement fields u h,0 (µ) vanishes on ∂Ω w for any µ ∈ D, whilst u h,p (µ) ∈ U h (Ω) satisfies the nonhomogeneous Dirichlet boundary conditions. This equation is to be understood as follows: given a valid lifting u h,p (µ), the complementary part u h,0 (µ) can be formally calculated from the knowledge of u h (µ). We will approximate u h,0 (µ) by its projection in a reduced vector space, as explained later on, whilst the lifting u h,p (µ) will be an explicit function of the parameters, as described in the next section.

Nonhomogeneous Dirichlet boundary conditions in reduced order modeling

We use a global lifting technique as described in [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF]. The technique makes use of the assumed affine form of the prescribed displacements (8d). In the offline stage of the method, we compute a set of n w finite element displacement fields ψ i ∈ U h (Ω), 1 ≤ i ≤ n w that satisfy a(ψ i , v; µ 0 ) = 0, ∀v ∈ U h,0 (Ω),

ψ i (x) = wi (x), ∀x ∈ ∂Ω w , 1 ≤ i ≤ n w . ( 15 
)
This set of fields is obtained by solving n w standard finite element problems with nonhomogeneous boundary conditions. The choice of µ 0 ∈ D is arbitrary.

The finite element lifting function u h,p (µ), which satisfies exactly the nonhomogeneous Dirichlet boundary conditions for any µ ∈ D, can now be defined by the affine expansion

u h,p (µ) = nw i=1 γ w i (µ) ψ i , ∀µ ∈ D. (16) 

Displacement reduced basis surrogate

We assume the availability of nested parameter sets

S N = {µ 1 ∈ D, . . . , µ N ∈ D} , 1 ≤ N ≤ N max ,
and associated nested Lagrange RB spaces U r,0

N (Ω) = span {φ n , 1 ≤ n ≤ N } , 1 ≤ N ≤ N max , where φ n ∈ U r,0 N (Ω), 1 ≤ n ≤ N max
are mutually orthonormal RB basis functions with respect to a particular norm using a Gram-Schmidt process. The procedure to construct efficiently the sets S N and U r,0 N (Ω) will be discussed in section 4.2.2 afterwards.

For any µ ∈ D, we look for an approximation u r (µ) to u h (µ) in the form

u h (µ) ≈ u r (µ) = u r,0 (µ) + u h,p (µ), where u r,0 (µ) = N n=1 α n (µ) φ n , (17) 
and α n (µ) are interpolation weights, called "reduced variables". Our RB approximation u r,0 (µ) to u h,0 (µ) is optimally (in the sense of the energy norm, see Céa Lemma) obtained by a standard Galerkin projection: given µ ∈ D, we look for u r,0 (µ) that satisfies

a(u r,0 (µ), v; µ) = f (v; µ), ∀v ∈ U r,0 N (Ω), µ ∈ D. (18) 
This typically very small system of linear equations can be solved on demand, for any parameter set of interest.

The RB quantities of interest can then be evaluated from the reduced solution as

Q r i (µ) = i (u r (µ)) , 1 ≤ i ≤ n Q . ( 19 
)

Offline-Online computational procedures for the reduced variables

In this section, we recall the usual offine-online computational procedures for the Galerkin ROM, which is necessary in order to fully exploit the dimensional reduction of the problem [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Hoang | Rapid identification of material properties of the interface tissue in dental implant systems using reduced basis method[END_REF][START_REF] Hoang | An efficient goal-oriented sampling strategy using reduced basis method for linear elastodynamic problems[END_REF]. Inserting [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF] and v = φ n , 1 ≤ n ≤ N into [START_REF] Barrault | An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations[END_REF] and recalling the definition (11) of f (v; µ), we obtain the following small system of N coupled equations in the reduced variables

α n (µ), 1 ≤ n ≤ N N m=1 a (φ m , φ n ; µ) α m (µ) = f (φ n ; µ) -a u h,p (µ), φ n ; µ , 1 ≤ n ≤ N. (20) 
The RB quantities of interest are then evaluated by inserting ( 17) into [START_REF] Ryckelynck | Hyper-reduction of mechanical models involving internal variables[END_REF] as

Q r i (µ) = i N n=1 α n (µ)φ n + u h,p (µ) , 1 ≤ i ≤ n Q . (21) 
Finally, invoking the affine decomposition ( 7), [START_REF] Amsallem | An Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity[END_REF], equations ( 20) and ( 21) can be expressed explicitly as

N m=1 Qa q=1 Θ q a (µ)a q (φ m , φ n ) a q (φ m , φ n ) a q (φ m , φ n ) α m (µ) = Q f q=1 Θ q f (µ)f q (φ n ) f q (φ n ) f q (φ n ) - Qa q=1 nw i=1 Θ q a (µ)γ w i (µ) a q (ψ i , φ n ) a q (ψ i , φ n ) a q (ψ i , φ n ), 1 ≤ n ≤ N, (22) 
and

Q r i (µ) = N n=1 Q i q=1 Θ q i (µ)α n (µ) q i (φ n ) q i (φ n ) q i (φ n ) + nw j=1 Q i q=1 γ w j (µ)Θ q i (µ) q i (ψ j ) q i (ψ j ) q i (ψ j ), 1 ≤ i ≤ n Q , (23) 
respectively. The parameter-independent quantities (in bold typeface) are rewritten as follows

(A q N ) mn = a q (φ m , φ n ), 1 ≤ m, n ≤ N, 1 ≤ q ≤ Q a ; (24) 
(F q N ) n = f q (φ n ), 1 ≤ n ≤ N, 1 ≤ q ≤ Q f ; (25) 
(F p,q N,i ) n = a q (ψ i , φ n ), 1 ≤ n ≤ N, 1 ≤ i ≤ n w , 1 ≤ q ≤ Q a ; (26) 
Q i q,n = q i (φ n ), 1 ≤ n ≤ N, 1 ≤ q ≤ Q i , 1 ≤ i ≤ n Q ; (27) Q p,i q,j = q i (ψ j ), 1 ≤ j ≤ n w , 1 ≤ q ≤ Q i , 1 ≤ i ≤ n Q . ( 28 
)
Here, A q N ∈ R N ×N are the RB "stiffness" matrices (which are also symmetric positive definite following, for instance, the proof in Proposition 5.1 page 136 of [START_REF] Saad | Iterative methods for sparse linear systems[END_REF]), F q N ∈ R N are the RB "load" vectors due to body forces and surface tractions, F p,q N,i ∈ R N are the RB "load" vectors due to nonhomogeneous Dirichlet boundary conditions, Q i q,n is the output component due to RB basis functions' contribution and Q p,i q,j is the output component due to nonhomogeneous Dirichlet boundary conditions' contribution, respectively.

From the above analysis, the computational procedures are now clear: an expensive µ-independent Offline stage performed only once and a cheap Online stage for any chosen parameter value µ ∈ D. In the Offline stage, the terms {ψ i , 1 ≤ i ≤ n w } and the RB basis functions

Z N = {φ n , 1 ≤ n ≤ N } , 1 ≤ N ≤ N max
are computed first; then all the terms in ( 24)-( 28) are computed and stored. In the Online stage, for any given µ, all the coefficients Θ a,f, i (µ) and γ w,d (µ) are evaluated, and the linear system ( 22) is assembled and solved to find the RB coefficients α n (µ), 1 ≤ n ≤ N . Then, the RB QoI are obtained through the simple scalar products [START_REF] Kerfriden | Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems[END_REF]. Although being dense (rather than sparse as in the FE case), the system matrix is very small, with a size (N × N ) completely independent of the FE space dimension N .

The Online operation count is O Q a N 2 to assemble the system and O N 3 to invert the matrix in [START_REF] Constantine | Residual minimizing model interpolation for parameterized nonlinear dynamical systems[END_REF]. The RB QoI is then evaluated with the cost of O (N ) from [START_REF] Kerfriden | Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems[END_REF]. Therefore, the Online operation count to evaluate

µ → Q r i (µ), 1 ≤ i ≤ n Q is completely independent of N .
3.2 Reduced order model for the stress field

Homogeneous/non-homogeneous separation of the stress field

The principles underlying the construction of the stress surrogate are parallel to those employed for the construction of the displacement surrogate [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF]. We first recall that the "exact" finite element stress field σ h (µ) := D(µ) : (u h (µ)), satisfies the equilibrium in the finite element sense, namely, it verifies

- Ω σ h (µ) : (v) dΩ + Ω b(µ) • v dΩ + ∂Ω t t(µ) • v dΓ = 0, ∀v ∈ U h,0 (Ω). ( 29 
)
We will denote by S h,Ad (Ω; µ) the space of stresses satisfying the parametrised equilibrium in the finite element sense [START_REF] Paul-Dubois-Taine | An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models[END_REF].

The construction of the stress surrogate relies on the separation of the finite element stress field into two parts:

σ h (µ) = σ h,0 (µ) + σ h,p (µ), ∀µ ∈ D. (30) 
The first part σ h,0 (µ) belongs to the space S h,0 (Ω) of stress fields satisfying the following homogeneous equilibrium conditions

Ω σ h,0 (µ) : (v) dΩ = 0, ∀v ∈ U h,0 (Ω), µ ∈ D. (31) 
whilst the second part belongs to S h,Ad (Ω; µ) and therefore satisfies the equation

- Ω σ h,p (µ) : (v) dΩ + Ω b(µ) • v dΩ + ∂Ω t t(µ) • v dΓ = 0, ∀v ∈ U h,0 (Ω). (32) 
Equation ( 30) is to be understood as follows: given a valid equilibrated stress σ h,p (µ), then the complementary part σ h,0 (µ) can be formally calculated from the knowledge of the exact finite element stress σ h (µ).

The stress field σ h,p (µ) ∈ S h,Ad (Ω; µ) will be explicitly defined as a function of the parametrised body forces and surface tractions, which is detailed in the next section. The complementary part σ h,0 (µ) will be approximated by its projection in a reduced vector space.

Treatment of body forces and surface tractions

This section is to compute the particular stress field σ h,p (µ) for any given parameter µ ∈ D.

We showed in [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF] that σ h,p (µ) could be constructed as

σ h,p (µ) = D(µ 0 ) : ũh,p (µ) , (33) 
where ũh,p (µ) ∈ U h,0 (Ω) is the dual representation of the finite element stress with respect to the fixed bilinear form a(•, •; µ 0 ). This representation satisfies

a ũh,p (µ), v; µ 0 = n b i=1 γ b i (µ) Ω bi (x) • v dΩ + nt i=1 γ t i (µ) ∂Ω t ti (x) • v dΓ, ∀v ∈ U h,0 (Ω), (34) 
and it can be obtained by solving the following "offline" set of subproblems

a ψb i , v; µ 0 = Ω bi (x) • v dΩ, ∀v ∈ U h,0 (Ω), 1 ≤ i ≤ n b , (35a) 
a ψt i , v; µ 0 = ∂Ω t ti (x) • v dΓ, ∀v ∈ U h,0 (Ω), 1 ≤ i ≤ n t , (35b) 
where homogeneous Dirichlet boundary conditions are systematically applied over ∂Ω w . Finally, ũh,p (µ) and σ h,p (µ) are obtained as the simple linear combinations ũh,p (µ) =

n b i=1 γ b i (µ) ψb i + nt i=1 γ t i (µ) ψt i , (36a) 
σ h,p (µ) = D(µ 0 ) : ũh,p (µ) = D(µ 0 ) : n b i=1 γ b i (µ) ψb i + nt i=1 γ t i (µ) ψt i , (36b) respectively. 
Based on (36b) we can define the affine form of σ h,p (µ) as follows

σ h,p (µ) = ñp i=1 γp i (µ) σ p i , (37) 
where ñp = n b + n t ;

γp i (µ) = γ b i (µ), 1 ≤ i ≤ n b , γ t i-n b (µ), n b + 1 ≤ i ≤ n b + n t ; (38) 
and

σ p i =    D(µ 0 ) : ψb i , 1 ≤ i ≤ n b , D(µ 0 ) : ψt i-n b , n b + 1 ≤ i ≤ n b + n t . (39) 

Stress reduced basis surrogate

We introduce the nested parameter sets S Ñ = {μ 1 ∈ D, . . . , μ Ñ ∈ D} , 1 ≤ Ñ ≤ Ñmax , and associated nested Lagrange RB spaces S r,0 Ñ (Ω) = span φm , 1 ≤ m ≤ Ñ , 1 ≤ Ñ ≤ Ñmax , where φm ∈ S r,0 Ñ (Ω), 1 ≤ m ≤ Ñmax are mutually orthonormal RB basis functions with respect to a particular norm using a Gram-Schmidt process. Details on how to construct efficiently the sets S Ñ and S r,0 Ñ (Ω) will be discussed in section 4.2.2 later.

As mentioned in section 3.2.1, we will construct the surrogate stress field σ(µ) as

σ h (µ) ≈ σ(µ) = σ r,0 (µ) + σ h,p (µ), ∀µ ∈ D, where σ r,0 (µ) = Ñ i=1 αi (µ) φi ( 40 
)
where α(µ) ∈ R Ñ are (unknown) generalised coefficients to be obtained by the projection.

More precisely, the generalised coefficients are required to satisfy the optimum property:

σ(µ) = arg min σ ∈S r (Ω;µ) σ -σ h (µ) C(µ) , (41) 
where the admissible space for reduced stress field is defined by S r (Ω;

µ) = {σ ∈ S(Ω) | σ = Ñ i=1 α i φi + σ h,p (µ), ∀α ∈ R Ñ }; • C(µ)
is the so-called energy norm for the stress fields and is defined in Proposition 4.1.

Using the constitutive relation [START_REF] Kerfriden | Local/global model order reduction strategy for the simulation of quasi-brittle fracture[END_REF], the optimization problem (41) can be recast in the following variational form: find σ(µ) ∈ S r (Ω; µ) such that

- Ω σ(µ) : C(µ) : σ dΩ + Ω u h (µ) : σ dΩ = 0, ∀σ ∈ S r,0 (Ω), (42) 
where the space S r,0 (Ω) is defined as S r,0 (Ω) = {σ ∈ S(Ω) | σ = Ñ i=1 α i φi , ∀α ∈ R Ñ }. Now, substituting equations ( 40) and ( 14) into [START_REF] Saad | Iterative methods for sparse linear systems[END_REF] and noting [START_REF] Grepl | Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations[END_REF], we obtain the variational form that we will use to compute the stress field σ r,0 (µ):

Ω σ r,0 (µ) : C(µ) : σ dΩ = Ω u h,p (µ) : σ dΩ - Ω σ h,p (µ) : C(µ) : σ dΩ,
∀σ ∈ S r,0 (Ω).

(43) Finally, inserting the expression of σ r,0 (µ) (in [START_REF] Gunzburger | Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data[END_REF]) and σ = φj into [START_REF] Oden | Goal-oriented error estimation and adaptivity for the finite element method[END_REF], we obtain the following small linear system of Ñ coupled equations in the reduced variables αi (µ), 1

≤ i ≤ Ñ Ñ i=1 Ω φi : C(µ) : φj dΩ αi (µ) = Ω u h,p (µ) : φj dΩ - Ω σ h,p (µ) : C(µ) : φj dΩ, 1 ≤ j ≤ Ñ . (44) 

Offline-Online computational procedures for the dual ROM

Thanks to the affine properties of u h,p (µ) eq. ( 16) and σ h,p (µ) eq. ( 37), we see that equation [START_REF] Ladevèze | Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems[END_REF] can also be decomposed into Offline-Online computational procedures if the operator C(µ) is also affine, which we will assume:

C(x, µ) = nc i=1 γ c i (µ) Ci (x), ∀µ ∈ D, x ∈ Ω. ( 45 
)
Invoking ( 16), [START_REF] Meyer | Efficient model reduction in non-linear dynamics using the Karhunen-Loeve expansion and dual-weighted-residual methods[END_REF] and [START_REF] Stein | Finite Element Methods for Elasticity with Error-controlled Discretization and Model Adaptivity[END_REF], equation [START_REF] Ladevèze | Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems[END_REF] can then be written as

Ñ i=1 nc k=1 γ c k (µ) Ω φi : Ck : φj dΩ Ω φi : Ck : φj dΩ Ω φi : Ck : φj dΩ αi (µ) = nw k=1 γ w k (µ) Ω (ψ k ) : φj dΩ Ω (ψ k ) : φj dΩ Ω (ψ k ) : φj dΩ - ñp k=1 nc l=1 γp k (µ) γ c l (µ) Ω σ p k : Cl : φj dΩ Ω σ p k : Cl : φj dΩ Ω σ p k : Cl : φj dΩ , 1 ≤ j ≤ Ñ , (46) 
The parameter-independent terms (in bold typerface) from the above equation are

( Ãk Ñ ) ij = Ω φi : Ck : φj dΩ, 1 ≤ i, j ≤ Ñ , 1 ≤ k ≤ n c ; ( 47 
) ( Fp,k Ñ ) j = Ω (ψ k ) : φj dΩ, 1 ≤ j ≤ Ñ , 1 ≤ k ≤ n w ; ( 48 
) ( Fk,l Ñ ) j = Ω σ p k : Cl : φj dΩ, 1 ≤ j ≤ Ñ , 1 ≤ k ≤ ñp , 1 ≤ l ≤ n c . (49) 
Here, Ãk Ñ ∈ R Ñ × Ñ are the RB stress matrices, Fp,k Ñ ∈ R Ñ are the RB stress vectors due to nonhomogeneous Dirichlet boundary conditions, and Fk,l Ñ ∈ R Ñ are the RB stress vectors due to body force and surface traction, respectively.

From the above analysis, the computational procedures are now clear: an expensive µ-independent Offline stage performed only once and a cheap Online stage for any chosen parameter value µ ∈ D. In the Offline stage, the terms {ψ i , 1 ≤ i ≤ n w }, {σ p k , 1 ≤ k ≤ ñp } and the RB stress basis functions Z Ñ = { φn , 1 ≤ n ≤ Ñ }, 1 ≤ Ñ ≤ Ñmax are computed first; then all the terms in ( 47)-( 49) are computed and stored. In the Online stage, for any given µ, all the coefficients γ c (µ), γ w (µ) and γp (µ) are evaluated, and the linear system ( 46) is assembled and solved, in order to obtain the RB coefficients αn (µ), 1 ≤ n ≤ Ñ . The system matrix is very small, with a size ( Ñ × Ñ ) completely independent of the FE space dimension N † . The Online operation count is O n c Ñ 2 to assemble the system and O Ñ 3 to invert the matrix in [START_REF] Dıez | Error estimation and quality control[END_REF]. Therefore, the Online operation count to evaluate µ → α(µ) is also independent of N .

Constitutive relation error and two-field Greedy sampling strategy (TF-RBM)

We have presented the construction of separate reduced order models for the displacement and stress fields. Now, we will propose a new algorithm to find efficient projection spaces for both fields, based on the CRE. We recall the principle of the CRE in the context of projection-based ROM [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF] in section 4.1, and then provide a detailed methodology for our new greedy sampling algorithm in section 4.2.

Constitutive relation error (CRE)

Formulation

We consider a realisation of the parametrised problem of elasticity corresponding to an arbitrary parameter µ ∈ D, which is solved approximately using the two reduced basis surrogates described in section 3. The displacement reduced order model delivers a kinematically admissible displacement field, whilst the stress reduced order model delivers an approximated solution that satisfies the equilibrium in the FE sense. In this context, we have the following remarkable property: be the energy norm associated to an arbitrary displacement field v ∈ U h,0 (Ω).

Then, the square of the distance ∆ CRE (µ) between the RB stress field σ r (µ) ∈ S(Ω) and the surrogate stress field σ(µ) ∈ S h,Ad (Ω; µ), measured in energy norm, will be equal exactly to the sum of square of energy norms of the RB errors of the displacement and stress fields as follows

∆ CRE (µ) 2 := σ r (µ) -σ(µ) 2 C(µ) = e u (µ) 2 
D(µ) + e σ (µ) 2 C(µ) . (50) 
Proof. The proof is repeated for the sack clarity but can be found in [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF] and is essentially an extension of the classical proof used to bound the discretization error in the context of finite element approximations [START_REF] Ladevèze | Mastering calculations in linear and non linear mechanics[END_REF]. We start by expanding the distance between the reduced basis stress field σ r (µ) and the surrogate stress field σ(µ) by using the following identity

σ r (µ) -σ(µ) 2 C(µ) = σ r (µ) -σ h (µ) + σ h (µ) -σ(µ) 2 C(µ) , (51) 
where σ h (µ) = D(µ) : u h (µ) is the truth finite element stress field. Then, by using the constitutive relation [START_REF] Kerfriden | Local/global model order reduction strategy for the simulation of quasi-brittle fracture[END_REF] and the definition of energy norm given previously, ( 51) can be expanded as

σ r (µ) -σ(µ) 2 C(µ) = u r (µ) -u h (µ) 2 D(µ) + σ h (µ) -σ(µ) 2 C(µ) + 2 Ω σ h (µ) -σ(µ) : (u r (µ)) -u h (µ) dΩ. ( 52 
)
We recall that both the finite element stress field σ h (µ) and the surrogate stress field σ(µ) are equilibrated in the finite element sense (i.e, verify [START_REF] Paul-Dubois-Taine | An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models[END_REF]). Thus, the following identity holds

Ω σ h (µ) -σ(µ) : (v) dΩ = 0, ∀v ∈ U h,0 (Ω), µ ∈ D, (53) 
together with ( 14) and ( 17), we obtain that the last term in (52) vanishes, which, using the definitions introduced in the proposition 4.1.1, concludes the proof.

It is important to understand from (50) that the RB errors e u (µ) D(µ) and e σ (µ) C(µ) are individually uncomputable, but the sum of their squares is computable in an a posteriori manner. In the next subsection, we show that its computation is in fact very efficient within the context of Offline-Online computational procedures. From another point of view, ∆ CRE (µ) can also be considered as an upper bound for the RB errors in both displacement field and stress field, that is,

∆ CRE (µ) ≥ e u (µ) D(µ) ≥ 0, and ∆ CRE (µ) ≥ e σ (µ) C(µ) ≥ 0, (54) respectively. 
We define the effectivities of CRE error bound for the displacement and stress fields as follows

η CRE u (µ) = ∆ CRE (µ) u h (µ) -u r (µ) D(µ)
, and

η CRE σ (µ) = ∆ CRE (µ) σ h (µ) -σ(µ) C(µ) , (55) respectively. 
4.1.2 Offline-Online computational procedures for ∆ CRE (µ)

Similar to the well-known SCM (or coercivity) error bound [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF], the a posteriori CRE error defined in [START_REF] Cui | Data-driven model reduction for the bayesian solution of inverse problems[END_REF] can also be computed very efficiently by an Offline-Online strategy. For the clarity of the paper, we leave the details of this procedure in appendix A and discuss its computational cost in the following.

In the Offline stage, the terms {ψ i ,

1 ≤ i ≤ n w }, {σ p k , 1 ≤ k ≤ ñp } and the RB basis functions Z N = {φ n , 1 ≤ n ≤ N }, 1 ≤ N ≤ N max , Z Ñ = { φm , 1 ≤ m ≤ Ñ }, 1 ≤ Ñ ≤ Ñmax are computed first;
then all the offline terms in (74)-( 81) are computed and stored. In the Online stage, for any given µ, we first solve [START_REF] Constantine | Residual minimizing model interpolation for parameterized nonlinear dynamical systems[END_REF] to get α n (µ), 1 ≤ n ≤ N ; then solve [START_REF] Dıez | Error estimation and quality control[END_REF] to get αm (µ), 1 ≤ m ≤ Ñ ; and finally assemble all the remaining terms to compute ∆ CRE N, Ñ (µ) from (71). For any given µ, the Online operation count at this stage includes (excluding the Online counts described in section 3.1.4 and section 3. 

) is also independent of N . Remark 4.2. In summary, from (71) and (74)-(81), the computation of ∆ CRE (µ) can be performed very efficiently through Offline-Online procedures. In fact, several offline terms were already computed in the offline stages of RB displacement and stress fields: the offline terms of RRss(µ) (75), RRst(µ) (76), HHss(µ), HHst(µ) (79), and RHts(µ) (81) were already computed from (24), ( 26), ( 47), ( 49) and (48), respectively. Therefore, for a very general problem with nonhomogeneous Dirichlet boundary conditions together with nonzero body force and surface traction, there are totally 5 remaining terms need to be computed and stored: RRtt(µ); HHtt(µ); and RHss(µ), RHst(µ), RHtt(µ), respectively.

4.2 Two-field, CRE-based greedy sampling

Principle

In view of our previous exposition of the Constitutive Relation Error in the context of reduced modelling, the main ideas underlying the construction of our projection subspaces are very simple. Equation [START_REF] Cui | Data-driven model reduction for the bayesian solution of inverse problems[END_REF] shows that the accuracy of both stress and displacement ROMs is controlled by the CRE. Therefore, it is natural to set the minimisation of the maximum CRE over the parameter domain as our target for the construction of the projection spaces.

Of course, such a minimisation problem is not directly solvable, and we will make use of a Greedy algorithm, as proposed in the original RBM. The method proceeds iteratively by assuming the existence of projection subspaces for both displacement and stress and performing a rank-one correction in such a way that the maximum of the CRE over the parameter domain is approximately minimised. As the CRE is a bound for both RB displacement and stress errors, the algorithm can be stopped whenever the CRE is sufficiently low over the entire parameter domain.

The rank-one update is performed as follows. First, we identify the point of the parameter domain where the CRE is at its largest. Then, we compute the corresponding exact displacement and stress fields, taking care of subtracting their respective nonhomogeneous parts. Finally, we enrich either the displacement or the stress ROM by adding the corresponding solution (after orthonormalisation), to the corresponding existing reduced basis. The choice of the field to enrich is simply based on testing which one of the enrichments would result in the largest decrease in the CRE at this particular point of the parameter domain.

TF-RBM algorithm: two-field Greedy sampling procedure

Algorithm 1: Two-field Greedy sampling strategy.

INPUT: Ξ train , tol (or N max ) OUTPUT: Z N = {φ n , 1 ≤ n ≤ N }; Z Ñ = { φm , 1 ≤ m ≤ Ñ } 1: φ 1 = u h,0 (µ 1 ) u h,0 (µ 1 ) D(µ0)
; Z 1 = {φ 1 }; N = 1;

2: φ1 = σ h,0 (μ 1 ) σ h,0 (μ 1 ) C(µ0)

; Z1 = { φ1 }; Ñ = 1;

3: while ∆ CRE,max > tol do 4:

• Compute α N (µ), α Ñ (µ) and ∆ CRE N, Ñ (µ), ∀µ ∈ Ξ train from (71);

5:

• Set: ∆ CRE,max = max µ∈Ξtrain ∆ CRE N, Ñ (µ); µ = arg max µ∈Ξtrain ∆ CRE N, Ñ (µ); 6: 
• Compute

     u h (µ ) ⇒ e u (µ ) D(µ ) =: ∆ CRE N, Ñ +1 (µ ) ; σ h (µ ) ⇒ e σ (µ ) C(µ ) =: ∆ CRE N +1, Ñ (µ ) ; 7: 
if e u (µ ) D(µ ) > e σ (µ ) C(µ ) then 8:

φ N +1 = GSdisp u h (µ ) -u h,p (µ ), Z N ; 9: Z N +1 ← Z N ∪ φ N +1 ; N ← N + 1; 10: else 11: φN+1 = GSstress σ h (µ ) -σ h,p (µ ), Z Ñ ; 12: Z Ñ +1 ← Z Ñ ∪ φ Ñ +1 ; Ñ ← Ñ + 1; 13:
end if 14: end while

GSdisp: φ N +1 ← u h,0 (µ ) - N n=1 u h,0 (µ ), φ n D(µ0) φ n ; φ N +1 ← φ N +1 φ N +1 D(µ0)
;

GSstress: φ Ñ +1 ← σ h,0 (µ ) - Ñ m=1 σ h,0 (µ ), φm C(µ0) φm ; φ Ñ +1 ← φ Ñ +1 φ Ñ +1 C(µ0) ;
We are given tol , which can be set either directly or through a maximum RB dimension N max ; and a training sample Ξ train ⊂ D, which is a discrete set representing a very fine sample of n train = |Ξ train | points in the parameter domain. The two-field Greedy sampling algorithm is presented in Algorithm 1.

As observed from Algorithm 1, there are two sets of RB basis functions to be built: the RB displacement set (Z N ) and the RB stress set ( Z Ñ ). The two-field Greedy algorithm starts with arbitrarily chosen parameters µ 1 , μ1 ∈ Ξ train to construct Z 1 = {φ 1 } and Z1 = { φ1 }, respectively (lines 1-2). We now analyse each Greedy iteration in detail as follows. We compute the CRE error indicators ∆ CRE N, Ñ (µ), ∀µ ∈ Ξ train based on the current RB displacement and stress spaces, i.e., U r,0 N (Ω) = span{φ n , 1 ≤ n ≤ N } and S r,0 Ñ (Ω) = span{ φm , 1 ≤ m ≤ Ñ } (line 4). The "worst" parameter point µ which induces the maximum error indicator thus can be found (line 5). We then perform two following tests by applying equation ( 50) at µ . First, we compute the exact displacement error e u (µ ) D(µ ) via the FE displacement u h (µ ). Note that this exact error will equal exactly the CRE error indicator ∆ CRE N, Ñ +1 (µ ) which is evaluated (at µ ) after enriching the current RB stress space with φ(µ ). Second, we compute the exact stress error e σ (µ ) C(µ ) via the FE stress σ h (µ ). Note also that this exact error will equal exactly the CRE error indicator ∆ CRE N +1, Ñ (µ ) which is evaluated (at µ ) after enriching the current RB displacement space with φ(µ ) (line 6). These two exact errors are then compared with each other, and the actual enrichment is decided based on this comparison.

If ∆ CRE N, Ñ +1 (µ ) > ∆ CRE N +1, Ñ (µ ) 
, this implies that the "testing" displacement enrichment helps to decrease the CRE error indicator at µ more than the "testing" stress enrichment does; and hence "actual" displacement enrichment will be performed (lines 8-9). In a completely opposite way, the fact

∆ CRE N, Ñ +1 (µ ) ≤ ∆ CRE N +1, Ñ ( 
µ ) implies that the "testing" stress enrichment reduces the CRE error indicator at µ more than the "testing" displacement enrichment does; and hence "actual" stress enrichment will be performed (lines [START_REF] Chinesta | Recent Advances and New Challenges in the Use of the Proper Generalized Decomposition for Solving Multidimensional Models[END_REF][START_REF] Kunisch | Optimal snapshot location for computing POD basis functions[END_REF]. The algorithm is iterated and stopped when the stopping criteria satisfies (line 3). Lastly, GSdisp and GSstress are two functions which construct next RB basis functions for displacement and stress fields using Gram-Schmidt orthogonalization process, respectively.

The basic idea of this proposed algorithm is that we use only one single Greedy loop to build simultaneously two RB spaces (U r,0 N (Ω) and S r,0 Ñ (Ω)) in an optimal way. At one Greedy iteration, the particular set of RB basis functions will be chosen for "actual" enrichment depending on the performance of its "testing" enrichment set on µ : which "testing" set decreases ∆ CRE (µ ) the most will be chosen.

Finally, we also mention the inner products and norms used in the Gram-Schmidt process for the displacement field as

(u, v) D(µ0) = Ω (u) : D(µ 0 ) : (v) dΩ, ∀u, v ∈ U h,0 (Ω), v D(µ0) = (v, v) 1/2 D(µ0) , (56) 
and for the stress field

(σ 1 , σ 2 ) C(µ0) = Ω σ 1 : C(µ 0 ) : σ 2 dΩ, ∀σ 1 , σ 2 ∈ S h,0 (Ω), σ C(µ0) = (σ, σ) 1/2 C(µ0) , (57) 
where µ 0 is a prescribed parameter chosen as in ( 15) and (33).

5 Goal-oriented TF-RBM: "tuning-free" sampling strategy

Several authors have shown the advantage of devising goal-oriented sampling strategies to construct the projection spaces used in reduced order modelling [START_REF] Meyer | Efficient model reduction in non-linear dynamics using the Karhunen-Loeve expansion and dual-weighted-residual methods[END_REF][START_REF] Hoang | An efficient goal-oriented sampling strategy using reduced basis method for linear elastodynamic problems[END_REF]. Instead of aiming at minimising the maximum over the parameter domain of an arbitrary measure of the error, one aims at minimising the error in the quantity or quantities of interest. This type of approach has been shown to lead to faster convergence rates of the greedy algorithm in terms input-output maps.

There is an other advantage of using such approaches. They permit to devise construction algorithms that are "tuning-free": algorithms that do not require any hidden calibration from the user. Ideally, the only input of a reduced basis algorithm should be the error that the engineer is willing to accept on the accuracy of the output(s) of the ROM. This is the point of view that we are going to follow in this section.

We first show that the errors in quantities of interest can be written in terms of errors measured in energy norms, using standard adjoint techniques [START_REF] Oden | Goal-oriented error estimation and adaptivity for the finite element method[END_REF][START_REF] Ladevèze | Upper error bounds on calculated outputs of interest for linear and nonlinear structural problems[END_REF][START_REF] Stein | Finite Element Methods for Elasticity with Error-controlled Discretization and Model Adaptivity[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Dıez | Error estimation and quality control[END_REF][START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF]. In turn, computable bounds can be obtained by substituting these exact error measures by the CRE. From there, it is relatively easy to derive a goal-oriented variant of the greedy sampling strategy exposed in the previous section. One simply locates the point of the parameter domain that yields the largest error in quantity of interest. Next, a (sub-)optimal rank-one update of the projection subspaces is defined by enriching one, and only one of the bases, displacement/stress of the primal or displacement/stress of one of the adjoint problems, by its corresponding exact solution. Again, the choice of which of the ROMs to enrich will be guided by the minimisation of the errors in quantities of interest.

Bounds for the engineering quantities of interest (QoI)

For each one of the quantities of interest, we define a finite element dual (or adjoint) problem as follows

a z h,0 i (µ), v; µ = i (v; µ) , ∀v ∈ U h,0 (Ω), 1 ≤ i ≤ n Q , (58) 
where z h,0 i (µ) ∈ U h,0 , 1 ≤ i ≤ n Q is the FE dual displacement field corresponding to output functional i , which is required to satisfy homogeneous Dirichlet boundary conditions.

We solve this problem approximately by projection-based ROM, which is obtained by the reduced Galerkin formulation: find z r,0 i (µ) ∈ U h,0 (Ω) such that

a z r,0 i (µ), v; µ = i (v; µ) , ∀v ∈ U r,0 z,i (Ω), 1 ≤ i ≤ n Q , (59) 
where U r,0 z,i (Ω) ⊂ U h,0 (Ω) is the reduced basis space for the dual displacement field associated with output functional i ; and generally U r,0

z,i (Ω) = U r,0 N (Ω), 1 ≤ i ≤ n Q .
For consistency, we also define the sets of RB basis functions for dual displacements Z dui N du i = {φ dui n , 1 ≤ n ≤ N dui }, and that for dual stresses Zdui

Ñ du i = { φdui m , 1 ≤ m ≤ Ñ dui }, 1 ≤ i ≤ n Q for the i-th QoI, respectively.
Now, the following expression is classically obtained to link the error in quantity of interest as a function of the error in energy norm:

Q h i (µ) -Q r i (µ) = a (e z,i (µ), e u (µ); µ) + R z r,0 i (µ); µ , 1 ≤ i ≤ n Q , ( 60 
)
where e z,i (µ) := z h i (µ) -z r i (µ) and R : U h,0 (Ω) × D → R is the residual form of (18) defined as

R(v; µ) = f (v; µ) -a(u r,0 (µ), v; µ), ∀v ∈ U h,0 (Ω), ∀ µ ∈ D. (61) 
Applying the Cauchy-Schwarz inequality to separate the errors in primal and dual problems, and substituting the CRE as a computable bound for exact errors in energy norm, we obtain

Q r,- i (µ) ≤ Q h i (µ) ≤ Q r,+ i (µ), ( 62 
)
where

   Q r,- i (µ) = Q r i (µ) + R z r,0 i (µ); µ -∆ CRE (µ) ∆ CRE z,i (µ) Q r,+ i (µ) = Q r i (µ) + R z r,0 i (µ); µ + ∆ CRE (µ) ∆ CRE z,i (µ) , 1 ≤ i ≤ n Q .
Equation ( 62) is fundamental to our sampling strategy. It provides an interval in which the exact output, which is not computable, is guaranteed to be found. We will call this interval "uncertainty gap", and our aim will be to control and minimise its length through our sampling algorithm. In fact, we will use a relative measure of this gap defined as

gap i (µ) = Q r,+ i (µ) -Q r,- i (µ) 1/2 |Q r,+ i (µ)| + |Q r,- i (µ)| , ∀µ ∈ D, 1 ≤ i ≤ n Q , ( 63 
)
for the i-th QoI.

Remark 5.1. For the special case of a compliant output, dual and primal solutions coincide to a multiplicative constant. In this case, we naturally choose to use a unique two-field ROM for both primal and dual problems. Inequality (62) can therefore be sharpened as

Q r (µ) ≤ Q h (µ) ≤ Q r (µ) + ∆ CRE (µ) 2 . ( 64 
)

Goal-oriented Greedy sampling strategy

Algorithm 2: The goal-oriented Greedy sampling strategy.

INPUT: Ξ train , gap,tol (or N pr max ) OUTPUT:

Z pr N pr = {φ pr n , 1 ≤ n ≤ N pr }; Zpr Ñ pr = { φpr m , 1 ≤ m ≤ Ñ pr }; Z dui N du i = {φ dui n , 1 ≤ n ≤ N dui }; Zdui Ñ du i = { φdui m , 1 ≤ m ≤ Ñ dui }; 1 ≤ i ≤ n Q . 1: φ pr 1 = u h,0 (µ pr 1 ) u h,0 (µ pr 1 ) D(µ0)
; Z pr 1 = {φ pr 1 }; N pr = 1;

2: φpr 1 = σ h,0 (μ pr 1 ) σ h,0 (μ pr 1 ) C(µ0)
; Zpr 1 = { φpr 1 }; Ñ pr = 1;

3: φ dui 1 = z h,0 i (µ dui 1 ) z h,0 i (µ dui 1 ) D(µ0) ; Z dui 1 = {φ dui 1 }; N dui = 1; 4: φdui 1 = σ h,0 z,i (μ dui 1 ) σ h,0 z,i (μ dui 1 ) C(µ0)
; Zdui

1 = { φdui 1 }; Ñ dui = 1;
5: while gap max > gap,tol do 6:

• Compute α pr N pr (µ), αpr

Ñ pr (µ), α dui N du i (µ), αdui Ñ du i (µ); and ∆ CRE N pr , Ñ pr (µ), ∆ CRE,z N du i , Ñ du i (µ); 7:
⇒ gap i (µ), ∀µ ∈ Ξ train , 1 ≤ i ≤ n Q from (63); • ComputeExactErrors; (see Algorithm 3) else if δ 2 = min{δ j , 1 ≤ j ≤ 4} then 14:

10: if δ 1 = min{δ j , 1 ≤ j ≤ 4} then 11: φpr Ñ pr +1 = GSstress σ h (µ ) -σ h,p ( 
φ pr N pr +1 = GSdisp u h (µ ) -u h,p (µ ), Z pr N pr ; 15: Z pr N pr +1 ← Z pr N pr ∪ φ pr N pr +1 ; N pr ← N pr + 1;
16:

else if δ 3 = min{δ j , 1 ≤ j ≤ 4} then 17: φdu I Ñ du I +1 = GSstressdu σ h z,I (µ ) -σ h,p z,I (µ ), Zdu I Ñ du I ; 18: Zdu I Ñ du I +1 ← Zdu I Ñ du I ∪ φdu I Ñ du I +1 ; Ñ du I ← Ñ du I + 1; 19:
else if δ 4 = min{δ j , 1 ≤ j ≤ 4} then 20:

φ du I N du I +1 = GSdispdu z h I (µ ) -z h,p I (µ ), Z du I N du I ;
21:

Z du I N du I +1 ← Z du I N du I ∪ φ du I N du I +1 ; N du I ← N du I + 1; 22:
end if 23: end while Algorithm 3: ComputeExactErrors

1: • Compute u h (µ ) ⇒ e pr u (µ ) D(µ ) =: ∆ CRE N pr , Ñ pr +1 (µ ) ; 2: then recompute ∆ CRE N pr , Ñ pr +1 (µ )∆ CRE,z N du I , Ñ du I (µ ) → δ 1 ; 3: • Compute σ h (µ ) ⇒ e pr σ (µ ) C(µ ) =: ∆ CRE N pr +1, Ñ pr (µ ) ; 4: then recompute ∆ CRE N pr +1, Ñ pr (µ )∆ CRE,z N du I , Ñ du I (µ ) → δ 2 ; 5: • Compute z h I (µ ) ⇒ e du I z (µ ) D(µ ) =: ∆ CRE,z N du I , Ñ du I +1 (µ ) ; 6: then recompute ∆ CRE N pr , Ñ pr (µ )∆ CRE,z N du I , Ñ du I +1 (µ ) → δ 3 ; 7: • Compute σ h z,I (µ ) ⇒ e du I σ (µ ) C(µ ) =: ∆ CRE,z N du I +1, Ñ du I (µ ) ; 8: then recompute ∆ CRE N pr , Ñ pr (µ )∆ CRE,z N du I +1, Ñ du I (µ ) → δ 4 ; GSdispdu: φ dui N du i +1 ← z h,0 i (µ ) - N du i n=1 z h,0 i (µ ), φ dui n D(µ0) φ dui n ; φ dui N du i +1 ← φ dui N du i +1 φ N +1 D(µ0) ; GSstressdu: φdui Ñ du i +1 ← σ h,0 i (µ ) - Ñ du i m=1 σ h,0 z,i (µ ), φdui m C(µ0) φdui m ; φdui Ñ du i +1 ← φdui Ñ du i +1 φdui Ñ du i +1 C(µ0)
;

We are given gap,tol , which can be set either directly or through a maximum RB primal dimension N pr max ; and a training sample Ξ train which contains n train = |Ξ train | discrete points in the parameter domain. The goal-oriented Greedy strategy aims to build the sets of RB basis functions such that the "uncertainty gaps" of n Q QoI are minimised by using one single Greedy loop. For an i-th general noncompliant QoI, there are 4 sets of RB basis functions to be built: the RB primal displacement set (Z pr N pr ), RB primal stress set ( Zpr Ñ pr ), RB dual displacement set (Z dui N du i ) and RB dual stress set ( Zdui Ñ du i ). The Greedy loop will manipulate simultaneously these 4 sets, as presented in Algorithm 2.

The goal-oriented Greedy algorithm starts with arbitrarily chosen parameters µ pr 1 , μpr [START_REF] Niroomandi | Model order reduction for hyperelastic materials[END_REF][START_REF] Kerfriden | Local/global model order reduction strategy for the simulation of quasi-brittle fracture[END_REF][START_REF] Chevreuil | Model order reduction based on proper generalized decomposition for the propagation of uncertainties in structural dynamics[END_REF][START_REF] Chen | Accurate and efficient evaluation of failure probability for partial different equations with random input data[END_REF]. Then, at each Greedy iteration, we will compute the QoI gaps gap i (µ), ∀µ ∈ Ξ train , 1 ≤ i ≤ n Q eq. ( 63), based on the current RB primal/dual displacement/stress spaces which have dimensions N pr , Ñ pr , N dui and Ñ dui (Algorithm 2, lines 6-7). The "worst" parameter point µ and QoI index I which induce the maximum gap thus can be found (Algorithm 2, line 8). With µ and I at hand, we will compute the exact errors at µ as described in Algorithm 3. In particular, the energy norms at µ of exact errors of primal displacement, primal stress, I-th dual displacement and I-th dual stress are computed in turn; and note that these values essentially are primal/dual CRE errors which are evaluated at µ after enriching RB primal stress, RB primal displacement, RB I-th dual stress and RB I-th dual displacement, respectively. Next, we recompute correspondingly the product ∆ CRE (µ )∆ CRE,z (µ ) for each of the 4 computations above since the numerator of gap i (µ) (eq. ( 63)) is proportional to this product. These 4 resulting values are then compared to each other, and the actual enrichment will be decided based on this comparison: which "testing" set decreases this product the most will be chosen for the "actual" enrichment (Algorithm 2, lines 10-22). For instance, if δ 3 = min{δ j , 1 ≤ j ≤ 4}, this implies that the I-th dual stress enrichment would reduce the product ∆ CRE (µ )∆ CRE,z (µ ) the most among 4 "testing" enrichments; and hence "actual" I-th dual stress enrichment will be performed (Algorithm 2, lines [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF][START_REF] Barrault | An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations[END_REF]. The algorithm will iterate and stop when the stopping criteria is satisfied (line 5).

1 , µ dui 1 , μdui 1 ∈ Ξ train to construct Z pr 1 = {φ pr 1 }, Zpr 1 = { φpr 1 }, Z dui 1 = {φ dui 1 } and Zdui 1 = { φdui 1 }, 1 ≤ i ≤ n Q (Algorithm 2, lines
We observe that even for multiple QoI, at each Greedy iteration we only "test" 4 sets of RB basis functions which are associated with the I-th QoI; and then enrich only one of these four sets. This is due to the contributions of Z pr N pr and Zpr Ñ pr to ∆ CRE (µ ), and that of Z du I N du I and Zdu I Ñ du I to ∆ CRE,z I (µ ); and these ultimately contribute to gap I (µ ). This property makes the algorithm very efficient and attractive for multiple-QoI problems.

In comparison with the two-field Greedy algorithm, the goal-oriented Greedy strategy has three main differences which are the objective function, the total number of RB sets to be built and the number of RB sets tested at each Greedy iteration. First, we try to minimize the "uncertainty gap" gap i (µ), 1 ≤ i ≤ n Q rather than the CRE error ∆ CRE (µ). Second, we need to build all RB spaces for displacement/stress fields which are associated with n Q QoI. Finally, at each Greedy iteration, we need to consider simultaneously 4 RB sets instead of 2 RB sets as in the two-field Greedy algorithm. However, the principle to choose and enrich RB sets is completely similar to that of the two-field Greedy algorithm. Namely, the particular RB set will be chosen depending on the performance of its new "testing" set on µ : which "testing" set decreases gap I (µ ) the most will be selected for the "actual" enrichment.

Figure 1: Schematic representation of the computational homogenisation framework for composite materials. The elastic contrast of the particulate composite is parametrised. with x the barycenter of Ω (i.e., Ω (x -x)dΩ = 0). The "truth" finite element SVE problem reads: find u h,0 (µ) ∈ U h,0 (Ω) such that

Ω u h,0 (µ) : D(µ) : (v) dΩ = - Ω u h,p (µ) : D(µ) : (v) dΩ, = f (v), ∀v ∈ U h,0 (Ω), (66) 
where u h,p (x, µ) = w(x, µ), ∀µ ∈ D, x ∈ ∂Ω w is a known displacement field as described above, and u h,0 (µ) is the unknown displacement field which will be approximated using RB method. The "truth" effective Lamé constants G M,h (µ m ) ≡ G h (µ) and λ M,h (µ m ) ≡ λ h (µ) are computed as (see Chapter 7.2 [START_REF] Nemat-Nasser | Micromechanics: overall properties of heterogeneous materials[END_REF])

G h (µ) = G u h (µ) = 1 |Ω| Ω Σ G : D(µ) : (u h (µ)) dΩ, (67a) 
λ h (µ) = λ u h (µ) = 1 |Ω| Ω Σ λ : D(µ) : (u h (µ)) dΩ, (67b) 
where Σ G and Σ λ are field extractors such that

G (v) = -1 |Ω| f (v) and λ (v) = f (v).
Hence, G h (µ) and λ h (µ) are compliant and noncompliant outputs, respectively. x The elastic contrast µ m ranges from 0.1 (soft inclusions) to 10 (hard inclusions). The Poisson's ratios of both phases are set to ν = 0.3. In this context, the affine representation of the Hooke's elasticity tensor over the parameter domain reads:

E inc E mat ∂Ω ≡ ∂Ω w
D(x, µ) = D mat + (µ 1 -1)H inc (x)D mat , ∀µ ∈ D, x ∈ Ω. (68) 
In equation (68) above, the function H inc is the indicator function of the inclusion phase. Namely, it is equal to 1 for a point located in an inclusion and 0 elsewhere. The elasticity tensor of the matrix phase D mat is defined by equation [START_REF] Kerfriden | Local/global model order reduction strategy for the simulation of quasi-brittle fracture[END_REF], with E mat = 1 and ν mat = 0.3. The affine representation of the compliance tensor over the parameter domain becomes

C(x, µ) = C mat + 1 µ 1 -1 H inc (x)C mat , ∀µ ∈ D, x ∈ Ω, (69) 
where C mat is the compliance tensor of the matrix phase.

We now note that by solving {(66), (67)}, setting

µ ≡ µ G = µ 1 , 0, 0, 1 2 , Σ G = 0 1 2 1 2 0 will render G h (µ); while setting µ ≡ µ λ = µ 1 , 1, 0, 1 √ 2 , Σ λ = 1 -1 √ 2 -1 √ 2 0 will render λ h (µ),
respectively. Therefore, the only "actual" parameter of this problem is , 10]; and note that each µ 1 provides correspondingly one µ G and one µ λ as described above. The (very fine) finite element mesh consists of 7728 nodes and 15184 linear triangular elements as shown in fig. 2. The FE space to approximate the 2D homogenization problem is of dimension N = 14916. The reference parameter used in this work is chosen as µ 0 = (1, 0, 0, 0). The entire work is implemented using the software Matlab R2012b. We show the FE displacement field in fig. 3 and the corresponding FE stress field in fig. 4 with µ test ≡ µ λ = 5, 1, 0, 1 √ 2 , respectively. In order to implement the sampling strategies which were described in section 4.2.2 and section 5. 

µ 1 = E inc E mat ∈ D ≡ [0.1
µ test ≡ µ λ = 5, 1, 0, 1 √ 2 .
by a logarithmically equidistant distribution with 500 sample points µ m ; and each µ m provides correspondingly one µ G and one µ λ . Hence, the training sample set Ξ train contains a total of 1000 sample points which are 500 pairs (µ G , µ λ ) logarithmically equidistant distributed.

Two-field Greedy algorithm

We first test our implementation of the TF-Greedy (two-field Greedy) algorithm described in section 4.2.2. In fig. 5(a), we present the convergence of the algorithm for the parametrised SVE problem. In fig. 5(a (µ ) as a function of the greedy iterations, while in fig. 5(c), we show the evolution of the displacement and stress reduced basis, Z N and Z Ñ respectively. a) From fig. 5(a), we see that the TF-RBM converges both in stress and displacement, as it is designed to converge in the CRE error measure, which is a combination of the exact error in these two fields.

The "stair" shape of the convergence curves of the stress and displacement errors is easily explained: we have chosen to correct only one of the surrogates at each greedy iteration.

For comparison purpose, we also show the behaviour of the RB method using the well-known Successive Constraint Method (SCM) upper error bound [START_REF] Huynh | A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF] in fig. 6 (The SCM error bound is presented briefly in appendix B for reference). Comparing fig. 5(a) and fig. 6(a), we see that the convergent rate of our proposed TF-Greedy strategy is similar to that of the SCM-based Greedy strategy. This statement is made on the basis that the dimension of each of the TF-RBM surrogate is approximately equal to the number of greedy iterations divided by two. Therefore, if we consider the displacement surrogate as "master" surrogate in the TF-RBM, whilst the "stress" surrogate is considered as a tool for certification purposes, then the displacement convergence rate of the two methods as a function of the dimension of the corresponding reduced basis is similar. We acknowledge the fact that comparing the convergence of the two methods in such a way is arguable are they are conceptually different. However, it does show that the TF-RBM extracts attractive subspaces at a speed that is at least comparable to that of the SCM-based RBM. b) The effectivites of the TF-RBM bounds of the stress and displacement errors automatically "balance themselves" out . When the stress error is larger than the displacement error, the algorithm increases the dimension of the stress surrogate at the next greedy iteration, thereby increasing the effectivity of the displacement error bound, while the effectivity of the stress error bound is left free to degrade. This property appears more clearly in fig. 5(b)). We see that the two curves η CRE This is in contrast to the the SCM-based RBM, which, by design, requires a uniformly sharp effectivity for the displacement error bound (see figure fig. 6). This sharp error bound needs to be trained in advance during the offline stage, while the error bounds of the TF-RBM "train themselves" during the greedy iterations. In facts, the error bounds of the TF-RBM are an outcome of the training process, and not a requirement for the training to be performed, which is what makes this method appealing and easy to implement. c) We now present some results in terms of "online" and "offline" computational time for the SVE problem. All computations were performed on a desktop Intel(R) Core(TM) i7-3930K CPU @3.20GHz 3.20GHz, RAM 32GB, 64-bit Windows 7 Operating System.

We first report the "online" CPU time of the computation µ → ∆ X (µ) where either X=CRE or X=SCM in fig. 7(a), which involves solving the reduced order model(s) and computing the error indicator. In order to do this, we choose a test parameter point µ test ≡ µ λ = 5, 1, 0, 1 √ 2 . Then, for each order of reduced basis surrogates obtained by the TF-RBM and SCM-based greedy processes, we compute µ test → ∆ CRE (µ test ) and µ test → ∆ SCM (µ test ) and measure the corresponding computational time. These operations are performed repeatedly 1000 times and report the average cost in terms of CPU time. In,fig. 7(a) this recorded time (normalized by t FEM ) is plotted as functions of the measures of accuracy ∆ CRE,max and ∆ SCM,max , respectively.

From observing fig. 7(a), we see that the speed-up of ∆ CRE (µ) is about 20 times larger than that of ∆ SCM (µ). This is intuitively explainable: the SCM-based approach requires solving an optimization problem to compute ∆ SCM (µ) (via the SCM coercivity coefficient α N LB (µ)), which takes more computing resources than inverting the ( Ñ × Ñ ) matrix required to obtain ∆ CRE (µ). In short, when "online" certification of the reduced basis approach is required, we can conclude that the TF-RBM is more the one order of magnitude faster than the SCM-based approach.

However, this statement should be mitigated. Indeed, the requirement for certification is arguable. Firstly, if the training set samples the parameter domain in a sufficiently fine way, then we can trust the the online error for an arbitrary set of parameters will be smaller than the maximum error over the training set. Secondly, the usefulness of certification depends on the ability of the engineer to increase the accuracy of the reduced model after it has been constructed, which is highly application-dependant. However, 'this 'online" speed-up may have a significant impact in applications where high-dimensional parameter domains are considered, as fine training sets may be out of reach. An other particularly interesting case is the family of "on-the-fly" model order reduction (e.g. [START_REF] Ryckelynck | On the a priori model reduction: overview and recent developments[END_REF][START_REF] Kerfriden | Local/global model order reduction strategy for the simulation of quasi-brittle fracture[END_REF][START_REF] Cui | Data-driven model reduction for the bayesian solution of inverse problems[END_REF]), where "offline/online" decomposition of the computational effort is irrelevant. In this case, the training is performed "online", for instance directly on the trajectory of a gradient-based optimisation algorithm or during the iterations of a Monte-Carlo algorithm [START_REF] Cui | Data-driven model reduction for the bayesian solution of inverse problems[END_REF].

In terms of "offline" CPU time, the cost of the construction of the TF-RBM surrogate is similar to the cost of the SCM-based RBM. This is due to the fact that the mass of the computational resources required "offline" is concentrated in full-order operations such as computing exact finite element solutions or assembling the terms of the various affine decompositions. The speed-up obtained by the TF-RBM when exploring the parameter domain is lost due to such overheads. Moreover, the SCM-based RBM is very efficient when a fixed training set is used throughout the greedy process, as the expensive part of the SCM error bound computation, the optimisation of the lower bound of the coervicity constant, is computed only once for each of the training points. We have tested the idea of using varying random training sets, which has been shown in recent investigations to allow for a more efficient sampling of the parameter domain [START_REF] Paul-Dubois-Taine | An adaptive and efficient greedy procedure for the optimal training of parametric reduced-order models[END_REF]. In this case, the TF-RBM can be faster than the SCM-based RBM in the "offline" stage. With 1000 randomly distributed training points, we have observed that the construction costs of the TF-RBM model are halved compared to the SCM-based approach.

Goal-oriented Greedy algorithm

a) The QoI gaps of the homogenization problem are defined as (63), i.e.,

gap G ≡ gap(µ G ) = 2 G r,+ (µ G ) -G r,-(µ G ) |G r,+ (µ G )| + |G r,-(µ G )| , ( 70a 
)
gap λ ≡ gap(µ λ ) = 2 λ r,+ (µ λ ) -λ r,-(µ λ ) |λ r,+ (µ λ )| + |λ r,-(µ λ )| , (70b) 
where G r,+ (µ), G r,-(µ) are defined as in (64), and λ r,+ (µ), λ r,-(µ) are defined as in (62) for compliant and noncompliant outputs, respectively. In addition, there is a dual equation associated with λ h (µ), and no dual equation associated with G h (µ) due to this reason. the sizes of Z pr , Zpr , Z du and Zdu as functions of GO-Greedy iterations (first 30 iterations), respectively. For reference, we also present the maximum of gaps which are post-processed with N pr = N du using primal and dual SCM-Greedy algorithms ‡ in fig. 9.

It is observed from fig. 8(a) that the proposed GO-Greedy strategy converges "goal-orientedly": the strategy only enriches necessary RB basis functions (primal/dual displacement/stress) to minimize the QoI gaps. Fig. 8(b) shows that the primal displacement/stress RB basis functions are enriched ‡ We choose this specific configuration (N pr = N du ) since there is no available goal-oriented algorithm for SCM-Greedy algorithm, and this configuration is most commonly used for noncompliant outputs [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF]. more than the dual ones. This may be because Z pr and Zpr help to improve both gaps, i.e., {gap G , gap λ }; while Z du and Zdu will contribute to the improvement of gap λ only. This is in fact consistent with and also explains fig. 9: since we use a relatively high N du compared with a N pr (N pr = N du ), gap λ is thus much smaller than gap G with one specific N pr = N du . Fig. 10 and fig. 11 illustrate the virtual charts of G(µ) and λ(µ) as functions of the material heterogeneity µ m = E inc E mat after first 9 GO-Greedy iterations, respectively. c) We finally report the online computational time of the computation µ → gap X (µ), where X=TF-RB or X=SCM-RB in fig. 7(b). (Here, TF-RB implies two-field goal-oriented reduced basis, and SCM-RB means successive constraint method reduced basis.) In particular, by repeating the same procedure as in paragraph c) of section 6.2 above, we can obtain the recorded time to compute µ test → gap TF-RB (µ test ) (after implementing the proposed GO-Greedy algorithm) and µ test → gap SCM-RB (µ test ) (after post-processing two SCM-Greedy algorithms), respectively. We then plot this recorded time (normalized with respect t FEM to obtain the speed-up) as functions of gap TF-RB,max and gap SCM-RB,max in fig. 7(b), respectively. By observation, fig. 7(b) is very consistent with fig. 7(a). We recall from (62) that the computation of gap(µ) essentially contains ∆ X (µ), ∆ X z (µ) and R z r,0 (µ) where X=CRE or X=SCM. Therefore, the (online) computational time of gap(µ) will be a little more than two times of that of ∆ X (µ); and this fact is reflected clearly in fig. 7. In conclusion, as similar to the case ∆ X above, the online computational time of our proposed GO-Greedy strategy is O(10) times smaller than that of the (post-processing) SCM-Greedy approach. 

Conclusion

A new reduced basis framework has been proposed for the metamodelling of parametrised elasticity problems. The first novel idea is to use the Constitutive Relation Error as an indication of accuracy of the reduced order model, in order to (i) construct the projection spaces based on a greedy sampling of the parameter domain and (ii) certify the final reduced order model. The method requires the construction of separate reduced order models for the primal (displacement) and flux (stress) fields. The greedy sampling algorithm is designed to jointly construct optimum projection subspaces for these two fields. We have shown that the numerical efficiency of the resulting reduced order model is more than one order of magnitude higher than state-of-the-art existing methodologies. We have also shown that the construction of this model is considerably simplified due to the fact that the reduced order model and the relevant measures of accuracy are trained together, in a single greedy loop.

The second key idea is to extend this concept to the context of goal-oriented sampling. In this case, the greedy algorithm is aimed at the minimisation of the error in quantity of interest. We have shown that this concept, coupled with the CRE-driven adaptivity, leads to the construction of a metamodel that is "tuning-free", in the sense that the user needs only to specify the desired accuracy for the quantities of interest. There is no other calibration parameter in the proposed algorithm. We have shown that this goal-oriented algorithm permits to construct reduced order models that are directly certified in terms of input/output maps, and extremely efficient in terms of computational expenses. 

Now, we expand the expressions for σ r (µ) by using ( 2), ( 17) and ( 16) Θ q a (µ) a q (φ i , φ j ) a q (φ i , φ j ) a q (φ i , φ j ) α j (µ), (from (7a)) .

(75)

We observe from the last line of (75) that the term a q (φ i , φ j ) (in bold typeface) can be precomputed and stored in the Offline stage; and then in the Online stage RRss(µ) can be estimated rapidly with the computational cost independent of N by assembling all remaining terms. Applying the same trick to other terms, we obtain the following results (note that all the offline terms will be in bold typeface):

RRst(µ) = N i=1 nw j=1 α i (µ) Qa q=1
Θ q a (µ) a q (φ i , ψ j ) a q (φ i , ψ j ) a q (φ i , ψ j ) γ w j (µ),

and

RRtt(µ) = nw i,j=1 γ w i (µ) Qa q=1
Θ q a (µ) a q (ψ i , ψ j ) a q (ψ i , ψ j ) a q (ψ i , ψ j ) γ w j (µ).

(77)

Proposition 4 . 1 .

 41 Let e u (µ) = u h (µ) -u r (µ) and e σ (µ) = σ h (µ) -σ(µ) be the RB errors for the displacement and stress fields, respectively; σ C(µ) = Ω σ : C(µ) : σ dΩ 1/2 be the energy norm associated to an arbitrary stress field σ ∈ S(Ω) and v D(µ) = Ω (v) : D(µ) : (v) dΩ 1/2

  2.4): O Q a N 2 operations to assemble and compute RR(µ) in (74), O n c Ñ 2 operations to assemble and compute HH(µ) in (78), and O N Ñ operations to assemble and compute RH(µ) in (80). Therefore, the Online operation count to evaluate µ → ∆ CRE N, Ñ

8 :•

 8 Set: gap max = max µ∈Ξtrain,1≤i≤nQ gap i (µ); (µ , I) = arg max µ∈Ξtrain,1≤i≤nQgap i (µ);9:

Figure 2 :

 2 Figure 2: The finite element discretization of the parametrised SVE.

  2, we first create the training sample set Ξ train . In particular, the range D ≡ [0.1, 10] is divided

Figure 3 :

 3 Figure 3: FE displacement field in x-direction (a), and y-direction (b), with µ test ≡ µ λ = 5, 1, 0, 1

  ), we show the value of the maximum of CRE error ∆ CRE,max = max µ∈Ξtrain ∆ CRE (µ), the displacement error ε max u = max µ∈Ξtrain e u D(µ) and stress error ε max σ = max µ∈Ξtrain e σ C(µ) over Ξ train as a function of the Greedy iteration number. In fig. 5(b), we report the displacement and stress effectivities at µ : η CRE u (µ ) and η CRE σ

Figure 4 :

 4 Figure 4: FE stress field σ xx (a), σ yy (b), and σ xy (c), with µ test ≡ µ λ = 5, 1, 0, 1 √ 2 .

u

  (µ ) and η CRE σ (µ ) develop in opposite directions from one Greedy iteration to the next one: when η CRE u (µ ) increases, η CRE σ (µ ) decreases and vice versa.

Figure 5 :

 5 Figure 5: (a) Maximum of CRE error ∆ CRE,max , displacement RB error ε max u and stress RB error ε max σ over Ξ train , (b) displacement and stress effectivities at µ , and (c) sizes of the sets Z N and Z Ñ as functions of Greedy iterations (only first 32 iterations are shown in fig. 5(b) and fig. 5(c)).

Figure 6 :

 6 Figure 6: (a) Maximum of SCM upper error bound ∆ SCM,max and displacement RB error ε max u over Ξ train , and (b) displacement effectivity at µ as functions of N (only first 16 iterations are shown in fig. 6(b)).

Figure 7 :

 7 Figure 7: Speed-up as functions of max error indicators for ∆ max (a), and for gap max (b) (t FEM = 0.1209 sec).

Figure 8 :

 8 Figure 8: (a) Maximum of gap G,λ , gap G and gap λ over Ξ train , and (b) sizes of the sets Z pr , Zpr , Z du and Zdu as functions of GO-Greedy iterations (only first 30 iterations are shown in fig. 8(b)).

Figure 9 :

 9 Figure 9: Maximum of gap G,λ , gap G and gap λ over Ξ train which are post-processed by primal and dual SCM-Greedy algorithms as functions of N pr = N du .
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 12345678910 Figure 10: Virtual charts of G(µ) with respect to the variations of material heterogeneity after first 9 GO-Greedy iterations.
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 1234567891122 Figure 11: Virtual charts of λ(µ) with respect to the variations of material heterogeneity after first 9 GO-Greedy iterations.

σ

  r (µ) = D(µ) : u r,0 (µ) + u h,p (µ) = D(µ) : § We denote ∆ CRE N, Ñ (µ) to imply that this error bound depends on N -the number of RB displacement basis functions and Ñ -the number of RB stress basis functions.

1 . 2 Ω:

 12 and σ(µ) by using[START_REF] Gunzburger | Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data[END_REF],[START_REF] Meyer | Efficient model reduction in non-linear dynamics using the Karhunen-Loeve expansion and dual-weighted-residual methods[END_REF] σ(µ) = σ r,0 (µ) + σ h,p (µ) = Let us first consider the term RR(µ) in (71) (using (72))RR(µ) = Ω σ r (µ) : C(µ) : σ r (µ) dΩ = Ω ( + ) : C(µ) : ( + ) dΩ = Ω : C(µ) : dΩ + C(µ) : dΩ + Ω : C(µ) : dΩ = RRss(µ) + 2 RRst(µ) + RRtt(µ).(74)The term RRss(µ) can be computed as follows:RRss(µ) = Ω D(µ) : N i=1 α i (µ) φ i : C(µ) : dΩ, (as D(µ) : C(µ) = I) ) : D(µ) : (φ j ) dΩ α j (µ) = N i,j=1α i (µ) a (φ i , φ j ; µ) α j (µ), (from (5a))

† More precisely, N here should be the dimension of the FE stress field -not that of the FE displacement field. We avoid using further symbols for simplicity.
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Numerical example

In this section, we will apply the TF-RBM algorithm to the metamodelling of computational models of elastic heterogeneous materials, under 2D plane strain assumption. The heterogeneous material of interest is made of two isotropic linear elastic phases possessing distinct elastic properties: circular inclusions and surrounding matrix (fig. 1). The positions and diameters of the inclusions are distributed randomly. The aim is to determine the so-called "overall" (or "effective") elasticity tensor as a function of some characteristics µ m ∈ D m of the material heterogeneities. In other words, we want to build a virtual chart of the overall homogenised properties of the class of composite materials under investigation.

Finite element discretization

We consider a 2D statistical volume element (SVE) model under plane strain assumption in fig. 2. The domain Ω is a unit square which is defined by Ω = [0, 1] × [0, 1]. The model is composed of two distinct material phases: the circular inclusions characterized by Young's modulus E inc and the surrounding matrix characterized by Young's modulus E mat . Both phases are assumed to have elastic and isotropic behavior. The random distribution of positions and diameters of the inclusions is performed via the package [START_REF] Tschopp | Mathworks website: Synthetic microstructure generator[END_REF][START_REF] Tschopp | Multi-scale characterization of orthotropic microstructures[END_REF]. There are no body force nor surface traction -the only load applying to the model is via parametrised Dirichlet boundary conditions.

The SVE boundary value problem is parametrised by the material parameters µ m and the load parameters µ l as:

). We assume in this example that the material heterogeneities are only parametrised by the elastic contrast µ m ≡ µ 1 = E inc E mat . The load parameters µ l are constituted by the independent components of the effective strain tensor M , where M ∈ R 2 × R 2 and M = M T . More precisely, we define

The affine representation of the Dirichlet boundary conditions is thus defined as

2. Similarly, the term HH(µ) in (71) can be written as (using (73))

Using the same method as above: substituting the expressions for and (from (73)), expanding and assembling the µ-independent terms, we finally obtain 

where

B SCM (coercivity) error bound

The technique to derive this bound is well-established and has been described in many papers (see for instance [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF][START_REF] Rozza | Reduced basis approximation and error bounds for potential flows in parametrized geometries[END_REF]). Hence the proof and detailed computation will not be shown here, we only recall the basic components and then formulate this error bound.

In order to define properly this error bound, we shall introduce two different inner products and norms for members of U h,0 (Ω), inherited from U Ad,0 (Ω) (section 2.1). First, an energy inner product and energy norm are defined respectively as ¶ (u, v) µ = a(u, v; µ), ∀u, v ∈ U Ad,0 (Ω), (82a)

Second, the X-inner product and norm, are defined as follows: for given µ 0 ∈ D and (non-negative) real τ ,

where µ 0 here is the same as that in section 3.1.2 and section 3.2.2; and the L 2 -norm is defined as

B.1 Basic components

There are two basic components which constitute the SCM error bound: the dual norm of the residual and the lower bound of the FE coercivity constant. In order to obtain the former, we start from the error residual relationship. The residual R(v; µ) which is associated with ( 18) is defined as in equation ( 61). Together with [START_REF] Kunisch | Optimal snapshot location for computing POD basis functions[END_REF] and the bilinearity of a, the error residual relationship for the RB error e 0 (µ) = u h,0 (µ) -u r,0 (µ) ∈ U h,0 (Ω) can be established as follows

We then introduce the Riesz representation of R(v; µ): ê0 (µ) ∈ U h,0 (Ω) satisfies

Thus we can write (84) as

and it follows that the dual norm of the residual can be computed through the Riesz representation [START_REF] Rozza | Reduced basis approximation and error bounds for potential flows in parametrized geometries[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF]:

The second basic component is a parametric lower bound function α N LB (µ) for α N (µ) -the FE coercivity constant defined as

Hence, we have ¶ Note that this energy norm is exactly the same as the v D(µ) in Proposition 4.1.

where the online computational time to evaluate µ → α N LB (µ) has to be independent of N . The computation of α N LB (µ) is given by an efficient algorithm so-called Successive Constraint Method (SCM), which is widely analyzed in [START_REF] Huynh | A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants[END_REF][START_REF] Huynh | A natural-norm successive constraint method for inf-sup lower bounds[END_REF]. The SCM algorithm also comprises of Offline-Online computational procedures: an expensive N -dependent Offline stage and a cheap N -independent Online stage. Specifically, in the Online stage a small optimization problem needs to be solved with the cost independent of N for any given parameter µ.

B.2 Error bound

The SCM error estimator for the field variable in the energy norm is defined as

We also introduce the effectivity associated with this error estimator as

Following the proof as in [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF], we obtain that for any N = 1, . . . , N max , the effectivity satisfies

It is important to emphasize that the Online computation of ∆ SCM (µ) in ( 90) is efficient: its computational cost is completely independent of N [START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF][START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF]. In addition, we also note from the settings [START_REF] Kerfriden | A partitioned model order reduction approach to rationalise computational expenses in nonlinear fracture mechanics[END_REF], [START_REF] Kerfriden | Certification of projection-based reduced order modelling in computational homogenisation by the constitutive relation error[END_REF] that the RB error for the field variable will be e r (µ) = u h (µ)-u r (µ) = u h,0 (µ)-u r,0 (µ) = e 0 (µ). Therefore, the error estimations for e 0 (µ), which is completely equivalent to that for e r (µ), are sufficient for our considerations.

Interested readers should note that there is also an upper bound for this effectivity [START_REF] Rozza | Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations[END_REF][START_REF] Quarteroni | Certified reduced basis approximation for parametrized partial differential equations and applications[END_REF] -which depends on the continuity and coercivity constants; we skipped it here as it is not the focus of this paper.