
HAL Id: hal-01087327
https://hal.science/hal-01087327v1

Submitted on 25 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Formalism for Stochastic Adaptive Systems
Benoît Boyer, Axel Legay, Louis-Marie Traonouez

To cite this version:
Benoît Boyer, Axel Legay, Louis-Marie Traonouez. A Formalism for Stochastic Adaptive Systems.
Leveraging Applications of Formal Methods, Verification and Validation. Specialized Techniques and
Applications, Oct 2014, Corfu, Greece. pp.160 - 176, �10.1007/978-3-662-45231-8_12�. �hal-01087327�

https://hal.science/hal-01087327v1
https://hal.archives-ouvertes.fr

A Formalism for Stochastic Adaptive Systems

Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

Inria / IRISA, Campus de Beaulieu, 35042 Rennes CEDEX, France

Abstract. Complex systems such as systems of systems result from the
combination of several components that are organized in a hierarchical
manner. One of the main characteristics of those systems is their ability
to adapt to new situations by modifying their architecture. Those sys-
tems have recently been the subject of a series of works in the software
engineering community. Most of those works do not consider quantitative
features. The objective of this paper is to propose a modeling language
for adaptive systems whose behaviors depend on stochastic features. Our
language relies on an extension of stochastic transition systems equipped
with (1) an adaptive operator that allows to reason about the probability
that a system has to adapt its architecture over time, and (2) dynamic
interactions between processes. As a second contribution, we propose a
contract-based extension of probabilistic linear temporal logic suited to
reason about assumptions and guarantees of such systems. Our work has
been implemented in the Plasma-Lab tool developed at Inria. This tool
allows us to define stochastic adaptive systems with an extension of the
Prism language, and properties with patterns. In addition, Plasma-Lab

offers a simulation-based model checking procedure to reason about finite
executions of the system. First experiments on a large case study coming
from an industrial driven European project give encouraging results.

1 Context

Critical systems increasingly rely on dynamically adaptive programs to respond
to changes in their physical environments. Reasoning about such systems require
to design new verification techniques and formalisms that take this model of
reactivity into account [7].

This paper proposes a complete formalism for the rigorous design of stochastic
adaptive systems (SAS), whose components’ behaviors and environment changes
are represented via stochastic information. Adding some stochastic feature to
components’ models is more realistic, especially regarding the environment aspect,
e.g. the probability of hardware failure, the fire frequency in a forest or a growing
city population. . .

We view the evolution of our system as a sequence of views, each of them
representing a topology of the system at a given moment of time. In our setting,
views are represented by a combination of Markov chains, and stochastic adap-
tive transitions that describe the environment evolution as transitions between
different views of the SAS (e.g. adding or removing components). Each view thus
associates the new environment behaviour and a new system configuration (a new

2 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

View 1 View 2 View 3
p1 p2 p3p1 p1

Local Verif. Local Verif. Local Verif.

Global Verif.

Fig. 1. Illustration of SAS Methodology

topology, addition or suppression of system components. . .). The incremental
design is naturally offered to the system architect who can extend easily an
existing model by creating new views.

Properties of views can be specified with Bounded Linear Temporal Logic
(BLTL) that allows to reason about finite execution. To reason about sequences
of view, we propose Adaptive BLTL (A-BLTL) that is an extension of BLTL
with an adaptive operator to reason about the dynamic change of views. We also
show that the formalism extend to contracts that permit to reason about both
assumptions and guarantees of the system.

Consider the system described in Figure 1. This system is composed by three
different views linked by adaptive transitions (represented by dashed arrows).
Each view contains some system components in a particular topology denoting a
configuration of the SAS. Each local property p1, p2, p3 is attached to one or more
views. There is also global property Φ. The SAS is initially designed by View 1
and View 2 and the black dashed arrows. Properties p1, p2 are validated for the
corresponding views and Φ is validated against this complete initial version of
the system. To fit with the upcoming settings of the system, the system architect
updates the model by adding View 3 with new adaptive transitions (in grey).
This requires to only validate p1 and p3 against View 3 and to validate again the
global property Φ against the system including all the three views.

We propose a new Statistical Model Checking (SMC) [22,20] algorithm to
compute the probability for a SAS to satisfy an A-BLTL property. SMC can be
seen as a trade-off between testing and formal verification. The core idea of SMC
is to generate a number of simulations of the system and verify whether they
satisfy a given property expressed in temporal logics, which can be done by using
runtime verification approaches [12]. The results are then used together with
algorithms from the statistical area in order to decide whether the system satisfies
the property with some probability. One of the key points to implement an SMC
algorithm is the ability to bound a priori the size of the simulation, which is an
important issue. Indeed, although the SAS can only spend a finite amount of
time in a given view, the time bound is usually unknown and simulation cannot
be bounded. To overcome the problem, we expand on the work of Clarke [21]

A Formalism for Stochastic Adaptive Systems 3

and consider a combination of SMC and model checking algorithm for untimed
systems.

As a second contribution, we propose high-level formalisms to represent both
SAS and A-BLTL/contracts. The formalism used to specify SAS relies on an
extension of the Reactive Module Language (RML) used by the popular Prism
toolset [16]. Properties are represented with an extension of the Goal and Contract
Specification Language (GCSL) [2] defined in the DANSE IP project [11]. This
language offers English-based pattern to reason about timed properties without
having to learn complex mathematics inherent to any logic.

Finally, as a last contribution, we have implemented our work in Plasma-Lab

[5] – a new powerful SMC model checker. The implementation has been tested
on a realistic case study defined with industry partners of DANSE.

2 Modeling Stochastic Adaptive Systems

In this section, we present the formal model used to encode behaviors of adaptive
systems. In Section 2.1, we introduce Markov chains (MC) to represent individual
components of a view. Then, in Section 2.2, we show how to describe views as
well as relations between views, i.e., adaptive systems.

2.1 Discrete and Continuous Time Markov Chains

Definition 1. A (labelled) transition system is a tuple T = (Q, q, Σ,→, AP, L)
where Q is a set of states, q ∈ Q is the initial state, Σ is a finite set of actions,
→: Q×Σ ×Q is the transition relation, AP is a set of atomic propositions, and
L : Q → 2AP is a state labelling function that assigns to each state the set of
propositions that are valid in the state.

We denote by q
a

−→ q′ the transition (q, a, q′) ∈→. A trace is a finite or infinite
alternating sequence of states and time stamps ρ = t0q0t1q1t2q2 . . . , such that
∀i.∃ai ∈ Σ.qi

ai−→ qi+1. Time stamps measure the cumulative time elapsed from
a time origin. In discrete time models delays are integer values (i.e., t0 = 0,
t1 = 1, t2 = 2) and therefore they can be omitted. In continuous time models
they are real values. We denote by |ρ| the length of a trace ρ. If ρ is infinite then
|ρ| = ∞. A trace is initial if q0 = q and t0 = 0. We denote by tracen(T) (resp.
trace(T)) the set of all initial traces of length n (resp. infinite traces) in T . Let
0 ≤ i ≤ |ρ|, we denote ρ|i = t0q0t1q1 . . . ti−1qi−1 the finite prefix of ρ of length

i, ρ|i = tiqiti+1qi+1 . . . the suffix of ρ that starts at position i, and ρ[i] = qi the
state at position i.

We now extend transition systems with probabilities to represent uncertainty
of behaviors or of material on which the system is running. We present two
semantics, either with discrete or continuous time, that are both compatible with
our setting. A discrete time Markov chain (DTMC) is a state-transition system
in which each transition is labelled by a probability P(s, s′) to take the transition
from state s to state s′.

4 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

Definition 2. A (labelled) DTMC is a tuple D = (Q, q, Σ,→, AP, L,P) where:

– (Q, q, Σ,→, AP, L) is a labelled transition system,
– P : Q×Q → [0, 1] is a transition probability matrix, such that

∑

q′∈Q P(q, q′) =
1 for all q ∈ Q,

– → is such that q
a

−→ q′ iff P(q, q′) > 0, and for each state q there is at most

one action a ∈ Σ such that q
a

−→ q′ for some q′.

In continuous time Markov chains (CTMCs) transitions are given a rate. The
sum of rates of all enabled transitions specifies an exponential distribution that
determines a real value for the time spent in the current state. The ratio of the
rates then specifies which discrete transition is chosen.

Definition 3. A (labelled) CTMC is a tuple C = (Q, q, Σ,→, AP, L,R) where:

– (Q, q, Σ,→, AP, L) is a labelled transition system,
– R : Q × Q → R≥0 is a transition rate matrix,

– → is such that q
a

−→ q′ iff R(q, q′) > 0, and there is a unique a ∈ Σ such

that q
a

−→ q′.

In our setting, a view of a system is represented by the combination of
several components. We can compute the parallel composition C1 ‖ C2 of two
DTMCs (resp. CTMCs) defined over the same alphabet Σ. Let (Q1, q1, Σ,→1

, AP1, L1) and (Q2, q2, Σ,→2, AP2, L2) be the two underlying transition systems.
We first compute their parallel composition, which is a labelled transition system
(Q, q, Σ,→, AP, L), where Q = Q1 × Q2, q = (q1, q2), AP = AP1 ∪ AP2, L(q) =
L1(q1)∪L2(q2) and the transition relation → is defined according to the following
rule:

q1
a

−→1 q′1 q2
a

−→2 q′2

(q1, q2)
a

−→ (q′1, q
′
2)

(1)

Then, in case of DTMCs, the new transition probability matrix is such that
P((q1, q2), (q

′
1, q

′
2)) = P(q1, q

′
1) ∗P(q2, q

′
2), and in case of CTMCs the new transi-

tion rate matrix is such that R((q1, q2), (q
′
1, q

′
2)) = R(q1, q

′
1) ∗ R(q2, q

′
2). DTMCs

with different alphabets can also be composed and they synchronize on common
actions. However, if both DTMCs can perform a non synchronized action, a
uniform distribution is applied to resolve the non determinism. In case of CTMCs,
the two actions are in concurrence, such that if q1

a
−→1 q′1 with a 6∈ Σ2, then

(q1, q2)
a

−→ (q′1, q2) and R((q1, q2), (q
′
1, q2)) = R(q1, q

′
1). In what follows, we de-

note by Sys = C1 ‖ C2 ‖ · · · ‖ Cn the DTMC (resp. CTMC) that results from
the composition of the components C1, C2, . . . , Cn.

2.2 Stochastic Adaptive Systems (SAS)

An adaptive system consists in several successive views. It starts in an initial
view that evolves until it reaches a state in which an adaptation is possible. This
adaptation consists in a view change that depends on a probability distribution
that represents uncertainty of the environment.

A Formalism for Stochastic Adaptive Systems 5

Definition 4. A SAS is a tuple (∆, Γ, S, sys,) where:

– ∆ = {C1, C2, . . . , Cn} is a set of DTMCs (resp. CTMCs) that are the com-
ponents of the SAS.

– Γ is the set of views of the SAS, such that each view is a stochastic system
obtained from the parallel composition some components from ∆.

– sys ∈ Γ is the initial view.
– S is the set of states of the SAS. S is the union of the states of each view

in Γ , i.e., for each state s ∈ S there exists {C1, C2, . . . , Ck} ⊆ ∆ such that
s ∈ Q1 × Q2 × · · · × Qk (where ∀i, 1 ≤ i ≤ k, Qi is the set of states of Ci).

– ⊆ S × [0, 1]S is a set of adaptive transitions.

Observe that the number of components per state may vary. This is due to the
fact that different views may have different components. Observe also that it is
easy to add new views to an existing adaptive system without having to re-specify
the entire set of views. An element (s,p) ∈ consists in a state s from a view
sys ∈ Γ and a probability distribution p over the states in S. When s 6= s′, we
denote s s′ if there exists p such that (s,p) ∈ and p(s′) > 0, which means
that state s can be adapted into state s′ with probability p(s′).

A trace ρ in a SAS is either a finite combination of n traces ρ = ρ0ρ1 . . . ρn,
such that for all 0 ≤ i ≤ n − 1, ρi = t0is0it1is1i . . . tlisli is a finite trace of
sysi ∈ Γ , and sli s0i+1, and t0i+1 = 0, and ρn is a finite or infinite trace
sysn∈Γ . Otherwise ρ may be an infinite combination of finite traces ρ = ρ0ρ1 . . .

that satisfy for all i the same constraints.

3 A logic for SAS properties

3.1 Probabilistic Adaptive Bounded Linear Temporal Logic

We consider quantitative verification of dynamic properties that are expressed
via a quantitative extension of the Adaptive Linear Temporal Logic (A-LTL)
proposed in [23]. Our logic, which we call Adaptive Bounded Linear Temporal
Logic (A-BLTL), relies on an extension of Bounded Linear Temporal Logic
(BLTL) combined with an adaptive operator. Although the logic is not strictly
more expressive than BLTL, it is more suitable to describe properties of individual
views, as well as global properties of the adaptive system, and it allows to develop
specific algorithms for these properties. In the last part of the section, we also
show how one can define contracts on such logic, where a contract [17] is a pair
of assumptions/guarantees that must be satisfied by the system.

We first introduce BLTL, a logic used to express properties on individual
views. In BLTL, formulas are built by using the standard Boolean connectors
∧, ∨, =⇒ , ¬, and the temporal operators G, F , X, U borrowed from Linear
Temporal Logic (LTL). The main difference between BLTL and classical LTL is
that each temporal modality is indexed by a bound k that defines the length of
the run on which the formula must hold. The semantics of a BLTL formula is
defined in Table 1 for finite executions of CTMC/DTMC ρ = t0s0t1s1t2s2 . . . ,

6 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

ρ |= X≤kΦ ≡ ∃i, i = max{j | t0 ≤ tj ≤ t0 + k} and ρ|i |= Φ

ρ |= Φ1 U≤kΦ2 ≡ ∃i, t0 ≤ ti ≤ t0 + k and ρ|i |= Φ2 and ∀j, 0 ≤ j ≤ i, ρ|j |= Φ1

ρ |= Φ1 ∧ Φ2 ≡ ρ |= Φ1 and ρ |= Φ2 ρ |= ¬Φ ≡ ρ 6|= Φ

ρ |= P ≡ P ∈ L(s0) ρ |= true ρ 6|= false

Table 1. Semantics of BLTL

with |ρ| ≥ k. If |ρ| < k, it is extended by duplicating the last state enough times.
In case formulas are nested, the value of k adapts incrementally.

We now generalize BLTL to adaptive systems. For doing so, we introduce an
adaptive operator in the spirit of [24]. The new logic A-BLTL is an extension of

BLTL with an adaptive operator Φ
Ω
=⇒≤k Ψ , where Φ is a BLTL formula, Ψ is an

A-BLTL formula, Ω is a predicate over the states of different views of the SAS,
and k is a time bound that limits the execution time of the adaptive transition.
We will also consider unbounded versions of the adaptive operator.

Definition 5 (A-BLTL semantics). Let Φ
Ω
=⇒≤k Ψ be an A-BLTL formula

and ρ = t0s0t1s1t2s2 . . . be an execution of the SAS:

ρ |= Φ
Ω
=⇒≤k Ψ ≡ ∃i, i = min{j | t0 ≤ tj−1 ≤ t0 + k ∧

ρ|j |= Φ ∧ sj−1 sj ∧ Ω(sj−1, sj)} ∧ ρ|i |= Ψ (2)

The property is unbounded if k = ∞, and in that case we write Φ
Ω
=⇒ Ψ .

According to Definition 5, an execution ρ satisfies an adaptive formula Φ
Ω
=⇒≤k

Ψ if and only if there exists a minimal prefix of ρ that satisfies Φ and reaches a
state sj−1, such that Ω(sj−1, sj) is satisfied, and such that the suffix of ρ from
state sj satisfies Ψ . Therefore to satisfy this formula it is necessary to observe an
adaptation compatible with Ω. We relax this constraint by introducing a new

operator Φ
Ω
−→≤k Ψ , for which an adaptation is not necessary but triggers a check

of Ψ when it happens. It is equivalent to the following formula: Φ
Ω
−→≤k Ψ ≡

(Φ
Ω
=⇒≤k true) =⇒ (Φ

Ω
=⇒≤k Ψ).

We finally introduce stochastic contracts, that are used to reason about both
the adaptive system and its environment via assumptions and guarantees.

Definition 6 (Contracts for SAS). A contract is defined as a pair (A, G),
where A and G are respectively called the Assumption and the Guarantee. A SAS
M satisfies the contract (A, G) iff ∀ρ, ρ |= A ⇒ ρ |= G, where ρ is a trace of
M and ρ |= A (resp. G) means the trace ρ satisfies the assumption A (resp. the
guarantee G). In that case we write M |= (A, G).

3.2 Verifying SAS Properties using SMC

SMC [22,20] is an alternative to model checking [3,9] that employs Monte Carlo
methods to avoid the state explosion problem. SMC estimates the probability that

A Formalism for Stochastic Adaptive Systems 7

a system satisfies a property using a number of statistically independent simulation
traces of an executable model. By using results from the statistic area, SMC
decides whether the system satisfies the property with some degree of confidence,
and therefore it avoids an exhaustive exploration of the state-space of the model
that generally does not scale up. It has already been successfully experimented
in biology area [10,15,16], software engineering [8] as well as industrial area like
aeronautics [4].

The basic algorithm used in SMC is the Monte Carlo algorithm. This algorithm
estimates the probability that a system Sys satisfies a BLTL property P by
checking P against a set of N random executions of SyS. The estimation p̂ is

given by p̂ =

∑N
1 f(ρi)

N
where f(ρi) = 1 if ρi |= P , 0 otherwise.

Using the formal semantics of BLTL, each execution trace ρi is monitored in
order to check if P is satisfied or not. The accuracy of the estimation increases
with the number of monitored simulations. This accuracy can be controlled
thanks to the Chernoff-Hoeffding bound [14]. It relates N to δ and ε, that are
respectively the confidence and the error bound of p̂:

Pr(|p − p̂| < ε) ≥ 1 − δ if N ≥
ln(2

δ
)

2ε2
(3)

According to this relation, the user is able to trade off analysis time in return for
accuracy of the result using the parameters δ and ε.

Knowing that there exists techniques to monitor BLTL properties [13], the

model checking of A-BLTL is rather evident. Given an A-BLTL property Φ1
Ω
=⇒≤k

Φ2, the monitor will first check whether the run satisfies Φ1 using classical runtime
verification techniques. If no, then the property is not satisfied. If yes, then one
checks whether there is a pair of two successive states between t0 and t0 + k that
satisfies Ω. The latter is done by parsing the run. If this pair does not exist, then
the property is not satisfied. Else we start a new monitor from the suffix of the
run starting in the second state of the pair in order to verify Φ2.

3.3 Verifying unbounded SAS Properties using SMC

We propose a method inspired by [21] to check unbounded A-BLTL properties.
The principle is to combine a reachability analysis by model checking the un-
derlying finite-state machine, with a statistical analysis of the stochastic model
using the algorithms introduced previously.

We consider an A-BLTL property Φ
Ω
=⇒ Ψ , where Φ and Ψ are BLTL formulas.

We first consider the reachability problem with objective G = {s | ∃s′.s

s′ ∧ Ω(s, s′)}. The preliminary to the statistical analysis is to compute the set
Sat(Reach(G)), that is all the states of the SAS that may eventually reach a
state in G. This can be computed using classical model checking algorithms for
finite-state machines. Only the underlying automata of the DTMCs or CTMCs
of the SAS is used for this analysis. As stochastic quantities are ignored, efficient
symbolic techniques exist to speed up this process [6].

8 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

1: procedure Check(Φ
Ω
=⇒ Ψ, ρ)

2: if ¬Check(Φ, ρ) then return false
3: end if
4: i← 0, prec← null, curr ← null

5: while i < |ρ| do
6: prec← curr, curr ← ρ[i]
7: if curr 6∈ Sat(Reach(G)) then return false
8: end if
9: if Ω(prec, curr) then return Check(Ψ, ρ|i)

10: end if
11: i← i + 1
12: end while
13: end procedure

Fig. 2. Algorithm to monitor unbounded A-BLTL properties

Once this preliminary computation is performed, the Check algorithm from
Figure 2 is used to monitor the runs of the SAS. The algorithm takes as input
the A-BLTL property and a run ρ. The run should be in general infinite as
there is no bound on the length of the runs that satisfied an unbounded A-BLTL
property. In that case the states would be generated on-the-fly. The algorithm
returns true or false, whether the run satisfied the property. We also denote
Check(Φ, ρ) as the monitoring of the BLTL property Φ. Then the first step on

line 2 is to monitor Φ on the run ρ. If the result is false then the property Φ
Ω
=⇒ Ψ

is not satisfied. Otherwise the algorithm searches through ρ for two states prec

and curr such that Ω(prec, curr) is true. This is possible if curr belongs to the
precomputed set Sat(Reach(G)). If Ω is satisfied the last step on line 10 is to
monitor Ψ from the current position in ρ.

For homogeneous Markov chains (with constant probability matrices, as it
is the assumption in this paper), the algorithm almost surely (with probability
1) terminates, since it either reaches a state where Ω is unreachable, or the
probability to reach two states that satisfy Ω is not null. It can be iterated to
check sequences of adaptive operators, that is to say properties where Ψ is also
an unbounded A-BLTL.

4 A software engineering point of view

In this section, we propose high level formalisms to specify both adaptive systems
and their properties. Then, we define semantics of those formalisms by exploiting
the definitions introduced in the previous sections. This gives us a free verification
technology for them. The situation is illustrated in Figure 3.

4.1 Adaptive RML systems as a high level formalism for SAS

We represent adaptive systems with Adaptive Reactive Module Language (A-
RML), an extension of the Reactive Module Languages (RML) used by the

A Formalism for Stochastic Adaptive Systems 9

A-RML A-GCSL

SAS A-BLTL

Statistical Model Checking

Fig. 3. SAS verification flow

PRISM toolset [16]. Due to space limit, the syntax common to RML and A-RML
is only briefly described here 1.

The RML language is based on the synchronisation of a set of modules defined
by the user. A module is declared as a DTMC or CTMC, i.e., some local variables
with a set of guarded commands. Each command has a set of actions of the form
λi:ai where λi is the probability (or the rate) to execute ai. A-RML extends
RML such that each module can have some parameters in order to define its
initial state.

module MOD_NAME(<Parameters >)

<local_vars >

. . .

[chan] gk -> (λ0:a0) + . . . + (λn:an);

. . .

endmodule

The optional channel identifiers prefixing commands are used to strongly
synchronise the different modules of a RML system. A module is synchronised
over the channel chan if it has some commands prefixed by chan. We say a
command is independent if it has no channel identifier.

In A-RML a system is a set of modules and global variables. The modules
synchronise on common channels such that the system commands are the inde-
pendent commands of each module and the synchronised commands. A command
synchronised on chan forces all the modules that synchronised over chan to
simultaneously execute one of their enabled commands prefixed by chan. If one
module is not ready, i.e. it has no enabled commands for chan, the system has
no enabled command over chan. Similarly to a module, if the system reaches a
state with a non-deterministic choice, it is solved by a stochastic behaviour based
on a uniform distribution. This solution allows to execute the A-RML system in
accordance with the DTMC/CTMC models.

system SYS_NAME(<Parameters >)

<global_variables >

. . .

<module_declarations >

. . .

endsystem

1 The full syntax can be found at http://project.inria.fr/plasma-lab/

http://project.inria.fr/plasma-lab/

10 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

An adaptive system consists in a set of different views, each represented by
an A-RML system, and a list of adaptations represented by adaptive commands.
The adaptive environment is used to specify which one is the initial view and
what adaptations are possible.

adaptive

init at SYS_NAME(<Initial values >)

. . .

{ SYS_NAME | gk } -> λ0:{a0} + . . . + λn:{an};

. . .

endadaptive

An adaptive command is similar to module command. It has a guard gk

that applies to the current view SYS NAME, and a set of actions λi:ai where λi

is the probability (or the rate) to execute action ai = SYS NAME’(e0, . . . , em).
This action defines the next view SYS NAME’ after performing the adaptation.
This view is determined according to the states of the previous view by setting
the parameters of SYS NAME’ with the expressions e0, . . . , em evaluated over
SYS NAME. The execution of the adaptive command is done in accordance with
the SAS semantics.

Theorem 1. The semantics of A-RML can be defined in terms of SAS.

The proof of the above theorem is a direct consequence of the fact that semantics
of RML is definable in terms of composition of MC, and that the definition of an
adaptive command can also be represented as a MC.

4.2 A contract language for SAS specification

The Goal and Contract Specification Language (GCSL) was first proposed in [2]
to formalise properties of adaptive systems in the scope of the DANSE project.
It has a strong semantics based on BLTL but it has a syntax close to the hand
written English requirements. Dealing with formal temporal logic is often an
issue to formalise correctly the initial English requirements. Most of the time
the formalisation frequently contains some mistakes, which is due to the nesting
of the temporal operators. The difficulty for correctly specifying properties is
enough to make the overall methodology useless.

The GCSL syntax combines a subset of the Object Constraint Language
(OCL) [18] (used to define state properties, i.e., Boolean relations between
the system components) and English behavioural patterns used to express the
evolution of these state properties during the execution of the system. The usage
of OCL is illustrated in Example 1.

Example 1. We consider a SAS describing the implementation of an emergency
system in a city. The city area is divided as a set of districts where each district
may have some equipment to fight against the fire, e.g. some fire stations with
fire brigades and fire fighting cars. Each district is also characterised by a risk
of fire and the considered damages are mainly related to the population size

A Formalism for Stochastic Adaptive Systems 11

of each district. The requirement ”Any district cannot have more than 1 fire
station, except if all districts have at least 1” ensures the minimal condition for
the equipment distribution in the city. We use syntactic coloration to make the
difference between the parts of the language used in the property: the words in
red are identifiers from the model, the blue part is from OCL, like collection
handling, and the black words are variables:
City.itsDistricts→exists(district | district.ownedFireStations > 1) implies

City.itsDistricts→forAll(district | district.ownedFireStations ≥ 1)

GCSL patterns are used to specify temporal properties. In this section we
only present a subset of such patterns that is considered to be general enough to
specify properties of a large set of industry-examples from the DANSE project.
After having read this section, the user shall understand that the set can be
easily increased. Each pattern can nest one or more state properties, denoted in
the grammar by the non-terminals <OCL-prop> and <arith-rel>, that respectively
denote a state property written in OCL or an arithmetic relation between the
identifiers used in the model. The non-terminal <int> denotes a finite time interval
over which the temporal pattern is applied, and <N> is a natural number. The
patterns can be used directly or combined with OCL: applying a pattern to a
collection of system components defines a behavioural property that is applied
to each element of the collection. We present below an excerpt of the complete
GCSL grammar available in [2]:

<GCSL> ::= <OCL-coll>->forAll(<variable>| <pattern>)
| <OCL-coll>->exists(<variable>| <pattern>)
| <OCL-prop>
| <pattern>

<pattern> ::= whenever [<prop>] occurs [<prop>] holds during following [<int>]
| whenever [<prop>] occurs [<prop>] implies [<prop>] during following [<int>]
| whenever [<prop>] occurs [<prop>] does not occur during following [<int>]
| whenever [<prop>] occurs [<prop>] occurs within [<int>]
| [<prop>] during [<int>] raises [<prop>]
| [<prop>] occurs [<N>] times during [<int>] raises [<prop>]
| [<prop>] occurs at most [<N>] times during [<int>]
| [<prop>] during [<int>] implies [<prop>] during [<int>] then [<prop>] during [<int>]

<prop> ::= <OCL-prop> | <arith-rel>

Example 2. Consider the following requirement about the model described in
Example 1: ”The fire fighting cars hosted by a fire station shall be used all si-
multaneously at least once in 6 months”. This requirement uses both GCSL and
OCL patterns:
City.itsFireStations→forAll(fStation |Whenever [fStation.hostedFireFighting-

Cars→ exists(ffCar | ffCar.isAtFireStation)] occurs, [fStation.hostedFireFight-

ingCars→forall(ffCar | ffCar.isAtFireStation = false)] occurs within [6 months])

We now propose A-GCSL, a syntax extension for GCSL that can be used to
describe adaptive requirements of SAS. A-GCSL extends the GCSL grammar
by adding a new pattern that allows to express adaptive relations as done with
the two adaptive operators defined in Section 3. The first pattern of <dyna-spec>

is equivalent to the operator
Ω
=⇒ and the second one denotes

Ω
−→. Any adaptive

12 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

requirement has three elements (A, Ω,G) that are called assumption, trigger and
guarantee, respectively. The assumption and guarantee are specified in GCSL,
whereas the trigger is in OCL. The syntax allows to compose the patterns by
specifying the guarantee with an adaptive pattern. For instance, a composed re-
quirement of the form if Φ1 holds and for all rule that satisfies Ω then (if
Φ2 holds and for all rule that satisfies Ω′ then Φ3 holds) holds is equivalent

to the property Φ1
Ω
=⇒ Φ2

Ω′

=⇒ Φ3. The A-GCSL grammar is the following:

<dyna-spec> ::= if [<GCSL>] holds and for all rule that satisfies [<prop>]
then (<GCSL> | <dyna-spec>) holds

| if [<GCSL>] holds then there exists a rule satisfying [<prop>]
and (<GCSL> | <dyna-spec>) holds

Example 3. Consider again the system in Example 1 and the following A-GCSL
requirement:
if [City.underFire = 0] holds and for all rule such that rule satisfies [Ci-

ty.underFire ≥ 3] then [City.itsDistricts→forall(district | district.decl = false

=⇒ whenever [district.decl = true] occurs, [district.fire = 0] occurs within

[50 hours])] holds

The attribute underFire denotes the number of districts in which a fire
has been declared. If there are more than three fires in the city, then the fire
stations change their usual emergency management into a crisis one. When such
management is activated, the firemen have 50 hours to fix the problem. The
requirement can be translated in A-GCSL using the following formula:

Φ6 =
`

underF ire = 0
´ underFire≥3

−−−−−−−−−→≤10000

^

di:district

“

¬di.decl =⇒ G≤10000 (di.decl =⇒ F≤50 di.fire = 0)
”

In [2], we have showed that any GCSL pattern can be translated into a BLTL
formula. The result extends as follows.

Theorem 2. Any A-GCSL pattern can be translated into an A-BLTL property.

This result is an immediate consequence of the definition of the adaptive pattern.

5 Experiments with SAS

Our work has been implemented in a new statistical model checker named
Plasma-Lab [5], a platform that includes efficient SMC algorithms, a graphical
user interface (GUI) and multiple plugins to support various modelling languages.
The tool is written in Java that offers maximum cross-platform compatibility.
The GUI allows to create projects and experiments, and it implements a simple
and practical mean of distributing simulations using remote clients. Plasma-Lab

also provides a library to write new plugins and create custom statistical model
checkers based on arbitrary modelling languages. Developers will only need to

A Formalism for Stochastic Adaptive Systems 13

implement a few simple methods to build a simulator and a logic checker, and
then beneficiate from Plasma-Lab SMC algorithms.

Plasma-Lab can be used as a standalone application or be instantiated
within other softwares. It has already been incorporated in various performance-
critical softwares and embedded hardware platforms. The current plugins allow
to simulate biologic models, models written in RML and A-RML, but it has
also the capabilities to drive an external engine to perform the simulations, like
MATLAB, Scilab, or DESYRE a simulator for adaptive systems developed by
Ales [1].

5.1 CAE model

Together with our industrial partners in the DANSE project, we have developed
the Concept Alignment Example (CAE). The CAE is a fictive adaptive system
example inspired by real-world Emergency Response data to a city fire. It has
been built as a playground to demonstrate new methods and models for the
analysis and visualization of adaptive systems designs.

The CAE describes the organization of the firefighting forces. We consider in
our study that the city is initially divided into 4 districts, and that the population
might increase by adding 2 more districts. Different and even more complex
examples can be built using the components of this design.

A fire station is assigned to the districts, but as the fire might spread within
the districts, the system can adapt itself by hiring more firemen. We can therefore
design a SAS with three views as described in Figure 4.

View 1

View 2 View 3

FireStation

District

Fig. 4. Components and Views in the CAE model

Adaptive transitions exist between these views to reflect changes in the
environment and adaptations of the system. Initially in View 1, the system can
switch to View 2 when the population of the city increase. This change models
an uncertainty of the environment, and for the purpose of this study we fix its
probability to 0.01 Then, if the number of fires becomes greater than 2, the
system adapts itself by switching to View 3. If the number of fires eventually
reduces and becomes lower than 2, the system might return to View 2. Again, as
this change is uncertain, we fix its probability to 0.8.

14 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

We design several A-RML models of the system that consist in two types
of modules: District and FireStation, both based on a CTMC semantics.
First, we study a model AbstractCAE that is an abstract view of the SAS.
In this model, the District module, presented below, is characterized by a
constant parameter p, that determines the probability of fire, and by two Boolean
variables decl and men, that respectively defines if a fire has been declared and
if the firemen are allocated to the district. The module fireStation has one
constant parameter distancei for each module of the system. This parameter
determines the probability to react at a fire, such that the greater the distance,
the lower the probability. However a fire station can only treat one fire at a
time, which is encoded with a Boolean variable allocated. The fire stations and
the districts synchronize on channels allocate and recover, that respectively
allocate firefighters to the district and bring them back when the fire is treated.
The different views are constructed by instantiating and renaming the modules
presented above.

module District(const int p)

decl : bool init false;

men: bool init false;

[] !decl -> p/1000: (decl ’=true);

[allocate] decl & !men -> (men ’=true);

[recover] decl & men -> 1/p: (decl ’= false) & (men ’= false);

endmodule

We refine this model to better encode the behaviour of the SAS. In this new
model ConcreteCAE a new variable fire of module District ranges from 0 to
10 and grades the intensity of the fire. The fire stations can now assign several
cars (from 0 to 5) to each districts. Therefore the variables men and allocated

becomes integers.

module District(const int p)

fire : [0..10] init 0;

decl : bool init false;

men: [0..5] init 0;

[] fire=0 -> p/1000: (fire ’=1);

[] fire >0 & fire <10 -> p/((1+ men)*100): (fire ’=fire +1);

[] fire >0 & !decl -> (fire*fire)/10: (decl ’=true);

[allocateSt1] decl & fire >0 -> (fire*fire)/10: (men ’=men +1);

[allocateSt2] decl & fire >0 -> (fire*fire)/10: (men ’=men +1);

[] men >0 & fire >0 -> men /10: (fire ’=fire -1);

[recover] decl >0 & fire=0 -> 1000: (men ’=0)&(decl ’= false);

endmodule

From the two models we can consider several subparts composed by one or
several views of the SAS. Adaptive commands are used to model the transitions
between the different views.

– AbstractCAE 1 consists in View 1 and 2 from model AbstractCAE.

– AbstractCAE 2 consists in View 2 and 3.

A Formalism for Stochastic Adaptive Systems 15

– AbstractCAE 3 has the same views as AbstractCAE 2 but is initiated in
View 3 instead of View 2.

– ConcreteCAE 1 only consists in View 1 from model ConcreteCAE.
– ConcreteCAE 2 only consists in View 2.
– ConcreteCAE 3 only consists in View 3.
– ConcreteCAE Full is the full model of ConcreteCAE, with the 3 views and

all the adaptive transitions between them.

5.2 Checking requirements

The requirements are expressed in A-GCSL and translated to A-BLTL. We
first check the model AbstractCAE against A-BLTL properties with adaptive
operators. Our goal is to verify that the transitions between the different views
of the system occurs and satisfy some properties.

The first property, if [true] holds then there exists a rule satisfying [underfire
≤ 1] and Always [!maxfire], checks that when the system is in View 1, it
eventually switches to View 2 when the number of districts that have declared a
fire (underfire) is still lower than 1, and that as a result the system remains safe
for a limited time period, i.e., the number of districts that have declared a fire is
not maximum (maxfire is false). To check this property we limit the analysis to
the model AbstractCAE 1 with only View 1 and View 2. The A-GCSL property

is translated in an A-BLTL formula: Φ1 = true
underfire≤1
=======⇒ G≤1000 !maxfire,

and the results in Table 2 show that the probability to satisfy the property is
only 50%. This justify the need to add a second fire station, as in View 3.

The second property, if [true] holds then there exists a rule satisfying [true]
and Always [!maxfire], checks that from View 2 a second fire station is quickly
added, which switches the system to View 3, and that then the system is safe. The
property is checked on the model AbstractCAE 2 using the A-BLTL formula :

Φ2 = true
true
==⇒≤100 G≤10000 !maxfire.

Finally, with the property if [true] holds then there exists a rule satisfying
[true] and [true], we check that from View 3 the system eventually returns to
View 2. Therefore we use the model AbstractCAE 3 that starts in View 3 and

we check the A-BLTL formula Φ3 = true
true
==⇒≤100 true.

The AbstractCAE models are simple enough to be able to perform reachability
analyses and check the unbounded A-BLTL properties presented above using
Algorithm 2. In a second step we consider the models ConcreteCAE to better
evaluate the safety of the system. The state spaces of these models contain
several millions of states, and therefore, they can only be analyzed by purely
SMC algorithms. We verify the two following properties:

– Always !maxfire, to check that the maximum of fire intensity of 10 is never
reached in any district. This corresponds to Φ4 = G≤10000 !maxfire.

– Whenever [fire > 0] occurs [fire = 0] within [50 hours], to check that
a fire in a district is totally extinct within 50 hours. This corresponds to
Φ5 = G≤10000

(

d6.fire > 0 =⇒ F≤50 d6.fire = 0
)

.

16 Benôıt Boyer, Axel Legay, and Louis-Marie Traonouez

These two properties are first checked for each view of the system. The results in
Table 2 show that while View 1 and View 3 are surely safe, View 2 is frequently
unsafe. But when we check these properties on the complete adaptive model
ConcreteCAE Full, with the three views, we can show that the system remains
sufficiently safe. It proves that after a change of the environment (the increase of
population) the system is able to adapt itself to guaranty its safety.

In the last experiment of Table 2 we check the A-GCSL property presented
in Example 3. This bounded adaptive A-GCSL property is checked using the full
ConcreteCAE model.

We have performed each experiment in Plasma-Lab with a confidence
δ = 0.01 and an error bound ε = 0.02. The results in Table 2 give the probabilities
estimation and the time needed to perform the computation.

Property CAE Model Estimation interval Consumed Time

Φ1

AbstractCAE 1

View 1, View 2
[0.53, 0.56] 1351s

Φ2

AbstractCAE 2

View 2, View 3
[0.84, 0.86] 11s

Φ3

AbstractCAE 3

AbstractCAE 2 starting

from View 3

[0.98, 1] 1363s

Φ4

ConcreteCAE 6

4 dist. 1 sta.
[0.95, 0.99]

11s

9s

Φ4

Φ5

ConcreteCAE 2

6 dist. 1 sta.

[0.46, 0.5]

[0.21, 0.25]

15s

13s

Φ4

Φ5

ConcreteCAE 3

6 dist. 2 sta.

[0.98, 1]

[0.98, 1]

30s

31s

Φ4

Φ5

ConcreteCAE Full

4-6 dist. 1-2 sta.

[0.89, 0.93]

[0.82, 0.86]

25s

42s

Φ6

ConcreteCAE Full

4-6 dist. 1-2 sta.
[0.47, 0.51] 109s

Table 2. Experiments on CAE models

6 Conclusion

This paper presents a new methodology for the rigorous design of stochastic
adaptive systems. Our model is general, but the verification procedure can only
reason on a finite and known set of views. Our formalism is inspired from [24],
where both the stochastic extension and high level formalisms are not considered.
In future work, we will extend this approach to purely dynamic systems. Another
objective is to extend the work to reason about more complex properties such as
energy consumption. Finally, we shall exploit extensions of SMC algorithms such
as CUSUM [19] which permits to reason on switches of probability satisfaction.
This would allow us to detect emergent behaviors.

A Formalism for Stochastic Adaptive Systems 17

References

1. Ales Corp.: Advanced laboratory on embedded systems, http://www.ales.eu.com/
2. Arnold, A., Boyer, B., Legay, A.: Contracts and behavioral patterns for systems of

systems: The EU IP DANSE approach. In: AiSoS. EPTCS (2013)
3. Baier, C., Katoen, J.P.: Principles of Model Checking. The MIT Press (2008)
4. Basu, A., Bensalem, S., Bozga, M., Delahaye, B., Legay, A.: Statistical abstraction

and model-checking of large heterogeneous systems. Int. J. Softw. Tools Technol.
Transf. 14(1), 53–72 (Feb 2012)

5. Boyer, B., Corre, K., Legay, A., Sedwards, S.: Plasma-lab: A flexible, distributable
statistical model checking library. In: QEST. LNCS, vol. 8054, pp. 160–164 (2013)

6. Burch, J.R., Clarke, E., McMillan, K.L., Dill, D., Hwang, L.J.: Symbolic model
checking: 1020 states and beyond. In: LICS. pp. 428–439 (1990)

7. Cheng et al.: Software engineering for self-adaptive systems: A research roadmap.
In: Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525 (2009)

8. Clarke, E., Donzé, A., Legay, A.: On simulation-based probabilistic model checking
of mixed-analog circuits. Form. Methods Syst. Des. 36(2), 97–113 (Jun 2010)

9. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-
bridge, MA, USA (1999)

10. Clarke, E., Faeder, J., Langmead, C., Harris, L., Jha, S., Legay, A.: Statistical
model checking in biolab: Applications to the automated analysis of t-cell receptor
signaling pathway. In: CMSB, LNCS, vol. 5307, pp. 231–250 (2008)

11. DANSE: Designing for adaptability and evolution in sos engineering (dec 2013),
https://www.danse-ip.eu/home/

12. Havelund, K., Rosu, G.: Preface: Volume 70, issue 4. ENTCS pp. 201 – 202 (2002),
Runtime Verification

13. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: TACAS,
LNCS, vol. 2280, pp. 342–356 (2002)

14. Hoeffding, W.: Probability inequalities for sums of bounded random variables.
Journal American Statistical Association 58(301), 13–30 (March 1963)

15. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
bayesian approach to model checking biological systems. In: CMSB. pp. 218–234
(2009)

16. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic
real-time systems. In: CAV’11. LNCS, vol. 6806, pp. 585–591. Springer (2011)

17. Meyer, B.: Applying ”design by contract”. Computer 25(10), 40–51 (1992)
18. OMG: Ocl v2.2 (feb 2010), http://www.omg.org/spec/OCL/2.2/
19. Page, E. S.: Continuous inspection schemes. Biometrika 41(1/2), pp. 100–115 (1954)
20. Sen, K., Viswanathan, M., Agha, G.: On statistical model checking of stochastic

systems. In: CAV. pp. 266–280 (2005)
21. Younes, H., Clarke, E., Zuliani, P.: Statistical verification of probabilistic properties

with unbounded until. In: Formal Methods: Foundations and Applications. LNCS,
vol. 6527, pp. 144–160. Springer (2011)

22. Younes, S., Clarke, E.M., Gordon, G.J., Schneider, J.G.: Verification and planning
for stochastic processes with asynchronous events. Tech. rep. (2005)

23. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive
software. In: ICSE. ACM (2006)

24. Zhang, J., Cheng, B.H.: Using temporal logic to specify adaptive program semantics.
Journal of Systems and Software 79(10), 1361 – 1369 (2006)

http://www.ales.eu.com/
https://www.danse-ip.eu/home/
http://www.omg.org/spec/OCL/2.2/

