
HAL Id: hal-01087318
https://hal.science/hal-01087318v1

Submitted on 25 Nov 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PyEcdar: Towards Open Source Implementation for
Timed Systems

Axel Legay, Louis-Marie Traonouez

To cite this version:
Axel Legay, Louis-Marie Traonouez. PyEcdar: Towards Open Source Implementation for Timed
Systems. 11th International Symposium on Automated Technology for Verification and Analysis, Oct
2013, Hanoi, France. pp.460 - 463, �10.1007/978-3-319-02444-8_35�. �hal-01087318�

https://hal.science/hal-01087318v1
https://hal.archives-ouvertes.fr


PYECDAR: Towards Open Source Implementation for

Timed Systems

Axel Legay, Louis-Marie Traonouez

INRIA Rennes, France, firstname.lastname@irisa.fr

Abstract. PYECDAR is an open source implementation for reasoning on timed

systems. PYECDAR’s main objective is not efficiency, but rather flexibility to test

and implement new results on timed systems.

1 Context

To solve complex problems such as scheduling tasks in embedded applications, the

ability to reason on real time is mandatory. It is thus not a surprise that, over the last

twenty years, the rigorous design of real-time systems has become a main research topic.

Among major successes in the area, one finds the UPPAAL toolset [1] that is promoted

by industries, and that has been used to verify complex properties of complex protocols

such as the Herschel-Planck, the root contention protocol, or Audio-Control Protocol

developed by Philips. Recently, timed tools have been extended to reason not only on

the properties of the system, but also on the effects of its interactions with a potentially

unknown environment. Tools such as UPPAAL-TIGA do this via game-theory [2]. The

code of UPPAAL and related toolsets is not available and their interfaces are fixed in

stone. Those choices shall not been seen as drawbacks, but rather as strategic choices for

an industrial dissemination. However, from a scientific point of view, this makes it hard

for researchers to reuse part of those toolsets to quickly implement and evaluate their

new results without sharing them with tool makers.

We present PYECDAR (https://project.inria.fr/pyecdar/) that is a new python implemen-

tation of well-known results on timed systems and games. We then show that the tool can

be used to implement new results in timed systems. Our main objective with PYECDAR

is to offer an open source platform to quickly test new results on timed systems. Of

course, this implementation is not as competitive as well-established toolsets, but it is

very flexibility and easy to use and extend.

2 The PYECDAR Toolset in a Nutshell

As a foundation to develop new algorithms, PYECDAR offers an implementation of the

reachability analysis for timed automata as well as an implementation of the forward

algorithm from [2] that is used to solve reachability problem for timed games. Then,

the tool offers the implementation of a series of brand new results on timed systems.

The first is the timed specification theory from [3] that has been developed to reason

on complex systems described as a combination of components. The specifications of

those components are given by Timed Input/Output Automata (TIOA), where inputs

represent behaviors of the environment, and outputs those of the system. The tool is

 https://project.inria.fr/pyecdar/


tea!

coin?

tea!

cof!

coin?

Idle

Serving

y=0

y>=4

y<=6

y>=2

(a) Specification

cof! tea!

coin?

coin?

Idle

Serving

y=0

y==5

y<=5

y==5

(b) Implementation

cof! tea!

Idle

coin?

not out_of_teay>=4 and
not out_of_cof

y<=6
Serving

y=0

(c) Adaptive specification

Fig. 1: Specifications of timed systems

able to 1. decide whether an implementation (e.g. Fig. 1b) conforms to a given specifi-

cation (e.g. Fig. 1a), decide whether a specification can be implemented (consistency),

3. compare specifications (refinement – timed game), 4. logically/structurally compose

two specifications, 5. synthesize a specification from a set of requirements (quotient),

and 6. prune states from which the environment has no strategy to avoid bad behaviors

(compatibility) – the operation requires the implementation of a timed game. The theory

has also been implemented in ECDAR [4]. An advantage of PYECDAR is that its internal

data structures can be used to save (and reuse) the result of composing/synthesizing spec-

ifications, while the one of ECDAR cannot. Also, PYECDAR can perform compatibility

on combined systems while ECDAR cannot.

PYECDAR also offers the implementation of an extension of [5] to decide whether

an implementation automaton is robust: i.e. if it remains conform to a specification when

its output guards (resp. input) are exceeded (resp. restricted) by some ∆ value. The tool

can also synthesize the maximal ∆ for which the implementation remains robust. The

results extend to all the operations of the theory [6]. As an example, implementation of

Fig. 1b is robust with respect to specification of Fig. 1a up to ∆ = 1. Beyond that point,

the perturbations of the output transitions, which is 5 − ∆ ≤ y ≤ 5 + ∆, exceeds the

guard y ≥ 4 and the invariant y ≤ 6 of the specification. It is worth mentioning that

the internal structure of ECDAR does not permit to implement robustness on top of the

specification theory. So, albeit the work in [6] is an extension of the one in [3], using

ECDAR would require an entirely new implementation. Several robustness theories for

timed automata have been implemented in tools such as shrinktech [7], but PYECDAR is

the first to offer this feature for a complete specification theory.

Finally, PYECDAR offers the ability to reason on variability [8]. There, the model is

an extended timed automata that permits to represent features of both the system and

its environment – such features may appear or disappear at runtime. As an example,

Fig. 1c represents a specification of the system using two adaptive features for the

environment (out_of_tea and out_of_cof). These features may be enabled or

disabled at runtime during input transitions, which may restrict the possible behaviors of

the system. PYECDAR exploits an extension of timed game algorithms to synthesize e.g.,

the minimal set of features that are needed by a system so that it verifies a timed CTL

property, whatever the environment does. To the best of our knowledge, PYECDAR is the

first to offer a timed implementation of such a complex problem in software engineering.

2



3 Architecture of the Tool

PYECDAR works inside an interactive python shell, and offers a set of modules and

fonctions to load models and perform computations. In PYECDAR, models are written

by using the interface of UPPAAL or ECDAR, and uploaded via an XML file. Once the

models have been loaded, the user can perform one or several queries via the shell in an

on-demand manner.

Input Language. PYECDAR supports the main language elements from ECDAR. That

allows to design TIOAs with the syntax from [3], and additionaly to use extended syntax

elements, like constants and integer variables. See https://project.inria.fr/pyecdar/ for the

grammar. TIOAs are specified with the ECDAR interface that is freely available, and then

saved in XML. In case of features, Boolean variables are added to the model to witness

the presence or absence of each feature. For the internal representation, PYECDAR relies

on the UPPAAL DBMs library used to represent the timing constraints of the model and

a classical graph-based structure to represent its syntax. Contrary to ECDAR, PYECDAR

creates a dedicated structure for each component, including those that are obtained

by combining existing ones. ECDAR is rigid and can only represent a new component

by a pointer on states of the structures of those that participated to its creation. As a

consequence, ECDAR cannot perform composability that consists in removing “bad

states”. Indeed, since new components do not have their own structure, this operation

would eventually remove states of individual components that participated to its creation

and hence falsify the design. If features are present, then PYECDAR combines BDDs

used to logically represent sets of features on transitions with DBMs (see [8] for details).

Finally, PYECDAR also uses polyhedra, with bindings to the Parma Polyhedra Library,

to encode parametric constraints in case the user wants to solve a robustness problem.

Queries. PYECDAR offers two types of queries. The first one comes as a set of operators

such as composition or quotient to build complex systems from small ones. The second

type concerns operational queries such as the one of checking consistency, refinement,

robustness, or properties of adaptive systems (see https://project.inria.fr/pyecdar/ for the

complete list of queries). Depending on the problem to be solved, PYECDAR outputs

different kinds of results. As an example, if the tool is used to synthesize the set of

features that allows to satisfy some temporal formula, this set is output as a binary

expression. The tool can also be used to determine the winning states for a timed game,

which allows to determine if the consistency, compatibility or refinement problems have

been solved. Finally, using a counter-example refinement approach (CEGAR), it can

compute the maximum perturbation allowed by the system to solve a robustness problem.

PYECDAR offers some extra features such as saving TIOAs into a new XML file so that

they can be reused in other designs.

Algorithms. 1. PYECDAR implements the on-the-fly safety game algorithm from [2]

that is used e.g. to check consistency and refinement. The tool also uses a model

transformation to reduce robust consistency/compatibility to consistency/compatibility

and hence reuse the former algorithm. 2. The CEGAR algorithm is a parametric extension

of the first [9] that allows to compute the maximal delta for which an implementation

3

 https://project.inria.fr/pyecdar/
 https://project.inria.fr/pyecdar/


remains robust. 3. The last algorithms are backward propagation game algorithms [8]

that compute the set of features that satisfies a formula for an adaptive system.

4 PYECDAR in Action
We quickly demonstrate how to use PYECDAR. Assume that the models presented in
Fig. 1 are saved in an XML file machine.xml. We first load the XML file of the first
two TIOAs:

In [1]: W = pyecdar.loadModel("machine.xml")

In [2]: MS = W.getSpecification("MachineSpec")

In [3]: MI = W.getSpecification("MachineImpl")

We check if the implementation of Fig. 1b satisfies the specification in Fig. 1a:

In [4]: MI <= MS

Out[4]: True

We can then compute the maximum perturbation allowed by the implementation.
This applies the CEGAR approach, starting with value 5, and with a confidence 0.1 for
the result. The result is computed after 2 iterations and ∆ = 1 is returned.

In [5]: MI.maxRobSat(MS,5,0.1)

INFO:CEGAR: New game with value 5

INFO:REACH:2 states visited.

INFO:CEGAR: ...game is lost; refining...

INFO:CEGAR: ...refinement result: max=1 min=0 strict: False

INFO:CEGAR: New game with value 1

INFO:REACH:6 states visited.

INFO:CEGAR: ...game is won;

INFO:CEGAR: ...refinement result: max=1 min=1 strict: False

Out[5]: 1.0

Other examples, e.g. checking a temporal formula on the adaptive specification of

Fig. 1c, are described on https://project.inria.fr/pyecdar/

References

1. Behrmann, G., David, A., Larsen, K.G., Pettersson, P., Yi, W.: Developing uppaal over 15

years. Softw., Pract. Exper. 41(2) (2011) 133–142

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: Uppaal-tiga: Time

for playing games! In: CAV. Volume 4590 of LNCS., Springer (2007) 121–125

3. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed i/o automata: a complete

specification theory for real-time systems. In: HSCC, ACM ACM (2010) 91–100

4. David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Ecdar: An environment for

compositional design and analysis of real time systems. In: ATVA. Volume 6252 of LNCS.,

Springer (2010) 365–370

5. Chatterjee, K., Prabhu, V.S.: Synthesis of memory-efficient "real-time" controllers for safety

objectives. In: HSCC, ACM (2011) 221–230

6. Larsen, K.G., Legay, A., Traonouez, L.M., Wasowski, A.: Robust specification of real time

components. In: FORMATS. Volume 6919 of LNCS., Springer (2011) 129–144

7. Bouyer, P., Markey, N., Sankur, O.: Robust reachability in timed automata: A game-based

approach. In: ICALP (2). Volume 7392 of LNCS., Springer (2012) 128–140

8. Cordy, M., Legay, A., Schobbens, P.Y., Traonouez, L.M.: A framework for the rigorous design

of highly adaptive timed systems. In: Proc. FormaliSE, IEEE (2013) 64–70

9. Traonouez, L.M.: A parametric counterexample refinement approach for robust timed specifi-

cations. In: FIT. Volume 87 of EPTCS. (2012) 17–33

4

 https://project.inria.fr/pyecdar/

