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Approximation result for a Mumford-Shah functional adapted to a segmentation problem

We consider a segmentation problem of image close to a binary one. After introducing a Mumford Shah energy like, we perform an approximation of this model. We prove a Γ-convergence result and show why this approximation is suitable for numerics.

Introduction

This paper is motivated by a 3D-image segmentation process with thin tubular structures. We have introduced a model which is derived from Mumford and Shah's one in [START_REF] Mumford | Optimal approximations by piecewise smooth functions and associated variationnal problems[END_REF]. Mathematical analysis of such model is difficult. So, in order to make numerical experiments, we perform an approximation in the sense of Γ-convergence. More precisely, an image is modeled as an application g defined on Ω with values on [0,[START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF] where Ω is an open, bounded and regular subset of R n . We assume that g is close to a binary function. More precisely, its histogram has two distincts modes that we assume to be 0 and 1. We prove that the model (P) : Min {E(p) : p ∈ SBV (Ω), p(x) ∈ {0; 1} a.e. x ∈ Ω} , where E(p) = 1 2 Ω (p -g) 2 dx + βH n-1 (S p ).

(1.1)

where S p is the jump set of the binary function p, may be approximated by

(P ε ) : Min E ε (p) : p ∈ W 1,2 (Ω), 0 ≤ p(x) ≤ 1 a.e. x ∈ Ω where E ε (p) = 1 2 Ω (p -g) 2 dx + β Ω 9ε|∇p| 2 + p 2 (1-p) 2 ε dx (1.
2) in the sense of the Γ-convergence. In the application which motivated this paper, we set n = 3 but we prove this result for any n ≥ 1. In a companion paper [START_REF] Bergounioux | A mumford-shah geometrical model for the detection of thin structures[END_REF] we perform a tuning for the parameters of this approximated model in order to detect thin structures of tubes in 3D images and we give there a complete bibliography of the subject. In the present paper we introduce the theoretical framework (section 2) then we prove the Γ-convergence of the model (section 3) and give additional properties related to numerical aspects (section 4).

2 Functional framework and Γ-convergence

Functional spaces

We work in this paper with spaces of functions with bounded variation that we recall thereafter, for more details see [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF], [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]. Definition 2.1. Let Ω be an open subset R n , and u ∈ L 1 (Ω). We define BV (Ω), the space of functions with bounded variations:

BV (Ω) = {u ∈ L 1 (Ω) : T V (u) < +∞}, where T V (u) = sup Ω u(x)div(ξ)(x)dx : ξ ∈ C 1 c (Ω), ξ ∞ ≤ 1 .
The space BV (Ω), with the norm u BV (Ω) = u L 1 + T V (u), is a Banach space. The derivative, in a distributional sense, of an element u ∈ BV (Ω) is a Radon measure, denoted Du, and T V (u) = Ω |Du| is the total variation of u. We introduce the following notation for a measure µ and a set B, µ ¬ B is the measure such that:

µ ¬ B(A) = µ(A ∩ B).
We recall useful properties on the structure of the gradient of BV functions in next theorem.

Theorem 2.1. Let u ∈ BV (Ω) then we have the following decomposition:

Du = ∇u • L n + (u + -u -)ν u H n-1 ¬ S u + C u ,
where

• ∇u = Du Ln , • S u is a countable union of hypersurfaces, • ν u : S u → S n-1 is a measurable normal unitary vector of S u ,
• u -, u + are the lower and upper approximated limits of u,

• C u ⊥ H n-1 .
Definition 2.2. For any u ∈ BV (Ω), we set:

• ∇u • L n as the regular part of Du,

• S u as the jump set of u,

• (u + -u -)ν u H n-1
¬ S u as the jump part of Du, 

Du = ν u H n-1 ¬ S u .
The space SBV has a useful slicing property.

Definition 2.4. Let ν ∈ S n-1 (unit sphere of R n ) and Ω be an open subset of R n . Let Π ν be the orthogonal plane to ν:

Π ν = {x ∈ R n : ν, x = 0},
where •, • stands for the scalar R n -product. For any x ∈ Π ν we define As in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence[END_REF], we introduce a projection on the open set Ω x (see figure 2.1). For any function u defined on Ω ⊂ R n and any x ∈ Ω ν , we set 

Ω x = {t ∈ R : x + tν ∈ Ω} and Ω ν = {x ∈ Π ν : Ω x = ∅}, see figure 2.1.
u x : Ω x → R t → u(x + tν) Theorem 2.3. Let u ∈ L ∞ (Ω) be a function such that, for all ν ∈ S n-1 , i) u x ∈ SBV (Ω x ) for H n-1 a.e. x ∈ Ω ν , ii) Ων Ωx |∇u x |dt + H 0 (S ux ) dH n-1 (x) < +∞
ν u , ν dH n-1 (x) = Ων H 0 (S ux )dH n-1 (x).

Γ-convergence theory

Usually, a standard compactness argument is sufficient to prove the existence of minimizing solutions. In our case, we use a specific notion of convergence which will be specified here, since compactness is not ensured for usual topologies. As before, for more details see [START_REF] Attouch | Variational Analysis in Sobolev and BV spaces[END_REF].

Definition 2.5. Let (X, d) a metric space, (F n ) n∈N a sequence of functions defined on X with values in R∪{+∞} and F : X → R∪{+∞}. The sequence (F n ) n∈N Γ-converges to F on x ∈ X if the following assertions are true:

i) for all (x n ) n∈N which converges to x:

F (x) ≤ lim inf n→∞ F n (x n ),
ii) there exists (y n ) n∈N which converges to x such that:

F (x) ≥ lim sup n→∞ F n (y n ),
This concept is the convergence of the approximate minimum. More precisely, if for any n, p n is a minimum of F n and (p n ) n converges to p, then according to this concept, p is a minimum of F . We shall use the following result. Proposition 2.1. Let X a topological space, (f n ) n∈N a sequence of functions defined on X with values in R ∪ {+∞} which Γ-converges to f and h a continuous function defined on X with values in R ∪ {+∞}. Then the sequence (f n + h) n∈N Γ-converges to f + h.

A Γ-convergence result

We now prove that the family of functionals (E ε ) ε>0 defined by (1.2) Γconverges to E defined by (1.1). For more simplicity in the proof we assume that β = 1 in this section, its value doesn't change the arguments of the proof. We denote W 1,2 b (Ω) the following space

W 1,2 b (Ω) = p ∈ W 1,2 (Ω) : 0 ≤ p(x) ≤ 1 a.e. x ∈ Ω . Let B(Ω; [0, 1]
) be the space of measurable functions defined on Ω which take their values in [0, 1]. This space is endowed with the almost everywhere convergence topology. It's a Fréchet space (see [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence[END_REF]).

Let F be the penalization term of the functional E:

F : B(Ω; [0, 1]) → R ∪ {+∞} (3.1) p → H n-1 (S p ) if p ∈ SBV (Ω), +∞ otherwise (3.2)
and F ε be its approximation:

F ε : B(Ω; [0, 1]) → R ∪ {+∞} p → Ω 9ε|∇p| 2 + p 2 (1-p) 2 ε dx, if p ∈ W 1,2 b (Ω), +∞ otherwise.
Let H be the fitting data term:

H : B(Ω; [0, 1]) → R ∪ {+∞} p → 1 2 Ω (p -g) 2 dx. Let (p k ) k∈N ⊂ B(Ω; [0, 1]
) be a a.e. converging sequence to some p. According Lebesgue theorem and the fact that p k ∞ ≤ 1, the sequence (H(p k )) k∈N converges to H(p) and H is continuous for the almost everywhere convergence topology. So, it is sufficient to prove the Γ-convergence of F ε to F . Indeed, proposition 2.1 with

X = B(Ω; [0; 1]), implies the Γ-convergence of E ε = F ε + H to E = F + H.
We introduce the following notation:

F ε (p, U ) = U 9ε|∇p| 2 + p 2 (1 -p) 2 ε dx, F (p, U ) = H n-1 (S p ∩ U )
and

F -(p, U ) = inf lim inf k→∞ F ε k (p k , U )|p k a.e. → p, (p k ) k∈N ⊂ W 1,2 b (U ) . (3.3)
The functional F -is also called the lower-Γ limit of F . We shall prove the following theorem. 

F (p, Ω) ≥ lim sup k→∞ F ε k (p k , Ω). (3.5)
According to this theorem, we deduce that F (p, Ω) = F -(p, Ω) for p ∈ SBV (Ω) taking its values in {0, 1}. The proof is detailed thereafter.

The inequality for the lower Γ-limit (3.4)

We now prove the first inequality (3.4). We shall need the following properties of this functional:

a) F -(p, •) is supperaddditive on open sets, that is A ∩ B = ∅ ⇒ F -(p, A ∪ B) ≥ F -(p, A) + F -(p, B), b) F -(p, •) is non decreasing: A ⊂ B ⇒ F -(p, A) ≤ F -(p, B).
By a diagonal extraction, there exists a sequence (p k

) k∈N ⊂ W 1,2 b (Ω) such that: p k a.e. → p, F ε k (p k , Ω) → F -(p, Ω) (3.6)
We assume that F -(p, Ω) < +∞ otherwise (3.4) is ensured. We have to prove:

F (p, Ω) ≤ lim inf k→∞ F ε k (p k , Ω)
As in [START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals via gamma-convergence[END_REF], we perform the proof in two steps: the first step deals with dimension 1. The second generalizes it for dimension n ≥ 2.

The one-dimensional case

Assume Ω = I is an open interval. To avoid confusion, when n = 1, we denote the approximating functionals by F 1 ε et their lower Γ-limit, defined in (3.3), by F 1 -.

Lemma 3.1. Let B η (x) ⊂ R be an open ball and q ∈ B(B η (x)) be a function taking its values in {0; 1}. Assuming

∀ρ ∈]0, η[, q ∈ W 1,2 (B ρ (x)),
then we have:

∀ρ ∈]0, η[, F 1 -(q, B ρ (x)) ≥ 1. In particular, if I ⊂ R
is an open and bounded interval such that q ∈ B(I) takes its values in {0; 1} and F 1 -(q, I) < +∞ then q ∈ SBV (I). Moreover, there exists J ⊂ I with cardinal less than

F 1 -(q, I) such that i) p is constant on each connected component of I \ J, ii) H 0 (S q ∩ I) ≤ F 1 -(q, I).
Proof. We can assume that F 1 -(q, B ρ (x)) < +∞ for any ρ ∈]0; η[. As before, there exists a sequence (q k ) k∈N ⊂ W 1,2 b (B ρ (x)) such that:

q k a.e. → q, F ε k (q k , B ρ (x)) → F 1 -(q, B ρ (x)) (3.7) 
Since q takes its values a.e. in {0, 1} and q ∈ W 1,2 (B ρ (x)) for any ρ ∈]0, ρ[, there exists two sequences (y 1 k ) k∈N and (y 2 k ) k∈N such that:

y 1 k → x, q k (y 1 k ) → 1 and y 2 k → x, q k (y 2 k ) → 0.
However, we have:

F 1 ε k (q k , B ρ (x)) ≥ x+ρ x-ρ 9ε k |∇q k (y)| 2 + q 2 k (1 -q k (y)) 2 ε k dy.
We introduce:

A := 3 √ ε k |∇q k (y)|, B := q k (1 -q k (y)) √ ε k .
With the inequality A 2 + B 2 ≥ 2AB, we get:

F 1 ε k (q k , B ρ (x)) ≥ 6 x+ρ x-ρ |∇q k (y)|q k (y)(1 -q k (y)) dy. As [y 1 k , y 2 k ] ⊂ B ρ (x)
, we obtain:

F 1 ε k (q k , B ρ (x)) ≥ 6 y 2 k y 1 k |∇q k (y)|q k (y)(1 -q k (y)) dy.
Since q k ∈ W 1,2 (I), we may use the change of variable t = q k (s). This yields:

F 1 ε k (q k , B ρ (x)) ≥ 6 q k (y 2 k ) q k (y 1 k ) t(1 -t)dt, F 1 ε k (q k , B ρ (x)) ≥ 6 q 2 k (y 1 k ) -q 2 k (y 2 k ) 2 - q 3 k (y 1 k ) -q 3 k (y 2 k ) 3
We know that q k (y 1 k ) → 1 and q k (y 2 k ) → 0, so that we deduce:

q 2 k (y 1 k ) -q 2 k (y 2 k ) 2 - q 3 k (y 1 k ) -q 3 k (y 2 k ) 3 → 1 6 . It comes, lim inf F 1 ε k (q k , B ρ (x)) ≥ 1. and we can conclude F 1 -(q, B ρ (x)) ≥ 1. (3.8) We set J = x ∈ I : ∀ρ > 0, q ∈ W 1,2 (B ρ (x)) .
The functional F 1 -(q, •) is super-additive and non-decreasing (see (3.1)). With inequality (3.8) we get

F 1 -(q, I) ≥ H 0 (J).
According to the fact that q takes its values a.e. in {0; 1}, then q is constant on the connected components of I \ J and S q ∩ I = J. Therefore, we may conclude F 1 -(q, I) ≥ H 0 (S q ∩ I).

Generalization to dimensions n ≥ 2

We now extend the proof to any higher dimension n by a slicing argument.

Recall that we want to prove

F -(p, Ω) ≥ F (p, Ω). Let (p k ) k∈N ⊂ W 1,2 b (Ω) as in (3.

6). Let A be an arbitrary open subset of Ω. Assume that F -(p, A) < +∞ and F ε k (p k , A) → F -(p, A).

Let ν ∈ S n-1 be an unit vector, we have:

F ε k (p k , A) = A 9ε k |∇p k (x)| 2 + p 2 k (x)(1 -p k (x)) 2 ε k dx ≥ A 9ε k | ∇p k (x), ν | 2 + p 2 k (x)(1 -p k (x)) 2 ε k dx
The Lebesgue measure of R n projected on Π ν is the Hausdorff measure with dimension n -1 (see for example [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]). Applying Fubini theorem, we get:

F ε k (p k , A) ≥ Aν Ax 9ε k | ∇p k (x + tν), ν | 2 + p k (x + tν) 2 (1 -p k (x + tν)) 2 ε k dt dH n-1 (x) ≥ Aν F 1 ε k ((p k ) x , A x ) dH n-1 (x).
Fatou lemma yields:

F -(p, A) ≥ Aν lim inf F 1 ε k ((p k ) x , A x ) dH n-1 (x).
As (p k ) x ∈ SBV (A x ) a.e. x ∈ A ν , with lemma 3.1, we have:

F -(p, A) ≥ Aν H 0 (S (p)x ∩ A x ) dH n-1 (x).
Using theorem 2.3 gives:

Aν H 0 (S (p)x ∩ A x ) dH n-1 (x) = Sp∩A | ν p , ν | dH n-1 (x), so that F -(p, A) ≥ Sp∩A | ν p , ν | dH n-1 (x).
(3.9)

As p belongs to SBV (Ω), according to theorem 2.1, the set S p is a countable union of C 1 -hypersurfaces. Then, we obtain:

H n-1 (S p ) = sup A,V ∞ i=1 Sp∩A i | ν p , ν i | dH n-1 (x)
where the supremum is taken over all the families

A = (A i ) i=1•••∞ of open and pairwise disjoint subsets of Ω and V = (ν i ) i=1•••∞ ⊂ S n-1 .
Applying the inequality (3.9) to each term, we have:

H n-1 (S p ) ≤ sup A ∞ i=1 F -(p, A i ) .
where the supremum is only taken over all the families A.

Since F -(p, •) is super-additive and non decreasing (see (3.1)), then we may conclude that

H n-1 (S p ) ≤ F -(p, Ω).

The inequality for the higher Γ-limit (3.5)

To prove the second part (3.5), we construct a sequence of functions (p k ) k∈N converging to p, so that the higher bound of the energy is lower than F (p, Ω). We will use the following lemma due to Modica [START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF].

Lemma 3.2. Let

A be an open and bounded subset of Ω with a non empty Lipschitz boundary ∂A. Let

h(x) = +dist(x, ∂A) if x ∈ A, -dist(x, ∂A) otherwise
and for all t > 0,

S t = {x ∈ A : h(x) = t}.
Then h is a Lipschitz function, and we have:

|Dh(x)| = 1 a.e. x ∈ Ω and lim t→0 H n-1 (S t ∩ Ω) = H n-1 (∂A ∩ Ω) .
We may now prove the second part (3.5) of theorem 3.

Proof. Set:

h(x) = +dist(x, {p = 0}) if p(x) = 1, -dist(x, {p = 1}) if p(x) = 0, χ 0 (t) = 1 si t ≥ 0, 0 si t < 0.
It is clear that p = χ 0 • h. We construct p k as p k = χ k • h. In this case, we have:

F ε k (p k ) = Ω 9ε k |∇χ k (h(x))| 2 |∇h(x)| 2 + χ 2 k (h(x))(1 -χ k (h(x))) 2 ε k dx.
The function p belongs to SBV (Ω). According to theorem 2.1 and lemma 3.2, we have |∇h(x)| = 1 for almost every x ∈ Ω. Then, we may apply coarea formula (see for example [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF]) to obtain:

F ε k (p k ) = +∞ t=-∞ ϕ ε,k (t)H n-1 ({h = t}) dt, where ϕ ε,k (t) = 9ε k |∇χ k (t)| 2 + χ 2 k (t)(1 -χ k (t)) 2 ε k .
The minimization of this energy is a 1D-problem. The Euler-lagrange equation associated to this problem is:

(9ε k (χ k ) 2 ) = χ 2 k (1 -χ k ) 2 ε k
Thus, there exists c k > 0 such that:

9ε k (χ k ) 2 = c k + χ 2 k (1 -χ k ) 2 ε k (3.10)
Let χ k a solution of the equation (3.10) such that:

       χ k (t) = 0 if t ≤ 0, 3 √ ε k χ k = c k + χ k 2 (1-χ k ) 2 ε k if t ∈ [0, η k ], χ k (t) = 1 if t ≥ η k . As χ k ≥ c k 9ε k , we have η k ≤ c k 9ε k . If c k ε k → 0 then χ k • h converges to p almost everywhere. Set A = 3 √ ε k χ k and B = χ k (1-χ k ) √ ε k . We have A 2 = c k + B 2 and
A 2 + B 2 = 2AB + c k + 2B 2 -2AB, = 2AB + c k + 2B(B -A), = 2AB + c k + 2B(B -c k + B 2 ), = 2AB + c k -2c k B B + c k + B 2 .
Replacing it in F ε k (p k ) leads to:

F ε k (p k ) = η k t=0 (A 2 + B 2 )H n-1 ({h = t}) dt = η k t=0 (2AB + c k -2c k B B + c k + B 2 )H n-1 ({h = t}) dt ≤ η k t=0 (2AB + c k )H n-1 ({h = t}) dt.
Replacing A and B by its values, we get:

F ε k (p k ) ≤ η k t=0 6χ k χ k (1 -χ k )H n-1 ({h = t}) dt + η k t=0 c k H n-1 ({h = t}) dt.
As p ∈ SBV . So, t → H n-1 ({h = t}) is continuous at t = 0 and converges to H n-1 (S p ) with theorem 2.1. Thus, the second term converges to 0. Applying Fatou lemma gives

lim sup F ε k (p k ) ≤ H n-1 (S p ) lim sup η k t=0 3 4 χ k (1 -χ 2 k ) dt ≤ H n-1 (S p ) 1 0 6s(1 -s) ds ≤ H n-1 (S p ).

Convergence of solutions

In this section we prove an existence result for the minimizing problem of E ε , with ε > 0 fixed; we set p ε such solution. Then, we show the convergence a.e. of an extracted subsequence (p ε k ) ε k ∈N , with ε k → 0 + , to a binary function p ∈ SBV (Ω). To demonstrate that, we use the Γ-convergence result proved in section 3.

Lower semi-continuity of E ε

For ε > 0 fixed, we can find a minimizer of E ε on W 1,2 b (Ω). Contrary to E, the functional E ε is lower semi-continuous for the usual topology. b (Ω) is a minimizing sequence of E ε , then there exists a sub-sequence (p k l ) l∈N converging a.e. to p ∈ W 1,2 (Ω) such that

E ε (p) = lim l→∞ E ε (p k l ) = min E ε (q) : q ∈ W 1,2 b (Ω) . Proof. Let (p k ) k∈N ⊂ W 1,2 b (Ω) be a minimizing sequence of E ε . In particular, the sequence (E ε (p k )) k∈N is bounded. Since 9εβ ∇p k 2 L 2 (Ω) ≤ E ε (p k ) and p k 2 L 2 (Ω) ≤ p k L ∞ (Ω) L n (Ω) ≤ L n (Ω)
, then this sequence is bounded in W 1,2 (Ω). So, there exists a subsequence (p k l ) l∈N which weakly converges to p ∈ W 1,2 (Ω). The functional q → Ω |∇q| 2 is lower semi-continuous for the weak topology of W 1,2 (Ω). According to Fatou lemma, the functionals • q → Ω (q -g) 2 • q → Ω q 2 (1 -q) 2 are lower semi-continuous for the topology of the a.e. convergence. Then, we may conclude

E ε (p) ≤ lim inf l→∞ E ε (p k l ).
Since (p k ) k∈N is a minimizing sequence then

E ε (p) = lim l→∞ E ε (p k l ) = min E ε (q) : q ∈ W 1,2 b (Ω) .

Compactness result of (P ε ) ε>0

According to 4.1, there exists p ε solution of (P ε ). For numerical applications, we need the convergence of the solutions (p ε k ) k∈N for any ε k → 0 + to a solution of (P). In this section, we prove that this family is compact in the following sense. 

) p(x) ∈ {0; 1} a.e. x ∈ Ω, ii) p ∈ SBV (Ω) and H n-1 (S p ) < +∞,
iii) p is a solution of (P). This result also prove that the space SBV (Ω; {0; 1}) is "optimal" for the previous Γ-convergence result: it is the largest domain for which this result is satisfied.

Proof. Let q ∈ SBV (Ω) an arbitrary function such that q takes its values in {0; 1} and H n-1 (S q ) < ∞. According theorem 3, there exists a sequence (q k ) k∈N such that (E ε k (q k )) k∈N converges to E(q). In particular, the sequence (E ε k (q k )) k∈N is bounded, we denote M its higher bound. Since p k is a minimizer of E ε k for any k then (E ε k (p k )) k∈N is bounded by M too. We set c k = 3p 2 k -2p 3 k . Note that c k ∈ W 1,2 (Ω) and that the chain rule gives ∇c k = 6∇p k p k (1 -p k ), so we have

Ω |∇c k | = 6 Ω |∇p k |p k (1 -p k )dx, ≤ Ω 9ε k |∇p k | 2 dx + Ω p 2 k (1 -p k ) 2 ε k dx, ≤ M β .
Thus (c k ) k∈N is bounded in W 1,1 (Ω). So, there exists a subsequence (c k l ) l∈N which converges a.e. to c ∈ B(Ω). According that x → 3x 2 -2x 3 is a bicontinuous isomorphism from [0, 1] to itself, there exists p ∈ B(Ω) such that (p k l ) l∈N converges a.e. to p. We have

∀k ∈ N, Ω p 2 k (1 -p k ) 2 ε k dx ≤ M β .
As (ε k ) k∈N converges to 0 + , Fatou lemma yields

Ω p 2 (1 -p) 2 dx = 0, so that p(x) ∈ {0; 1} a.e. x ∈ Ω. Let us prove ii. As ∀k ∈ N, E ε k (p k ) ≤ M. then F -(p, Ω) ≤ M < +∞.
Let ν ∈ S n-1 be a fixed vector, and (r k ) k∈N ⊂ W 1,2 b (Ω) such that r k a.e.

→ p, F ε k (r k , Ω) → F -(p, Ω).

Since r k ∈ W 1,2 (Ω), then (r k ) x (defined by 2.1) belongs to W 1,2 (Ω x ) and we have:

∇r k (x + tν), ν = ∇(r k ) x .
As

Ω 9ε k | ∇r k , ν | 2 + r 2 k (1 -r k ) 2 ε k dx ≤ F ε k (r k , Ω).

Fubini theorem gives

Ων Ωx We deduce that F 1 -((p x ), Ω x ) < +∞ is finite H n-1 -a.e. x ∈ Ω ν . Otherwise, ((r k ) x ) k∈N converges to p x a.e. on Ω x and p x takes its values on {0; 1} H n-1 -a.e. x ∈ Ω ν . According to lemma 3.1, we have

9ε k | ∇r k (x + tν), ν | 2 + r 2 k (1 -r k ) 2 ε k dt dH n-1 (x) ≤ F ε k (r k , Ω).
p x ∈ SBV (Ω x )
for H n-1 -a.e. x ∈ Ω ν . Moreover, we have proved that H 0 (S px ∩ Ω x ) ≤ F 1 -(p x , Ω x ) and ∇p x = 0, so we have Ων Ωx |∇p x |dt + H 0 (S px ) dH n-1 (x) < +∞. Now, the conditions of theorem 2.3 are satisfied. We can conclude that p ∈ SBV (Ω) and H n-1 (S p ) < +∞. Let us prove iii.

Conclusion

We have shown in section 3 that (E ε ) ε Γ-converges to E (theorem 3.1) in SBV and this is the best we can have (theorem 4.2). Furthermore, we have shown that this approximation is suitable for numerical experiments since the solutions of (P ε ) are approximations of (P) (theorem 4. (Ω) with ε fixed and small. In the companion paper [START_REF] Bergounioux | A mumford-shah geometrical model for the detection of thin structures[END_REF], we study this approximate problem with the specifics constraints for thin tubes.
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  1). Practically, we replace the problem (P) : Min {E(p) : p ∈ SBV (Ω), and p takes its values in {0, 1}} by the problem (P ε ) : Min E ε (p) : p ∈ W 1,2 b

  Theorem 3.1. Let (ε k ) k∈N be a sequence which converges to 0 + and p ∈ SBV (Ω) be a function taking its values in {0, 1}.

	Then	
	i)	
	F (p, Ω) ≤ F -(p, Ω)	(3.4)
	holds;	
	ii) there exists a sequence (p k ) k∈N ⊂ W 1,2 b (Ω) which converges a.e. to p
	such that:	

  Theorem 4.2. Let (ε k ) k∈N be a sequence converging to 0 + and let (p k ) k∈N ⊂ W 1,2 b (Ω) be such that for any k ∈ N, p k is a minimizer of E ε k . Then, there exists a subsequence (p k l ) l∈N which converges a.e. to p ∈ B(Ω).

	Moreover,
	we have:
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